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Abstract

In order for autonomous systems to interact with their environment in an intelligent way,
they must be given the ability to adapt and learn incrementally and deliberately. It is
virtually impossible to devise and hand code all potentially relevant domain knowledge
for complex dynamic tasks. This thesis describes a framework to acquire domain knowl-
edge for planning by failure-driven experimentation with the environment. The initial
domain knowledge in the system is an approximate model for planning in the environ-

ment, defining the system's expectations. The framework exploits the characteristics of
planning domains in order to search the space of plausible hypotheses without the need
for additional background knowledge to build causal explanations for expectation failures.

Plans are executed while the external environment is monitored, and differences between
the internal state and external observations are detected by various methods each corre-

lated with a typical cause for the expectation failure. The methods also construct a set
of concrete hypotheses to repair the knowledge deficit. After being heuristically filtered,
each hypothesis is tested in turn with an experiment. After the experiment is designed,

a plan is constructed to achieve the situation required to carry out the experiment. The

experiment plan must meet constraints such as minimizing plan length and negative

interference with the main goals. The thesis describes a set of domain-independent con-
straints for experiments and their incorporation in the planning search space. After the
execution of the plan and the experiment, observations are collected to conclude if the

experiment was successful or not. Upon success, the hypothesis is confirmed and the
domain knowledge is adjusted. Upon failure, the experimentation process is iterated on
the remaining hypotheses until success or until no more hypotheses are left to be consid-

ered. This framework has shown to be an effective way to address incomplete planning
knowledge and is demonstrated in a system called EXPO, implemented on the PRODIGY

planning architecture. The effectiveness and efficiency of EXPO's methods is empirically

demonstrated in several domains, including a large-scale process planning task, where

the planner can recover from situations missing up to 50% of domain knowledge through

repeated experimentation.
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Chapter 1

Introduction

Learning has proven to be a vital ingredient in transforming planners from research
tools into real world applications. Of foremost concern has been the area of improv-
ing the efficiency of planning. The learning techniques that have been applied range

from macrooperator learning [Fikes et al., 1972; Korf, 1985] and acquisition of control
knowledge for guiding search [Mitchell et al., 1983; Minton, 1988; Etzioni, 1990], to the
synthesis of abstraction hierarchies [Sacerdoti, 1974; Christensen, 1991; Knoblock, 1991].
These techniques fall under the rubric of speed-up learning, and they share the property
of acquiring more effective ways of expressing the knowledge that the system already im-
plicitly has. After learning, a planner solves more efficiently the same kinds of problems
that it is able to solve before learning. In other words, it is able to solve more problems
within a given time bound. This type of learning is also known as symbol-level learning

[Dietterich, 1986].

But learning is also necessary in other dimensions of planning systems. The repre-
sentation given to the planner is bound to contain many inaccuracies, which may be
corrected automatically through a learning cycle. Human planners in any sizable domain
(e.g. factory production planning, routing in transportation planning, configuration in
telecommunication networks, and so on) rarely make the assumption that they have
omniscient world knowledge. A much more realistic assumption is that given domain
knowledge is operationally accurate and complete, but there is a recovery procedure to

acquire more knowledge or correct existing knowledge if and when this assumption is
violated. Learning has, in this case, a different meaning. The new knowledge will enable
the planner to solve problems that it was not capable of solving before learning no matter
what the time bound was. As Newell describes this situation [Newell, 1982]:

"... When we say ... that a program "can't do action A, because it doesn't
have knowledge K", we mean that no amount of processing by the processes
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(b) Automated knowledge refinement and incremental acquisition by experimentation

Figure 1.1: Knowledge acquisition and refinement using experimentation. An initial
knowledge base is obtained from the domain experts, but is refined autonomously through
direct interactions with the external world.

now in the program on the data structures now in the program can yield the

selection of A."

A qualitative augmentation of the knowledge available to a planner goes beyond the
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reformulation of its initial knowledge This type of learning is known as learning at the
knowledge level [Dietterich, 1986]. This area has received less attention from the plan-
ning and learning communities, but it is of major importance for building autonomous
intelligent systems.

Augmenting incomplete models benefits planning in three different ways. First, the
coverage is expanded because a planner can solve more problems after acquiring the
knowledge needed. Second, the prediction accuracy is raised since learning side effects
and unusual conditions allow for planning further ahead. Lastly, the ability to adapt
provides increased autonomy to the planner.

Many systems for guiding the acquisition of knowledge can be found in the literature
(see [Marcus, 1990] for an overview). Knowledge acquisition tools provide a framework
for the direct interaction of knowledge engineers with domain experts. The resulting
knowledge base is an approximate model of the domain, whose degree of correctness
and completeness varies with the complexity of the task domain. The knowledge engi-
neers engage in test-and-revise procedures to refine the knowledge base asymptotically
until a satisfactory model is obtained, as shown in Figure 1.1(a). Our work is concerned
with the acquisition of knowledge for planning domains. None of the current knowledge

acquisition systems are designed for planning domains nor do they emphasize full automa-
tion. Planning systems offer the possibility of direct interaction with the environment.
The autonomous refinement and acquisition of knowledge by directed experimentation
is invoked once an initial approximation of the knowledge base is available, as shown
in Figure 1.1(b). Such is the learning model presented in this thesis: a failure-driven
experimentation-based method for incremental acquisition of domain knowledge. In
essence, impasses in planning or divergences between internal expectations and external
observations trigger the learning procedure. Learning is autonomous and unsupervised,
the interaction with the environment being the only source of additional knowledge.

1.1 Learning By Experimentation

Figure 1.2 gives an overview of the experimentation process described in this thesis.
Learning is triggered when one of the actions in a plan has unexpected consequences.
The first step is to come upx vith a set of hypotheses that might explain what went wrong.
The next step is to choose a hypothesis from that set and devise an experiment to test
it. This may involve creating a certain state of affairs, which may itself require planning
to set up the experiment. Similarly, after the experiment is concluded (successfully or
unsuccessfully), planning may be necessary to return to the state of the world that existed
before the experiment. These stages are familiar as a part of the scientific method. But



4 CHAPTER 1. INTRODUCTION

m i G l G ,•.... G n

main goals

search
space

s
F

main 0 0 0 0
plan 01 2...O .. n

general fixo fix i hdomain S= Ses

hypothesis
fix Dew

operator OpMinr

new new fe

comdiion con effect effmi

particular
hypothesis P Q R pv Q

experiment C.-.-C. C
design I'll

experiment F s
planning

pre-plan post-plan

Figure 1.2: Experimentation at a glance. Failures in the execution of a plan trigger
learning. A general cause for the failure is hypothesized, then instantiated to a particular

hypothesis. The design of experiments includes planning the experimental setup.
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humans demonstrate in their everyday life that experimentation is also a powerful tool

for acquiring knowledge outside of the laboratory.

EXPO, the system described in this thesis, automates this experimentation process
and shows that it is a useful technique for acquiring knowledge for planning systems.
Each of EXPO's stages is described in detail in the succeeding chapters. To illustrate
some of the issues involved, we turn now to an example of how people use experimentation

to autonomously augment their knowledge about the world.

Consider the problem of getting ready for work in the morning. Given adequate

domain knowledge, we can easily come up with a plan to achieve this goal. Suppose that

one of the subgoals is drying one's hair. One possible plan to achieve this goal is: get

hair dryer, plug in hair dryer, turn on hair dryer, and blow hair dry. But sometimes our

actions may not yield the expected results when executed in the real world. For example,
suppose tbat one day the hair dryer fails to function when we turn it on. At this point,
we have two alternatives. One is to find another person (if one is available) and ask for

an explanation. The other is to engage in experimentation to determine the cause of
the failure. The advantage of experimentation is that learning is done autonomously, an

important ability of human beings that we would like to model in our intelligent systems.

The first step of the experimentation process is to generate hypotheses that explain
the failure. One general class of hypotheses is that the person's knowledge about the

state of the world is incorrect. For example, three particular hypotheses might be:

"* the hair dryer is broken

"* the outlet is broken

"* the hair dryer is not firmly plugged in

Another general class of hypotheses is that the person's model of the action is in-
correct. In this case, we look for conditions under which we are currently executing the
action that may cause the failure. For example:

"* Today is Saturday, and the hair dryer does not work on Saturdays.

"* It is noon, and the hair dryer only works in the morning.

"* The light switch of the bathroom is off, and the hair dryer works only when the
light switch is on.

"* The bathroom window is open, and the hair dryer only works when it is closed.

"* The door is open, and the hair dryer only works when it is closed.
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We may construct other hypotheses, but let us restrict this discussion to the ones
above. The next step is to choose a hypothesis and then design and perform experiments
that prove or disprove it. Suppose that we decide to check first that the state of the
world is actually what we believe.

The first step is to calibrate the hypotheses and choose which ones to look at first.
The first one (broken hair dryer) seems hard to test for someone who is not mechanically
inclined. So we decide to try the other hypotheses first. To test if the hair dryer is not
firmly plugged in, we do a simple experiment: we plug the hair dryer in firmly and turn
it on again. This does not make the hair dryer work, so the hypothesis is rejected. This
experiment was quite simple, but our next hypothesis requires a more elaborate one.
Suppose that the outlet is broken. One possible experiment to test it is to plug another
device in the outlet. To do so, we build a plan with the following steps: unplug hair
dryer, get another device (maybe an old hair dryer), plug in device. This plan brings a
state of affairs where we can do our experiment: to turn on the device and see if it works.
After turning it on, we observe the results: the device is operating. This disproves the
hypothesis that the outlet is broken, and we move to consider another hypothesis. But
first, we need to go back to the state of affairs before the experiment. So we create a
plan to plug the hair dryer back in: turn device off, unplug device, store device away,
plug in hair dryer.

