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Structures Including Generalized MANOVA
1

1. Introduction

In a previous paper, J8reskog (1970a)developed a method for estimating

a model involving structures of a very general form on means, variances and

covariances of multivariate observations. With this method, a great deal

of generality and flexibility is achieved in that the method is capable of

handling most standard statistical models as well as many nonstandard and

complicated ones. The purpose of this paper is to describe a computer

program for this method.

When the variance-covariance matrix of the observed variables is un-

constrained, the method may be used to estimate location parameters and

to test linear hypotheses about these. For example, the program may be

used to handle such standard problems as multivariate regression; ANOVA

and MANOVA, although there may not be any advantage in using this particu-

lar program as compared to other existing programs. It can also be used for

generalized MANOVA in the sense of Potthoff and Roy (1964), Khatri (1966)

and Grizzle and Allen (1969) (see also Rao, 1959, 1965, 1966, 1967; Gleser

and Olkin, 1966). A unique feature is that the method can be used

also when the variance-covariance matrix is constrained to be of a certain

form. In this case one can estimate the covariance structure as well as

location parameters and, in large samples, one can test various hypotheses

1
This research has been supported in part by grant NSF-GB-12959 from

the National Science Foundation.
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about the structure of the variance-covariance matrix. This is useful in

many areas and problems particularly in the behavioral sciences. For

example, one can handle such problems as analysis of congeneric tests,

factor analysis, analysis of multitrait-multimetbod data, analysis of sim-

plexes and circumplexes, analysis of multitest-multioccasion data and growth

data in general, analysis of mixed and random effects ANOVA and MANOVA, path

analysis and linear structural equations (areskog, 1970a-b, 1971). Vari-

ous other models involving correlated errors or errors of measurement can

also be handled.

1.1 The General Model

The general model considers a data matrix X(N x p) of N observations

on p variates and assumes that the rows of X are independently distributed,

each having a multivariate normal distribution with the same variance-covariance

matrix E . It is assumed that

C(X) = AEP , (1)

where A(N x g) (aas) and P(h x p) (pti) are known matrices of ranks

g and h, respectively, h<p and E(gx h)
(st)

is a matrix

of parameters; and that E has the form

,

E BCAOAI + *
2
)B' + 8

2
,

where the matrices B(p x q) = (pik) , A(q x r) (Akm) , the symmetric

matrix 0(r x r) (Omn) and the diagonal matrices *(q x q) = (3k1*.k)

and e(p x p) = (sijei) are parameter matrices.

(2)
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Thus the general mode:I is one where means, variances and covariances

are structured in terms of other sets of parameters that are to be estimated.

Tn any application of this model, p , N and X will be given by the data,

and g, h, q, r, A and P will be given by the particular applica-

tion. In any such application we shall allow for any one of the parameters

inE, B, A, 0, IV and e to be knownapriori and for one or more

subsets of the remaining parameters to have identical but unknown values.

Thus parameters are of three kinds: (i) fixed parameters that have been

assigned given values, (ii) constrained parameters that are unknown but

equal to one or more other parameters and (iii) free parameters that are

unknown and not constrained to be equal to any other parameter.

The computer program estimates the free and constrained parameters of

any such model by the maximum likelihood method and provides a test of good-

ness of fit of the whole model against the general alternative that P

square and E and .E are unconstrained. A test of a specified model

(hypothesis) may be obtained, in large samples, by computing the maximum

likelihood solution under the two models and then setting up the likelihood

ratio test (see 1.5). In the special case when both E and E are

unconstrained, one may test a sequence of hypotheses of the form

CED = 0

where C(s x g) and D(h x t) are given matrices of ranks s and t

respectively.

4

(3)
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1.2 Identification of Parameters

Before an attempt is made to estimate a model of this kind the identi-

fication problem must be examined. The identification problem depends

on the specification of fixed, free and constrained parameters.

It should be noted that if B is replaced by BT11 , A by T
1
AT

2

1
'

0 by T
2 2
OTt and *

2
by T

1 1
*
2
Tv while 8 is left unchanged, then

is unaffected. This holds for all nonsingular matrices T1(q x q) and

T
2
(r x r) such that T

1 1
*
2
Tv is diagonal. Hence in order to obtain a

unique set of parameters and a corresponding unique set of estimates, some

restrictions must be imposed. In what follows it is assumed that all such

indeterminacies have been eliminated by the specification of fixed and

constrained parameters. To make sure that all indeterminacies have been

eliminated, one should verify that the only transformations T1 and T
2

that preserve the specifications about fixed and constrained parameters are

identity matrices.

1.3 Matrices U , V and W

Since N may be large, the matrices X and A are not stored in the

computer. Instead the information provided by these matrices is summarized

in three matrices U , V and W defined as follows:

U(g x g) = (1/N)AtA

V(g x p) = (l /N)A'X

W(p x p) = (1/N)XtX
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1.4 Standard Case

It is convenient to distinguish between two different cases as follows:

Standard Case: Both E and E are unconstrained.

Nonstandard Case: Otherwise.

In the standard case, the maximum likelihood estimates of E and E

are

where

and

72 = U-VS-1P/(PS-1P9-1

E =S + QIUQ ,

S = W - ViU1V

= U1V - 2P

To test the hypothesis CED = 0 against CED / 0 one uses

where

S
e

= DI(PS-1P1)-11

Sh = (62D)'(CRCI)- ,

_
R U

-1
+

-1
QS vIU

-1

(7)

(8)

(9)

(10)

(12)

(13)

Let the eigenvalues of ShSe be T
1
> T

2
> > T

t
. The program gives

the three test statistics
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Largest Root = Ti

t
Sum of Roots = E T.

i=1 1

Likelihood Ratio = 1/ H (1 + Ti)
i=1

The largest root test, due to Roy (1953), can be used with Heck's

(1960) tables. The sum of roots test is due to Lawley (1938) and Hotelling

(1951). The likelihood ratio test is an extension of Wills' (1932) T -test

and can be used with correction tables provided by Schatzoff (1966). When

N is large, -[N g (p h)
1

(t s + 1)] times the likelihood ratio

is approximately distributed as X
2

with st degrees of freedom.

It should be noted that if P is square and nonsingular, formulas

(7), (8), (10) and (12) reduce to the ordinary formulas for MANOVA, i.e.,

^ -1_ -1= U vP

S

Q = .0

S
h

= (CED)t(CU-
1
CI)

-1
(CED)

(7a)

(8a)

(10a)

(12a)

1.5 Nonstandard Case

In the nonstandard case, the logarithm of the likelihood, except for

a constant term, is given by

log L = - (N /2){logIEI + tr T(E)E-11 (14)

7



where

-7,-

T() (1/N)(X -AEP)'(X AEP)

= W P'E'V - V'EP + P'ETEP (15)

The maximum likelihood estimates are computed numerically by minimizing

F(E,B,A,0,*,8) = loglE1 + tr[T(E)E-1]

using a modification of the method of Fletcher and Powell (1963) (see

Gruvaeus and JOreskog, 1970). However, the minimization method is not ap-

plied directly to F but instead to

f(B,A,0,4r,e) = min F(E,B,A,0,1f,e)

= ,

where E minimizes F for given E . If E is unconstrained,

_
= U v

-1
Pi(PE

-1
Pi)

-1

(16)

(17)

but this formula cannot be used if E contains fixed and/or constrained

elements. Nevertheless, .Z.z can easily be evaluated since, for given E

F is quadratic in E The minimization of f takes into account the

specification of fixed, free and constrained parameters. During the minimiza-

tion, F is regarded as a function of the independent parameters e = (01,

02,,em) , say.

The minimization method is a rapidly converging iterative method that

makes use of exact first-order derivatives and a symmetric matrix E of

order m x m . Initially E is obtained as the inverse of the information
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/. .

matrix C(d
2
ficleael) evaluated at the starting point. In subsequent itera-

tions E is improved, using information built up about the function, so

that ultimately E converges to an approximation of the inverse of

0 f/0000' at the minimum. When the minimum has been obtained, the inverse

2
of C(a flaecoe,) is computed again to give an estimate of the variance-

covariance matrix of the estimators. This is used to obtain standard errors

of the estimated parameters.

