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Acousto-Ultrasonic Optical Fiber Sensors:
Overview and State-of-the-Art

Graham Wild, Member, IEEE, and Steven Hinckley, Member, IEEE

Abstract—This paper gives a review of acoustic and ultrasonic
optical fiber sensors (OFSs). The review covers optical fiber sensing
methods for detecting dynamic strain signals, including general
sound and acoustic signals, high-frequency signals, i.e., ultrasonic/
ultrasound, and other signals such as acoustic emissions, and im-
pact induced dynamic strain. Several optical fiber sensing methods
are included, in an attempted to summarize the majority of op-
tical fiber sensing methods used to date. The OFS include single
fiber sensors and optical fiber devices, fiber-optic interferometers,
and fiber Bragg gratings (FBGs). The single fiber and fiber de-
vice sensors include optical fiber couplers, microbend sensors, re-
fraction-based sensors, and other extrinsic intensity sensors. The
optical fiber interferometers include Michelson, Mach–Zehnder,
Fabry–Perot, Sagnac interferometers, as well as polarization and
model interference. The specific applications addressed in this re-
view include optical fiber hydrophones, biomedical sensors, and
sensors for nondestructive evaluation and structural health moni-
toring. Future directions are outlined and proposed for acousto-ul-
trasonic OFS.

Index Terms—Acoustic, fiber Bragg gratings (FBGs), interfer-
ometry, optical fiber sensing, ultrasound.

I. INTRODUCTION

S INCE the suggestion by Kao and Hockham [1] that optical
fibers could be used in communication systems, methods of

modulating the light within fibers have been investigated. These
modulation methods form the basis for optical fiber sensors
(OFSs). In 1967, the first “Fotonic” sensor was suggested [2]
to measure position and spacing in the machine tool industry.

OFSs offer significant advantages over other sensing method-
ologies. The advantages of OFSs include [3]:

• greater sensitivity;
• reduced size;
• reduced weight;
• immunity to electromagnetic interference (EMI), since the

fiber is not electrically conductive;
• reduced cost;
• versatility;
• reliability;
• compatibility to optical communication and telemetry.
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These advantages make OFSs ideal for sensing acoustic/ul-
trasonic signals in specific application areas, such as structural
health monitoring.

Early reviews of acoustic OFSs are included in sev-
eral general OFS review papers, including Giallorenzi [4],
Giallorenzi et al. [5], [6], and Yao and Asawa [7]. Fiber Optic
Sensors, edited by Udd [8], also includes a number of acoustic
sensors and hydrophones. A more recent review for optical
fiber ultrasonic sensing is given by Atique et al. [9], and to a
lesser extent by Thursby et al. [10]. What follows is a broader
review of the literature for optical fiber acoustic and ultrasonic
sensing, summarizing the vast majority of sensing methods and
techniques currently in the literature. This paper contains four
sections, the relevant theory and the three major areas of optical
fiber acoustic and ultrasonic sensing. The theory section covers
strain-optics, and its application to interferometry and fiber
Bragg gratings (FBGs). The three sensing areas are, single fiber
intensiometric sensors, optical fiber interferometers, and FBGs.
The intension is to flow chronologically through each section.

II. THEORY

A. Acoustic Emissions (AEs) and Ultrasound

Acoustic emissions (AEs) are elastic waves generated by a
sudden release of energy within a solid [11]. For example, en-
ergy dissipated by the growth of a crack can be in the form of an
elastic wave. An elastic wave describes a stress or strain wave,
propagating through an elastic medium, typically a solid. In gen-
eral, the amount of energy released as an elastic wave as apposed
to other forms of energy, depends on the initial conditions of the
source. Specifically, the initial conditions are how localized the
release was, and the time period over which it takes place. That
is, rapid localized releases of energy generated elastic waves,
with frequencies in the ultrasonic range.

Examples of events that generate AEs are given below [11].
• Materials degradation—defect growth, crack advance,

plastic deformation, inclusion or precipitate fracture, sur-
face degradation including corrosion and disbonding of
coatings.

