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The complexity of modern neurophysiology experiments requires specialized software

to coordinate multiple acquisition devices and analyze the collected data. We have

developed ACQ4, an open-source software platform for performing data acquisition

and analysis in experimental neurophysiology. This software integrates the tasks of

acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily

for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton

microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which

facilitates the addition of new devices and functionality. The modules included with ACQ4

provide for rapid construction of acquisition protocols, live video display, and customizable

analysis tools. Position-aware data collection allows automated construction of image

mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses

free and open-source tools including Python, NumPy/SciPy for numerical computation,

PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware

includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells,

motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

Keywords: electrophysiology, laser scanning photostimulation, python language, multiphoton microscopy, data
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INTRODUCTION

The techniques used in experimental neurophysiology have

grown in complexity with the development of new technology. In

particular, neuroscientists often combine traditional electrophysi-

ological recordings with multiple types of imaging, photostimula-

tion, and behavioral interactions. These new techniques allow the

collection of data with greater resolution, precision, and through-

put than ever before. At the same time, they pose new challenges

in their technical complexity. Increasingly, experimenters rely on

computer automation to orchestrate these experiments and ana-

lyze the resulting data. Thus, software is a key component in

integrating new technologies into experimental neurophysiology.

We have developed a modular software platform for exper-

imental neurophysiology called ACQ4. The system integrates

acquisition, management, and analysis of all experimental data

into a single collection of tools. With a few exceptions, ACQ4 was

designed as a general-purpose tool and thus we expect it to be

of value to the neuroscience community as well as other fields of

research.

The primary purpose of ACQ4 is to provide a system to

automate experiments combining traditional electrophysiology,

photostimulation, and imaging. The broader scope of ACQ4

is to provide a generic system for controlling research equip-

ment including analog and digital input-output boards, cameras,

motorized position control, and any devices that can be inter-

faced through analog or digital channels, serial port commu-

nication, or a manufacturer-provided application programming

interface (API). ACQ4 is a modular and extensible system, mak-

ing it possible to add support for new types of devices and

experimental protocols. Likewise, ACQ4 makes few assumptions

about the hardware configuration, allowing arbitrary combina-

tions and arrangements of experimental hardware. The tools

currently included with ACQ4 provide support for a wide range

of neurophysiology techniques including patch-clamp electro-

physiology, laser scanning photostimulation, calcium imaging,

intrinsic imaging, and multiphoton imaging. In addition, the sys-

tem provides services for data management and an extensible set

of analysis tools.

ACQ4 is written in Python and is built entirely on free and

open-source tools, with the exception of some commercial hard-

ware drivers. The use of open-source software affords many

benefits over closed-source software. First, experimenters with

the necessary expertise may modify the program to suit their

own needs and contribute the code back to the community for

others to use. In this way, open-source software is developed by

those who have the best understanding of their own experimental

needs. Second, labs need not rely on the survival of a business or

a particular product for long-term support. Finally, virtually any

task that can be done manually may be automated through the

inclusion of custom scripts.

Here, we discuss the design of ACQ4, the supported devices

and acquisition paradigms, and illustrate usage of the program in

an experimental setting. The software sources and documentation

are available at http://www.acq4.org.

OVERVIEW

The design philosophy for ACQ4 was to develop a

general-purpose research platform with a strong focus on
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neurophysiology. In our lab it is currently used for patch-clamp

electrophysiology, laser scanning photostimulation, multiphoton

microscopy, calcium imaging, and intrinsic imaging. Although

ACQ4 has been used most extensively with in vitro preparations,

it supports a feature set that is broad enough to encompass many

in vivo preparations as well. The software is capable of handling

most aspects of acquiring, managing, and analyzing experimental

data.

ACQ4 is both a platform for application development and a

suite of modules built on that platform. At the core of ACQ4 is

a central Manager that controls access to devices, executes tasks

that synchronize the actions of multiple devices, manages the

storage and retrieval of data, and loads user interface modules

(Figure 1). Each user interface module provides a specific func-

tions such as camera access, synchronized recording and device

control, data browsing, and various analysis tasks. These modules

make use of the services provided by the Manager, allowing them

to communicate with one another.

In most cases, user interface modules control the acquisition

hardware indirectly by submitting task requests to the Manager.

These task requests specify which devices will participate in the

task and describe the intended actions for each device. The

manager then handles all aspects of device configuration and syn-

chronization, while ensuring that tasks submitted by different

modules do not attempt to access the same hardware simulta-

neously. This is one of the most important services provided by

the Manager because it simplifies the creation of new acquisition

modules and at the same time encourages scalability. For situa-

tions that require low-level access to the hardware, modules may

instead request direct access from the Manager.

FIGURE 1 | Architecture of ACQ4. The central Manager is responsible for

configuring devices and facilitating most communication between devices

and modules. The user interface is composed of multiple modules, each

providing a particular functionality. The Data Manager handles storage, the

organization of raw data, and storage of associated metadata.

The data management system in ACQ4 is designed to empha-

size flexibility and longevity. Data is organized into a hierarchy

of directories with user-defined structure. Each directory con-

tains a human readable index file that stores annotations and

other metadata related to both the directory and any files con-

tained within it. Most data acquired by ACQ4 is stored using

the HDF5 file format (www.hdfgroup.org). These files contain

both the raw data arrays, for example from camera and digitized

recordings, as well as meta-information related to the recordings.

ACQ4 provides libraries for reading these files in both Python and

MATLAB. When the data is analyzed, the results may be stored

in an SQLite relational database file (www.sqlite.org). The use of

industry-standard HDF5 and SQLite formats helps to ensure that

data is readable by a variety of different applications, both now

and in the future.

EXAMPLE USE CASES

The general-purpose nature of ACQ4 makes it impractical to out-

line all of its possible uses. In addition, its extensibility means that

the range of experiments that are possible to perform with ACQ4

will grow as experimenters add functionality. Here we present

examples of experiments that are possible with ACQ4 to illustrate

a range of functionality.

MULTIPHOTON CALCIUM IMAGING DURING WHISKER DEFLECTION

ACQ4 can be used to perform multiphoton calcium imaging both

in vitro and in vivo. Like most aspects of ACQ4, the pattern

of scanning is extremely flexible. For example, an experimenter

could perform raster scans over a few dendritic spines and a line

scan over a section of dendrite. The position, speed, and fre-

quency of scanning are all definable by the user. This type of

experiment would require a laser, a set of scan mirrors, and a

signal detection device such as a photomultiplier tube or photo-

diode.

To record calcium signals during a whisker deflection, an ana-

log output signal is used to drive an actuator to deflect the

whisker. At the same time, a video camera records the whisker

deflection and exports a TTL signal marking the start time of

each frame exposure. All input and output signals are acquired

synchronously and the final data generated has multiple calcium

imaging components and a whisker video, all with automatically

determined timing information.