Three different estimates S , T and E of E are computed.

S is defined by (9) and is the maximum likelihood estimate under the

condition that P is square and nonsingular and E is unconstrained.

T is the matrix T(
Er ) evaluated at the minimum of F . If E is

constrained, this estimate is not necessarily of the form (2).

E is the overall maximum likelihood estimate of E computed from (2)

and evaluated at the minimum of F .

If E is unconstrained, T and E are identical. Otherwise, resid-

ual variances and covariances are defined as the elements of T - E .

Let H
0

be any specific hypothesis concerning the parametric struc-

ture of the general model and let H1 be an alternative hypothesis. One

can then test H
0

against H
1

by means of the likelihood ratio technique.

Let F
0

be the minimum of F under H
0

and let F
1

be the minimum of F

under H
1

. Then F
1
< F

0
and minus two times the logarithm of the likeli-

hood ratio becomes N(Fo - F1) . Under H
0

this is distributed, in large

samples, as a X
2

distribution with degrees of freedom equal to the dif-

ference in number of parameters estimated under H1 and Ho .
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2. The Program

In this section we describe briefly what the program does. Details(

about the input and output are given in sections 3 and 4 respectively.

2.1 That the Program Does

The input data may be the partitioned matrix (X/A) , from which tie

matrices U , V and W are computed (see 1.3), or the matrices U , k and

W , read in directly. In the standard case, other data matrices are P,

C and D (see 1.1).

In the nonstandard case, the user can request an accurate or an apzliroxi-
f

mate solution. If an accurate solution is requested, the iterations of the

minimization method are continued until the minimum of the function is

found, the convergence criterion being that the magnitude of all derivatives

be less that .00005. The solution is then usually correct

cant digits. If an approximate solution is requested, the

nate when the decrease in function values is less than 5%.

solution may be useless but the residuals and the value of

give an indication of how reasonable the hypothesized model

of an approximate solution has been included in the program

to three siOifi-

iterations tcrmi-

The approxinate

X2 will uspily
t

is. The opfdon

/for the pur:)ose

of saving computer time in exploratory studies where the primary purposia is

to find a reasonable model. Once such a model has been found, an accurate

solution may be computed. In the standard case, the user can test a set-

quence of hypotheses of the form CED = 0 for given U, V, W, Pt

C and D (see 1.1).

A variety of options for the printed output is available. In the [Ion-

standard case, residuals may be printed, which are useful for judging tAne

0
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goodness of fit of the model to the data. These are the men':. residuals

defined as

V - UEP

and the residuals for E defined as

T - E

X
2

is printed as an overall goodness of fit test statistic and standard

errors for the estimated parameters may be requested. In the standard case,

if testing the hypothesis CED = 0 , the largest root, the sum of roots and

the likelihood ratio, as described in section 1.4, will be printed. The

large sample transformation of the likelihood ratio to a X
2

is also

printed.

2.2 How Fixed, Free and Constrained Parameters Are Specified

This section only applies to the nonstandard case (see 1.5). Since

specifications for E are slightly different from the specifications of

the other parameter matrices, B , A , 0 * and 8 , they will be

described separately.

Specifications for B , A , 0 , * and 8

The elements of the five matrices are ordered as follows. The matrices

are assumed to be in the order B A , 0 , * and 8 and within each

matrix, the elements are ordered row-wise. The diagonal matrices * and

8 are treated as row vectors.

For each of the five parameter matrices, a pattern matrix is defined,

with elements 0, 1, 2 and 3 depending on whether the corresponding element



in the parameter matrix is fixed, free, constrained follower and constrained

leader, respectively. A constrained parameter is called a constrained

leader the first time it appears in the sequence. The parameters appearing

later in the sequence and assumed to be equal to the constrained leader are

called constrained followers.

The above technique defines uniquely the positions of the fixed, free

and constrained leader parameters. It does not define, however, which

followers go with which leader, if there is more than one leader. To do

so one must also specify all the followers associated with a given leader.

This is done by assigning to each leader and follower a five-digit number

MRRCC, where M defines the matrix in which the constrained parameter

appears ( M = 1 for B , 2 for A , 3 for (1) , 4 for If and 5 for 0 ),

and RR and CC are the row and column position of the parameter in the

matrix. For example,

10101 10201 1030.1 20403

defines
511 521 531 7\43

where p
11

is the leader and B
'21 31

and N3 are the followers. Such a string of numbers has to be provided

for each leader.

Pattern matrices have to be provided for each matrix containing both

fixed and free parameters and for each matrix containing constrained param-

eters. Patterns for parameter matrices whose elements are all fixed or all

free are set up by the program.

We give a simple example to illustrate the above specifications.

Suppose A(2 x 2) . I , *(2 x 2) = 0 and

2



with

for

'11

B ,

B=

1321

0 and

P
B

1311

1321

o

'

3

2

0

0

(332

8

0

0

3

2

0

(332

042

are

1342 '

P
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=
1
p 1

8 =

0
1

0

0

0

0

02

0

0

0

0

03

0

0

0

0

e4_

el e2 e3 = 64
The pattern matrices

CO
P
s
= [3 2 3 2]

and the specifications of leaders and followers are

10101 10201
10302 10402
50101 50102
50103 50104

In this model five independent parameters will be estimated.

Specifications for 7.

The pattern for = is defined in the same way as the patterns for B ,

A 0 * , 0 . To specify what follower is associated with a given

_ .

leader, a five-digit number MERCC is assigned to each leader and follower

as described above, with the one difference that M is always equal to 1

since we are dealing with only one matrix. A pattern matrix for F must

always be provided even if the elements of are all free or all fixed.

In addition to the above specifications for fixed, free and constrained

parameters, start values have to be given for all parameters, except for

those parameter matrices which are of standard form, i.e., B = I , A = I ,
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0 = I , = 0 , O = 0 Start values for E are not read in if none of

its entries are fixed. The start values define the fixed parameters and

initial values for the minimization procedure for the other parameters,

except for E , whose initial values are set by the program to be equal to

zero. Constrained parameters that are assumed to be equal must be given

the same start values. Otherwise, initial values may be chosen arbitrarily

but the closer they are to the final solution the less computer time it

will take to reach this solution.

2.3 Limitations

The program is written in FORTRAN IV-G and has been tested on the 360/65

at Educational Testing Service. Double precision is used in floating point

arithmetic throughout the program. With minor changes the program should

run on any computer with a FORTRAN IV compiler. In computers with a single

word length of 36 bits or more, single precision is probably sufficient.

Limitations as to the number of free and constrained parameters the

program can handle and the storage requirements on the IBM 360/65 are given

in the following table. The given storage requirements assume the program

is overlayed.

Max. no. of variables

Max. no. of free and constrained parameters

Storage requirement ( K = 1024 bytes)

15

60

132K



2.4 Availability

A copy of the program may be obtained, upon written request. The user

must provide a tape on which the program will be loaded. The program will

be written on the tape with 80 characters per record. The tape will be

unlabeled. The user must specify whether he wants the tape blocked or

unblocked, in EBCDIC or BCD mode, as well as the density, parity and track

required. Test data will be at the end of the program. The test data are

described in the Appendix. Anyone using the program for the first time

should make sure that the test data run correctly.

2.5 Disclaimer

Although the program has been working satisfactorily for all data

analyzed so far, no claim is made that it is free of error and no warranty

is given as to the accuracy and functioning of the program.
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3. Input Data

This section is divided into two parts. The first part will describe

the input data for the standard case. The second part will describe the

input data when the nonstandard case is considered (see 1.5).

In both cases, whenever a matrix or vector is read in it is preceded

by a format card, containing at most 80 columns, beginning with a left

parenthesis and ending with a right parenthesis. The format must specify

floating point numbers for the input and parameter matrices, and fixed

point numbers for the pattern matrices, consistent with the way in which

the elements of the matrix are punched on the following cards. Users un-

familiar with FORTRAN are referred to a FORTRAN Manual, where format rules

are given. Matrices are punched row-wise, each row beginning on a new

card. For the symmetric matrices only the lower half of the matrix should

be punched. The elements above the diagonal are automatically set by the

program.