• Reversible processes—crystallographic phase transforma-
tions, melting or solidification, thermoelastic effects, fer-
romagnetic and ferroelectric domain wall motion, friction
between surfaces.

• Fabrication processes—welding noise, rolling, forging,
machining, drilling, mixing, grinding, valve sequencing.

• Leak and flow—flow of single- and two-phase fluids and
particles, leaks, gas evolution, boiling.

Elastic waves can also be actively generated by actuators.
This is the case in ultrasonic-based nondestructive testing. Typ-
ically, piezoelectric transducers are used to generate ultrasonic
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signals. Similar detection methods used for detecting AEs can
be used to detect actively generated ultrasonic signals. Actively
generated ultrasound can be used for defect detection, and thick-
ness monitoring. Ultrasound has also been used as a wireless
communications method, with applications to structural health
monitoring [12].

B. Strain-Optics

The majority of optical fiber sensors to be discussed make
use of a change in the refractive index. The change of refractive
index in a material due to an applied strain is called the strain-
optic effect.

From the strain-optic effect, the change in the optical indica-
trix due to an applied strain [13] is given by

(1)

Here, is the strain-optic tensor. Since the fiber is isotropic
and homogeneous, the strain-optic tensor is given as

(2)

The strain vector , for an applied longitudinal strain , is
given as

(3)

Here, the strain in the two transverse directions (the diameter of
the fiber), is related to the longitudinal strain by Poisson’s ratio

. Assuming there is no shear strain, solving (1) using (2) and
(3) gives

(4)

The change in the indicatrix can be related to a change in the
refractive index, , by [13]

(5)

The change in refractive index due to an applied longitudinal
strain can then be expressed as

(6)

C. Interferometry

For details on interference and interferometry see, for ex-
ample, [14]. In interferometry the condition for interference is
governed by the phase of the light interfering. In an optical fiber
with length , the phase of light passing through it is given
by

(7)

Here, is the propagation constant, given by

(8)

where is the average refractive index of the fiber’s core and
cladding, and is the wavenumber .

For use as a sensor, specifically for strain, there needs to be a
change in phase to generate a change in the interference. From
(7), the change in phase can then be achieved by changing
the length , or the propagation constant . That is

(9)

The change in length due to an applied strain is given simply by

(10)

The change in the propagation constant depends on a change
in the refractive index , and a change in the fiber’s diameter

. This is given as [13]

(11)

The change in refractive index due to the applied longitudinal
strain is given in (6). From (8), the derivative of with respect
to is

(12)

The term is negligible [13], especially for a single-
mode fiber at 1550 nm. Hence, it and the change in the diameter
can be dropped. The final equation for the change in phase is
then

(13)

D. Fiber Bragg Grating (FBG)

A FBG [15], [16] is a spectrally reflective element written
into the core of an optical fiber. The grating reflects a single
wavelength of light, and transmits all others. The wavelength
reflected, , called the Bragg wavelength, is determined by
the gratings period , and its effective refractive index . The
Bragg wavelength is given by

(14)

As with the interferometer, to use the FBG as a sensor, a
change in the Bragg wavelength is required. Using the same
method applied to develop (9) from (7), the change in the Bragg
wavelength can be achieved by either a change in the
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Fig. 1. Single fiber sensing methods using: (a) evanescent field coupler; (b) fused tapered couple; (c) frustrated total internal refraction; (d) lateral misalignment;
(e) two Ronchi gratings; and (f) microbending. The arrows indicated the direction of motion of the relative fiber. For the fused tapered couple, the arrow shows the
relative direction of the dynamic strain.

grating period , or a change in the effective refractive index
. That is

(15)

The change in refractive index due to an applied longitudinal
strain is given in (6). The change in grating period due to an
applied longitudinal strain is given by

(16)

The change in the Bragg wavelength can then be written as

(17)

Using (14), (17) can then be expressed as

(18)

III. SINGLE FIBER SENSING METHODS

The first intrinsic optical fiber sensor for detecting dynamic
strain was reported by Nelson et al. in 1977 [17]. The trans-
duction mechanism of the OFS was the loss associated with
fiber bending. The optical fiber was bent into a U-shape with
it ends fixed, and the midpoint of the curve attached to a mem-
brane which was acoustically driven to vary the bend radius. The
sensor had a strong frequency dependence due to the length of
fiber bending.