Now we are ready to look at another hypothesis. For example, we may consider now
conditions under which we are trying to make the hair dryer work, which is our second
class of hypotheses. Again, we calibrate them and decide which ones to consider first.
Our previous experience with hair dryers helps us decide which hypotheses are more likely
to be relevant. We have successfully used our hair dryer at various times and on different
days of the week, so the first two hypotheses are ruled out. The third hypothesis is more
plausible, because everytime we have used the hair dryer before the lights were on and
they are off now. So we try an experiment. We build a plan to turn on the bathroom
lights, and then we turn on the hair dryer. This makes it work because the light switch
controls the power of the outlet. So we conclude that the hair dryer can only be used in
this bathroom when the lights are on.

In summary, with this type of experimentation people acquire autonomously knowl-
edge about the environment that is necessary for solving problems. Notice that in this
example in particular, but also in general, we did not rely upon any detailed knowledge
about hair dryers, power outlets, or light switches to guide the experimentation process.
The automation of this experimentation process based on shallow experiential knowledge
is the main concern of this thesis.
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1.2 Methodology

The aim of this thesis is to contribute to learning at the knowledge level autonomously

from the environment. In this thesis, a complete and correct domain is used to simulate

the real world. The planner is given an incomplete version of the domain that, via ex-
perimentation, it attempts to flesh out incrementally into a complete model. The new
knowledge learned by experimentation is incorporated into the domain and immediately
available to the planner. The planner in turn provides a performance element to measure
any improvements in the knowledge base. This is a closed-loop integration of planning

and learning by experimentation. The thesis provides a theoretical framework for this

integration, as well as a practical demonstration in a system called EXFO and its inter-
action with the PRODIGY planner [Minton et al., 1989a; Carbonell et al., 1991; Carbonell
et al., 1990].

The planner is given some initial knowledge base that may contain a number of im-
perfections, each with its own idiosyncracies. Incorrect facts may lead to contradictions.

Lack of knowledge limits the capabilities of the planner. This thesis concentrates on the
refinement of knowledge bases that are initially incomplete, i.e., ignorant of facts that
are true and needed for the task at hand. The lack of information to solve a task causes

a knowledge impasse that triggers learning. We do not address curiosity-driven explo-

ration. Learning is always driven by the need to accomplish some task. One way to solve

knowledge impasses is by directed experimentation. This thesis presents methods that
set context for systematic experiments (i.e., what type of knowledge is missing, where it

is missing,...) to address different faults of the domain knowledge. These methods are
domain independent, yet they are shown to be very effective through empirical tests of

EXPO.

Once a context is set for the experimentation, we address the issue of the design of
specific experiments. Not all experiments are equally desirable. Changing one variable at

a time, minimizing interaction with the environment, minimizing resource consumption
are among the heuristics typically proposed. This thesis shows that good choices can be

made by domain independent rules that can be used to define experimentation strategies.

A domain-independent approach is certainly desirable. But an additional aim of the
thesis is to rely exclusively on the knowledge given initially for planning. This means that

the learning occurs even when no causal, structural, or common sense knowledge (other

than the one embedded in the domain model) is available. This is a major advantage,

since we do not need to address in turn the acquisition and refinement of that additional

and necessarily complex background knowledge.

Not only is our methodology applicable across domains and independent of additional

knowledge, it also yields efficient learning. This is shown by EXPO's empirical results in

two different domains, one of them of considerable size and complexity.
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1.3 The Application Domains

The methods described in this thesis were tested and evaluated in two domains: a robot

planning domain and a complex process planning domain.

The robot planning domain [Minton et al., 1989b] is an extension of the one used

by STRIPS [Fikes and Nilsson, 1971] that has been used in other research [Minton,
1988; Etzioni, 1990; Knoblock, 1991]. A robot can push and carry objects to move
them between rooms. Rooms are connected through doors, that may be opened, closed,
and locked or unlocked with the appropiate keys. The rooms can be in any topological

configuration and there can be any number of rooms, doors, keys, and boxes. The domain
is described in detail in Appendix A.

The process planning domain contains a large body of knowledge about the operations
necessary to machine and finish metal parts [Gil, 1991]. This domain was chosen because
it has considerable size in many dimensions (one order of magnitude bigger than most

planning domains in the AI literature), which makes the empirical results of the thesis
more definitive and scalable. A typical problem in this domain is to produce a rectangular
block of 5" x 2" x 1" made of aluminum and with a centered hole of diameter 1/32"
running through the length of the part. To perform a machining operation in a part, the
part must be securely held by some holding device. Each machine uses different tools,

and the appropriate tool for the operation must be installed in the machine. Appendix

B can be consulted for more detailed information on this formalization.

1.4 Summary of Contributions

The contributions of this thesis are:

"* A domain-independent method to acquire domain knowledge for planning

"* Identification of important issues for experimentation in planning

"* Computationally effective methods for augmenting incomplete domain knowledge

"* Zero-knowledge heuristics for finding relevant hypotheses

"* Methodology for planning efficient experiments

"* Full implementation integrated in PRODIGY to acquire knowledge effectively in two

domains

"* Empirical validation of the methods via the PRODIGY implementation and thorough

testing
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1.5 Organization of the Thesis

The chapters in this thesis are organized as follows.

Chapter 2 presents the related work. This chapter includes a review of work on ex-
perimentation, repairing plan failures, and learning from the environment. However, this
thesis presents the first work on a planner that learns from the environment using so-
phisticated experimentation techniques. Chapter 2 also discusses research on less directly
related areas such as rule induction and imperfect theory refinement.

Chapter 3 provides the context for the experimentation system described in the suc-
ceeding chapters. It begins by describing the type of domain knowledge available to
a planner and the possible imperfections of th1.,t knowledge. Acquiring domain knowl-
edge is then cast in terms of concept learning, a well understood framework in which an
experimenter can be described as a learner that is active in the selection of examples.
The chapter turns next to how a planner can monitor the external world to detect plan
execution failures, and how it can manipulate the external world through experimenta-
tion. This experimentation serves to pinpoint specific imperfections in the knowledge
base-only the ones responsible for plan failures. We call this type of experimentation
task-driven experimentation and it is contrasted with other types of experimentation
in the chapter. The chapter also discusses what it means for an experimenter to be
efficient. It finishes with a description of the PRODIGY planner, on top of which our
experimentation work is built.

Chapter 4 describes the experimentation process as implemented in the EXPO sys-
tem. This process involves detecting a knowledge impasse, choosing promising hypotheses
to overcome it (which EXPO does using domain-independent heuristics), designing ex-
periments, executing them, and incorporating newly discovered facts into the planner's
knowledge base. The chapter describes in detail how new preconditions are learned by
EXPO.

Chapter 5 takes a broad view of methods for learning by experimentation. It is a
comprehensive survey of various types of incompleteness that can exist in a planner's
knowledge base. For each type of incompleteness it describes how experimentation tech-

niques can be used to locate and repair faults.

An empirical analysis of EXPO's performance is presented in Chapter 6. Two different
types of tests were run. In the first case, EXPO is shown to be effective in that the planner
is able to solve many more problems after learning-using the knowledge acquired by
EXPO-than it could solve with its initial knowledge. Note that it is not a matter of
solving the problems faster, but rather a matter of whether the problems are solvable at
all. The second type of test analyzes how efficient EXPO is with respect to the number
of experiments that it performs and the amount of effort required to perform them.
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Finally, Chapter 7 presents conclusions, the limitations of this work, and suggests

directions for future research. Two appendices follow; they describe in detail the appli-

cation domains both qualitatively and quantitatively.



Chapter 2

Related Work

This chapter presents a discussion on previous work related to this thesis. The first section
reviews the topic of experimentation in the AI literature. Work on concept learning,
both theoretical and practical suggests that active learners (ones that participate in the
learning process by asking their own questions, often posed as experiments) are more
powerful than passive learners. The section also examines experimentation in scientific
discovery systems. Section 2.2 discusses planning systems that learn by experimentation
and planning systems that learn from their interaction with the environment. The final
section reviews some relevant work on theory refinement and rule induction.

2.1 Experimentation

This section reviews related work on the topic of experimentation. The work is divided
here into two areas: concept learning and scientific discovery. Section 2.2 contains ref-
erences to some systems that use experimentation for acquiring domain knowledge for
planning.

2.1.1 Experimentation in Concept Learning

Active learners (ones that participate in the learning process by asking their own ques-
tions) that have the ability to formulate experiments are believed to be much more

powerful and efficient than passive learners that do not have that ability. Results in
formal learning theory show that finding a consistent hypothesis is NP-hard for many
classes of representations of concepts [Pitt and Valiant, 1988; Haussler, 1989]. These
results are based on a scheme in which a passive learner collects instances through an

11
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oracle called EXAMPLES. The learner calls the oracle, which randomly chooses an ex-
ample along with its classification as positive or negative. The use of this oracle may be
one of the core reasons for the discouraging results that have been obtained [Haussler,
1988]. In fact, humans seem to be more effective learners than the results show. This
may well be because the oracle EXAMPLES involves a very passive attitude on the part
of the learner. Research on other types of oracles shows better results [Angluin, 1987].
In particular, membership oracles accept an instance as an input and return its classi-
fication (positive or negative). This type of oracle resembles more realistic set ups for
learning. Amsterdam [1988] proposes an oracle called EXPERIMENT, that accepts a
partial description of an example and returns a complete description (if there exists any).
EXPERIMENT is shown to be more powerful than EXAMPLES.