Part I: Standard Case

For each data to be analyzed, the input consists of the following:

1. Title card

2. Parameter card I

3. Rows of (X/A) (i.e. raw data to compute U , V W )

4. Data matrices U , V , W

5. Data matrix P.
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6. Parameter card II

or 1 blank card followed by the next data set (either for the

standard case or the nonstandard case)

or 1 blank card followed by a STOP card (see sec. 3.7)

7. Matrices C and D

8. Repeat steps 6 through 7

Sections 3.1 through 3.8 describe in general terms the function and setup

of the above quantities.

3.1 Title Card

Whatever appears on this card will appear on the first page of the

printed output. All 80 columns of the card are available to the user.

3.2 Parameter Card I

All quantities on this card except for the logical variables must be

punched as integers right-adjusted within the field.

cols. 1-5: sample size ( N ), i.e., number of observations

cols. 6-10: number of variables ( p ) ( < 15 )

cols. 11-15: rank of A ( g ) ( < 15 )

cols. 16-20: number of rows in P ( h ) ( < 15 )

col. 41: logical indicator which determines whether U , V , W

are computed from (X/A) or read in as input data

col. 41: = T , if rows of (X/A) are read in to compute

U , V , W

col. 41: = F , if U , V , W are read in as input

data
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col. 42: logical indicator which determines whether the data matrix

P is equal to the identity or not

col. 42: = T , if P = I (Note: only if h = p )

col. 42: = F , if P / I

col. 43: logical indicator which determines whether the same U ,

V , W as used in the previous data set will be used

(never true for the first data set) in which case

neither (X/A) nor U , V , W needs to be read in

as input and col. 41 will be ignored

col. 43: = T , if new U , V , W are analyzed

col. 43: = F , if same U , V , W as previous data

set are analyzed

3.3 Rows of (X/A)

Omit if col. 41 or col. 43 of parameter card I is false. Otherwise

the partitioned matrix (X/A) is read in like any other input matrix.

That is, it is preceded by a format card, read in row-wise where each

row consists of a row of X immediately followed by a row of A , and

a new card is started for each new row of (X/A) .

3.4 Data Matrices U , V , W

Omit if col. 41 of parameter card I is true or if col. 43 is false.

Otherwise read in U , V , W respectively, each preceded by its format

card. Since U and W are symmetric only their lower triangular parts,

including the diagonal, are read in.

8
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3.5 Data Matrix P

Omit if col. 42 of parameter card I is true. Otherwise read in P

preceded by a format card.

3.6 Parameter Card II

All quantities on this card must be integers right-adjusted within the

field.

cols. 1-5: number of rows in C ( s ) ( < 15 )

cols. 6-10: number of columns in D ( t ) ( < 15 )

3.7 Matrices C and D

Matrices C and D are read in consecutively, each preceded by its

format card.

3.8 Stacked Data

The steps described in sections 3.6 and 3.7 can be repeated as many

times as desired or they can be skipped altogether. The end of each

standard data set must be followed by a blank card. This set can then

be followed by a new data set, either for the standard case or the non-

standard case. Any number of such data sets may be stacked together and

analyzed in one run. Note: since the program looks for a blank card, any

input cards for matrices with all zero rows should have the zero entries

punched, i.e., do not use a blank card in lieu of all zero entries on an

input card.

After the last set of data in the stack, there must be a card with the

word STOP punched in columns 1-4.
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Part II: Nonstandard Case

For each data to be analyzed, the input consists of the following:

1. Title card

2. Parameter card

3. Starting matrix

4-. Specifications for

5. Rows of (X/A)

6. Data matrices U , V , W

7. Data matrix P

8. Pattern matrices for B A 0 * and 8

9. Equalities

10. Start values for B A 0 , IV and 8

11. New data set or STOP card

3.9 Title Card

Whatever appears on this card will appear on the first page of the

printed output. All 80 columns of the card are available to the user.

3.10 Parameter Card

All quantities on this card except for the logical variables must be

punched as integers right-adjusted within the field.

cols. 1-5: sample size ( N ), i.e., number of observations

cols. 6-10: number of variables ( p ) ( < 15 )

cols. 11-15: rank of A ( g ) ( < 15 )

cols. 16-20: number of rows in P ( h ) ( < 15 )

20



cols. 21-25:

cols. 26-30:

cols. 31-35:

-20--

number of columns in B ( q ) ( < 15 )

number of columns in A ( r ) ( < 15 )

total estimated execution time in seconds for all

stacked data (SEC). This should be a number slightly

less than the time requested on thc, control cards so

the program will have time to print and/or punch results

up to that point. (Note: SEC should be read in for

each nonstandard data set and should be the same for

all such data sets in the stack.)

cols. 41-43: logical indicators (see below)

cols. 51-54: integer indicators (see below)

cols. 61-65: logical tape (disk) number of a scratch tape (disk) used

in the program in the nonstandard case

Logical Indicators (cols. 41-43): The logical indicators control the

input as described below.

Column 41 determines whether U , V , W are computed from (X/A)

or read in as input data.

col. 41: .T , if rows of (X/A) are read in to compute U , V , W

col. 41: = F , if U , V , W are read in as input data

Column 42 determines whether the data matrix P is read in or set

equal to the identity matrix by the program.

col. 42: = T , if P = I (note: only if h = p )

col. 42: = F , if P is read in as input data

Column 43 determines whether data matrix 7.. is read in or not. If no

elements in E are fixed, E is not read in.

21
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col. 43: = T , if E is read in as input data

col. 43: = F , if E is not read in

Integer Indicators (cols. 51-54).

Column 51 determines the type of printed output wanted. Thi8 can be

standard output ( S ), parameter specifications ( R ), the matrices T ,

r , E. and residuals ( C ), and technical output ( D ). (See 4.2-4.5.)

col. 51: = 0 , for S

col. 51: = 1 , for S + R

col. 51: = 2 , for S + C

col. 51: = 3 , for S + R + C

col. 51: = 4 , for S + D

col. 51: = 5 , for S + R + D

col. 51: = 6 , for S + C + D

col. 51: = 7 , for S+R+C+ D

Column 52determi-nes whether the same U , V W as used in the

previous data set will be used (never true for the first data set) in which

case neither (X /A} nor U , V , W need be read in as input ( G ). It

also determines certain extra printed or punched output. This can be

standard errors

col. 52:

col. 52:

col. 52:

col. 52:

col. 52:

col. 52:

( F

= 0 ,

) and a punched solution ( P ). (See 4.6-4.7.)

if no extra output is wanted

= 1 , for F

= 2 , for P

= 3 , for F + P

= 4 , for G

= 5 , for F + G

22
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col. 52: = 6 , for P G

col. 52: = 7 , for F + P + G

Column 53 determines whether an accurate or an approximate solution

is required.

col. 53: = 0 , if an exact solution is required

col. 53: = 1 , if an approximate solution is required

Column 54 will be set to zero or left blank for ordinary purposes.

col. 54: = 0 , iterate and obtain all output requested through

columns 51 and 52

col. 54: = 1 , no iterations (This may be used if one wants to test

the goodness of fit of a solution which is completely

specified.)

col. 54: = 2 , no standard output

3.11 Starting Matrix 7,

Omit if col. 43 of the parameter card is false, otherwise read in matrix

E preceded by its format card. The program will set all free and constrained

elements to zero, so only the fixed values read in are relevant.

3.12 Specifications for E

A pattern matrix for E is read in preceded by a format card (see 2.2).

Note: this matrix is read in even if E is not. The pattern matrix for E

is followed by "equality" cards, i.e., cards which determine which elements

are followers and which are leaders (see 2.2). These "equality" cards are

omitted if there are no elements equal to 2 or 3 in the pattern matrix for

E . Otherwise, starting in column 1 punch the five digit numbers MBRCC
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as described in section 2.2. For each new constrained leader start a new

card. M is always equal to 1 on the "equality " cards specifying E .

The last entry on each "equality" card is a zero indicating more "equality"

cards follow, or a two indicating it is the last one.