Sheem and Cole [18] reported on the sensitivity of single-
mode optical power dividers (couplers) to acoustic signals. The
evanescent field couplers used a twisted pair of fiber cores, en-
abling the light to be coupled from one core to the next via
the evanescent field. The coupling ratio was found to be de-
pendent on the separation of the cores, and the refractive index
of the material separating them. Hence, anything that varies ei-
ther the separation or the refractive index will vary the coupling
ratio. The coupler was successfully implemented as an acoustic
sensor. A simple schematic is shown in Fig. 1(a). This work

was similar to the coupled waveguide sensor presented by Fields
[19]. A multimode twisted pair evanescent field coupler was also
demonstrated as an acoustic sensor by Carome and Koo [20].
More recent work has been undertaken by Chen et al. [21]–[23]
using fused-tapered fiber couplers as ultrasound and acoustic
emission sensors. It was found that an incident strain field al-
tered the length of the fused-tapered coupling region, resulting
in a change in the coupling coefficient of the device. Fig. 1(b)
shows the fused tapped coupler.

Spillman and McMahon [24] present an intensity-based
acoustic sensor utilizing the principle of frustrated total in-
ternal reflection. The acoustic signal, down to static pressure,
modulates the lateral separation between two angled fiber tips,
resulting in a modulated intensity transmitted through the fiber
gap. The sensor is illustrated in Fig. 1(c). Another approach
using an angled fiber interface was proposed by Phillips [25].
The transmission and reflection at the interface of a single
angled fiber depends on the refractive index outside the fiber.
Hence, if an acoustic field is used to modulate the refractive
index outside the fiber, the reflected intensity is also modulated.

Spillman and Gravel [26] present a moving fiber-optic
hydrophone. The principle of operation is based on lateral
misalignment. The impinging acoustic wave causes the free
moving fiber end to oscillate, modulating the intensity of the
light captured from the fixed end according to the equations
which govern lateral misalignment. A similar sensor was also
reported by Rines at the same time [27]. Fig. 1(d) shows the
operation of the lateral misalignment sensor.

Spillman [29] and McMahon [28] also present a hydrophone
based on Schlieren intensity modulation. Two Ronchi gratings
(a standard diffraction grating, where ) are located per-
pendicular to the optical axis of two longitudinally separated
fibers. One grating, attached to a diaphragm, is moved in the
grating direction by the acoustic wave, resulting in an inten-
sity modulation of the light captured from one fiber to the other.
At the same time, a similar hydrophone was also presented by
Tietjen [30]. The Schlieren sensor is shown in Fig. 1(e).

Fields et al. [31] present another novel intensity-based single
fiber acoustic sensor. The sensing method uses microbend in-
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Fig. 2. Intrinsic optical fiber interferometers: (a) Mach–Zehnder; (b) Fabry–Perot; (c) Michelson; (d) Sagnac; and (e) ring resonator.

duced attenuation with an optical fiber to convert an applied
force into an optical intensity. The multimode fiber is located
within a bending loss modulator, which is comprised of two
mating ridged plates. As the plates are forced together, the fiber
is forced into smaller bend radii resulting in greater attenuation.
Further work is presented by Fields and Cole [32]. A similar
deformer is used by Lagakos et al. [33] in their displacement
sensor, which can also be used as an acoustic sensor. The mi-
crobend sensor is illustrated in Fig. 1(f). Lagakos et al. [34] in-
creased the sensitivity of the microbend sensor by using a de-
forming drum with the fiber wound around the outside.