If the learner has the capability to choose examples, how should that choice be influ-
enced? Again, research in formal learning theory has tried to characterize "good" and
"bad" examples [Rivest and Sloan, 1988; Ling, 1991]. Learning algorithms are faster
with good examples, and learning speed degenerates when the quality of the examples

decreases.

Factorization of concepts into independent relations seems to be a powerful technique
for generating discrimination experiments efficiently in version spaces [Subramanian and
Feigenbaum, 1986]. [Gross, 1988] shows that selecting examples to reduce the difference
between a concept description and its curent maximum generalization is more effective
than selecting examples at random. A similar experimentation technique is used in
[Sammut and Banerji, 1986]. [Ruff and Dietterich, 1989] presents a study on the ef-
fectiveness of experiments. The performance of several experimentation strategies was
tested on Boolean function learning. The results show that the ability to do any kind of
experimentation dramatically increases performance. Simple but clever experimentation
strategies were found to be almost as effective as sophisticated and expensive ones. One
could argue that the optimal experimentation strategy is one that would generate exam-
ples close to the ones that a good teacher would [VanLehn, 1987; Salzberg et al., 1991],
and far from the ones that a non-cooperative teacher would generate [Dent and Schlim-
mer, 19901. However, it is not possible to generate the optimal sequence of examples
(experiments) unless the concept is known beforehand and the appropriate near-misses
can be generated [Winston, 19751.

What do these results in experimental and formal concept learning tell us? First,
that it is important that the learner be active in the learning process. This is why active,
directed experimentation is a very promising approach for learning. Second, that the
nature of the examples greatly influences the speed of the learning: good examples make
learning faster. In other words, good experiments make learning faster.
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2.1.2 Experimentation in Scientific Discovery Systems

Experimentation is a vital component of science. Most scientific discovery programs
use the results of experiments to formulate quantitative or qualitative laws, such as

[Langley et al., 1987; Falkenheiner and Michalski, 1986; Nordhausen and Langley, 1992].
It is the user who designs the experiments, executes them, and provides the system
with the results. Recently there has been an increasing interest on modeling scientific

experimentation in recent programs.

COAST

Explanation-based theory revision [Rajamoney, 1988] is a method that uses experi-
mentation to augment and correct theories. It is demonstrated in COAST, a system that
revises qualitative theories of physical world processes, like evaporation and osmosis.
COAST detects a fault in the theory when (1) an observation cannot be explained, (2)
the predictions contradict the observations, and (3) multiple explanations can be built
for a given observation. Then, it uses a set of theory revision operators together with
constraints (like the type of failure, the situation in which it happened, etc) to produce
a set of revised theories. These theories can be tested together by building abstract
hypotheses that cover a number of them. The abstract hypotheses are used to build an
explanation for the failure. The hypotheses are then tested through experimentation or
through previous observations. From all the revised theories that pass the test, one is
selected based on simplicity and predictive power.

Let us take a closer look at what is called in COAST experimentation-based hypothesis
refutation. First, the hypothesis is used to create a prediction that specifies the values of
variables that agree with the theory. Then experiments are designed that determine the

experimental values of those variables. COAST inplements three strategies for designing
experiments. Elaboration selects a variable to be measured according to the ease of the
measurement. Discrimination prefers variables whose predicted values are different for
different hypotheses. Finally, the transformation strategy produces totally new setups
for doing experiments when the possibilities of the current one have been thoroughly
exhausted. A more detailed study of discrimination and transformation experiments is
presented in [Rajamoney, 1992]. [Falkenheiner and Rajamoney, 1988] presents a method
for combining experimentation-based theory revision with analogical reasoning.

In brief, COAST uses experiments to test revisions of theories about physical pro-

cesses, and relies heavily on the ability of tiicsý theories to produce explanations. The
design of experiments involves choosing which variables to observe and which values they

take under the theory being tested. In contrast, EXPO does not try to learn about
how processes evolve in the physical world. Rather the domain knowledge models the
conditions and effects of actions over which the planner has control. EXPO does not
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have access to a theory that produces explanations for failures as COAST does, since its
only available knowledge is the domain operators for planning and they are incapable
of producing such explanations. EXPO's hypotheses are produced without looking at
the semantics of a failure encountered. While explanations are powerful, we wanted
to investigate the potential of a theoryless system, which turns out to have impressive
performance.

KEKADA

KEKADA [Kulkarni, 19881 implements a set of experimentation strategies that model
scientists at work. It simulates the discovery of the ornithine cycle based on Hans Krebs
accounts.

KEKADA's experimentation strategies are implemented as heuristic operators, which
are grouped into categories as follows. Problem choosers decide which problem to focus
on. Hypothesis generators create hypotheses about the problem at hand. Then, the hy-
pothesis or strategy proposers decide which hypothesis to concetrate on or which strategy
to use to work on the problem. The experiment proposers design experiments based on
the hypotheses. Then, expectation setters find out from the hypotheses what the results
of the experiments are expected to be. The experimenters carry out experiments. Next,
the results of the experiments are analyzed by the hypothesis and confidence modifiers,
which modify the hypotheses and the confidences about them. Finally, if the expectations
for the experiments do not agree with the observations the problem generators propose
to study this phenomenon. When there is more than one alternative in any of the above
decisions, decision maker heuristics are used to make a choice.

There are several strategies available to the strategy proposers: (1) magnify the phe-
nomenon by varying the values of variables in the experiments, (2) divide and conquer
to isolate subprocesses, (3) determine the scope of the phenomenon using an object type
hierarchy, (4) determine which factors are necessary for the phenomenon to occur, (5) to
relate the phenomenon to another one, (6) to gather more data about the phenomenon
systematically, and (7) domain-dependent specialization of general strategies like con-
trolled experimentation.

An experiment in KEKADA is specified by the following: the inputs, the conditions
and the place for carrying out, the initial quantities of the inputs, and the observations to
be collected after the experiment is carried out. The expectation setters form expectations
for an experiment that consist of the expected output substances and the lower and upper
bounds on the quantities and rates of those substances.

Thus, KEKADA's specifications of experiments are domain specific. KEKADA is
given domain-dependent knowledge about substances, chemical reactions, and other peo-
ple's experiments on urea synthesis that Krebs was aware of. About half of the heuristics
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in KEKADA are domain dependent, although they can be used for other biochemistry
applications. Most of KEKADA's domain-independent heuristics are used by EXPO, as

discussed in Section 4.6.

STERN

STERN [Cheng, 1990] is a scientific discovery system that models experiments using
Galileo's work on free fall. In STERN, hypotheses are expressed as equations. Experi-
ments are used to (dis)confirm hypotheses and to generate new hypotheses.

Experiments are designed at three levels of abstraction. At the most abstract level, an
experimental paradigm is chosen such as pendulums or inclined planes. At the next level,
an experimental setup is chosen, which is a particular instantiation of the experimental
paradigm. At this point, a particular inclined plane with concrete values for physical

dimensions such as length, inclination angle, and height would be chosen. At the last,
most concrete level, an experimental test is chosen. For example, we may choose to look
at how the distance down an inclined plane varies with time.

The parameters involved in the experiment are classified as follows. One is chosen
to be the output, another one manipulable, and the rest are considered constant. The
constants are always set to the midpoint of their range, and the manipulable variable
is given values within its range. The purpose of the experiments is to find out how the
output variable is related to the manipulable variable with the other values held constant.

STERN uses two types of knowledge during experiment design. Pragmatic knowledge
prefers paradigms with experimental setups that are easier to manufacture. For example,
distance is easier to manipulate than time. Background knowledge eliminates experimen-
tal setups that are trivial. For example, given the angle of inclination of a plane and its
length, the height can be geometrically deduced without need for experiments.

STERN has the ability to design new experimental paradigms by combining existing
ones, such as an inclined plane and a projectile. This is necessary when it is not tractable
to design experiments in an existing paradigm (for example, if a variable cannot be
eliminated from an equation).

Because the experimentation space is quite large, STERN has some heuristics to
improve its performance. The practicality of each paradigm, based on the number of
setups and the ease of the manufacture of the setups, is used to activate paradigms.

EXPO's experiments are very different in nature from those of a scientific discovery
system like STERN. STERN's hypotheses are equations, i.e., mathematical relations
between variables. EXPO's hypotheses in our hair dryer example in Section 1.1 are a set
of candidate conditions, i.e., predicates (possibly with several variables) that must be true
for the action to work. STERN chooses in the equation an output variable, a manipulable
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variable, and the rest are kept constant. Then it gives values to the manipulable variable
and the constants, and observes the value of the output variable after the execution of the
experiment. EXPO, on the other hand, does not need to classify the variables present
in the candidate conditions. All the variables in the conditions, and many more, are
instantiated by the planner when it is invoked to achieve the state in which to perform
the experiment (this is explained in detail in Chapter 4). EXPO has many variables tc
observe after the experiment's execution, which correspond to all the known effects of
the action. Also, STERN repeats experiments with the same setup and different values
of the manipulable variable. EXPO, on the other hand, designs experiments so that a
hypothesis is disconfirmed or confirmed after each one. Both EXPO and STERN prefer
experiments that are easier to perform, and they both share a concern for the efficiency
of the experimentation process.

FAHRENHEIT

FAHRENHEIT [Zytkow et al., 1990] extends BACON's ability to discover quantita-
tive laws from numerical data. The system determines not just the regularities of the
set of variables, but also the range of values for which the functional relation holds.
FAHRENHEIT makes BACON efficient through a multi-level search strategy by chang-
ing the order in which variables are considered.