LASER SCANNING PHOTOSTIMULATION

Laser scanning photostimulation is a technique used to stimulate

a specific, usually small area of tissue (Katz and Dalva, 1994). It

involves setting the voltages on a pair of scan mirrors to direct a

laser beam to a specific site on the sample, combined with fast gat-

ing of the laser beam by a shutter, Pockels cell, or Q-switch. ACQ4

can be used in many types of photostimulation experiments.

Some of these include: sequentially stimulating an arbitrary set of

sites to search for presynaptic partners to a specific target neuron,

using multiphoton stimulation to stimulate an individual spine

on a recorded neuron, or stimulating a bundle of axons expressing

Channelrhodopsin by performing a line scan across them. Each of

these types of experiments require a laser for stimulation, a pair

of scan mirrors to set the position of the laser beam, and a camera
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so that the user can define the laser position relative to the sample.

In the first two examples a patch-clamp amplifier is also required

for recording from a target neuron.

ACQ4’s use of a global coordinate system allows position infor-

mation to be saved next to recorded data, and for stimulation sites

to be automatically reconstructed alongside images of the sam-

ple. ACQ4 also allows for the specification of an arbitrary set of

stimulation sites, including multiple discontinuous sets of sites.

IN VITRO PATCH CLAMP WITH DRUG PERFUSION

The objective of this example is to record a set of current-

voltage relationships before and after drug application from a

whole-cell, brain slice preparation. Current-voltage relationships

are recorded every minute for three 10 min periods before drug

application, during drug application, and after drug washout.

In ACQ4, a simple, custom Python script (or a patient exper-

imenter) would control the initiation of a set of I/V curve

measurements each minute, and after 10 min activate a digi-

tal output line to open a valve controlling the flow of drug

solution. After 10 more minutes the script would return the

valve to its original position. Importantly, only minimal effort

would be required to develop such a script because execution

of the I/V curve would only involve recalling a task definition

that was previously designed through a graphical user interface.

Devices required for this type of experiment would include a

patch-clamp amplifier and valve that could be easily defined

as a generic digital device (see below, Generic analog/digital

devices).

IN VIVO RECORDING DURING AN OPERANT CONDITIONING TASK

In this example, the objective is to record multi-unit activity in

premotor cortex during an operant conditioning task with audi-

tory discrimination. This type of task might include 4 analog

inputs from a tetrode array, a digital output that controls an LED

serving as a cue to the animal that a trial has started, an analog

output that controls the auditory stimulus, a digital input that

reports a lever press, and a digital output that controls a valve to

release a reward.

The most complex aspect of this experiment is orchestrating

the simultaneous tetrode recording, LED cue, auditory stimu-

lus, and lever press input. However, this task can be defined

quickly and interactively by the user in ACQ4. The remain-

der of the experiment—analyzing the behavioral response and

administering the reward, would then be handled by a custom

script.

RELATED PROJECTS

ACQ4 is designed as a platform encompassing a wide range of

acquisition capabilities as well as data management and analy-

sis. We developed this software initially to address a few spe-

cific, in vitro experimental paradigms. However, in covering that

range of experiments we have devised a generalized architecture

which can be applied to many common experimental paradigms.

Although no other projects provide the same breadth of fea-

tures, several are actively developed that have overlap with parts

of ACQ4 or provide features that are not currently available or

practical in ACQ4.

Of the software systems providing similar acquisition features

to ACQ4, most are closed-source and sold commercially. The

most notable exception is Ephus (Suter, 2010), an open-source

system based on the commercial platform MATLAB that was

developed to combine electrophysiology and laser photostimula-

tion in a modular, general-purpose acquisition system. Ephus was

developed alongside ScanImage (Pologruto et al., 2003), which

supports laser scanning microscopy. The features provided by the

combination of Ephus and ScanImage overlap significantly with

those of ACQ4. However, ACQ4 integrates all of these functions

as modular components in a single application, whereas Ephus

and ScanImage are implemented as separate applications. There

are advantages and disadvantages to both approaches, although

we find the approach in ACQ4 to be more flexible in that it allows

stronger integration between modules, and additionally may be

operated as multiple, independent processes if desired. Another

open-source program with overlapping functionality is WinWCP

(http://spider.science.strath.ac.uk/sipbs/software_ses.htm), which

is a Windows-based acquisition application with a strong focus

on whole-cell recording techniques.

MANTA (Englitz et al., 2013) and NeuroRighter (Rolston

et al., 2010) are open-source acquisition systems designed for

use with multi-electrode arrays and are based on MATLAB and

Microsoft.NET, respectively. Both projects provide features that

fall within the intended scope of ACQ4, but are not currently

implemented in a practical or optimized way. MANTA is opti-

mized for use with large arrays containing over 100 channels,

whereas ACQ4 has been used mainly with experiments involv-

ing a small number of electrodes and would require new user

interface development to make the use of large electrode arrays

practical. Similarly, NeuroRighter was designed to allow low

latency, closed-loop feedback in multichannel electrophysiology,

whereas ACQ4 has only been used for open-loop recording and

stimulation. Both of these are desirable areas for future develop-

ment in ACQ4. Another notable project is Open Ephys (http://

open-ephys.org), which has developed both open-source hard-

ware and software for electrophysiology and optogenetics appli-

cations. Like MANTA and NeuroRighter, it has a strong focus on

multichannel recording.

Several projects exist that aim to provide either standard

data formats for biological data or platforms for sharing and

collaborating such data. BioSig (Vidaurre et al., 2011), Neo

(http://neuralensemble.org/neo/), EDF+ (Kemp and Olivan,

2003), NeuroShare (http://neuroshare.org), and Pandora (http://

software.incf.org/software/pandora) are all data standards and

interoperability projects in various states of development.

Although ACQ4 uses its own internal data format, it is desirable

to have the ability to export data from ACQ4 to these standard-

ized formats. Likewise, projects such as CARMEN (Austin et al.,

2011), CRCNS (http://crcns.org/), INCF (http://www.incf.org),

and Brainliner (http://brainliner.jp) provide platforms for data

sharing and collaboration, and thus would be useful to inte-

grate with ACQ4. Numerous open-source analysis projects such

as OpenElectrophy (Garcia and Fourcaud-Trocmé, 2009), Spyke

Viewer (Pröpper and Obermayer, 2013), and Stimfit (Schlögl

et al., 2013) also provide features that are largely complementary

to the analysis features in ACQ4. Support for projects like Neo
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may facilitate data transfer between ACQ4 and external analysis

tools such as these.

PROGRAM DETAILS

PLATFORM

ACQ4 is written in Python, a modern, open-source program-

ming language that has grown rapidly to become one of the

most popular general-purpose programming languages in use.

Python is also unencumbered by commercial licensing, which

greatly reduces barriers for other researchers to access ACQ4.