Spillman and McMahon [35], [36] and McMahon et al. [37]
report an extrinsic OFS based on the photoelastic effect. A bire-
fringent transduction element was subject to stress from the
acoustic pressure. The two components of the input circularly
polarized light were modulated by the photoelastic effect. The
two components are then split by a polarizing beam splitter.
Since the two components are modulated in opposite directions,
the difference on sum of the two intensity modulated signals was
used to improve the sensitivity and signal-to-noise ratio.

Fuhr [38] gives a summary of some early work up to 1993.
Fuhr states that early work utilized simple embedded fiber-optic
grids to locate damage by a simple intensity method. The work
referenced is that of Measures [39]. The principle behind this
method is the use of the fiber to detect acoustic emissions via
the phenomena of modal noise [40]. Light launched into a mul-
timode fiber forms a speckle pattern at the output. This pattern
is the result of modal interference and coupling along the fiber.
When the fiber vibrates, the phase and intensity of each mode is
modulated to varying degrees. This results in variations of the
individual modal intensities, while the overall intensity is con-
stant. If, however, the output is spatially filtered, then the overall
intensity will be varied.

Williams and Dewhurst [41] report the implementation of
an extrinsic differential fiber-optic sensor for the detection of
surface acoustic waves. The sensor uses differential intensity
sensing between adjacent fibers in a bundle.

Another microbending loss-based acoustic sensor is demon-
strated by Tsutsui et al. [42] in an impact detection system.
Nondestructive impact damage results in the deformation of the
composite material. This deformation results in microbending
of an embedded small diameter optical fiber, decreasing the

transmitted intensity. If destructive damage occurs above a
specific level, this will result in the breakage of the fiber. In
essence, this gives a digital output for the detection of destruc-
tive damage.

IV. OPTICAL FIBER INTERFEROMETERS

The literature on optical fiber interferometers of acoustic
and ultrasonic sensing is extensive. What follows is a historical
overview of the initial work, and the first reports of imple-
menting the different interferometry configurations.

The first intrinsic optical fiber interferomteric acoustic sensor
was presented by Bucaro et al. [43] in July 1977. They used a
Mach–Zehnder setup, shown in [44], to detect ultrasonic waves
in water. They used frequencies of 40–400 kHz with no signifi-
cant change in sensitivity. A similar setup was also presented by
Cole et al. [45], [46]. Their limited experiments compared well
with the theory, which suggests that the response of the sen-
sors should be independent of the impinging frequency. They
present results for 10–100 kHz. They were also able to obtain
directivity measurements from -30 to 30 , which showed a
strong directional dependence. Lower frequency operation of
the in-fiber Mach–Zehnder interferometer was tested by Bu-
caro and Hickman [47]. The signals used were from 100 to
1200 Hz. The frequency was increased in work reported by
Jarzynski et al. [48]. Experimental and theoretical results were
presented for 100 Hz to 50 kHz. Fig. 2(a) shows an example of
an in-fiber Mach–Zehnder interferometer.

Included in the initial work [43], [44] is mention of a single
multimode fiber system based on intermodal interference,
though little detail is given. Further work on this method is
presented by Bucaro and Carome in [49], and by Layton and
Bucaro in [50]. The detection method is similar; however,
the technique was less sensitive than the two beam method,
but much more simple to implement. The work in [49] also
uses a single-mode fiber in a Fabry–Perot configuration. This
method retained the high sensitivity, while having a simple
configuration. However, the problem with the method was the
“mirroring” of the end facets, with the need to make sure they
were cut perpendicular to the fiber axis. Fig. 2(b) shows an
in-fiber Fabry–Perot interferometer.

Shajenko et al. [51], [52] present work on the acousto-optic
effect in the Mach–Zehnder optical fiber acoustic sensor. They
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state that previous work (above) and theoretical analyses [53]
assumed the delay in the sensing arm was a result of a variation
in the refractive index of the fiber. That is, the first term of (13),

, was ignored. Their work shows that the delay is due to
the dimensional changes of the fiber in response to the acoustic
pressure, specifically, the change in length. They also state that
the effect of the change in length is of opposite sign to the change
of the refractive index. This is shown in (13). The work was
performed at 60 kHz.