FAHRENHEIT's experimentation ability greatly extends BACON. It automates the
experiments and data collection through a hardware system that controls some equipment
in a chemistry lab. The experiments are designed according to the current knowledge of
the system.

Unlike FAHRENHEIT's, the parameters of EXPO's experiments can be nonumerical.
FAHRENHEIT's techniques could be used by EXPO in numerical domains where the
operators were applicable for certain values of their parameters (we discuss this in more
detail in Section 7.3.1). FAHRENHEIT is given a physical configuration where the
experiments are to be carried out. The experiments differ in the values that are given to
the controllable parameters. In contrast, EXPO has to design the configuration state in
which the experiment can be carried out, and build a plan to achieve such a state. Every
experiment is different in nature from the rest, and the selection of designs that satisfy
the user's requirements is of crucial importance for EXPO.

2.2 Planning and Learning from the Environment

As we mentioned in the introduction, there is considerable interest in planning systems
that acquire control knowledge by introspection [Knrf, 1985; Sacerdoti, 1974; Mitchell et
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al., 1983; Laird et al., 1986; Minton, 1988; Mostow and Bhatnagar, 1987; Veloso, 1992].

All these systems differ from EXPO in two major ways. First, they only learn control

knowledge while EXPO concentrates on acquiring factual domain knowledge. EXPO is
learning at the knowledge level, as opposed to the symbol level [Newell, 1982; Dietterich,

1986]. Second, they learn by introspection, and not from interaction with an external

environment as EXPO does.

LEX

LEX [Mitchell et al., 1983] is a system that K1s some experimentation capabilities
to learn control knowledge by introspection in the domain of symbolic integration. The
left-hand side of its heuristics are represented as version spaces.

LEX is composed of four modules. The problem generator proposes a new problem
to solve. The problem solver searches for a solution to the proposed problem using the

currently available heuristics. Next, the critic examines the solution trace and assigns

credit to search steps leading towards or away from a solution. Each step may be classified

as a positive or negative instance of one of the heuristics. Then, the fourth module, the
generalizer, comes into play. It updates the version space that corresponds to the heuristic
of each positive and negative instance. Then, the problem generator looks at the new

definitions of the heuristics and proposes new problems to experiment with. LEX then
eitrs a new generate-solve-critic-generalize cycle.

The problem generator is the module responsible for generating experiments. It

prefers problems that can be solved with the current operators and heuristics, and prob-

lems whose solutions will provide informative instances. One way for a problem to be
informative is to produce instances of existing partially learned heuristics. Problems of

this kind are generated by choosing a partially learned heuristic, and creating a problem
that matches some but not all the members of the version space of that heuristic. LEX

does so by using a hierarchy of the types of mathematical functions that it can use in
the problems. Another way in which a problem can be informative is that it may lead

to create a new heuristic. Problems of this type are problems in which two operators are

applicable but there is no current heuristic to recommend which operator to prefer.

LEX uses experimentation to acquire the left-hand side of control rules, while EXPO's
intent is operator refinement. Additionally, LEX instantiates functions to create problems

through a type of hicrarchy. EXPO, on the other hand, has to design goal states with
several predicates, and is concerned with the actual planning for achieving such goal

states and the interaction of this planning with the main problem at hand.

CHEF

CHEF [Hammond, 1986] is a svstem that, like EXPO, learns from plan execution
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failures. CHEF is a case-based planner for the domain of Szechuan cooking.

CHEF has a memory of plans that are recipes, and it uses them to create new ones.
For example, suppose we want a recipe for beef with broccoli. CHEF retrieves a plan
from its memory, say beef and green beans, and adapts it to meet the goals of the current
problems. In this case, it would add a step to chop the broccoli. After coming up with
a plan, CHEF simulates its execution in the real world. If the result of the simulation
does not satisfy the goals of the problem, an expectation failure has been found. In this
example, the simulator indicates that the broccoli is soggy, and not crisp as wanted. The
simulator also returns an explanation of the failure: that the beef leaves water in the
pan, and that water makes broccoli soggy. (This did not happen in the original recipe,
because green beans are more sturdy). CHEF uses this explanation to repair the plan,
adding an extra step to cook the broccoli first and then the beef. The new plan is stored
in memory, indexed by the causes of the failure contained in the explanation.

The repair used in a plan may be transferred to a new problem that may have the
same failure. For example, if CHEF is asked for a recipe for chicken and snow peas, it
remembers the broccoli episode and anticipates a potential problem of plans that cook
the chicken and the snow peas at the same time. It then uses the beef and broccoli recipe
to create a plan that avoids the same failure.

So CHEF, like EXPO, learns to avoid plan failures. But one important difference is
how learning is done. CHEF calls a simulator of the real world with a plan, and gets
back a description of the failures of the plan together with a causal explanation for the
failures. EXPO uses a simulator of the world as well, but it monitors the simulation step
by step and detects local failures instead of being informed of them. EXPO determines
the causes of failures by designing and executing experiments. It is not told about the
causal chain that provokes a failure.

CHEF repairs plans that cause failures, and reuses them to avoid the same failure in
future plans. EXPO learns to repair operators that cause failures, and uses the corrected
operator to build plans that will not incur in the same failure. Thus, the granularity
is different. This has to do with the fact that CHEF is a case-based planner, while
EXPO is designed to learn domain knowledge for generative planners. CHEF learns to
avoid cooking some vegetables with meats that sweat water. EXPO would learn to avoid
cooking some vegetables in the presence of water (whichever its origins), thus covering a
larger range of possible failure situations.

LIVE

LIVE [Shen, 1989] is a system that learns from its environment. LIVE is designed for
exploration and discovery. It can formulate new operators by executing actions whose
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conditions and effects are unknown. It can also formulate new terms if the language is
insufficient. EXPO does not do any of this.

The most relevant part of LIVE is its method for refining operators by splitting exist-
ing ones. When the expected effects of an operator are not obtained upon its execution
(i.e., a surprise is obtained), the operator's conditions are specialized to exclude the cur-
rent type of situation. In addition, a new sibling operator is created with the existing
operator's conditions and the effects actually obtained. (This method is similar in spirit
to learning by discrimination [Langley, 1987].) EXPO on the other hand opts for learn-
ing only the specialized operator when it encounters an execution failure. The sibling
operator is in practice accounting for a set of unexpected unwanted effects which does
not agree with a task-directed approach like EXPO's.

LIVE uses experimentation to revise learned rules that prove to be too specific during
planning. The experiment consists of an instantiation of the rule's sibling rule that
involves applying the action to a different object in a situation that has not been seen
before (and so is likely to produce a surprise). LIVE has a preference for experiments
that can be immediately executed in the current state or in easily reachable states.

EXPO designs experiments with varied conditions. It has a more flexible mechanism
for experiment preferences, one that takes into account much more than the ease of
execution. EXPO's domains are more complex in size than LIVE's domains.

CAP

CAP [Hume and Sammut, 1991] is a system that uses experiments to build a theory
that can be used to recognize sequences of actions performed by other agents. When CAP

observes such a sequence, it divides it into meaningful subsequences that are generalized
using inverse resolution. The generalizations are tested with experiments.

The variables of an experiment are instantiated through inverse resolution, which
also produces changes in the state of the external world if needed for the experiment. If

the experiment is successful, then the action description is generalized. When an action
cannot be used because a condition P is too specific, a new term - P is created and a

new action is postulated with -• P as a condition.

CAP, like EXPO, does some pre-planning for experiment setup. However, work on
CAP up to date has not addressed the choice of experiments or the selection of pre-
experiment plans, these being major issues for the design of EXPO. CAP detects faults
in the domain theory when an action cannot be used to produce a proof. EXPO, on
the other hand, detects faults in the domain theory when an action's execution fails
that was believed to be a legal step of the plan. CAP refines precondition expressions
by generalizing overly specific preconditions. EXPO, on the other hand, learns new

preconditions and also new effects of operators.
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Soar

The Soar architecture acquires control knowledge from human advice [Laird et al.,
1989; Laird and Rosenbloom, 1990] in a robotics environment. When no control knowl-
edge is available to select an operator, Soar either makes a random choice or prompts
for advice. When existing control knowledge is incorrect, Soar is forced to reconsider
each decision and incorporate human advice. This advice consists both of recommen-
dations and disrecommendations of operators. In contrast, EXPO concentrates on the
acquisition of domain knowledge and never interacts with a human during learning.

Other Work on Planning and Learning from the Environment

[Kedar et al., 1991] presents a system that refines operators by building causal ex-
planations of their failures. The explanations are built using a set of domain constraints
on the state descriptions. If the reason for the failure is a contradiction of the expecta-
tion and the domain constraints, then the difference between the expected and observed
states is explained. The result of an explanation is a new precondition for the opera-
tor. If it is not possible to build an explanation, then a new operator with a variant
outcome (the observed effects) is created. This is in the same spirit as LIVE and dis-
crimination learning. If several explanations can be constructed, then there are several
candidates for new preconditions. This may cause complications for [Kedar et al., 1991].
EXPO's experimentation techniques could then be a good way to discriminate amongst

the candidates.