As an interpreted language, Python is easier to use than most

compiled languages at the cost of being less efficient. However,

ACQ4 is able to achieve high performance by using optimized

libraries that provide efficient numerical processing (NumPy and

SciPy; http://www.scipy.org), user interface (PyQt; http://www.

riverbankcomputing.com), and scientific graphics (PyQtGraph;

http://www.pyqtgraph.org).

The combination of these components—Python, NumPy,

PyQt, and PyQtGraph—allows ACQ4 to operate efficiently on

most platforms using entirely free software. ACQ4 currently

runs on Windows, Linux, and OSX. However, the availability of

hardware drivers may restrict the platforms available for data

acquisition. For example, the cameras that are currently sup-

ported only provide Windows drivers and MultiClamp amplifiers

(Molecular Devices) do not support Linux. However, data display

and analysis work on all supported platforms.

DEVICE MANAGEMENT

Each type of device supported in ACQ4 is represented inter-

nally as a Python class that inherits from a base Device class.

Adding support for a new type of device requires writing a new

Device subclass. Four generic Device subclasses (described below)

provide common functionality across groups of similar devices:

DAQGeneric, Camera, Stage, and Laser. These generic classes

reduce code replication and help encourage all compatible devices

to adopt a similar interface. At a minimum, each Device subclass

defines the set of configuration options it accepts and methods for

interacting with the hardware. Although this minimal interface is

sufficient to define a Device class, most devices will also imple-

ment one or more high-level interfaces that allow it to interact

with other parts of ACQ4.

The Manager keeps track of all devices in the system as defined

in a human-readable (text) configuration file. This file assigns

unique names and specifies the type of each device, in addition

to any information needed to open the device, such as serial port

numbers or other device-specific identifiers. The configuration

file also specifies the relationships between devices. This includes

both electrical connections (for example, the output of an ampli-

fier is connected to a specific analog input channel of another

device) and physical relationships (for example, a microscope is

rigidly connected in some orientation to a movable stage). When

ACQ4 is started, the Manager attempts to establish and maintain a

connection with each defined device. The Manager then presents

a centralized interface providing three main features: a general

architecture for managing a system of interconnected devices

from which new acquisition applications may be built; device

reservation, allowing modules to operate independently of one

another without concern for resource collisions; and hardware

abstraction, allowing modules to transparently support multiple

types of devices having the same base class.

Device subclasses will usually communicate with their

hardware either through a serial port, through a manufacturer-

provided C API, or through analog/digital channels on an acquisi-

tion board (or by some combination of those methods). For serial

communication, ACQ4 provides a simplified interface built on

the PySerial package (http://pyserial.sourceforge.net/). For access

to C APIs, ACQ4 uses Python’s built-in ctypes package in addition

to a system for parsing C header files that automatically extracts

the needed function signatures and constant values. For commu-

nication via analog/digital ports on an acquisition board, ACQ4

includes a Python wrapper for the National Instruments DAQmx

library.

OPTOMECHANICAL DEVICES

The experiments that ACQ4 is designed to handle often involve

multiple devices whose spatial relationships to each other must be

calibrated, tracked, and reported. For example, a user may wish to

collect a set of images from a range of locations across a sample,

mark locations for later reference, or direct a scanning laser to

specific sites in the sample. To accomplish this, a global coordi-

nate system is used throughout ACQ4 to represent the physical

coordinates of the sample. Any recording or stimulation that

has a defined spatial relationship to the sample is automatically

registered with the global coordinate system. Thus, images and

photostimulation data are automatically stored alongside their

global position and scale, allowing automatic reconstruction of

image mosaics (multiple tiled images).

A broad subclass of devices, referred to as optomechanical

devices, represent hierarchically-linked hardware with defined

physical or optical relationships to one another and, ultimately,

to the global coordinate system. The choice of an appropriate

global coordinate system is arbitrary and left to the experimenter,

although in systems which use any type of imaging, the global

coordinate system is typically chosen to be fixed relative to the

imaged subject. Static relationships between devices are specified

in the device configuration file, whereas any changes in dynamic

relationships (for example, when a motorized stage moves, or

an objective lens is changed) will be immediately reflected in

the coordinate system transformations between devices in the

hierarchy. In most cases, the static configuration is determined

and written manually. For more complex relationships, how-

ever, automated calibration functions may be used to assist in

generating the necessary configuration.

For example, a motorized stage, microscope, and camera may

all be linked optomechanical devices (Figure 2). As the stage

moves, the global coordinate location of the microscope and cam-

era will shift to reflect this new arrangement. Likewise, changing

the objective lens currently in use will change the optical scaling

and offset associated with the microscope, which in turn defines

the boundaries of the camera sensor relative to the sample. In this

example, the scaling of the camera sensor coordinates would be

measured manually under different objective lenses by imaging a

calibration target or by moving the sample by a known distance.

Because all coordinates are represented in 3D, it is also possible to
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FIGURE 2 | An example hierarchy of optomechanical devices. The

optomechanical device arrangement allows the software to map specific

locations on a sample to a pixel on the CCD, or to the proper pairs of scan

mirror voltages. The position of the stage, objective magnification, and

per-objective offset are all handled automatically. New devices may be

added anywhere in the hierarchy, which allows ACQ4 to support arbitrary

hardware configurations.

seamlessly and transparently add Z-control such as a motorized

focusing mechanism.

The end result is that devices in the optomechanical hierarchy

generate data that is registered to the physical coordinates of the

sample, and this requires no effort from the user during the exper-

iment as long as ACQ4 is able to record positioning information.

The structure of this device hierarchy is entirely user-definable,

allowing ACQ4 to work with arbitrary device configurations.

HIGH-LEVEL SYNCHRONIZED DEVICE CONTROL

Although it is possible to directly interact with each device, the

Manager also provides a high-level system that handles all details

of configuring and synchronizing devices to perform complex

acquisition tasks. User interface modules may acquire data by sub-

mitting task requests to the Manager, which runs each queued

task in order as hardware becomes available. This system greatly

reduces the effort required to develop new data acquisition mod-

ules by providing a simple and flexible language for describing a

set of synchronous device activities.

Despite its flexibility, the task execution system cannot han-

dle all possible use cases. Notably, it does not automatically

handle task repetition or sequences. Instead, this functional-

ity is implemented separately in the user interface modules to

ensure that the task execution system stays as simple as possi-

ble. Another limitation is that the task execution system only

supports short (episodic) acquisitions. Continuous acquisition is

currently under development and will greatly expand the range

of capabilities supported by the task system. Further limitations

may exist for each type of device, depending on the range of

features it exposes to the task execution system. Nevertheless,

modules which require low-level access to their devices may do so

directly and are only required to make use of the Manager’s device

reservation system, ensuring both flexibility and scalability.