All of these early Mach–Zehnder interferometers made use
of single-mode fibers. Culshaw et al. [53] point out some of
the issues with using multimode fibers. Specifically, different
modes in the fiber experience different phase modulation. This
gives rise to intermodal interference. However, Hall [54] suc-
cessfully demonstrated the use of a multimode fiber as a sensing
element in a Mach–Zehnder interferometer. By ensuring that the
fiber experienced a bulk change in pressure, such that the radial
strain in the fiber was constant, the phase modulation of all the
modes was found to have significantly less variation. Ueha et al.
[55] previously demonstrated a similar vibration sensor using
a multimode in-fiber Mach–Zehnder. The light was modulated
external to the fiber, hence intermodal interference was not a
problem. Further work on using multimode fiber as sensing el-
ements, within a Mach–Zehnder interferometer, was presented
by Shajenko [56].

Cielo [57] presents work that states that longitudinal com-
pression produces much higher sensitivity than uniform 3-D
compression in those hydrophones previously reported. Hence,
modifications to the sensor design are proposed. The configura-
tion suggested is similar to [48], but utilizes a double cavity con-
figuration. The length of fiber between the reflective elements is
then coiled around a compliant cylinder to increase the sensi-
tivity to the acoustic field.

Hocker [58], [59] presents a Mach–Zehnder acoustic sensor
with improved sensitivity. The improvement in sensitivity, two
orders of magnitude, is achieved by placing the sensing arm
into a composite structure with a lower elastic modulus. This
increases the stress, and hence the optical phase shift, in the
fiber for a given pressure. This is also suggested in the work
performed by Hughes and Jarzynski [60], where it was found
that fibers with plastic jackets had a significant improvement
over bare fibers in static strain analysis and experiments. Further
work on optimizing fiber coatings was carried out by Lagakos
et al. [61], [62].

Rashleigh [63] proposed single fiber acoustic sensor. An
acoustic wave differential changes the phase velocities of the
polarization modes in a tension-coiled fiber. This results in the
polarization rotation of the transmitted light. This is the first
account of a polarimetric optical fiber acoustic sensor. Further
work on polarimetric optical fiber sensors has been undertaken
by dePaula et al. [64]–[66], and also by Chan et al. [67], [70]
with Price [68], and Brinch [69]. The work of Chan et al. [67] de-
scribes a polarimetric optical fiber sensor based on acoustically
induced birefringence in a polarization maintaining fiber. Fur-
ther work [70] explains the acoustically induced birefringence
occurs at higher frequencies due to anisotropic
strain distribution. At lower frequencies, the birefringence is a
result of the inhomogeneous elastic properties of the fiber.

The first in-fiber Michelson interferometer for detecting vi-
bration was demonstrated by Imai et al. in 1980 [71], [72]. Initial
work used single-mode fibers. However, a multimode version of
the Michelson interferometer was also reported [73]. Fig. 2(c)
shows an in-fiber Michelson interferometer.

The first report of embedding optical fibers in solids to detect
acoustic emissions is by Claus and Cantrell [74]. The sensing
arm of a Mach–Zehnder interferometer was embedded in plastic
resin. Further work by Wade et al. [75] looked at embedding
fiber sensors in composites.

Udd [76] presents a series of fiber-optic acoustic sensors
based on Sagnac interferometers. These represent the first im-
plementation of Sagnac interferometers for acoustic detection.
An in-fiber Sagnac interferometer is shown in Fig. 2(d).

Alcoz et al. [77] demonstrate a short gauge length (5–13mm)
intrinsic Fabry–Perot interferometer. The sensor was used to de-
tect ultrasonic longitudinal waves between 0.1 and 5 MHz.

Lui et al. [78] reported the use of a Michelson interferometer
as an acoustic emission sensor. The sensor was embedded in a
composite material, and had broadband response of 0.1–1 MHz.