Other systems have experimentation capabilities to learn from real robotic environ-
ments. [Christiansen, 1992] describes empirical learning of manipulations. Almost no
prior knowledge is assumed. With almost no initial knowledge, the system designs experi-
ments by giving values to the task parameters, performing the experiment, and clustering
the parameter space according to the resulting state. The system demonstrates two ex-
perimentation techniques: random training, and strategic self-training. Random training
involves a random choice of values for the experiment parameters. Strategic self-training
explores the parameter space randomly until the execution of the action does not unfold
as predicted. Then, a similar action is chosen by giving the parameter a new value chosen
randomly from a constant interval around its current value. Extensive empirical tests in
various manipulation tasks show that strategic self-training yields better theories than
random training. Another such system is presented in [Gross, 1991]. Its experimentation
design is more sophisticated, in that it is able to vary several parameters at a time. The
parameter space is divided into regions. Two types of experiments, generalization and
specialization, reduce uncertainty surrounding a region or within a region respectively.
Each type of experiments is designed using a set of heuristics that decide the value of the
parameter. The system dynamically defines new attributes, a very desirable capability
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when learning from the environment. Both of these systems assume the parameters of
the experiments to be numeric, discrete, and ordered. The experiments do not require
any planning steps for setup, the action can be immediately executed. EXPO's required
experimentation capabilities do not assume such restrictions in the parameter values, and
produce more elaborate setups. However, these systems are able to deal with noise in
the observations, while EXPO is not.

Another project on robots that learn is the subsumption architecture [Brooks, 1986;
Maes and Brooks, 1990; Maes, 1991]. Actions are modeled as behaviors, whose conditions
are conjunctions of binary perceptual features. The robot receives binary feedback which
it uses to learn when to activate behaviors. Each behavior monitors the values of the
percepts and detects their correlation with the feedback received. If there is a strong
correlation with a percept, it is added as a new precondition of the behavior. Arbitration
between behaviors is also achieved by tuning a network to the current goals. There is
no directed experimentation in this framework, and learning takes the form of adaptive
control. Other systems that learn to control their actions with this type of trial-and-error
learning from experience are reinforcement learning systems [Sutton, 1990; Kaelbling,
1990; Watkins, 1989; Mahadevan and Connell, 1992]. These systems use subsymbolic
models of the world. In contrast, EXPO has explicit descriptions of the conditions and
the expected effects of actions.

Many planners use plan repair techniques to avoid plan failures [Sussman, 1975; Sac-
erdoti, 1977; Wilensky, 1983; Wilkins, 1988]. Their planning algorithms use plan mod-
ification strategies to solve interactions between plan steps during planning. But they
assume that the domain knowledge is complete and correct. EXPO, on the other hand,
does not make this assumption. It is given a plan that is believed to work based on the

planner's expectations. EXPO can be surprised if it finds that the plan's execution fails,
because of wrong expectations. EXPO concentrates on repairing the domain knowledge
(not the plan) through experimentation. Armed with this new knowledge, the planner
will not have the same wrong expectations in the future.

2.3 Theory Refinement and Knowledge Acquisition

Theory Refinement

In explanantion-based learning (EBL) [Mitchell et al., 1986; DeJong and Mooney,
1986], a theory composed of rules is used to build an explanation that justifies why an
example is an instance of the concept described by the theory. When the rules contain
errors, no explanation may be constructed for some examples of the concept and (yet
worse) an explanation may be built for instances that are not examples of the concept.



22 CHAPTER 2. RELATED WORK

The refinement of theories for EBL has been a major focus of research, addressing
different types of errors: incompleteness [Danyluk, 1991; Sleeman et al., 1990; VanLehn.
1987; Genest et al., 1990; Mahadevan, 1989; Kodratoff and Tecuci, 1991], incorrectness
[Ourston and Mooney, 1990; Bylander and Weintraub, 1988], intractability [Tadepalli,
1989; Ellman, 1989; Chien, 1990; Flann, 1990], or combinations of these types of er-
rors [Pazzani, 1988; Hall, 1988]. A theory is incomplete when only partial explanations
can be built due to lack of information in the theory. The above mentioned systems
refine the theory by building partial explanations and completing them using various
techniques including inductive methods [Pazzani, 1988; Danyluk, 1991], analogical rea-
soning [Falkenheiner, 1989; Genest et al., 1990], apprentice-type techniques [Kodratoff
and Tecuci, 1991; VanLehn, 1987], and experimentation (see the COAST system in Sec-
tion 2.1.2.)

Although EXPO is also designed to refine incomplete knowledge it acquires both
conditions and effects of actions, which is quite a different type of rule than EBL rules.
The failures obtained from executing actions are very different from explanation failures.
There is no reason to believe that the same learning paradigms cannot be applied to
refine incomplete domain knowledge, although this is an open issue.

Knowledge Acquisition

Many tools have been designed to aid in the engineering of knowledge bases (see
[Marcus, 1990; Boose, 1992] for good overviews). The acquisition of knowledge is done
through interaction with a human expert. EXPO, on the other hand, is given an initial
knowledge base that is produced by the expert, and is able to acquire knowledge au-
tonomously in domains that allow direct interaction with the system being modeled in

the knowledge base.

2.4 Other Related Work

There is work in the field of fault diagnosis on violated expectations [Davis et al., 1982;
Genesereth, 1984]. Any disagreements between the expected behavior of a device and
its actual behavior indicate malfunctions that must be repaired. In this literature, the
term "failure" is used in a different sense than in the planning literature: faults are
misbehaviors, and failures are the causes of faults. Many failures of a device may be
possible causes of a fault, much in the way EXPO must consider many possible domain
adjustments for a given execution failure. However, fault diagnosis systems find the
causes of a fault by building a causal explanation of the fault, using a detailed theory
of the functionality of the device (often a qualitative model) [Davis, 1984; Genesereth,

1984; Patil et al., 1981; Pazzani, 1990]. Such models are clearly powerful, but extremely
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difficult to craft. One positive and unique aspect of EXPO is that it is able to find the

cause of a failure without relying on such models.



24- CHAPTER 2. RELATED WORK



Chapter 3

The Role of Experimentation in

Planning

As we saw in the previous chapter, experimentation techniques have been used for learn-
ing in various contexts. This thesis applies experimentation to learning from the envi-
ronment in order for a planner to acquire the new knowledge necessary to accomplish
each new task at hand. The purpose of this chapter is to explain how our work on
experimentation fits into the context of planning.

We begin by describing our planning paradigm, and the type of domain knowledge
that it uses. Then, Section 3.2 describes operators as concepts. Because concept learning

is a well understood framework with many years of research behind it, it provides a useful
perspective on the automatic refinement of operators. One important point is that a
planner is given an initial body of knowledge, and these concepts are not initially empty.
However, the initial definitions may contain various types of imperfections that need to
be understood and addressed in an individual basis. Section 3.3 presents four types of

imperfections that may occur in the knowledge base. Interaction with the environment
to acquire new knowledge presents many issues still under research. Section 3.4 presents
our assumptions and states the limitations of our approach in this respect. Then, Section
3.5 describes precisely our definition of experimentation. The experimentation process

must be directed and efficient and this section explains why this is important within a
planning context. Finally, Section 3.6 presents PRODIGY [Minton et al., 1989a; Minton
et al., 1989b; Carbonell et al., 1991], the particular system used for the implementation.

25
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3.1 Domain Knowledge for Planning

Through many years of research in this area, different paradigms for planning have
emerged, including the problem space framework [Newell and Simon, 1972], case-based
planning systems [Kolodner, 1980; Hammond, 1986; Veloso, 1992], and plan refinement
[Schoppers, 1989]. This work concentrates on the problem space framework. The plan-
ner is given a set of rules (called operators), each of which defines the legal transitions
between states. Plans are found by searching through the space of possible states. Many
planners have used this model, including STRIPS [Fikes and Nilsson, 1971], NOAH [Sac-
erdoti, 1977], and SIPE [Wilkins, 1988]. In essence, the planner is given a set of operators
that model the possible actions. Each operator contains the conditions under which the
action can be executed, and the effects of the action. The planner is also given an initial
state, which is a model of the state of the external environment. Operators specify the
legal transitions from one state to another. The search for a plan consists of trying dif-
ferent sequences of operators to reach a state that satisfies a given goal statement. The

operators together with the legal states constitute the domain knowledge of the planner.

Consider our robot planning domain. An operator for opening a door is:

(OPEN

(params (<door>))

(preconds

(and
(is-door <door>)

(unlocked <door>)

(next-to robot <door>)

(dr-closed <door>)

(effects (

(del (dr-closed <door>))

(add (dr-open <door>))

The variable <door> is a parameter that can be instantiated to open particular doors.

The preconditions that have to be satisfied in order to open a door are that the robot
is next to a door, and that the door is closed and unlocked. The effects of the operator
are expressed in two lists. The delete list (del) specifies the facts that are no longer

true after the operator is applied. The add list (add) is composed of the facts that the
application of the operator makes true. In our example, after opening a door, the door
is no longer closed and it is open. To open door Doorl2 we use OPEN with the variable
<door> instantiated to Doorl2. Doorl2 is a binding for the parameter <door>. When all
the preconditions of an operator are satisfied in a state, then the operator is said to be
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applicable. An operator is applied by changing the state according to its list of effects. If
the current state SA contains the following facts:

(is-a BoxA BOX)

(is-door Doorl2)
(in-room ROBOT Roomi)
(in-room BoxA Room2)
(arm-empty)
(connects Door12 Rooml Room2)
(dr-closed Doorl2)
(unlocked Door12)

(next-to ROBOT Door12)

then we can apply the operator [OPEN Doorl2] and obtain the following state SB:

(is-a BoxA BOX)

(is-door Doorl2)
(in-room ROBOT Rooml)
(in-room BoxA Room2)
(arm-empty)

(connects Door12 Roomi Room2)
(dr-open Door12)
(unlocked Door12)
(next-to ROBOT Door12)

Notice that the operator is applicable in any state in which the robot is next to a
door that is closed and unlocked. The preconditions of an operator represent the class
of states in which the operator is applicable. In contrast, the effects do not express the
class of states that result from the application of the operator. What they represent is
the transformation itself, i.e., the additions and deletions that must be done on the state
where the operator is applied. This asymmetry in the representation of the operators
must be taken into account when learning domain knowledge. We explain why in the
next section.