3.13 Rows of (X/A)

Omit if col. 41 of the parameter card is false or if col. 52 is greater

than three. Otherwise, the partitioned matrix (X/A) is read in like any

other input matrix. That is, it is preceded by a format card, is read in

row-wise where each row consists of a row of X immediately followed by

a row of A , and a new card is started for each new row.

3.14 Data Matrices U , V , W

Omit if col. 41 of the parameter card is true or if col. 52 is greater

than three. Otherwise read in U , V , W respectively, each preceded

by its format card. Since U and W are symmetric, only their lower

triangular parts, including the diagonal, are read in.

3.15 Data Matrix P

Omit if col. 42 of the parameter card is true, otherwise read in matrix

P preceded by a format card.

3.16 Pattern Matrices for B , A , 0 c and 8

These pattern matrices are preceded by a data card with entries in

columns 1-5, the column defining the matrix in question, 1 for B , 2 for A

3 for 0, 4 for c and 5 for O.

c.
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cols. 1-5: CCCCC where C = 0 , if the matrix is fixed

C = 1 , if the matrix is free

C = 2 , if the matrix has mixed values

A pattern matrix should be provided only when C = 2 (see 2.2).

For example, if columns 1-5 are punched 20100, the matrix B contains

mixed values, A is all fixed, 0 is all free, * and 8 are all fixed.

In this case only a pattern matrix for B is read in.

The pattern matrix consists of a format card specifying an I -format

and subsequent cards with the integer entries of the parameter matrix.

3.17 Equalities

Omit if the pattern matrices for B A , 0 , c and 8 do not con-

tain any elements 2 or 3. Otherwise starting in column 1 punch the five-

digit numbers MRRCC as described in section 2.2. For each new constrained

leader start a-new-card.---The-last-entry-on-each-fequality" card is a zero

indicating more "equality" cards follow, or a six indicating it is the

last one. The example in section 2.2 would then have the following

equality cards:

10101102010
10302104020
50101501020
50103501046

3.18 Start Values for B A , 0 , 4r and 8

The start values are preceded by a data card with entries in columns

1-5, the column defining the matrix in question.

cols. 1-5: CCCCC where C = 0 , if the matrix is of standard form

C = 1 , otherwise (see 2.2)
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This card is then followed by the necessary start values, for matrices with

C = 1 , each matrix or vector with its own format card.

3.19 Stacked Data

In sections 3.9 through 3.18 we have described how each set of non-

standard data should be set up. Each such set of data can be followed by

another data set, either for the standard case or the nonstandard case.

(Note: a blank card does not indicate the end of a nonstandard data set- -

this is only true for the standard case (see 3.8).)

After the last set of data in the stack, there must be a card with the

word STOP preceded in columns 1-4.

2G
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4. Printed and Punched Output

The output consists of a series of printed and punched tables as de-

described in sections 4.1-4.7. Section 4.1 describes the output obtained

when the standard case is considered. All subsequent sections deal with

the various output options open to the user when considering the non-

standard case.

4,1 Output for the Standard Case

The output for the standard case consists of the title with parameter

listing, the matrices U , V , W , the matrices P , E , E and S

(if h = p E is not printed since E = S). Matrices C , D , Se , S
h

(see 1.4) and the three test statistics--the largest root, sum of roots,

likelihood ratio and X
2

are printed when testing the hypothesis CED = 0 .

The parameter listing gives the information supplied on parameter

card I.

4.2 Standard Output ( S ) for the Nonstandard Case

The standard output is always obtained regardless of the value punched

in columns 51 and 52 of the parameter card (see 3.10). The standard out-

put consists of the title with parameter listing, the matrices U , V ,

W , P and S , the final solution and the result of the test of goodness

of fit.

The parameter listing gives the information supplied on the parameter

card.
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The final solution consists of six matrices E , B

and 8 . All numbers are printed with three decimals.

A

The test of goodness of fit gives the value of X
2

and the correspond-

ing degrees of freedom. The probability level is also given. This is de-

fined as the probability of getting a X
2

value larger than that actually

obtained, given that the hypothesized structure is true.

Just above the table giving the final solution, the following message

is printed

'IND = X.'

Usually X is 0, but if, for some reason, it has not been possible to

determine the final solution, X will be 1, 2, 5, 4 or 5. If IND is

1, 2 or 5, "serious problems" have been encountered and the minimization

of the function cannot continue. One reason for this may be erroneous

input data. Another reason may be that a point has been found where the

matrix E is not positive definite. A third reason may be that insuf-

ficient arithmetic precision is used. If IND is 4, the number of itera-

tions has exceeded 250. If IND is 5, the time limit SEC has been

exceeded (see 3.10). If IND / 0 , the solution obtained so far is auto-

matically punched on cards. Each of the six matrices are preceded by a

format card, so that they can immediately be used as initial estimates for

a new run with the same data. Thus there is little loss of information

when execution is terminated with IND / 0 .
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4.3 Parameter Specifications ( R ) for the 1:onstandard Case

If column 51 of the parameter card is 1, 3, 5 or 7, a table of param-

eter specifications, containing the information provided by the pattern

matrices (see 2.2), is printed. Six integer matrices are prilted corre-

sponding to E, B, A, 0, * and 0 . In each matrix an element

is an integer equal to the index of the corresponding parameter in the

sequence of independent parameters. The matrix E has a sequence of

independent parameters and the matrices B , A , 0 , If and 0 to-

gether form a second sequence of independent parameters. Elements cor-

responding to fixed parameters are 0 and elements corresponding to the

same constrained parameter have the same value. Examples are given in

the Appendix.

4.4 Matrices T 11, and Residuals ( C )

parameter card is 2, 3, 6 or 7, -the matrices T

(see 1.5), P = + if2 E = gif + 02 , the mean residuals = V - UEP

and the residuals for E. = T - E. are printed. The matrices T , P and

E are computed from the final solution. If the fit is good, E. should

agree with T and the residual matrix should be small. Elements of the

residual matrix may suggest how the hypothesized structure should be

modified to obtain a better fit. All five matrices are printed row-wise,

each element with four decimals.

4.5 Technical Output CD )

If column 51 of the parameter card is 4, 5, 6 or 7, the technical out-

put is printed. This consists of a series of tables that describe the

29
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behavior of the iterative procedure and give various measures of the ac-

curacy of the final solution. Ordinary users will have little interest

in these tables.

The first table of the technical output gives the initial estimates

for 7. , B , A , (I) , * and 8

The next two tables show the behavior of the iterative procedure under

the steepest descent iterations and under the following iterations by the

Fletcher and Powell method. For interpretation of these tables the reader

is referred to Gruvaeus and J8reskog (1970). If something goes wrong, so

that IND is 1, 2 or 3 (see 4.2), these tables may contain valuable

information.

4.6 Standard Errors ( F )

If column 52 of the parameter card is 1, 3, 5 or 7, large sample

approximations to the standard errors of the estimated parameters are

printed. These are printed row-wise in matrix form and each number is

printed with three decimals. The reader is referred to the paper by

J8reskog (1970a) for information about how the standard errors are obtained.

4.7 Punched Output ( P )

If column 52 of the parameter card is 2, 3, 6 or 7, the final solu-

tion is punched on cards. These cards are punched in matrix form. Each

matrix is preceded by a format card and each row of the matrix begins a

new card.

30
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Appendix

We shall illustrate how input data are set up and what the printout

looks like by means of two small sets of data. These data also serve as

test data to be run when the program has been compiled on another compu-

ter. The various models and hypotheses have been chosen to illustrate

the possibilities available in the program rather than the statistical

problems involved.

Both sets of data are analyzed in one run. Pages A6-A9 show card

by card how the input is punched. One line corresponds to one card.

Pages A10-A56 show the corresponding printout obtained.

The first set of data is taken from Smith, Gnanadesikan and Hughes

(1962) and consists of N = 15 observations on two covariablea and p = 11

biochemical response measurements. The subjects were individuals classified

into four weight groups. For further information about the subjects and

the measurements, see the above reference and references therein.