Murphy et al. [79] present the first report using an Extrinsic
Fabry–Perot Interferometer (EFPI) to detect dynamic strain.
They state that the frequency limit is imposed by the signal
processing electronics at the output.

Beard and Mills [80]–[83] report an EFPI for the detection
of ultrasound. The geometry is an external Fabry-Perot etalon.
The etalon is a transparent polymer film that varies in thickness
with an incident ultrasonic wave. The application is for the in
vivo detection of laser generator.

Sirkis et al. [84] present the in-line fiber etalon (ILFE). Dy-
namic strain measurements were reported, the minimum de-
tectable strain was given for 0.5–2.5 kHz. No suggestion is given
to the overall bandwidth.

This overview accounts for the historical development of
all the major types of optical fiber interferometers sensors for
acoustic and ultrasonic sensing. A summary of optical fiber
interferometric sensing is given by Kersey [85]. Also, Nash [86]
gives a review of interferometric optical fiber hydrophones.

One of the limitations of some interferometric OFS for ul-
trasound is the gauge length of the sensors. Although only a
small section of the fiber can be bonded to, or embedded in, the
structure for the dynamic strain sensing, the entire length of the
sensing fiber is still sensitive. This can lead to cross sensitivity
problems with other measurands, such as static strain or temper-
ature. Point sensing is the ideal solution to this problem. Short
length Fabry–Perot interferometers such as EFPI and ILFE offer
a significantly reduced gauge length. Shorter gauge lengths can
also be demonstrated with various intensiometric devices de-
scribed in the single fiber sensing methods, or with FBGs.

V. FIBER BRAGG GRATING (FBG) SENSORS

Work on FBGs for ultrasonic measurements began with
Webb et al. [87] in 1996. This work, and further work [88],
looked at FBGs for the sensing of ultrasonic fields for med-
ical applications. Specifically, the use of the sensors was for
distributed in vivo sensing of ultrasound. Additional work
[89]–[92] investigated the interaction of the FBG with the
ultrasonic field. It was found that the upper limit on the incident
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Fig. 3. FBg detection systems using: (a) a narrow line-width laser diode (LD),
or (b) a broadband light emitting diode (LED) and photodiodes (PD). The insets
show the spectra of the optical components.

acoustic frequency is set by the length of the grating. Specif-
ically, the grating length should be less than half the acoustic
wavelength in the fiber core. The setup used was similar to
Fig. 3(a).

Around the same time, similar work was also being per-
formed in Japan by Takahashi et al. [93]. They proposed an
underwater acoustic sensor using a FBG. The setup was similar
to the homodyne detection method proposed by Webb et al.
[87], however, the signal transmitted through the grating was
detected. Results, using only 20 kHz signals, show a linear
relationship between the incident sound pressure and the signal
intensity in dB. Results from tuning the laser show the max-
imum signal intensity is achieved at around the FWHM points
of the FBG spectral response. Further work [94] includes the
addition of a second FBG via wavelength division multiplexing.
It was found that the sensors worked independently of each
other even though located along the same length of fiber. The
two fibers were then used to determine a bearing to the source.
Next, they successfully determined the spatial distribution of
the acoustic field generated by the PZT transducer [95]. Here,
the FBG was used as a reflective element. The FBG hydrophone
results were compared with the distribution as measured by a
PZT hydrophone. The next stage of their development looked
at detecting vibrations with the FBG sensor. Two reports were
made, one [96] using a tunable laser as before. The second
[97], [98] involved the use of a second FBG to select a narrow
linewidth from a broadband source. The light was then sent to
the sensing FBG, which was bonded to the PZT transducer,
again they both used a reflective mode. Other work has also
looked at both removing [99]–[101], and detecting [102] the
effect of temperature.

Perez et al. [103], [104] used FBGs to detect acoustic emis-
sions. Their setup using a matched FBG is shown in Fig. 3(b).
The FBG was bonded to the surface of an aluminum panel, and
they successfully detected acoustic emissions generated by both

a piezoceramic resonator and an ultrasonic transducer. The sig-
nals were detected at transmitter-receiver separation distances
up to 30 cm. They also successfully detected the acoustic emis-
sion generated by a pencil lead breaking on the panel, albeit with
significant amplification.