3.2 Refinement of Operators as Concept Learning

As we pointed out in the previous section, the preconditions of an operator represent
the class of states in which the operator is applicable. In fact, the preconditions form a

concept that expresses the (hepefully minimal) generalization of all those states. Simi-

larly, the effects are a generalization of the transition between states that the operator
represents. This means that learning the correct expression of an operator is, in fact, a
matter of concept learning from examples [Michalski et al., 1983]. This section shows
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where these examples come from and how they can be used to learn the definition of an

operator.

Building a knowledge base is a process that requires iteration to correct errors that
keep lurking after each new version of the system. When users define operators for a

planning system, it is not uncommon that they would forget to write a precondition,
or a side-effect of the action. Suppose that a planner is given the following incomplete

operator:

(OPEN '

(params (<door>))
(preconds

(and

(is-door <door>)
;the condition (unlocked <door>) is missing

(next-to robot <door>)

(dr-closed <door>)

(effects (

(del (dr-closed <door>))
(add (dr-open <door>))

Notice the missing condition (unlocked <door>). Now suppose that the planner
is given the goal (dr-open Doorl2) in state SA (shown in the previous section). The
operator OPEN' can be applied to achieve the goal. And in fact, if the robot tries to open
the real door represented by Door12, the door will open. This is because the door happens

to be unlocked, so even if the planner is unaware of the missing condition, the execution
of the action is successful. A state in which the execution of the action is successful can

be considered as a positive example of the concept expressed in the conditions of the

operator.

Consider now that the planner is given the goal (dr-open Door23) and the following
initial state Sc:

(is-door Door23)

(next-to ROBOT Door23)

(unlocked Door23)
(closed Door23)

The operator OPEN' can be applied to achieve the goal. If the robot tried to execute

this action it would also be successful, again because the unknown condition that the

door must be unlocked happens to be true in Sc. In fact, this state is another positive
example of the concept expressed in the conditions. We can generalize from states SA
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and Sc by replacing the constants Doorl2 and Door23 by the variable <door>, and say
that a door can be opened when the following facts are true in a state:

(is-door <door>)

(next-to ROBOT <door>)

(unlocked <door>)

(closed <door>)

Now suppose that the goal is (dr-open Door34), and the state SD is:

(is-door Door34)
(next-to ROBOT Door34)
(locked Door34)
(closed Door34)

This time, the planner will also believe that it can use OPEN' to achieve the goal
since all the conditions are true in SD. However, if it tries to execute the action and
open the door, Door34 will remain closed. This is because this time the door does not
happen to be unlocked. SD can be considered a negative example of the concept that
the preconditions of the operator represent.

In summary, when the planner is given the ability to execute actions in the external
world and observe their effects, it can detect faults in the operators that model these
actions. Each successful execution of the action corresponds to a positive example of the
concept that the precondition expression should represent. Similarly, each failure is a
negative example of that concept. So in fact, the problem of learning.the precondition
expression of an operator can be cast in terms of concept learning as follows:

Given:

a set of positive examples
(i.e., a set of states in which the action was success-Fully executed)
a set of negative examples
(i.e., a set of states in which the execution of the action failed)

Find:
a description that covers all the positive examples and that
does not cover any of the negative examples
(i.e., the generalization of the states in which the action
can be successfully executed)

The effects of an operator also represent a concept. This concept corresponds to the
transformation that the operator causes in the state in which it is applied. For example,
when OPEN' is applied in SA, the following transformations occur:
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(add (dr-open Doorl2))

(del (dr-closed Doorl2))

When OPEN' is applied in SC , the transformation is:

(add (dr-open Door23))

(del (dr-closed Door23))

A generalization of these two examples of the transformation is:

(add (dr-open <door>))

(del (dr-closed <door>))

which correspond, in fact, to the effects of OPEN'. If some effect is missing, the problem
will not be notized locally (execution will be successful), but may be noticed later when

the observed world state diverges from the predicted one. Notice that we always encounter
positive examples of the transformation, since the known effects always occur when the
conditions are true. So in fact the problem of acquiring the effects of an operator is also
a concept learning problem:

Given:

a set of positive examples
(i.e., a set of states in which the action was successfully executed

and the resulting state)
Find:

a description that covers all the positive examples

(i.e., a minimal generalization of the transition between the states)

There are some references in the literature that consider the left-hand side of rules as
concepts to be learned [Mitchell, 1978; Mitchell et al., 1983; Langley, 1987; Langley et al.,
In press]. However, none of this previous work has pointed out the fact that the effects
of operators represent a concept and consequently view their acquisition as a concept

learning problem.

Since we provide the planner with an initial domain, there is an initial description for
the concepts of the precondition expression and effects. This initial description may be

faulty in several ways that are described next.

3.3 Imperfections in Domain Knowledge

As we discussed in the previous section, the domain model that the planner is initially
given is not necessarily perfect. Several types of imperfections can appear simultaneously
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in a domain model. There have been several attempts to classify imperfections [Mitchell
et al., 1986, Rajamoney and DeJong, 1987; Huffman et al., 1992]. This section presents

a more exhaustive classification tailored to planning systems. For each imperfection, we
discuss the types of planning failures that it causes. The section concludes with a more

detailed description of the imperfections addressed by this thesis.

3.3.1 Incomplete Models

Incomplete models are those in which some aspect is missing. Known operators may be
missing preconditions and/or effects. Entire operators may be absent from the model.

Let us examine first the case of incomplete preconditions. Consider the operator
OP2N' from the previous section. Again, OPEN' is incomplete: it is missing the condi-
tion (unlocked <door>). As we saw in the previous section, when the planner executes

OPEN', the action has no effects when the door happens to be locked. If that is the
case, the planner makes the wrong prediction (that the door will be open). So if the
preconditions of an operator are incomplete, the plainer's predictions will fail because

the effects of the operator will not be obtained.

Now let us look at a case when the effects of an operator are incomplete. Consider

for example the following operator:

(PUTDOWN'

(params (<ob>))
(preconds

(holding <ob>))

(effects

((add (arm-empty))

;the effect (del (holding <ob>)) is missing

(add (next-to robot <ob>)))))

Notice that the operdtor is incomplete: it is missing the effect that should delete
(holding <ob>). When a planner executes PUTDOWN', it will obtain the desired effects.

However, it will continue to believe that the robot Is holding the object. So in the case
of incomplete effects, the planner's predictions will fail when the wrong fact is used in

the future.

Incomplete effects may also force the planner to do unnecessary work. Consider the

following operator:

(PUTDOWN''

(params (<ob>))

(preconds

(holding <ob>))
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(effects
((add (arm-empty))
(del (holding <ob>))

;the effect (add (next-to robot <ob>)) is missing

Now suppose that the planner is given the goal (and (arm-empty) (next-to robot
BoxA)) when the robot is holding BoxA. The planner builds a two step plan that uses
PUTDOWN" first to achieve (arm-empty) and then GOTO-OBJ to achieve (next-to

robot BoxA). Notice that this last step is unnecessary, but the planner believes it is
needed because it ignores the fact that PUTDOWN" also achieves (next-to robot
BoxA). Thus, unknown effects may cause the planner to build unnecessary subplans.

A domain model is also incomplete when entire operators are missing. For example,
suppose that no operator is available for opening doors. In this case, the planner has
strong limitations as to the problems that it can solve.

Another case of incompleteness occurs when a state is missing facts about the world.

For example, consider a state containing a description of a door Door45 that connects

Room4 and Room5. The state does not contain information about the door being either
locked or unlocked. In this case, some operator's preconditions will not be matched in
the state. So when facts are missing from the state, the applicability of operators is

restricted to the known facts.

3.3.2 Incorrect Models

Incorrect models have some aspect that does not correspond to reality, or contain overly
specific knowledge. This happens when an operator has erroneous conditions or effects,

or some conditions or effects that are overly specific.

Let us consider the first case of erroneous conditions.

(OPEN''

(params (<door>)

(preconds

(and (is-door <door>)

(next-to robot <door>)

(unlocked <door>)

(dr-closed <door>)

(holding <door>))) , this condition is erroneous

(effects

((del (dr-closed <door>))

(add (dr-open <door>)))))
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Notice that this operator has an incorrect condition: it requires that the robot is
holding the door. When a planner tries to use OPEN" in a plan it will always fail, since
there is no way for the robot to be holding the door. So when a condition is erroneous,

it may not be possible to use the operator to construct a plan.

Let us look at another case of erroneous conditions. Consider the following operator:

(OPEN'''

(parains (<door>)

(preconds

(and (is-door <door>)

(next-to robot <door>)

(unlocked <door>)

(dr-closed <door>)

(next-to <box> <door>))) ; this condition is erroneous

(effects

((del (dr-closed <door>))

(add (dr-open <door>)))))

In this case, the erroneous condition can be achieved by the planner, so this operator
can be used to construct a plan. However, the part of the plan that places the box next
to the door is, as we know, totally unnecessary for opening the door. So an erroneous

condition may force the planner to create plans that are longer than needed in order to
achieve unnecessary subgoals.