The model is

e(X45x11)
A
45x6-6x11

i.e., P1lx11 = I . The first four columns of A are used to classify

individuals into weight groups and the last two consist of the measurements

of the covariables. We do an ordinary MANOVA (standard case) and test the

two hypotheses, Hi that the first row of E is zero and H
2

that rows

2, 3 and 4 of E are all zero. These correspond to the hypotheses that

the overall mean effect is zero and that there is no difference between

4 3 I



weight groups, respectively.

for H
1

we have

For both hypotheses we have D
1 11

= I ;

c1x 6
(1

and for H
2

we have

0 0 0 0 0)

C
3x6

= 0

1

0

0

1

0

0

0

0 0 .

0 0 0 1 0

For the analysis we use the raw data published in tables 2 and 3 of

Smith et al. (1962).

The second set of data is taken from Potthoff and Roy (1964) and is

used to illustrate the standard case with P rectangular (h < p) and

also the nonstandard case with both E and E constrained. It consists

of measurements on 11 girls and 16 boys at 4 different age levels.

Two analyses of these data are done. The input for the first analysis

is the matrices U , V and W . Here we assume that E is uncon-

strained and that

e(X27x4) A27x2E2x3P3x4 (Al)

where A is a matrix of zeros and ones with ones in column 1 for girls

and ones in column 2 for boys and where

1 1 1

P = [-3 -1 1 3

9 1 1 9
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The rows of EP represent two quadratic growth curves, one for girls and

one for boys. We test two hypotheses Hi and H2 ; H1 is that the co-

efficients
13

and
X23

of the second-order terms are zero, i.e., that

the growth curves are linear rather than quadratic; H2 is that the two

growth curves are the same, i.e., that the two rows of E are identical.

This amounts to choosing C and D as follows:

0
For H

1
C
2x2

= I and D
3x1

= (0) .

1

For H2 =
Clx2 (1 -1)

D
3x3

= I .

The second analysis uses the same U , V and W as used previously

and assumes that E. has a quasi-Markov simplex structure with equal error

variances (see J8reskog, 1970, section 5.6). This may be represented as

where

= AOA' + 0
2
I ,

A =

T
11

0

7\
21

0

0 T
32

0 T
42_

and B is a scalar. In terms of (2) this is specified by choosing B4x4 = I ,

A4x2 A 61)2x2 (1)

, = 0 and a constrained to have all diagonal

elements equal. The model (Al) is the same but we now assume that



13 23
and This analysis yields maximum

° ' 21
E
12 22

likelihood estimates (accurate solution) of X11 = 21 ' 12
= 22 '

7\
11 '

7\21 ' 7\32 ' 7\42 , P , e and an overall test of goodness of fit.

In the nonstandard case various time estimates are printed on the

output. The time shown is the time taken to compute the solution that

follows the time estimate. This time includes only the iterations and not

the time for printing, except for the technical printout if requested.
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DATA 1,80M
45 11

(11F5.01

SNITH,6NANADESIKAN AND hUblitS
6 11

119621
ITT

5.7 4.67 17.6 1.5 .104 1.5 1.88 5.15 8.4 7.5 .14
1. 1. 0. U. 205. 24.

5.5 4.67 13.4 1.65 .245 1.32 2.24 5.75 4.5 7.1 .11
1. 1. 0. 0. 160. 32.

b.b 2.7 20.3 .9 .097 .89 1.28 4.35 1.2 2.3 .1

1. 1. 0. 0. 480. 17.
5.7 3.49 22.3 1.75 .174 1.5 2.24 7.55 2.75 4. .12
1. 1. 0. 0. 230. 30.

5.b 3.49 20.5 1.4 .21 1.19 2. 8.5 3.3 2. .12
1. 1. 0. 0. 235. 30.
h. 3.49 18.5 1.2 .275 1.03 1.8410.25 2. 2. .12
1. 1. 0. 0. 215. 27.

5.3 4.84 12.1 1.9 .17 1.87 2.4 5.95 2.b 16.8 .14
1. 1. 0. 0. 215. 25.

5.4 4.84 12. 1.65 .164 1.68 3. b.3 2.72 14.5 .14
I. 1. 0. 0. 190. 30.

5.4 4.84 10.1 2.3 .2/5 2.08 2.68 5.45 2.4 .Y .2

1. 1. O. O. 190. 28.
7.0 4.48 14.7 2.35 .21 2.55 3. 3.75 7. 2. .21
1. 1. u. U. 175. 24.

5.h 4.48 14.8 2.35 .05 1.32 2.84 5.1 4. .4 .12
1. 1. U. O. 145. 2h.

5.6 4.4H 14.4 2.5 .143 2.38 2.84 4.05 B. 3.H .18
1. 1. 0. U. 155. 27.

5.2 3.48 18.1 1.5 .153 1.2 2.6 Y. 2.35 14.5 .13
1. O. 1. 0. 22u. 31.

5.2 3.48 19.7 1.65 .203 1.73 1.88 5.3 2.52 12.5 .2

1. 0. 1. 0. 30u. 23.
5.6 3.48 16.9 1.4 .074 1.15 1.72 Y.85 2.45 U. .07
1. U. 1. u. 305. 32.

5.8 2.63 23.7 1.o7 .155 1.58 1.b 3.b 3.75 4.9 .1

1. 0. 1. 0. 275. 20.
6. 2.63 19.2 .9 .155 .96 1.2 4.05 3.3 .2 .1

1. 0. 1. 0. 405. 18.
5.3 2.63 18. 1.b .12Y 1.68 2. 4.4 3. 3.6 .18
1. O. 1. 0. 210. 23.

5.4 4.46 14.8 2.45 .245 2.15 3.12 7.15 1.81 12. .13
1. 0. 1. O. 170. 31.

5.o 4.4b 15.6 1.65 .422 1.42 2.56 7.25 1.92 5.2 .15
1. 0. 1. 0. 235. 28.

5.3 2.8 16.2 1.65 .063 1.62 2.04 5.3 3.Y 10.2 .12
1. 0. 1. 0. 185. 21.

5.4 2.8 14.1 1.25 .042 1.62 1.84 3.1 4.1 8.5 .3

1. U. 1. 0. 255. 20.
5.5 2.8 [7.5 1.05 .03 1.56 1.46 2.4 2.1 9.6 .2

1. 0. 1. 0. 265. 15.

7.4 2.57 14.1 2.7 .1Y4 2.77 2.56 4.25 2.b 6.9 .17
1. U. 1. 0. 305. 26.

5.4 2.57 19.1 1.6 .13Y 1.59 1.88 5.8 2.3 4.7 .16
1. (1. 1. 0. 440. 24.

5.2 2.57 22.5 .85 .046 1.65 1.2 1.55 1.5 3.5 .21
1. 0. 1. 0. 430. 16.

5.5 1.2b 17. .7 .0Y4 .Y7 1.24 4.55 2.Y 1.9 .12
1. 0. 0. 1. 350. 18.

5.9 1.26 12.5 .8 .039 .8 .04 2.b5 .72 .7 .13
1. 0. u. 1. 475. 10.

5.6 2.52 21.5 1.8 .142 1.77 2.6 b.5 2.48 8.3 .17

30



1. 0. 0. 1. 195. 33.
5.6 2.52 22.2 1.05 .08 1.17 1.48 4.85 2.2 9.3 .14
1. 0. 0. 1. 375. 25.

5.3 2.52 13. 2.2 .215 1.85 3.84 8.75 2.4 13. .11
1. 0. 0. 1. 160. 35.

5.6 3.24 13. 3.55 .166 3.18 3.48 5.2 3.5 18.3 .22
1. 0. 0. 1. 240. 33.

5.5 3.24 10.9 3.3 .111 2.79 3.04 4.75 2.52 10.5 .21
1. 0. 0. 1. 205. 31.

5.6 3.24 12. 3.b5 .18 2.4 3. 5.85 3. 14.5 .21
1. 0. O. 1. 270. 34.

5.4 1.56 22.8 .55 .069 1. 1.14 2.85 2.9 3.3 .15
1. 0. 0. 1. 475. lb.

5.3 1.56 16.5 2.05 .222 1.49 2.4 b.55 3.9 h.3 .11
1. U. 0. 1. 430. 31.