Task specification

Task specifications consist of a set of high-level commands

describing the desired behavior of each device participating in the

task. Each device defines the exact set of commands it will accept;

typically these include stimulus waveforms, the names of chan-

nels to record from, triggering settings, and other device-specific

options. Internally, a task is specified as a Python dictionary with

one key per device and a “protocol” key which specifies gen-

eral options applying to the entire task. The following example

task specification instructs the Manager to record 100 ms of data

simultaneously from a current clamp amplifier and a camera,

with the camera triggering the start of the recording:

protocol:

storeData: False

continuous: False

duration: 0.1

DAQ:

rate: 40e3

numPts: 4e3

triggerDevice: Camera

# DAQ waits for trigger from camera

Clamp1:

mode: ’I=0’

primary:

mode: ’MembranePotential’

record: True

Camera:

record: True

triggerMode: ’Normal’

# camera does not wait for trigger

channels:

exposure:

record: True

# record frame exposure times

In the above Example, three separate devices must be config-

ured to operate synchronously: a data acquisition device (DAQ),

a single current clamp channel (Clamp1), and a camera. The

names of these devices correspond to those defined in the device

configuration file, which also includes information about the con-

nections between devices. For example, the primary output of the

MultiClamp channel is connected to a particular analog input on

the DAQ, and likewise a TTL start signal from the camera is con-

nected to a particular digital input on the DAQ from which it

can trigger the start of the acquisition. Because the relationships

between devices are stored in a local configuration file, it is not

necessary to specify the relationships in task definitions. Thus,

a single task definition may function across multiple hardware

configurations only by changing the device names it references.

Note that, in executing a task, the Manager only uses informa-

tion in the “protocol” section of the task structure; the commands

provided for each device must be interpreted and acted upon by
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the devices themselves. In this way, ACQ4 ensures flexibility in the

task execution system by allowing new types of devices to define

the command structures that best suit them. For a device to be

compatible with the task execution system, it must implement

a specific interface through which it will communicate with the

Manager. The details of this interface are discussed in the ACQ4

developer documentation.

Task specifications such as the example above are generated

by user interface modules based on some input provided by the

user. In most cases, these modules provide a streamlined graph-

ical interface for controlling a particular type of acquisition; for

example, the Imager module performs scanning laser microscopy

by submitting task requests that include commands for scan-

ning mirrors, laser power control, and photomultiplier readout.

At the opposite extreme, the TaskRunner module provides a

graphical system for designing nearly arbitrary tasks and view-

ing the results. ACQ4 facilitates the development of new modules

by abstracting the complexities of device programming into a

simple, high-level task specification.

Task execution

After a module has generated a task structure, it submits the task

to the Manager, which then executes a series of steps to ensure

that all devices are configured properly and started in the correct

order. First, the Manager waits until all requested hardware has

become available. This ensures that tasks are handled in a thread-

safe manner, allowing modules to request and wait on tasks in

a background thread while the main thread displays results and

processes user input. Next, the Manager iterates over all of the

devices in the task, asking each whether it has a preference for

being configured before any others. Devices are then configured

in an order that both satisfies the ordering preferences and min-

imizes the time until the task may be started. For example, some

cameras have a long delay period for arming their external trig-

gers; such devices are configured as early as possible while still

obeying the required ordering constraints. The details of the con-

figuration stage differ depending on the devices in the task, but

typically involve sending stimulus and triggering waveforms to

the data acquisition board, preparing devices to receive triggers,

and configuring device-specific settings such as gain values or

sample rates. After configuration, the Manager asks each device

whether it should be started before or after any other device, based

on the specified triggering options. This allows, for example, a

camera to be triggered by a digital output in one task, or for the

data acquisition hardware to be triggered by the same camera in

another task. Finally, each device is started in the correct order.

During this stage, any device may delay starting until its hardware

is ready to begin the task.

At this point, control returns to the module that requested the

task. The module may then either poll to determine when the

task has completed, or abort the task immediately. If all devices

in the task indicate that they have successfully completed their

task (the criteria for completion are different for each device),

then the module may request the results of the task execution.

These results are packaged as a Python dictionary with one key

per device, and the format of each value is determined by the

device itself. Modules may then display the results or perform

online analysis. If requested, the task results may be automati-

cally stored to disk for later retrieval and analysis. The following

example outlines a typical task execution:

# Create a task from the previously

generated taskStructure

task = manager.createTask(taskStructure)

# Start the task

task.execute()

# While waiting for the task to complete,

process user events

# and check whether an abort was requested

while not task.isDone():

processUserInput()

if userRequestedAbort:

task.stop(abort=True)

raise Exception("User aborted

acquisition.")

# Finally, get the results

results = task.getResults()

In this example, the taskStructure variable would contain a struc-

ture similar to the task specification described in section Task

Specification.

SUPPORTED HARDWARE

ACQ4 supports a range of hardware devices for data acquisition

and control. Most of these devices fall under one of five categories:

data acquisition boards, analog/digital signal devices, cameras,

lasers, and position control devices. Each device is implemented

as a subclass of the base Device class or one of the generic Device

subclasses (DAQGeneric, Camera, Laser, or Stage). New device

support may be added by creating new Device subclasses.

ACQ4 currently defines four programming interfaces that

a device may optionally implement to take advantage of the

high-level services offered by the Manager and user interface

modules. First, devices may implement the task execution inter-

face, allowing them to be controlled by the task execution system

described above. Second, a TaskRunner interface provides a con-

trol panel allowing the user to graphically specify the desired

behavior of a device when it is included in a TaskRunner mod-

ule (described below). This interface is responsible for gener-

ating device-specific task commands based on user input and

for communicating any user-defined sequence parameters to the

TaskRunner. Third, devices may implement a graphical con-

trol panel which allows immediate control and monitoring of

the state of the device, independent of any tasks being run.

This is used, for example, to manually open and close shutters,

configure amplifier modes and camera settings, and to initi-

ate calibration routines. Finally, a Camera interface provides a

control panel for display in the Camera module in addition to

methods allowing the module to start and stop the camera. The

details of these interfaces are discussed in the ACQ4 developer

documentation.
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Data acquisition boards

Data acquisition boards are commonly the central hub of data

acquisition and device control. They are responsible for record-

ing analog signals from physiology equipment, synchronizing

cameras, driving galvanometric scan mirrors, and communicat-

ing with a variety of other hardware such as LEDs, shutters,

Pockels cells, photodiodes, and Q-switched lasers. ACQ4 sup-

ports National Instruments devices via the DAQmx library and

has been tested with E- and M-series data acquisition devices,

although other series may work as well.

Support for these devices is provided by the NiDAQ

Device subclass, which implements both the task execution and

TaskRunner interfaces. Together, these interfaces allow simple

configuration of the sample rate and number of samples to

acquire during a task. Additionally, this device may be triggered

by a TTL signal from any other device with a defined connection

to a PFI digital port.

Currently, no other data acquisition devices are supported in

ACQ4. The development of a generic Device subclass for data

acquisition boards, and for support for similar devices such as

Digidata and InstruTech ITC, are desirable future developments.