Now let us look at the case of overly specific conditions. Consider for example the
following operator:

(OPEN''''

(params (<door>)

(preconds

(and (is-door <door>)

(next-t3 robot <door>)

(unlocked <door>)

(dr-closed <door>)

(color-of <door> RED))) ; this condition is overly specific

(effects
((del (dr-closed <door>))

(add (dr-open <door>)))))

The predicate (color-of <door> RED) is unnecessary, making the precondition ex-

pression too specific, since the operator can only be used when the door to be opened
is red. Non-red doors can never be opened. So when a condition of an operator is

overly specific, the planner's capabilities are restricted with the more limited range of
applicability of the operator.
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The facts that the state contains can be incorrect as well. For example, the planner
may contain the fact (locked Doorl2) when the door is, in fact, unlocked. In this
case, some operator's preconditions will be matched in the state when the action is not
applicable, and vice versa.

3.3.3 Inadequate Models

Inadequate models are those whose language lacks the appropriate primitives to express
the aspects of the external world that are needed for problem solving. Consider OPEN'. If
the predicate (unlocked <door>) was not only missing from the preconditions but also
did not exist in this domain, the planner would not be able to reason about locks in the
doors, thus failing to open any locked door.

3.3.4 Intractable Models

Intractable models are those in which it is prohibitively expensive (time-consuming) to
derive a plan. In this case, control knowledge is needed to direct the search. As we
mentioned in Chapter 2 much research has been done to address intractable domain
models by learning control knowledge to expand the boundary of problems solvable with
given time restrictions.

3.3.5 Types of Incompleteness

This thesis is concerned with refining incomplete theories only. Learning when the given
domain is incorrect, inadequate, or intractable will be discussed briefly in the future
work section. Notice that inadequate and intractable models can be considered incom-
plete, since they are in fact missing some aspect of the external world. They are listed
separately, however, because they are best addressed with different mechanisms.

A domain theory may be incomplete in several ways:

" Operators may be partially specified-the planner may know only some of their
preconditions and some of their consequences.

"* Entire operators may be missing-the planner may not know all its capabilities.

"* Object types or instances may not appear in the description of the state-knowledge
about the objects that must he manipulated may be missing. The operators may
not contain enough information about which object types they may be applied to
in order to achieve the desired effects.
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e Attributes of objects in the world may be unknown-Attributes of objects can
be combined to form new attributes. For example, mass and volume define the
attribute weight via a formula. The range of values that already known attributes
can take may be further specified.

* Factual properties may be missing from the state-the concrete value of an attribute
of some object is unknown (e.g., size, color, weight, category...)

Section 3.3.1 contains examples of the first and last cases. As we saw in that section,
each case causes a different type of planning failure. This is why each case needs to
be addressed differently. Chapter 5 describes methods for detecting different types of
failures and how to adjust the domain knowledge in each one of the above cases. There
are several ways to detect and refine incomplete knowledge. One is to rely on a human
to build the knowledge iteratively by testing it on sample problems and correcting errors
by hand. Another is to have the system learn autonomously by interacting with the
environment, as the next section describes.

3.4 Learning from the Environment

A planner is a problem-solving engine typically used in applications that involve physical
systems. Some examples are:

"* Path planning [Brady, 1982], which involves finding a route for a robot controller.

"* Process planning [Chang and Wysk, 1985], where the planner is given a specification
of a product and finds a sequence of operations to manufacture it.

"* Using plans for understanding natural language [Wilensky, 1981], where information
about an agent's goals and plans proves to be very useful for interpreting stories.

The resulting plans represent sequences of actions that, once executed, transform the
current state of the physical system (also called environment) into a desired state. Thus,
the domain knowledge of a planner models the external system in order to reason about

its behavior and act accordingly. The operators constitute the planner's knowledge of
how to affect its environment. The domain model is a good representation of the external
processes if it allows the planner to extract all conclusions that are relevant or necessary
for its task. In other words, a good model encompasses what is expected from the external

system.

Any disagreement between these expectations and the results of the external pro-
cesses indicates an imperfection in the model (of some of the types indicated in Section
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External World Intelligent System

---------. . ... o p e r a t o r s P A N N o t o

~als a.......internal state

Figure 3.1: An intelligent agent interacts with the world. Operators correspond to ac-
tions. The external state is represented by an internal state.

3.3). Any autonomous system must be able to observe its environment and to adjust
its internal model when expectation failures occur. Many times it is not clear which
fault in the model caused the wrong prediction. It may be necessary to perform a series
of directed manipulations of the external system in order to collect more observations
related to the failure. These directed manipulations are what we call experiments, and
their purpose is to gather enough data for the system to update its imperfect model.
In summary, observing and manipulating the environment is necessary for this type of
learning to occur. These interactions with the environment raise many issues currently

under research. This section describes the particular limitations of our system that are
directly related to its interaction with the environment.

3.4.1 Interaction with an External Environment

Figure 3.1 shows an intelligent system that has the ability to interact with some external
system, also referred to as external world or environment.

Operators are internal models of external actions. Operators are applied by updating
the internal state according to their effects. The action that corresponds to the operator
is executed always in the external world.

Definition. The execution of an action succeeds if all the known effects
of the corresponding operator happen in the external world when all the

preconditions are satisfied.

Definition. The execution of an action fails if some effects of the corre-
sponding operator did not happen as expected when all the preconditions are
satisfied.

When a goal is given to the planner, it designs a plan to achieve that goal. Then the

plan is executed step by step. Each step is an operator whose corresponding action must
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be executed in the environment. Whenever the system decides to execute an action in the
external world it is always the case that the internal state indicates that the corresponding
operator is applicable. At this point the system first checks if the preconditions of the
operator are indeed satisfied in the external world. If the model is correct then the
check will be positive, and the action is executed in the external world. Then the system
checks if it has been in fact executed correctly by checking the effects of the operator in
the external world. If the model is correct then the execution will be successful; whatever
the goal of the system is, it is achieved after the execution of the sequence of actions

proposed by the planner.

Notice that in this scheme, the system is not necessarily observing all possibly ob-
servable facts about the external state. Its attention is focused only on the facts that are
relevant to the application of the action, which are precisely the predicates included in
the preconditions and the effects of the corresponding operator.

The system always has some expectations about the world, and they are represented
by the internal state. The observations that the system can make correspond to the
real state of the external world. In order to know if the model is accurate, the system
compares its expectations with its observations. When there is a difference between
the system's expectations and its observations, then some fault in the model has been
detected and there is opportunity for learning how to correct it.

One possible cause for a difference between expectations and observations is the pres-
ence of other agents that can interact with the same environment. If there are other
agents, then the cause of the difference might not be a fault in the model. The internal
state of the agent is not updated with the effects of actions that are executed by other
agents inadvertently. If no cause for the differen-c- is found, the system should consider
that some action was executed without its knowledge, and update its internal state ac-
cordingly. Another possible source for a difference are nondeterministic environments, in
which the outcome of an action under the same circumstances can be different. Noisy
sensors can signal unexpected observations that do not correspond to the real external
state. This work does not consider any of these possibilities.

The actions that the agent performs are considered to be independent. This means
that the results of an action can he observed immediately after it is executed and their
results do not depend on the actions executed previously. This last assumption simplifies
the problem enormously. Fortunately, it holds in mos. planning domains.
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3.4.2 Simulator

For our implementation, we built a simulator of the external environment. The simulator
uses a complete and correct set of operators to model the available actions1 , as well

as a state to represent the external state. In addition to the domain operators, the
simulator is also given operators to simulate failure conditions. So if the preconditi_, f

an operator 0 are (pl Ap2 A p3), a failure operator can be constructed with the conditioi.

(- plV - p2V - p3) and the effects to be obtained when one or more conditions are
not true. For example, a failure operator would represent the action of opening the door
when the door is locked. When an observation is requested from the simulator, it is

obtained from the state. When an operator must be executed, the simulator applies to
its state the simulator's operators whose conditions match.

In our simulations, the failure operators do not have any effects. In some domains,
executing these operators may have spurious effects. For example, consider a drilling

operator in the process planning domain. Suppose that the presence of cutting fluid is

a necessary condition for drilling, since it absorbs the heat produced by the operation.
If that condition is missing from the drilling operator, the failure operator used by the
simulator should have the effects that this operation has in the real world, i.e., that the

drill bit is damaged by the excess of heat as well as the part.

Our simulator did not represent noise in observations, nor spurious effects that the
execution of an erroneous operator may have. This is not a very sophisticated scheme to

model the complexity of the real world, but it provides the types of external interactions

necessary for experimentation.

3.5 Experimentation

As we saw in the previous section, the interaction with the external world is a powerful
tool for acquiring new domain knowledge. The directed manipulation of the environment
through experiments makes the learner proactive and reactive in the learning process.

This section describes what experiments mean in this thesis, why they facilitate enor-
mously the learning task, and what is involved in the formulation of experiments.

3.5.1 Task-driven Experimentation

In recent years, the topic of experimentation has received significant attention in Artificial

Intelligence. The range of concepts embraced by the word "experimentation" is so broad

'Notice that neither EXPO nor the planner have access to this complete domain, which is used solely
for the simulation.
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that it is not possible to give an operational definition that includes them all. Scientists,
philosophers, and psychologists have used this term in such diverse contexts that any
attempt to reconcile the various perspectives is doomed to failure. Even in the field
of Artificial Intelligence there are different ways of understanding the term. Figure 3.2
presents a classification under which the different interpretations of experimentation may
be grouped.

The broadest definition of experimentation includes thought experiments (also called

Gedanken experiments). These include any mental supposition followed by its mental
test. For example, we all do this kind of experimentation when trying to solve some prob-
lem that requires making suppositions and figuring out what would happen if they were
made true. When the test is actually performed in some way, then the experimentation
is active and usually involves an action in the external world.