5.e 1.5b 18.4 1.05 .267 1.17 1.3b b.6 2. 4.9 .11
1. 0. 0. 1. 490. 28.

5.8 4.12 12.5 5.9 .093 3.8 3.84 2.9 3. 22.5 .24
1. -1. -1. -1. 105. 32.

7.1 4.12 8.7 4.25 .147 3.62 5.34 3. 3.55 19.5 .2
1. -1. -1. -1. 115. 45.

5.5 4.12 9.4 3.85 .217 3.36 5.52 3.4 5.2 1.3 .31
1. -1. -1. -1. 97. 48.

5.4 2.14 15. 2.45 .418 2.38 2.4 5.4 1.81 20. .17
1. -1. -1. -1. 325. 27.

5.4 2.14 12.9 1.7 .323 1.74 2.48 4.45 1.88 1. .15
1. -1. -1. -1. 310. 23.

4.9 2.03 14.1 1.8 .205 2. 2.24 4.3 3.7 5. .19
1. -1. -1. -1. 245. 25.
5. 2.03 13.2 3.b5 .348 1.95 2.12 5. 1.8 3. .15
1. -1. -1. -1. 170. 2b.

4.9 2.03 11.5 2.45 .32 2.25 3.12 3.4 2.5 5.1 .18
1. -1. -1. -I. 220. 34.

1 11

(oul-1.01
100000
(b01-1.0)
1

01
(Jul

OUul
UUOU1
UUU001
OUUU001
UULAWUU1
0u0U0UU01
0UOULAWUU1
00000000001

3 11

(801-1.01
01
ool
ouol
(80F1.0)
1

01
001
0001
00601

40
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000001
0000001
00000001
000000001
0000000001
00000000001

DATA FROM POTTHOFF ANU ROY (19b4) STANDARD CASE
27 4 2 3 110 FFT

(16F5.0)
.407
O. .593

(8E10.0)
8.630 9.056 9.407 9.815
13.'156 14.111 15.241 16.27d

laF10.0)
497.889
517.120 541.176
551.518 574.731 615.176
582.759 608.843 649.102 688.194

(10F3.0)
1 1 1 1

-3 -1 1 3

9 1 1 9

2

(luF1.0)
10
01
(10F1.0)

1 3

(1(05.0)
1 -I

(10E1.01

01
001

DATA FROM NOTTHOFF ANU RUY(1964) NUN-STANDARD CASE,RUTH XI AND SIGMA CONSTRAINED
27 4 2 3 4 2 110 FFT 7500 4

(I0F1.01
ouU
000
(80111
33u
.120

M01102010
10102102022
(10F3.011111
-3 -I 1 3

9 1 1 9

02202
(8011/
10
10

01
01



(b0111
0
10
(8011)
3222

501015010250103501046
01101
(16F5.0)

2. O.
2. O.
O. 2.
O. 2.

(16E5.0)
1.

.8 L.

(8UF1.0)
1111
STOP

= 42
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ANALYSIS OF COVARIANCE STRUCTURES

DATA_EROM_SHITH.ONALAGELIXAN_ANaRULBFR 11RA21

N= 45

P= 11

G= 5

H. 11

LoGICAL VARIABLES IC01.5.41-43/ TTT
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.

U=l1/NIA.A

2 3 4 5 6
1 1.000

0,089 0.444
3. 0.133 0.-178 0.-4-89

4 rs067 0.178 0.178 0.422
5 263.267 22.400 53.622 46.178 80777.973
t. 25.822 2.227 2 440 1.64A 6421,8.00 700.261

V=(1/N1A'X

1 2 3 4 5 6 7 8 9 10
1 5.498 3.134 15.896 1.998 0.174 1.815 2.382 5.247 3.076 7.467
7 0.616 2.120 0.001--- 0..021 0.896.... . -.0..313
3

.0.5E4-
0.749 0.459 3.427

.17-0.021
-0.088 -0.000

_7._0.0A0

0.035 0.014 0.914
.0.565-
0.315 0.598

4 0,398 0,039 1.878 -0.114 -0.011 -0.056 -0.063 0.606 0.113 0.302
5 1452.033 7513.315 4391.1.0.3 44.6.104 41,49.6 434.364 351.281_- 1351.414 742.113 177.6.147

1'
141,544 83.131 401,142 54.788 4.735 48.548 64.884 142.191 80.309 206.367

3/F(1/NI4!7(..

11

0.14
2 0.002
3 0.014

5 40.304
40131

W=11/N/X.X

1 2_ 3 4 5 6 7 8 .10
1 30,312
2 17,287 10,924

- 8.7..6_5A 48.5.71____262.132
4 10,965 6.639 29,213 5.107
5 0.948 0.551 2.664 0.368 0.039
6- 9.948_ 77.133 4.309 0,327 '.810
7 13.060

---5610
7,953 35.361 5.583 0.438 4.899 6.623

9 28.849 16.66 94,389 10.204 0,975 9.088 12.533 31.370
c 1-661330 10,310 48,147 6.433 0 515 7.33? 15..673_ 11.337 .

10 40.948 24,859 112.204 18.064 1,297
----5.859

15.740 20.224 40.172 22.234 89.977
11 0.875 0,509 2.457 0.346 0,028 0.315 0.404 0.786 0,509 1.257

W=(1/N/VX

LL
11 0,028

1 7 3 4 5 6 7 8 9 10
1 1.00.0 0.0 n 0..0 0.0 0.0 000
7 0,0

_0.0
1.000 0.0

____P_.

0.0 0.0 0.0 0.0
_0.0.0

0.0 0.0 0,0
3 0.0 0,0 1.000 0.0 0.0 0.0 0.0 0.0 0.0 0,0
4 Cap 0..0 a.o 1-90.0 No 069___ 0.0 0.0 0.0 0.0.
q 0.0 0,0 0.0 0.0 1.000 060 0.0 0.0 0.0 0.0
6 0,0 0.0 0.0 0.0 0,0 1.000 0,0 0.0 0,0 0.0
7 6.13__0.0

0.0
0 _0

0.0
o.n
0.0

0.0
0,0

0.6.0

0.0
---1_609D

0.0
_ii.o

1.000
_No.
0,0

0.0
q 0.0 0.0
9 0,0 0,0 0.0 0.0 0,0 0.0 0.0 0.0 1.000 0.0

10 0.0. _o.o m.o. ._-- .-- ....__ _o.o. 0.0 1.000

4 4



4

-Al2-

11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ii
2 (1.0
3 0.0

0.0
5 0.0
6 0.0

0.0
0.0

10
11

_0.0
t.000

13
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XI

1 2_ 3 4 5 6 7 a 9 ___10

1 4.790 1.467 10.930 2.312 -0.157 2.448 2.739 3.142 6.147 1.161
7 0.195 0.495 1.109 -0.549 0.003 -0.429 -0.369 0.915 0.741 -3.124
3 -0.074 0.205 -- 1.1183 -0.321 . -0.018. -0.145 -0.247 0.651.- -.0.327 0.944
4 0.013 -0.523 -0.419 0.091 -0.068 0.045 0.088 -0.311 0.071 1.191
4 0.000 -0.005 0.017 -0.005 0.000 -0.003 -0.005 0.005 -0.007 -0.013

-0.013 0.026 ......0.007-----0.039 0.010 0.012 .0.042_ , 0.259_ -0.050 C 3C 3

XI

11

1 0.21;6
2 -0.030

-1.1n4
4 1.109
5 -0.000

-0.002

sin0A.!,

1 2 3 4 5 6 7 4 9 10

1 V.066
0.035 0.274

A 0.047 -0.50? 11.545

4 0.064 3.15C .-0.523 _0.425
4 -3.003 -0.114 -0.070 - 0.011 0.005

3.023 0.114 .40.455 0.251 -0.006 0.241
7 0.037 0.149 .r.0.563 ___ _ C.161 _ . .70.004 ___ 0.169 0.252 _

.6125 -0.19n 0.677 -0.307 0.027 -0.412 -0.210 1.726
-3.025 0.058 0.209 0.074 -0.016 0.152 0.107 -0.605 1.104

13 0.165 _1.045 -1.622.. . __1.188.,-__-0.091__ . 0.921 0.444 . -0.645 -0.760 25.133
11 -3.001 3.107 -.0.010 0.010 ...0.000 0.013 0.009 -0.032 0.012 0.121

. SIT14.5

11
11 0.002

16



TEST PT THT HYP0THFS1S COCI10.0

1 7 1 4 5 6

1 0.0 0.0 1-n

o

.1.000

1 2 5 - 5 6 7 9 9 10

1 1000 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0_ 12°00 0.0 0,0 0..0 0.0 0t...C. .0.9 0.0
1 0.0 0.0

--ILO_
1.000 3.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 1.300 0.0 0.3 0.0 OtO 0.0 0.0
5 0.0 0.0 I.-0-- 0..3 0.0_ 0.0 0.0 .0.0

0.0 0.0
_...0_1-0

.3.0 3.3
______L.0.0.0___

0.0 1.000 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 3.2 0.0 0.0 1.000 000 0.0 0.0
4 3.0 0.0 0..0. a 0...ci O.0 0.0 0.0 0.0
_

9 0.0 0.0 0.0
_.:1...