Coppola et al. [105] undertook a numerical analysis of FBG
response to ultrasonic waves. As established by the preceding
literature, it was found possible to characterize ultrasonic waves,
but only if the ratio between the ultrasonic wavelength and the
length of the grating used exceeded an established value, de-
pending on the characteristics of the FBG and the ultrasonic am-
plitude. This revealed an insight into the conclusions reached by
Webb et al. [87].

Fomitchov and Krishnaswamy [106], [107], also proposed
the use of a FBG for the detection of ultrasonic waves in liquids
and solid structures. Again, the implementation is the same as
that initially used by Webb et al. [87]. The system makes use
of a tunable laser tuned to the operating point of the FBG, and
a photodetector to measure the returned intensity. They report
sensitivity over a broad frequency range from 10 kHz to 5 MHz.

A similar FBG sensing method was also presented by Betz et
al. [108], [109], [110]. Their system is intended to monitor and
detect Lamb waves, and was implemented in a Perspex plate.

Wierzba and Karioja [111] present an active FBG underwater
acoustic sensor. The sensor is active in the sense that the grating
is written into a rare-earth doped fiber. The fiber then acts as an
optically pumped distributed feedback (DFB) laser. The most
significant aspect of their work is that they present some condi-
tions for the effective operation of a FBG acoustic sensor. It is
noted that for correct operation, the strain state along the grating
should be a constant; hence, the wavelength reflected along the
grating is a constant. This is similar to the constraint observed
by Webb et al. [87], that the acoustic wavelength must be at least
twice the grating length.

In addition to their microbend acoustic sensor, Tsutsui et al.
[42] demonstrate the use of FBGs for impact detection in com-
posites. FBGs were used to locate the impact, and hence damage
associated with it.

Cusano et al. [112], Minardo et al. [113], and Italia et al.
[114] have investigated FBGs for sensing dynamic strain. The
initial work [112] used a FBG to measure dynamic strain up
to 50 kHz. Theoretical and numerical modeling were then un-
dertaken [113] to determine the response of the FBG to longitu-
dinal ultrasonic waves. As with previous research [87], the same
conclusion was reached, relating the acoustic wavelength to the
grating length. Further work [114] analyzed the phase response
of the FBG to longitudinal ultrasonic waves. They conclude by
suggesting FBGs for detecting high frequency ultrasound would
benefit from looking at time delay induced into the grating to de-
tect the impinging wave.

A significant recent development has been presented by
Fujisue et al. [115]. They present the demodulation of acoustic
signals from FBG ultrasonic sensors using an arrayed wave-
guide grating (AWG). The basic system still uses the homodyne
method initially proposed by Webb et al. [87]. The AWG
enables a large number of multiplexed FBG sensors to be
simultaneous monitored. The number is determined by the
number of channels in the AWG minus one. This represents a
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Fig. 4. Multiplexed OFS: (a) time-division multiplexed Mach–Zehnder interferometers and (b) wavelength division multiplexed FBGs using a tunable laser source.

simple implementation of multiplexing intensity sensors using
FBGs.

Work by Lee and Tsuda [116], suggests that a FBG in a
resonant structure has improved performance over conventional
FBGs. They used a strain isolated FBG temperature sensor,
bonded to a structure as an improved ultrasonic receiver. A
200 kHz Lamb wave was successfully received by various FBG
sensor head configurations. The capillary tube in which the
FBG is isolated, means the FBG is not directly affected by the
strain from a passing wave. However, the wave is coupled into
the fiber due to the fact that the fiber is bonded to the panel. This
results in a more sensitive FBG acoustic sensor configuration
in a direct comparison.