Generic analog/digital devices

Although data acquisition boards are one of the most important

hardware components used in ACQ4, the user rarely interacts

directly with these devices. Instead, each device that is con-

nected to analog or digital channels on the board is responsible

for communicating with the NiDAQ Device to configure the

appropriate channels and triggering settings. The user specifies

actions, waveforms, and recording criteria through the user inter-

faces implemented by each device class. For example, to perform

LED stimulation in an optogenetic preparation, the user would

interact with the LED device in ACQ4, and this device would sub-

sequently transfer its stimulation waveforms to the NiDAQ device

it is connected to. The benefits to this approach are that each

device is free to define the user interface that is most naturally

suited to that particular device, and that users are unconcerned

with the details of the data acquisition board.

Most devices that are controlled by analog or digital channels

are defined as subclasses of the DAQGeneric class. This class sim-

ply represents a logical grouping of analog and digital ports, such

as the set of input and output ports connected to an amplifier, or

the digital lines from a camera. DAQGeneric implements the task

execution, TaskRunner, and device control interfaces described

previously. The TaskRunner interface provides a plot display area

for each channel and a simple function generator control for

output channels. Due to the highly generic nature of this class,

it is common for its subclasses to reimplement substantial por-

tions of its behavior, usually to provide a user interface that more

intuitively reflects the capabilities of each device. For example,

Cameras are subclasses of DAQGeneric which provide imaging

functionality that is complemented by the ability to record a cam-

era’s TTL exposure signal, or to generate triggering waveforms to

drive the camera exposure.

Cameras

Support for scientific cameras currently includes all devices which

use either PVCam (Photometrics) or QCam (Q-Imaging) drivers.

Cameras support live-imaging modes as well as controlled data

acquisition modes that specify the timing and behavior of the

device. In live-imaging mode, the camera collects frames freely

and sends them to a user-interface module for display. This mode

is generally used for visualizing the preparation throughout the

experiment including while navigating and during placement of

electrodes for stimulating or patching. Cameras may also make

use of connections to data acquisition channels. During task exe-

cution, the camera may be triggered by the data acquisition board

or serve as the starting trigger for another device.

In addition, many cameras export a TTL signal that indicates

the timing of frame exposures. When it is recorded, this signal

is analyzed to determine starting exposure time of each cam-

era frame, allowing the precise synchronization of imaging and

electrophysiology or other signals. Image data is stored to disk

alongside the raw exposure and trigger signals, and the time val-

ues of each frame are stored as meta-data. The result is that

physiological recordings made synchronously with imaging can

be automatically registered temporally during analysis.

Cameras are treated by ACQ4 as optomechanical devices, and

thus may be calibrated such that their size, position, and orienta-

tion have a fixed spatial relationship to any other optomechanical

devices. This is most commonly used with both a motorized stage

for position feedback and a microscope device which defines per-

objective scaling and offset. With a properly configured system,

image mosaics can be collected and automatically reconstructed.

Electrophysiology amplifiers

Three amplifiers are currently supported for electrophysiology

experiments: the MultiClamp 700A and 700B, and the AxoPatch

200. In addition, any device lacking computer control (for exam-

ple, the AxoProbe 1A) may be used as a generic analog device.

ACQ4 records all remotely accessible parameters from the

MultiClamp Commander software (Molecular Devices) or from

the analog telegraph outputs on the AxoPatch 200. For the

MultiClamp, several parameters such as the VC/CC mode, gain,

and signal selection may also be controlled from the user inter-

face. ACQ4 automatically applies the appropriate scaling con-

stants for input and output to the analog channels.

Switching between voltage and current clamp is handled auto-

matically by the device, first switching to I = 0 mode before

changing the holding commands sent to the analog output. This

allows ACQ4 to rapidly and safely switch between recording

modes without user interaction. The AxoPatch 200 lacks com-

puterized control; in this case ACQ4 prompts the user to switch

modes when necessary.

Scan mirrors

Galvanometric scan mirrors (scanners) are commonly used as

laser steering devices for both multiphoton imaging and pho-

tostimulation. ACQ4 supports these devices by exporting two

calibrated analog output signals via a data acquisition board. For

experiments combining laser scanning and patch-clamp record-

ing, it is necessary to have at least three analog output channels

available.

ACQ4 scanner devices allow the user to graphically specify the

desired location of a laser beam in the global coordinate system.

Since ACQ4 considers scanners to be optomechanical devices (see
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Optomechanical devices above), they are aware of both their posi-

tion relative to the sample and the details of any optics in between.

The primary job of the ACQ4 scanner device is to perform a basic

coordinate mapping: given an x, y location in the global coor-

dinate system, determine the voltages Vx, Vy that will cause a

specific laser (multiple lasers may share the same set of mirrors)

to be centered on the global location specified.

This mapping is determined by an automated calibration

system that uses a camera to record the laser spot loca-

tion while scanning over a range of mirror voltages. From

this data, the coefficients of a generic mapping equation are

solved using a Levenberg–Marquardt least-squares optimization

(scipy.optimize.leastsq):

Vx = Ax2
+ By2

+ Cx + Dy + E

Vy = Fx2
+ Gy2

+ Hx + Iy + J

Some systems use multiple objective lenses or multiple lasers

which enter the microscope from different angles, so the mapping

coefficients are determined once for each combination of source

laser and microscope objective.

Scanner devices support three modes of operation during task

execution. For simple photostimulation experiments, the output

voltage is set immediately before each task run. For more complex

scanning patterns such as with multiple sequential photostim-

ulation sites or arbitrary scanning imaging patterns, a simple

command language can be used to specify raster, line scan, cir-

cular, and spiral scan shapes. This mode is sufficient for modestly

complex photostimulation and imaging experiments. For any use

not supported by the simple command language, arrays of x, y

locations may be specified instead.

Lasers

ACQ4 supports calibrated laser output using Pockels cells, shut-

ters, and Q-switched lasers. Laser devices report their current

output power either using a beam sampler and calibrated pho-

todiode, or via the power reporting built in to Coherent laser

systems. The laser device also keeps a list of calibrated attenuation

factors (one per optical train configuration) that are determined

by measuring the beam power at the sample plane. By combin-

ing the current output power and the correct attenuation factor,

the device determines the expected power at the sample. This esti-

mate can be used to allow the user to specify the amount of energy

to deliver during short photostimulation flashes by adjusting the

pulse duration. A Pockels cell device currently under develop-

ment will further allow calibrated, analog control of the laser

power level over longer scanning tasks. In particular, this will be

used to allow laser scanning imaging procedures to be carried out

with a well-defined power level to avoid damaging the sample. By

accounting for the current output power of the laser, we are able

to ensure repeatable power delivery over long-term experiments

where it is expected that the output power of the laser may drift,

or optical components may change.

Stages

Due to the spatial awareness that is built in to many aspects of

ACQ4, it is recommended to use a stage or movable microscope

objective with some sort of position feedback. ACQ4 has sup-

port for the Sutter MPC200 controller which is frequently used

in motorized stage systems. The MP285 is also supported with

the use of custom interfacing hardware described in the ACQ4

documentation.