D.0 0.0 0.0 0.0
..1.0f10

0.0 1.000 0.0
'0 0.0 0.0 O., 0.0 0.0 0.0 0.0 0.0 0.0 1.000

11 0.0 .0.0 0.3 0.0 0..0_ 0.0 0.0- 0.0 0.0

11

1 0.0
0,0
0.0
0.0

5

0

7 0.0
a 'o.0

0.0
10 3.0
11

no
.

1 3 4 5 6 7 0 10

1 0.066
2 01C 2227'1
1,

---.0_.

0.087 -0.502 8.585
4 0.064 0.150 -0.523 0.425
c _7.9..0...3 -0,003 -0.020 .-_0,011 0,005

0.021 0.118 -0.455 0.253 -0.006 0.240
0.037 0.14'2 -0.563 0.161 -0.004 0.169 0.292

R 0,125 -0,190 0,67. 027 -Q.,.!-!-12..._ -0.2_10 1072-6

9 -0.025 0.056 0.208 0.074 -0.016 0.152 0.107 -0.605 1.709

10 0.165 1.048 -1.622 1.088 .-0.091 0.921 0.4''. -0.645 -0.760 25.133

11_ -0011 0.007 -.0.030 0.010 -0.000 0013 O. 0C / -0.032 0.0J2 0.021

I

11

11 0.002

SI H1

1 3 4 5 6 7 9

1 00504
2 0.319 0.202

0.952 0.601 1.798

47

.



-A15-

4

5

5

0.201
-0.014
n.211

0.127
-0.009
n-114

0.380
-0.026
n_4n2

0.080
-0.005
n-n84

0.000
-11.001A 0. 00

7 0.238 0.151 0.450 0.095 -0.006 0.101 0.113
9 -0.273 -0.173 -0.517 -0.109 0.007 -0.116 -0.129 0.148

_0.514 n. 39 1.011 0-214 -0.014 n 276 n 253 -0.290 0-566
10 0.275 0.174 0.520 0.110 -0.007 0.116 0.130 -0.149 0.292 0.150
11 0.025 0.016 0.047 0.010 -0.001 0.011 0.012 -0.013 0.026 0.014

SO11

11 0.001

L.119.GE5T ROOT= Q.1.105410_02
SUM 9P QICITS= 0.11054140 02
(11(F11H000 RAT1n= 0.82959050-01

11_0EG.REES_DE_EUMOM IS 83.3957

I:-
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TEST
'

OF THE HYPOTHESIS um/u~0

___C

1 2 3 4 5 6

I- 0.0 .000 0.0 o.n a.n n.o
2 0.0 0.0 1.000 0.0 0.0 0.0
3 0.0 0.0 0.0 1.000 0.0 0.0

.
_ _ A 2 1 4 5 6 7 9 9 la

1 I.000 o.o o.o o.o o.o o.o o.o o.o o.o o.o
, 2 0.0 1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

,. 3 0.0 h.o 1 nno n.n n_n n n 0..0 0..0 0.0 0.0.
4 0.0 0.0 0.0 1.000 0.0 0.0 0.0 0.0 0.0

..

0.0
5 0.0 0.0 0.0 0.0 1.000 0.0 0.0 0.0 0.0 0.0
b ___o.o 0._n 0-D n n 0._0 1 mw n.n 0.0 0._0__ 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 1.000 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000 0.0 0.0

, _a-o ____a,o n.n o.o o 0 0.11__ 0.0 0.0_
I0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

__.0.0
0.0

.1.000
0.0 1.000

11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0

LI
1 0.0

0.0
1 0.n
4 6.0
5 0.0

7 0.0
000
0-9

10 0.0
I.000

SI F71

1 2 3 4 5 6 7 1n

i

1 0.066

^i i

2 0,035
0.087

0.279
-0-5a? 8-585

4 0.064 0.150 -0.523 0.425
5 -0.003 -0003 -0.020 -0.011 0.005
A 0.023 0.118 -0.455 0.253 -0.00_6 0.740
7 0.017 0.149 -0.563 0.161 -0.004 0.169 0.292
8 0.025 -0.190 0.677 -0.397 0.027 -0.412 -0.210 1.726
9 -0,025 0.058 0.208 0.074 -0.016 0.152 0,107 -0.605 6709

10 0.165 1.048 -1.622 1.088 -0.091 0.921 0.444 -0.645 -0.760 25.133
11 -0.001 0.007 -0.030 0.010 -0.000 0.013 0.009 -0.032 0.012 C.021

SI EI

11

11

ox/

0,002

[
1 2 3 4 5 6 7 9 9 10

; 1 0.015
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? 0.053 0.321
3 0.075 0.669 2.426
4 -0 010 -0_211 -6 AA. n 711
5 -0.002 -0.003 -0.037 0.011 0.002
6 -0.031 -0.165 -0.431 0.145 0.007 0.102
7 -n.n2h -n ihi -11.4h9 0.14A n nn7 n nnn 0.1D1
A 0.061 0.404 1.168 -0.358 -0.016 -0.243 -0.249 0.61A
9 0.057 0.193 0.250 -0.142 -0.006 -0.115 -0.092 0.e18 0.210

10 -0.1_9,3 -0_._85_6 -0.0?0 0.503 -o.onh 0.ALL 0.336 -0.A32 -a.zas 3.111
11 -0.002 -0.010 -0.022 0.008 0.000 0.006 0.006 -0.014 -0.007 0.029

S 11_31_ _ _

11

,

4.

LARGEST Rolm-, 0.5556551D 01
__SUM_11F__ROOT_Se71___0.64411_920_01__
LIKFLIHnnp RATIO. 0.73411010-01
CHISOHAAF WITH 33 OFGAEFS OF FREPOOM IS 90.1,030

50
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ANALYSIS OF COVARIANCE STRUCTURES

aku__ERnm PDTTHDFF AND ROY 119h41 STANDARD CASF

N= 17

P= 4

G= 2

H= 3

LOqICAL VARIABLES ICOLS41 -43) : FFT

5.1.
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U.11/N1A,A

1 2
1 0.407
2 0.0 0.593

V=(1/N1A.X

3 4
8.630 0.056 9.407 9.815

2 13.556 14.111 15.241 16.278

14=11/NWX

1 2 3 4
1 497.889
2 'd.7.120 541.176

574.73/ 615..176
4 582.759 608.843 649.102 688.194

1 2 3 4
L 1.000 1.000 1.000 1.000
2 -3.000 -1.000 1.000 3.000
3 9.000 1.000 1.000 9.000



E.9

E [

xi

2

22.704 0.479 -0.003
2 24.631 0.788 0.050

S

1 2 1 4
5.008
2.519 3.890
3.643 2.745 6.035-3

4 2.527 3.103 3.878 4.665

SIGMA

1 2 3 4

2

____5,021
2.511 3.896

3 '.663 2.731 6.069
4 7 527 3.102 1 879 4.665

L_

L



ITEST OF THE HYPOTHESIS CIXIID.0

1

1

1.ann
2

0.0 1.000

1

2

3

0.0
1.000

SIEI

1

SIB.)