Although FBGs offer a shorter gauge length and improved
spectral characteristics over interferometric optical fiber sen-
sors, they are less sensitive. The other advantage of FBGs over
optical fiber interferometers is their ease of multiplexing. Multi-
plexed optical fiber Mach–Zehnder interferometers can be com-
plicated [85], requiring delay lengths for time division multi-
plexing. This can lead to attenuation losses, and losses due to
the large number of couplers and splitters required. Conversely,
the wavelength division multiplexing of FBGs [94], [95] uses
a single fiber length. Since FBGs are only reflective to a single
wavelength (in the band of interest) and the light does not have
to leave the core of the fiber, FBGs are more efficient to multi-
plex than Fabry–Perot interferometers. A comparison between
multiplexed Mach–Zehnder interferometers and FBGs is shown
in Fig. 4.

Temperature and static strain signals detected by FBG in-
tensiometric sensors are very low-frequency signals. The stan-
dard technique for removing the cross sensitivity signal is to
simply filter out the low-frequency components. FBG detec-
tion systems can be characterized by the use of a narrow line-
width light source [87] [Fig. 3(a)], or a broadband light source
[103] [Fig. 3(b)]. Shifts in the spectrum of the sensing FBG
due to large variations in quasi-static measurands, will result in
changes to the sensitivity of the detection system. More work is
required to stabilize the sensitivity of FBG systems over large
temperature ranges, specifically for the intended applications
areas such as Structural Health Monitoring.

VI. FUTURE WORK

The authors have identified two primary areas that will
provide significant opportunity for improvement and advance-
ment in acousto-ultrasonic optical fiber sensing. The two areas
are microphotonics, and passive fiber sensors based on active
materials.

Microphotonics has the ability to greatly improve current
sensing techniques, and being at a micron scale, it also has the
ability to greatly increase the upper frequency limit of current
sensors. An optical fiber interferometric ultrasound sensor
using a fiber coil [117] has an upper frequency limit of 50 kilo-
hertz. The frequency limit of the sensor is due to the minimum
bend radius of the fiber coil. Microphotonic fibers have no
loss associated with bending [118]. The minimum bend radius
reported before breakage was 100 m. The authors, therefore,
propose the use of a microphotonic fiber as an acousto-ul-
trasonic sensing element in an interferometric sensor. The
result of using a microphotonic fiber would be a significantly
greater frequency response. For example, in Aluminum with a
longitudinal acoustic velocity of over 6000 , a wavelength
of 200 m (twice the bend radius) would correspond to a
frequency of 30 GHz.

The physical properties of microphotonic fibers will also im-
prove the ability to embed very large numbers of fibers into com-
posite lay-ups with almost no affect on their structural properties
[119]. The bending properties will also enable the fibers to form
tighter meshes, without requiring fiber loops with large radii to
turn a corner.

One of the current limitations of OFS methods is their active
nature. Light must be supplied to be modulated; this is similar
to a resistive strain gauge, as opposed to a passive sensor, such
as a piezoelectric transducer, where the measurand generates an
electric signal. Similar materials are required in photonics for
OFS to truly surpass electronic sensors. Active materials rep-
resent the solution in photonics. Here, the term active mate-
rials, specifically refers to luminescent materials. Luminescent
sensors have already been employed in optical fiber chemical
sensors, based on chemoluminescence [120]. More applicable
to the context of this review is the report of triboluminescence
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or fractoluminescent fiber sensors [121], [122] used to detect
damage in composites. Along this thought, the authors propose
the use of sonoluminescence, acoustoluminescence [123], and
mechanoluminescence [124], [125], as possible sources of ac-
tive materials to make truly passive acousto-ultrasonic optical
fiber sensors. This follows the idea of photon emission NDT,
which was first proposed by Chandra [126].

VII. CONCLUSION

A review of optical fiber sensing methods for detecting
acoustic, ultrasonic, and other dynamic strain signals has
been given. The major types of optical fiber sensors discussed
included FBGs, optical fiber interferometers, and various inten-
siometric optical fiber sensors. The theory of strain-optics, and
its applications to interferomtery and FBG sensors, was also
summarized. In addition, two main future research directions
are proposed. These were microphotonics, and passive optical
fiber sensors, based on various luminescent mechanisms.
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