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Approximate expressions are given for the characteristic impedance and propagation 
wavenumber for linear acoustic transmission through a gas enclosed in a rigid cylindrical duct. 
These expressions are most complicated in the transition zone where the thermoviscous boundary 
layers are on the order of the tube radius. The approximations are accurate to within 1% for all 
frequencies and tube diameters except within the transition zone where the approximations are 
accurate to within 10%. A simple modification of the transmission line parameters is presented 
for the case where the tube walls are nonisothermal. 

PACS numbers: 43.20.Mv, 43.20.Bi 

INTRODUCTION 

The subject of sound propagation in a rigid cylindrical 
tube has a long history. Following the work of Stokes,' 
Helmholtz, 2 and others on the effect of viscosity on sound 
propagation in tubes, Kirchhofi • included the effects of both 
viscosity and heat conduction on acoustic propagation 
through a rigid cylindrical tube. He assumed that the oscilla- 
tory flow is laminar, the particle displacement is sufficiently 
small that all nonlinear terms in the equations of motion can 
be neglected, and the inner tube wall is isothermal. 

Many applications in acoustics require calculation of 
the oscillatory pressure/flow relationships within a cylindri- 
cal tube. Thus it is helpful to find accurate aproximations to 
Kirchhoff's exact solution which can be computed easily. 
Rayleigh 4 was one of the first to obtain useful approxima- 
tions. One case was that of the very narrow tube, or, alterna- 
tively, the acoustic boundary layer large relative to the tube 
radius. Both Rayleigh and Kirchhoffdiscussed the opposite 
case where the acoustic boundary layer is much smaller than 
the tube radius. More recently, Brown 5 extended this ap- 
proximation to frequencies such that the acoustic boundary 
layer is on the order of or smaller than the tube radius. Ben- 
ade 6 has given an approximate form of the solution which 
spans the entire frequency range. However, Backus 7 has 
pointed out errors in the approximations used by Benade. 

This article sets out an approximate form of the trans- 
mission line parameters for thermoviscous propagation in 
rigid cylindrical ducts. The difficulty in approximating the 
exact solution arises in the transition region where the vis- 
cous and thermal boundary layers are the same order of 
magnitude as the tube radius. However, the approximations 
in Sec. I have sufficient accuracy so that the error does not 
exceed 10% at any frequency. Outside this transition region, 
the errors are within 1%. 

Many experiments have demonstrated the validity of 
Kirchhoff's theory. The main deviations between theory and 
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experiment are due to acoustic nonlinearities, nonrigidity of 
the tube walls, roughness on the inner wall surface, and the 
fact that the tube walls do not remain isothermal. 

The influence of nonlinear acoustics on propagation in 
tubes has been recently discussed by Crighton a and Naka- 
mura, Takeuchi, and Oie. 9 Regarding thermal effects, the 
validity of Kirchhoff's assumption that the inner tube wall 
remains at a constant ambient temperature has been clarified 
by later investigators. In a study of nonlinear wave propaga- 
tion in cylindrical tubes, Mawardi calculated and measured 
the increase in the mean temperature of the inner wall sur- 
face and the enclosed gas.•ø Franken, Clement, Cauberghs, 
and van de Woestijne have extended Kirchhoff's linearized 
solution to take aceout of the oscillating temperature at the. 
inner wall surface? A simplified form of their solution 
which is sufficiently accurate for most applications is de- 
rived in Sec. II. 

I. ISOTHERMAL TUBE WALL 

Consider a smooth cylindrical duct of radius a with 
rigid walls whose axis extends along the z axis. It is assumed 
that the frequency is sufficiently low that there is only a 
single mode which propagates energy over axial distances 
large relative to the tube diameter. The pressure p(z) and 
volume flow u(z) for thermoviscous wave propagation in the 
tube assuming that the tube walls are isothermal are 

•P = -- Zu, (la) •z 

•u 
¾P, (lb) 

where the series impedance Z and shunt admittance ¾ per 
unit length along the z axis of the acoustic tube regarded as a 
transmission line are 

Z =j(•o/c)Ro/(1 -- Fo), (2a) 
[ l + (r - 1)F, ]. (2b) 

A time dependence e •ø' is assumed for all oscillatory quanti- 
ties. The radian frequency is oa, the free-space speed of sound 
is c, and the quantity R o is defined to be 
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Ro = pc/•ra 2, (3) 
where the equilibrium gas density is p. In the absence of 
thermal and viscous dissipation, Ro is the characteristic im- 
pedance of the acoustic transmission line. 