0.015

1

nn]

-A21-

LARGEST ROOT= 0.99323620 -01
11JM-DF ROOTS= 0.99123620-01
LIKELIHOOD RATIO= 0.9096502D 00
CHISOUARE WITH 2 1EGREES OF FREEDOM IS 2.2727

5'1
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TEST 08. THE HYPOTHESIS C(X110=0

r1.0

1

1.000
2

-1 n

0

1 2 3

1 1.000 0.0 0.0
2 SOO 0
3 0.0 0.0 1.000

&LEL

1 2 3

1 3.845
2 0.137 0.109
3 -0.088 -0.012 0.015

5) H)

1 2 3

1 0.896
2 0.144 0.023

0.025 0.004 0.001

LARGEST ROOT= 0.6302972D 00
SUM n8 pactuar__2.1029720 00
LIKELIHOOD RATIO= 0.61338510 00
CHISQUARE WITH 3 DEGREES OF FREEDOM IS 10.9972
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ANALYSIS OF COVARIANCE STRUCTURES

nATA FRnM PnTINCEE_AND RnYIVIA4I NnN-STANnAlln CASPOInTH YI ANn SICMA CnNRTRAINED

N= 77

.1

P= 4

G= 2

H=

O.

P= 2

LOGICAL INDICATORS srms.41-41) FFT

INDICATORS (cms.51-541 : 7500

FSTIMATED TIMF IN SECONDS= 110.
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U=f1/N/A,A

1

2
0.407
0.0 0.593

2 3 4
1 8.630 9.056 9.407 9.815
2 13.556 14.111 15.241 16.278

W.(1/NIX1X

L__________2 3 4
1 407.889
7 517.120 541.176

574.711 615.176__.3
4

___551.5)9
582.759 608.843 649.102 688.194

1 2 3 4
1 1..non 1-non 1 nnn Loon
2 -3.000 -1.000 1.000 3.000
3 9.000 1.000 1.000 9.000

S = W-11.(U**-1)V

1 7 3 4
1 5.008
2 2.519 3.890
3 3.643 7.745 6.035
4 2.527 3.103 3.878 4.665

r

5,7
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PARAMETER

X I

SPECIFICATIONS

1 2 0

1 2 0_

BETA

() 0 0

0 0 0 0

0 _0 0 0
0 0 0 0

L PIU OA

1 0

2 0
0 3

0 4

PHI

0
A 0

E51

0 B 0 0

THETA

6 6 6

DO



426-

INITIAL SOLUTION

1_
1

0._a_
2
n.n

3
n.n

2

__BETA

0.0 0.0 0.0

1 2 3 4
____1 _1.200 0,0 0 n n-n

2 0.0 1.000 0.0 0.0
3 0.0 0.0 1.000 0.0
4 a-n n.a n 0 ionn

LAmBOA

1 2
1 2.000 0.0

z..aao n..n

3 0.0 2.000
4 0.0 2.000

PHI

L 2
1 1.000
2 0.800 1.000

PS!

1 2 3 4
1 0.0 0.0 0.0 e.o

1_4 Er

1 2 3 4
1,000 ___1.000 _1.000 1.000

59
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BEHAVIUR ON0hR SiEEPES1 01SCENT ITERATIONS

ITFR TRY ABSCISSA SLOPE FUNCTION

1 0 0.0 -0.315021670 01 0.136161590 01
1 0.100000000 00 -0.174698130 01 0.112146630 01
2_ 0.-22A6q66BD 00 -0.6t1717970 0.980061_720 on

0.348616000 1)0 0.114529770 00 0.952391370 00

__D Q.0 00 0.952391370 00__2,

I

__-_-EL.19-4.621_LOD
0.3486I600V 00 0.271714710 02 0.211987420 01

2 0.191qq531D 00 0.1096C096D 01 0.918431750 00
3 -0.482861420-01 06.889L79640 00

3 0

___0.125_19_8720_00

.0.0 -0.497889870 00 0.889129640 00
1 0,125_73_1/2D4.0 -0.609107650-0' 0.85616.5_/_0011
2 0.150229730 00 0.307239800-02 p.855474640 00

-0.6540474LL_Q0 0.855474_6_40_00
1 0.150229730 00 0.165766720 01 0.878549840 00
2 0.7643694E0-01 0.955504600-02 0.827227000 00



x
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BEHAVIOR UNDER FLEPOH ITERATIONS

ITER TRY ABSCISSA SLOPE FUNCTION

1 0 0.0
1 0.100000000 00
2 r1.4n19A14on no

-0.278317210 00
-0.200487000 00
n_15A771R1n-n2

0.827227000 00
0.80333422D 00

nn

2 0 0.0 -0.120504170 00 0.77450242D 00

THE MATRIX IS NOT POSITIVE DEFINITE 4 -3.94206063 3.92787721
IL 1 0.401981300 00

0.20099065n 00 (1-A1725496A ni 0 12258108D Al
0.5723/1050-01 0.545667380 00 0.784604130 C;:,

4 0.137496080-01 0.260846900-02 0.77367077D

3 0 0.0 -0.522240240-02 0.77367077D 00
1 0.137496080-01 0.900098370-02 D.773696640 DO
2 0-505910_600-02 -0 97209517n-08 0 77165755A on

4 0 0.0 -0.325488810-03 0.773657550 00
1 0.505910600-02 0.686075130 -09 .7716484/41_00
2 0.162785790-02 -0.369887610-06 0.773657290 00

5 0 0.0 -0.59229782D-04 0 773657290 On
1 0.162785700-02 0.267237820-02 0.77365941D 00
? 0.353613910-04 0.115052410-09 0.773657290 00

TIME= 2.50

61
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MAXIMUM

1.NC)-

LIKELIHOOD SOLUTION

XI

1

?

1

23.949
23.949

2

0.654
0.654

3

0.0
0 0

BETA

1 2 3 4

1 1.000 0.0 0.0 0.0
? 0.0 1.000 0.0 n.n
3 0.0 0.0 1.000 0.0
4 0.0 0.0 0.0 1.000

LAMBDA

1 2

1 1.921 0.0
2 1.683 0.0

0.0 7.454
4 0.0 2.393

PHI

1 2

1

2 0.949 1.000

PSI

1 2 1 4

1 0.0 0 0 0.0 0.0

THETA

2 3 4

1 1.319 1.319 1.319 1.319



4
1 5.710
2 3.111 4.482
1 4.686 1.705 7.654
4 3.896 4.321 5.970 7.382
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GAMMA = (LAMBDA)1PH1IlLAMBDA1,+(P511**2

1 1 4
1 3.690
2 3.233 2.832
3 4..471 1 914 6, n71
4 4.362 3.822 5.873 5.727

4
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SIGMA = IBETAIIGAMMAMETA).+ITHETAI**2

1 2 1 4
1

2

3

5.429
1.233
4.473

4.571
3.919
3.822

7.76?
5.873 7.4664 4.362
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MEAN RESIDUALS =

1

2

-0.318 -0.425 -0.607 -0.731
0.518 0.297 0.651 0.912

6G



r'
L 1

RESIDUALS FOR SIGMA = 1-SIGMA

L. 1 2 4
1

2

'3

0.281
-0.122
0.213

-0.089
-0.214 -0.10R

0.096 -0.0844 -0.466 0.502

67
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TEST OF GOODNESS OF FIT

GHISOUARE WITH 10 DEGREES OF FREEDOM IS e0.1151

PROBABILITY LEVEL IS 0.028

8



[:
STANDARD ERRORS

XI

0.404
2

0 065
3

n
2 0.404 0.065 0.0

RFTA

I 2 3 4
1 0.0 «^» «^» 0 0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0 0 0.0

LAMBDA

1 2

1 0.379 0.0
, 2 0.357 ,'o

3 0.0 0.428
0.0 0.421

PHI

1

1 0.0
2 0.080 0.0

PSI

1 2 3 4
1 0.0 0.0 0.0 0.0

THETA

1 2 3 4
0.127 0 127 n,77 n177

436-

69