Stages are represented in ACQ4 as optomechanical devices

whose offset is determined by the position reported by the stage

feedback. In the hierarchy of optomechanical devices, stages are

typically the highest-level parent device. Thus, stage motion is

immediately propagated to all devices which are optomechani-

cally linked to the stage. This allows imaging data to be recorded

alongside the location of the image, which facilitates the auto-

mated reconstruction of image mosaics. The Camera user inter-

face module, described below, has several features which make use

of this optomechanical transformation information. Stages also

support motorized position control, which is used by the Imager

module to acquire tiled image mosaics and Z-stacks.

Microscopes

Microscope devices are a special type of optomechanical device

that account for coordinate system changes caused by switching

objective lenses. Microscope device configuration files statically

define a set of objective slots and a set of objective lenses that may

appear in each slot. This allows the experimenter to indicate what

type of lens currently occupies each slot, and which slot is cur-

rently in use. The currently active slot may also be determined

automatically by a Switch device. For microscopes with only two

objectives, the switch device may simply correspond to a digital

input on the data acquisition board. Then, a microswitch or opti-

cal switch attached properly to the microscope can automatically

determine the currently active objective.

Each objective defines a unique name, a position offset, and a

scale factor. This information is used to ensure that images taken

under different objectives are properly aligned and scaled relative

to each other. The Camera module reads information about the

current state of all optomechanical devices when it writes image

files to disk. Thus, all stored images are tagged with the name of

the currently active objective. State switches in the optomechan-

ical device hierarchy are also used to trigger some optical devices

to use a different calibration. For example, scan mirrors may have

different calibrations for different objectives, and lasers may use

per-objective attenuation factors when estimating the power at

the sample.

USER INTERFACE MODULES

ACQ4’s user interface is divided into modules, each providing

support for a specific type of activity such as displaying a camera

feed, designing and running a task, patching a cell, or browsing

through data. Modules are opened via the Manager, and each

module is contained in its own window. Development of mod-

ules is one of the primary ways that ACQ4 may be extended to

perform new functions.

Camera module

The Camera module (Figure 3) provides a live video feed from

one or more imaging devices and also serves as a visual represen-

tation of the global coordinate system for photostimulation and
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FIGURE 3 | Screen capture of the Camera module during a mouse

auditory cortex brain slice experiment. All experimental procedures

were approved by the Institutional Animal Care and Use Committee at the

University of North Carolina at Chapel Hill. The acquisition system consists

of an NI-6259 data acquisition board, a MultiClamp 700A amplifier, a

Photometrics QuantEM 512SC camera, and a custom multiphoton imaging

system (Cambridge Technologies 6510H galvanometric scan mirrors,

Coherent Chameleon Vision II ultrafast Ti:Sapphire laser, and a Hamamatsu

H7422P-40 photomultiplier incorporated onto a modified Zeiss Axioskop 2

FS microscope with 5× and 63× objectives). The recording chamber was

mounted on a 3-axis motorized stage (Mike’s Machine Co., Boston, MA)

driven by a Sutter MP-285 controller (however, use of the MPC-200

instead of the MP-285 is strongly preferred). (A) 2-photon image of

fluorescence from an Alexa Fluor 568 labeled cortical neuron recorded in

whole-cell tight seal mode. The red rectangle is a draggable region

defining the area to be imaged. (B) Live video from CCD camera. (C)

Background frames previously acquired with camera provided a wide-field,

persistent view of the brain slice.

laser imaging controls. It may be used to record single frames or

to stream video to disk alongside any available metadata includ-

ing the imaging device settings in use, optical train state (such as

which objective lens is in use), and the coordinate transformation

needed to determine the original location and scale of the image.

The Camera module also provides image processing fea-

tures helpful for enhancing image contrast for cell patching and

calcium imaging. For patching, the module’s background sub-

traction features remove optical artifacts and provide enhanced

contrast by flattening the illumination gradient across the image.

For experiments using calcium imaging (or other fluorescent

indicators), the module provides background subtraction with

a continuously-updating background. This acts as a high-pass

filter, allowing active fluorescence signals to be quickly identi-

fied. Additionally, the module will plot the intensity over time

of a region of interest, allowing a local fluorescence signal to be

monitored by the experimenter.

The display area of the Camera module serves as a visual rep-

resentation of the global coordinate space. In addition to images

generated by the camera, it also displays data and user interface

controls generated by other modules. A module for laser scanning

imaging, for example, displays a rectangle in the Camera mod-

ule window that can be positioned by the user to determine the

area imaged with a multiphoton laser system. Likewise, photo-

stimulation sites, grids, and scanning paths are all displayed in the

Camera module allowing photostimulation patterns to be defined

in relation to either camera or multiphoton imagery. Online

analysis modules may also use this space to display photostim-

ulation mapping results or images generated in scanning imaging

tasks.
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On systems with access to stage position information, the

Camera module will track the current stage position and update

the virtual coordinate space accordingly. This allows, for example,

marking the location of specific cells or sites in the preparation,

configuring large, multi-part photostimulation maps, and build-

ing large image mosaics which are displayed behind the camera

feed. For systems with multiple microscope objectives, the abil-

ity to build such mosaics provides a persistent, low-magnification

view of the sample, allowing the experimenter to navigate around

the sample under high magnification without switching objec-

tives. Likewise, photostimulation patterns may be arranged over

large, arbitrary areas outside the visible range of the camera

sensor.

TaskRunner module

The TaskRunner is a customizable interface to ACQ4’s task exe-

cution capabilities (Figure 4) and is where most of the user

interaction during data acquisition occurs. It allows the user to

interactively design and execute a wide range of multi-device

tasks including basic patch-clamp stimulation and recording,

laser scanning imaging and photostimulation, synchronized mul-

tichannel recordings, and complex stimulation paradigms. In this

context, the word “task” is used to describe a single, coordinated

action to be taken by multiple devices in synchrony. Typically a

task involves a short period of recording from electrode ampli-

fiers, cameras, photomultiplier tubes, and other analog or dig-

ital channel devices. Arbitrary waveforms may be defined to

control stimulation devices, scanning mirrors, and triggering

behavior.

When designing a task, the user first selects the subset of

devices which should participate in the task. Once selected, each

device displays a control panel inside the TaskRunner window,

and the user may interactively resize, rearrange, and stack each of

these panels as needed. Each control panel provides a set of con-

trols for determining how the device will behave during the task,

and a set of display areas where the acquired data for that device

will be shown. Synchronization between devices is achieved by

specifying the control and triggering waveforms used by each

device, while the Manager and data acquisition hardware ensure

that tasks are executed correctly. Waveforms are specified either by

combining predefined elements such as square pulses or by eval-

uating an arbitrary Python expression that generates the output

array.