The quantity F o in Eq. (2a) is given by Kirchhoff's solu- 
tion and is 

2 

ro•'• Jo14--jro) 
where Jo and Jl are Bessel functions and the dimension]ess 
parameter rv is 

ro = 'n. ½) 
Hence r o may be regarded either as a nondimensional fre- 
quency or tube radius. The shear viscosity coefficient is •/. 
The quantity F, in Eq. (2b) is 

2 

F, = r, 4-Z ø(4-Z7r' ) , (6) 
where 

r, = vro (7a) 

such that v is the square root of the Prandtl number as fol- 
lows: 

= (7b) 
The coefficient of specific heat of the gas at constant.pressure 
is Cp, and the gas thermal conductivity is •. 

Physical]y, the dimensionless quantities ro and r, are 
essentially the ratios of the tube radius to the viscous and 
thermal boundary layers, respectively. The use of ro as the 
defining symbol for the ratio i n Eq. (5) follows the notation of 
Ref. 6. There is no dear concensus in the acoustic literature 

for either a symbol or name to refer to this ratio. This ratio is 
called the Womersley parameter in the literature of biofiuid 
mechanics. •2 A thermodynamically consistent set of gas pa- 
rameters for air at standard pressure in the temperature 
range 290ø-310øK has been collected by Bcnadc 6 and rel- 
evant values arc reproduced in Table I. 

It is convenient to express the transmission line proper- 
ties in terms of a characteristic impedance and propagation 
wavenumber. The characteristic impedanee Zc of the trans- 
mission linc is defined to be the input impedance looking into 
a infinite length of cylindrical tubing and is 

Zc = (Z/Y) m. (8) 

The propagation wavenumber F of the transmission line is 
defined to bc the phase change per unit length at an arbitrary 

TABLE I. Thermodynamic constants. All of the below are evaluated at 
T= 26.85 'C (300 øK), and arc accurate within _+ 10 øC of that tempera- 
ture. The temperature difference relative to 26.85 'C is A T. 

1.1769)< 10-•(1 - 0.00335A T)g cm -a 
1.846 X 10-4( 1 + 0.0025 A T)g s- t½m- I 
1.4017(1 -- 0.00002AT) 

0.8410(I -- 0.0002A T) 

3.4723X 10n(l + 0.00166AT)era s-t 

fixed time along the semi-infinite cylindrical tube. and is 

r = a +j (•o/vp) = (zr) •/•. 
The real and imaginary parts of the propagation wavenum- 
ber are a and ½o/vp), respectively, and the phase velocity is 
up. It is convenient to express the series impedance and shunt 
admittance as 

Z =j•oL + R, (10a) 

Y =jcoC + G. (lOb} 

The series inetrance (per unit length of the transmission line) 
is L, the series resistance is R, the shunt compliance is C, and 
the shunt conductance is G; all these quantities are real and 
positive. 

The intent of this section is to collect in one place the 
various approximations to the exact values of these trans- 
mission line parameters, and compare the accuracy of the 
approximations. The limit of small r (i.e., small ro or r,) cor- 
responds to the low frequency or small tube limit, and the 
extreme limit rv = 0 corresponds to steady viscous flow in a 
cylindrical tube (Poiseuille flow). The small-r approximation 
is obtained by means of a truncated power series expansion 
of the Bessel functions in Eq. (4) which are strictly valid for r 
sufficiently less than unity. However, these approximations 
are reasonably accurate for r < 2 as will be seen. 

The limit of large r corresponds to the high frequency or 
large tube limit. The extreme limit ro.= r, = oo corresponds 
to dissipationless wave propagation in the tube with a char- 
acteristic impedance R o and a phase velocity c. The large-r 
approximation • is computed using an asymptotic expansion 
of the Bessel functions which converges asymptotically to 
the exact result as r assumes large values. 