The TaskRunner module also allows the execution of

sequences of equal-duration tasks which iterate over multi-

dimensional parameter spaces. Typically, variable parameters

affect some aspect of a stimulus waveform such as the starting

time or amplitude of a pulse. However, each type of device defines

the ways in which it can sequence variable parameters. Scanning

mirror devices, for example, may define an arbitrary set of pho-

tostimulation locations, allowing the same task to be executed

once for each location. If multiple sequencing variables are spec-

ified, the module executes the task once for each point in the

multi-dimensional parameter space. This allows the parametric

exploration of arbitrary stimulus spaces in a relatively unre-

stricted fashion, limited only by the recording time and the size of

the data set. Optimized and adaptive parameter space searches are

currently not implemented, but are a desirable feature for future

development.

Data Manager module

The Data Manager module allows the user to browse, view,

and export data, view experiment logs, and manage annotations

and other meta-data. Additionally, this module is used to spec-

ify the default storage location for data during an experiment.

To streamline experiment execution, all modules record data

into this default directory rather than prompting the user for a

location.

For large studies, keeping data properly annotated and orga-

nized consistently is both essential and time consuming. The Data

Manager encourages consistent, hierarchical organization of data

by allowing the user to define a set of directory types, each having

its own set of meta-data fields. These fields may be configured by

the user at the beginning of a series of experiments to encourage

the user to store and annotate data with a consistent organization.

During an experiment, the user simply indicates key transitions

such as placing a new sample on the microscope or patching a

new cell. The data manager uses these transitions to construct a

hierarchy of directories which organize the experimental data and

prompt the user to supply the necessary meta-data.

Other modules

Several included modules provide more focused features such

as scanning laser imaging, assisted cell patching (Figure 5), cell

health monitoring, direct device control, and an interactive

Python prompt. For features not provided by the core set of

modules, ACQ4 is designed to be extensible by allowing the devel-

opment of modules to support new types of data acquisition and

analysis.

The Patch module sends a simple test pulse to the patch ampli-

fier in order to measure properties of the electrode or cell. It is

configured to rapidly update during patching and displays the

input and access resistances calculated from the response to the

test pulse. After patching is complete, this module may be run

periodically in the background to monitor cell health. Resistances,

holding current, resting potential, and capacitance are all col-

lected and stored as a record of the patching procedure and cell

health throughout the duration of the experiment. These values

may also be plotted to assist the experimenter in tracking changes

over time.

The Imager module provides laser scanning imaging function-

ality for multiphoton and confocal microscopes. This module

combines control of scanning mirrors, laser power, and signal

detection devices (such as photomultiplier tubes or photodiodes).

Like other modules, the Imager module operates in the global

coordinate system and displays its output in the display area of

a Camera module. It also displays a user-positionable rectangle

which defines the extents of the laser scanning area. The Imager

module supports overscanning to remove retrace artifacts as well

as bidirectional scanning with automated field shifting to reduce

comb artifacts. While the interface includes detailed control of

scanning parameters, tiling, and the collection of image stacks,

common functionality such as fast (video) scanning or the collec-

tion of standardized high-resolution images may also be accessed
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FIGURE 4 | Screen capture of the TaskRunner module running a

calcium imaging task during recordings from an mouse auditory

cortex neuron in a brain slice experiment. The acquisition system

is described in Figure 3. The cortical neuron is filled with the

calcium indicator Fluo-4 (200 micromolar) and is electrically stimulated

through the patch pipette. Additional control panels for selecting

devices, running protocol sequences, and configuring the data

acquisition board are hidden. To design this task, the experimenter

has already selected the camera and patch-clamp channel to be

included, and has rearranged the panels to optimize use of the

window space. The task has been executed once, and the results

are displayed in the rightmost panels. (A) Control panel for

configuring the behavior of the patch clamp amplifier, including the

output waveform specification. (B) Plot showing the most recent

electrode recording and the command waveform. (C) Interface for

controlling the Camera. This includes control over the camera’s frame

transfer mode and triggering waveform. (D) The recorded video data

is displayed and a region of interest defines the pixels that are

averaged together and plotted in the traces below, showing the

calcium transient evoked by action potentials in the cell. The

bottom-most plot shows the exposure times of acquired camera

frames for reference to the electrical recording.
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FIGURE 5 | Screen capture of the Patch module after patching a neuron

in a mouse cochlear nucleus brain slice. In this image, approximately 40 s

have passed since the membrane was ruptured to begin whole-cell

recording. This data was acquired using only an NI-6259 acquisition board

and a MultiClamp 700A amplifier. (A) Plots showing the voltage clamp

recording and command waveform. This data is used by the module to

determine the membrane properties shown at center-left (input resistance,

access resistance, etc.). (B) Plot showing history of input resistance over the

last 80 s. Maximum seal resistance and time of break-in are both recorded in

this data.

from preset configurations to simplify user interaction during

experiments.

ANALYSIS MODULES

Whereas it is possible for a generic acquisition system to cover

a wide variety of experimental needs, data analysis must often

be tailored to each specific problem. ACQ4 does not attempt

to solve all analysis problems. Instead, it facilitates analysis

through three approaches: First, complete analysis tools are

provided for the most common tasks. Second, ACQ4 imple-

ments a modular analysis framework that encourages the devel-

opment of simple, reusable, and recombinable components.

Last, ACQ4 facilitates the use of external analysis applica-

tions by storing data in the standard HDF5 format and like-

wise by allowing export to other formats such as CSV and

TIF. Future development may allow export to other standard

formats.

Analysis modules in ACQ4 consist, in their most basic form,

of a single function which computes a simple analysis, and an

optional set of user interface elements that may be used to control

the module’s input parameters and display its output. Modules

may be used programatically by passing data and parameters to

the function directly, or manually by displaying the user interface

to allow the user direct control over the processing behavior.

Modules may be chained and nested to produce more complex

analyses. User interface elements may be displayed, hidden, and

recombined as needed to suit the analysis. For example, it is com-

mon for analysis modules to define a plot area as part of their user

interface. When combining many such modules, it is often desir-

able that all modules should share the same plot area. This type

of flexible recombination is supported by the analysis module

architecture.

ACQ4 also provides a data-model abstraction layer which pro-

vides separation between the format of data to be analyzed and

the analysis modules. This helps to ensure that data collected in

different ways, or even collected by other acquisition systems, may

be analyzed by the same modules as long as an appropriate data

model exists to interpret each format.

Mosaic Editor

The Mosaic Editor (Figure 6) provides a virtual canvas for dis-

playing and aligning images and other data in physical coor-

dinates. This module facilitates the creation of image mosaics

which can be aligned with position-dependent data (such as pho-

tostimulation maps) and anatomical reference atlases. All data

is annotated with this alignment configuration to allow further
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FIGURE 6 | Screen capture of the Mosaic Editor analysis module

showing reconstruction and atlas registration of a mouse cochlear

nucleus brain slice imaged under a 5× microscope objective.

Although the Mosaic Editor is most commonly used to simply

reconstruct image mosaics, the analysis shown here is a step in

registration of the data taken during the experiment to a 3D atlas of the

nucleus. The images were collected with a Photometrics Quantix-57

camera and Zeiss Axioskop 2 FS microscope mounted on a manual

translation stage. Positioning information was generated from a custom

set of rotary optical encoders driven by the stage micrometers. (A)

Volumetric rendering of a 3D atlas of the mouse cochlear nucleus. The

white rectangle indicates the region of the nucleus from which the brain

slice was taken, as determined by photos taken during the slicing

procedure. This is used to create a digital slice of the 3D atlas, which is

overlaid on (B) an automatically-reconstructed mosaic of several tiled

photos of the brain slice.

analysis to operate on normalized, corrected coordinates. An

extensible atlas system provides a mechanism for creating posi-

tionable drawings and other user interface elements that allow

the data to be registered with a standard atlas coordinate system.

The Mosaic Editor is frequently the starting point for generat-

ing publication figures that require multiple sources of data to be

aligned.

For systems which lack position feedback or for data that is

otherwise misaligned, the Mosaic Editor allows the user to adjust

the position and orientation of data to align it manually. These

adjustments do not alter the original data, but rather are stored as

meta-data alongside the original transformations. A common use

case is when the sample moves unexpectedly during the exper-

iment. In this case, data collected before the movement will be

misaligned with data collected afterward. To correct this, the

module allows images and other data to be drawn partially trans-

parent, allowing the user to manually align two or more images.

Once a single image is aligned correctly, the same adjustment may

be immediately applied to other images so that they all share the

same correction.

Electrophysiology analysis tools

The Event Detector module detects and measures repeated events

within an analog signal. This is used primarily for detecting action

potentials, synaptic currents, and calcium imaging transients. The

module can be configured to make a variety of measurements on

each detected event such as the amplitude and decay time con-

stant. A table of this data is then written to a database or passed

on to another module. The core analysis performed by this mod-

ule is entirely customizable—a visual programming environment

(similar to LabView) allows a variety of filters and detectors to

be configured which determine the module’s output function.

This environment allows analysis routines to be rapidly proto-

typed and tested. It may also embed Python scripts, allowing

more flexible analysis.

The IVCurve module performs basic analyses of current pulse

protocols which are standard for characterizing patched cells.

These analyses include computation of the resting membrane

potential, cell input resistance, membrane time constant, sag

in hyperpolarizing current steps, interspike intervals, first spike

latency, and spike train adaptation ratios. Voltages and currents
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can also be plotted as a function of time for repeated stimuli,

which can be useful for monitoring the effects of drug manipu-

lations or examining plasticity of intrinsic excitability. Multiple

views of the current-voltage relationship for both current and

voltage clamp can be presented.

Photostimulation mapping tools

Although ACQ4 is designed as a general-purpose acquisition sys-

tem, it has been used extensively in photostimulation mapping

and thus includes a set of powerful tools for analyzing data from

this type of experiment.

The Photostim module (Figure 7) extends the Event Detector

analysis module to analyze sequences of recordings in photostim-

ulation mapping experiments. Each recording is first analyzed

to detect the onset times, amplitudes, and kinetics of PSP-like

shapes. Next, the timing of events in each recording is analyzed

for a variety of configurable criteria, such as the total charge trans-

fer in a window following the stimulation, or the average decay

time constant in the same window. These measurements are then

used to generate colored maps, allowing spatial relationships to

be visualized against images of the sample or an anatomical atlas.

The Photostim module stores the results of both the event detec-

tion and the subsequent event analysis into a relational database

for further analysis.

A common problem in photostimulation mapping experi-

ments is to determine whether the synaptic events in a recording

were evoked by the photostimulation or are simply part of the

spontaneous activity in the cell. This is usually addressed by

FIGURE 7 | Screen capture of the Photostim analysis module,

processing laser-scanning photostimulation mapping using glutamate

uncaging (300 µM MNI-glutamate) data from a mouse cochlear

nucleus brain slice experiment. The hardware used to collect the data

for this experiment is described in Figure 3. A Q-switched 355 nm DPSS

laser was projected through scan mirrors to uncage glutamate at

locations on the slice indicated by the displayed map results. (A)

Analyzed results from a photostimulation map overlaid on images of the

brain slice used in this experiment. Brightly colored circles indicate that a

strong synaptic response was detected in the patched cell when the

spot was photostimulated, whereas transparent circles indicate that no

response was detected. (B) Plot of data from a single photostimulation

recording. The traces in blue indicate the amplitude and time course of

the evoked synaptic currents. (C) A diagnostic plot showing the same

data at an intermediate filtering stage in which the onset of synaptic

events has been detected.
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oversampling to determine the reliability of evoked responses,

either by repeated mapping or by mapping with overlapping stim-

ulation sites. The Map Analyzer module measures the rate of

spontaneous events in a set of photostimulation recordings and

estimates which stimulation sites are likely to contain evoked

events. Other analysis modules provide alternate methods includ-

ing a spatial correlation algorithm (Bendels et al., 2010) and

simple averaging across multiple atlas-aligned maps.

Calcium imaging analysis

The Image Analysis module provides basic tools for analyzing

imaged fluorescent indicator data combined with physiological

recordings. The typical dataset for this analysis consists of a time

sequence of image frames (video), optionally with intracellu-

lar or extracellular recordings of electrical activity in individual

cells. The Image Analysis module provides a set of functions that

support analysis of ratiometric or non-ratiometric image acquisi-

tion, frame registration for movement artifacts, time-dependent

bleaching corrections, temporal and spatial filtering, and spec-

tral calculations. Multiple regions of interest in an image may

be analyzed with or without corrections, and the data exported

as time series to text files for further analysis. For more com-

plex protocols in which imaging and physiological recordings are

made simultaneously, the voltage or current recordings can be

displayed aligned with the image times, and spike-triggered or

burst-triggered averages of data in the regions of interest can be

computed.

CONCLUSION AND PLANNED DEVELOPMENT

We have developed ACQ4, a complete software system for data

acquisition and analysis in electrophysiology that is based entirely

on free and open-source tools. Although we have placed a strong

emphasis on patch-clamp electrophysiology, photostimulation,

and optical imaging, ACQ4 is designed as a general-purpose

acquisition system and is suitable as a platform for a wide variety

of experimental paradigms in which multiple instruments must

be coordinated for data collection. It is also designed to be modu-

lar, extensible, and scalable to allow the integration of new devices

and experimental designs. In making this software open-source,

we hope to encourage a community of developers interested

in neuroscience data acquisition with Python to collaborate on

ACQ4 as a centralized architecture supporting a broad range of

techniques. Although ACQ4 is presently a fully functional system,

several areas for future development include support for continu-

ous acquisition, support for a broader range of devices including

multi-electrode arrays and alternate data acquisition boards, inte-

gration with Neo to allow data transfer to other analysis and

data sharing projects, and a larger set of acquisition and analysis

modules to extend the capabilities of ACQ4.
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