The small-r approximation gives the following results 
for the transmission line parameters: 

R = 8*r]/•a 4, (l la) 

o.)L = •O(_o/ffa 4, (1 lb) 
a = (rra•a,2/8pc2)(y- 1}pC•/tc[ 1 -(13/384)r•], (1 lc) 
coC = (•-a:•o/pc•)r, (1 ld) 

ReZ½ = Ro x/• --roll+ 

_ImZ•=Ro(•2 •rf'[l -- 1 

a= cø 2xf• 1 (c)( ro ){ ' r( 

(11f) 

, = c-l( 1 + ) (½)1}' 
(11h) 
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The power series expansions in the above equations have 
been truncated so as to give the best fit in the transition 
region, where r o is of order unity. In particular, a term of 
order r• is kept in the expansion of G to improve the accura- 
cy. 

The large-r approximation may be written in the form, 
\ di/t• + ,' z • 

8 v • 2\ v ] 

+2• T ' (12h) 

toL = Ro(to/c}[ 1 + •f•r•- ' -- (1/•/•}r•- a], 

a = [(to/cV1•oldi(r- 0',-' [ 1 - 

(12b) 

- r?VS], 
(12c) 

oC = [(o/c)/Rol [ 1 + (y - 1)•r,- '(1 + r,- 2/8)], (12d) 

(12e) 

v 2 v • 

3 + ¾ t•--J 
5 

{(r¾)( ) I --ImZ c R o I (7--1) +r•- • 1 (y--l) 

.2 
+\ •/i /t 8 

• (r-•) 
+ 

3 (•-- 1} z 
2 • (12f) 

112g) 

Note in Eqs. (12aH12d} that R and L depend only on the 
viscous coefficient {ro }, and G and C depend only on the ther- 
mal coefficient {rt). In Eqs. {12eH12h } the characteristic im- 
pedance and propagation wavenumber include both viscous 
and thermal effects. The thermal coefficient r, has been re- 
placed by vr• in this latter set of equations. It is convenient to 
rewrite these equations for Ze and/' for the special case of air 
at 300 øK and atmospheric pressure using the values in Table 
I as follows {ro > 21: 

Re Z½ = Ro(l + 0.369r•- 1), (13a) 

-- Im Z• = RdO.369r f • + 1.149r•- 2 + 0.303rf •), 
(13b} 

ct = {to/c)( 1.045rf • + 1.080r•- z + 0.750r Z •}, { 13c) 

O• -1 : c--l(l -•- 1.045r•- i). {13d} 

The perturbation series approximation is mathernat- 
ically valid in the region rg 1 and the asymptotic expansion is 
valid in the region r- •gl. One difference between Eqs. {12} 
and {13) is that the order r• -3 terms in the real part of the 
characteristic impedance and the phase velocity have been 

f , [ ' 

rv 

FIG. 1. The real part of the characteristic impedance normalized to the duet 
area as a function of the dimensionless parameter r•. 

60 d. A½oust. Soc. Am.. VoL 75. No. 1. January 1984 Douglas H. Keefe: Propagation in cylindrical ducts 



1.o 

O.1 

lOO 

FIG. 2. The imaginary part of the characteristic impedance normalized to 
the duct area as a function of the dimensionless parameter ro. 
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FIG. 4. The phase velocity normalized by the free space speed of sound as a 
function'of the dimensionless parameter ro. 

omitted in •:!. (13} to improve the accuracy. This is an exam- 
ple of a general property of asymptotic series expansions•3; 
namely, that an asymptotic expansion with a fewer number 
of terms may lead to more accurate results. 

It is fortuitous that the small-r approximation works 
well for r larger than unity, and the larger approximation is 
reasonably accurate near unity as Figs. 1-4 bear out. Figures 
I and 2 show the real and imaginary parts of (Z½/Ro) as a 
function of %. The exact result as computed from tables of 
Bessel functions is shown in solid lines, and the small and 
!arge-r approximations are shown in dotted lines. Similarly, 
Figs. 3 and 4 show the normalized attenuation coefficient a/ 

1.O 

0.1 

O.Ol 

FIG. 3. The attenuation coefficient normalized by the free space wavenum- 
ber as a function of the dimensionless parameter ro. 

(co/c) and phase velocity (vp/c). These figures are plotted as- 
suming that the gas parameters y --- 1.402 and v = 0.841, as 
is the case for air. 

These figures show that the approximations agree to 
within 1% with the exact results except in the region 
1 < r• < 5 where Some discrepancies exist--the maximum er- 
ror in Re ( Z ½ ) is 3 % , in lm ( Zc ) is 10 % , in a is 6 %, and in v p is 
2%. Figures 1-4 imply that the value rv ---- 2 is a good value 
to use for the transition betweeen the small and large-r ap- 
proximations. 

II. NONISOTHERMAL INNER TUBE WALL 

The pressure/flow characteristics of a thermoviscous 
gas in a rigid tube has been discussed under the condition 
that the inner tube wall remains isothermal during the oscil- 
latory cycle. This is never the case, since a local heating of the 
gas transfers heat to the tube wall. Since any tube has a finite 
capacity to carry away the heat, there is a local rise in tem- 
perature at the tube wall. Intuitively, this decreases the ther- 
mal gradients in the boundary layer of the gas, and thus the 
heat losses are somewhat reduced compared to the idealized 
model wherein the inner. tube walls are assumed to be isoth- 
ermal. Franken et al. have considered the case where the 

cylindrical tube has a wall thickness such that the tempera- 
ture on the outside of the tube wall is isothermal. An accu- 

rate asymptotic expansion of their solution is described in 
this section. 

The tube wall material has a mass densitypo,, a specific 
heat Co,, and a thermal conductivity •co,. Recall from the 
previous section that the series impedance per unit length of 
the acoustic transmission line is affected only by the viscous 
losses and the shunt admittance is affected only by thermal 
losses. Thus a change in the thermal boundary conditions 
modifies only Y and leaves Z unchanged. The modified 
shunt admittance is,• • 
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Y =j½o/c}/Ro 

X{I+{y--I)F,/[1--j( pCptc •/2 J•(x[--•r,) ] ! ' c / r , ) J J 
{14) 

The magnitude of •c m•ifi•tion dc•nds on the di- 
mensionl• numar e• defin• • 

= 'n. its) 
It is gener•ly the • that the •eter ,• governs the 
o•illam• heat transfer characteristics of a •lld-gas inter- 
fa•. l•'• If the g• is •r and the m• w• is •lyvinylchlor- 
ide tubing, then • is on the order of 0.01. In n•dy MI •m- 
binations of gas •d m• w•l ma•fi•s, •is ratio is •wa• 
ve• sm•l •mpa• to unity. •erefore, a power •d• ex- 
•sion in ,• is made •ong with an asymptotic exposion of 
the Bessel functions which is v•id for large r• with the result 
thm 

Y•j{w/e)/Ro 

06) 

The shffi in the •fficient of the tern of order rF • • well • 
hiker order •wem of {lira) due m the pr•en• of • is 
negli•bly sm•l, m that •. (16) may be rewritten in terns of 
an eff•tive s•ific hint •, as follows: 

Y=jl•/cl/Ro[ 1 + (r• - l)r, 1, 117a) 
where, 

(r, - = [(r- + e.}]. 
•e larger approximation to the isothemal w•l trans- 

mission line painetern co•es•nding to the ca• of high 
f•quency or large tubing dimeter mn easily be m•ified • 
include the noni•tbemal wall •havior. One need only sub- 
stitute y• for • in all the expressions in •. (12). Franken et 
al. found that only the rml pa• of the shunt admittance is 
m•ified in any si•ifi•t manner due to the presence of 
t•mtu• fluctuations in the tu• wall; the imagin•y pa• 
of the-shunt •mittance is nor si•ificantly shifted. This is 
•nsistent with the large-r• •havior of •. {17), or equiv- 
alently •s. (12cM12d) with • repla•d by y•. 

An approximation has •n obtain• in the limit of high 
frequenci• to the mintion for themovis•us wave propaga- 
tion in a rigid cylinddml tube which is •nstrain• to • 
isothem• on its outside w•. •e c•tedon of suffici•tly 

high frequency is that the dimensionless parameter r v de- 
fined in Eq.'(5) be larger than two. The calculational advan- 
tage of this approximation is that the high-frequency (or 
large tube) form of the transmission line parameters may be 
simply computed by means of a single modification of the 

isothermal wall transmission line parameter. 
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