Purposeful experimentation can be intentional or curiosity-driven. Many of the actions
taken by children at play are of the latter kind, where actions are applied just to see what

happens, just to determine their effects. Pure curiosity can lead to the exploration of the
consequences of the set of actions available. In this case, surprises can trigger experiments
that have some intention by themselves. Another purpose of this kind of experimentation
can be to analyze the consequences of certain actions that have shown to be interesting
for the system. This means that it will be able to gather knowledge from the experiment
that the system may otherwise be missing. Passive observations of the actions performed

by another entity could be included in this group.

Task-driven experiments imply deliberately provoking some change in external condi-
tions when an experiment is performed as a means to gather knowledge that is necessary
to achieve a previously set goal. The consequences of such deliberate actions are ob-

served and the system corrects its knowledge to adjust it so as to match more closely its
environment. The experiments are directed to find the knowledge that the system needs
to solve the task. Task-driven experimentation describes best the work in this thesis,
and is highlighted in Figure 3.2.

Confirmation experiments are performed to test the degree of validity of a certain
hypothesis. In this case, there is some preconceived knowledge of what the exact conse-

quences might be. If the system can have a range of values that describe the credibility
of its knowledge, experimentation can be useful to give the system a more accurate idea
of the validity of each belief. Other systems can accept or reject a hypothesis on the
basis of a single experiment.

A particular case of confirmation experiments is the scientific method (sometimes also
called experimental method) in which experiments are designed to test some theory. As
Kuhn (Kuhn, 1977] described them, they can either refute or confirm a theory, but never
assure its complete validity. We do not relate any of our current research to this definition
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EPerienaton
(including thought experiments, physical experiments, ... )

Physical experimentation: actions in external world
(including serendipity, idle curiosity, ...)

Purposeful experimentation (goal-driven):
acquistion or confirmation of new knowledge

Task-driven
expetomentation:
:acquisition of
knowledge
requir to
complete
or execute a plan

Confirmation
experiment:
establish validity of belief
(absolute or probabilistic)

Hypothesis-driven
experiments

Figure 3.2: What is Experimentation? Our operational definition is task-driven experi-

mentation, where deliberate changes in external conditions are preformed as a means to

gather knowledge that is necessary to achieve a previously set goal.
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of experimentation. On the contrary, we will explore ways in which experimentation will
allow our system to acquire new knowledge, but never with a preconceived theory to be
confirmed oi refuted by the outcome of the experiments. The word experimentation will
be dissociated from the usual interpretation in the context of the scientific method. This
does not mean a total separation, however. Many of the early chemistry experiments,

for example, lacked theoretical basis.

Our work does not represent an effort to give a solution to the global problem of
automating the process of making experiments as a whole. Rather, we focus our attention
on a few points of the fairly large space of experimentation. Here, we always refer to
experimentation in an active planning context: there is a goal, a state, and a (partially)
formulated plan. Experiments are task-driven, always directed at overcoming a current
impasse in the planning processes due to a lack of domain knowledge. This means that
the description of the world that is learned is one that is useful for solving the problems

that the intelligent system must solve. We never learn in this framework any properties of
the world irrelevant to the problem-solving task, i.e., we are not modeling idle curiosity.
This kind of task-driven experimentation gives the system a context in which to learn
and more focused information for the experiments.

3.5.2 Efficient Experimentation

When expectations and observations differ, the system engages in an expensive process

of finding what knowledge it is missing that would account for the difference. Experi-
mentation can be described as having the following steps:

1. Hypothesis formation: Find possible hypotheses that explain the phenomenon.
It is not necessary to enumerate all possibilities, since the system should try first
the most plausible ones. Identifying the most plausible hypotheses facilitates the

process enormously, but it is also a complicated matter.

2. Requirements for an Experiment: Decide what is required to test a given
hypothesis. Testing a hypothesis might require several experiments.

3. Experiment: Experiments are done in three phases:

(a) Design: In order to obtain the data that the system needs, an experiment
must be designed with the appropriate functionality. Experiments are de-
signed following the requirements specified in Step 2, and instantiating any
variables that are not constrained by the requirements. If many experiments

are possible, one must be chosen. The design phase includes planning to
achieve the state where the experiment is to be performed.
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(b) Execution: Once designed, the experiment can be carried out on the external

environment.

(c) Observation: After the experiment has been performed, the system obtains

feedback from the external world.

4. Analysis: When the results of experiments are analyzed the system might have
found the information that it sought. If not then it might design and perform more

experiments, or go back to the hypothesis formation stage to revise its hypotheses.

5. Confirmation: Confirmation experiments may be designed and carried out to

corroborate the hypotheses emerging from the results of the experiments just per-

formed.

6. Acquisition: Based on the observations, the system might or might not change its

current knowledge. Possible changes include correcting what is inaccurate, adding

missing information, and confirming existing knowledge.

7. Recovery: The state of the world before the experiment was performed might

have to be restored. Performing an experiment might have affected the initial set
of goals either violating goals (negative interactions) or achieving goals (positive

interactions).

The cycle of steps 1 through 4 is repeated until the experiments yield the information
sought or the system decides to give up and work on another task.

The requirements Ereq,,rements for experiments that result from Step 2 are specified

as follows:

* Eoperator: the operator about which the system tries to collect more information.

* Ecurrent-state: State the system is currently in.

0 Eexper.state: A state in which the experiment is to be performed. It is any state that

matches all the preconditions of the operator, plus an additional set of conditions

necessary for the experiment (usually related to the hypothesis being tested).

0 Eobser,,e: Observations to be collected before and after the action that corresponds

to Eoperator is executed.

The methods for learning by experimentation in Chapter 5 detect expectation failures,

find hypotheses to correct them. and produce Erequirements. The rest of the experimenta-

tion stages are addressed in Chapter 4.
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Many hypotheses can be plausible for any given phenomenon. For each hypothesis, we

can envision many possible experiments. Each experiment requires, among other things,

setting the environment in the appropriate state to perform it. This involves the use of

the planner to achieve that state. Many plans may be possible, each involving different

resources. Experiment design and execution can be costly. Thus, the use of experimen-
tation requires a framework where the most promising hypotheses and experiments are

considered first.

3.6 PRODIGY

The methodology described in this thesis is implemented in an experimentation system

called EXPO. EXPO uses PRODIGY [Minton et al., 1989a; Minton et al., 1989b; Carbonell
et al., 1991] as the underlying planning system. PRODIGY is a general-purpose problem
solver that serves as a testbed for planning and machine learning research. The central

problem solver was purposefully designed with a "glass-box" approach: all the steps
taken, all the decisions made, and all the information consulted by the engine are available

in a problem's trace. This is a very useful feature for any learning system, since there
is an information context in which learning can take place. In addition, PRODIGY is a

well-developed and thoroughly tested tool.

This section first presents the particular description language that PRODIGY uses to

represent domain knowledge. Then it describes briefly other learning methods imple-

mented on PRODIGY to discuss their relationship with EXPO.

3.6.1 PRODIGY's Domain Knowledge

In PRODIGY, the domain knowledge is given by a set of operators and inference rules.

The operators are models of the available actions, specifying under which conditions

(preconditions) an action has which effects (postconditions). Inference rules are used to

deduce additional information from the state. A problem is given by an internal state,

representing the current state of the world, and a goal statement. PRODIGY searches for

a solution using backward chaining means-ends analysis.

The preconditions of an operator are represented by an expression in a special type of

first-order logic called PDL (for PRODIGY's Description Language). PDL allows negation,

conjunction, disjunction, and universal and existential quantification. The effects can be

primary or conditional (when their application depends on the state in which the operator

is applied). Figure 3.3 presents a BNF description for PDL.
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LOW-LEVEL SYNTAX:

constant ATOM

variable <ATOM>

predicate ATOM
term := variable I constant I exp

var-list := (variable variable ... )

SYNTAX FOR FORMULAS:
exp := atomic-exp I negated-exp I existential-exp I universal-exp I

conjunctive-exp I disjunctive-exp

atomic-exp (predicate term term ..... )

negat*ed-exp ( existential-exp) I (- atomic-exp)
disjunctive-exp : (OR exp exp exp .... )
conjunctive-exp (AND exp exp exp .... )
existential-exp (EXISTS var-list generator exp)
universal-exp := (FORALL var-list SUCH-THAT generator exp)

generator := atomic-exp

SYNTAX FOR OPERATORS:
operator-name : ATOM
simple-effect (ADD atomic-exp) I (DEL atomic-exp)

conditional-effect := (IF exp [simple-effect]*)
effect := simple-effect I conditional-effect
operator := (operator-name (PRECONDS exp) (EFFECTS ( effect effect ... )))

Figure 3.3: PRODIGY's Description Language and Operator's Syntax

Inference rules are used in PRODIGY to deduce additional facts about the current
state. While the application of an operator produces a new state, the application of an
inference rule augments the facts that are known about the current state. The predicates
added by an inference rule are called open world, and are only computed on demand by
backward-chaining on the rule. Inference rules, unlike operators, do not correspond to

any external actions.

PDL allows functions to be part of the preconditions of an operator. Consider, for
example, the following operator:

(PICKUP-OBJ

(preconditions

(and (armempty)

(next-to ROBOT <obj>)

(is-object <obj>)

(weight-of <obj> <weight>)

(loss-than <weight> 10)))
(effects (

(del (arm-empty))
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(del (next-to <obj> <*other-obj-1>))

(del (next-to <*other-obj-2> <obj>))

(add (holding <obj>)))))

less-than is a function whose two arguments range over the real numbers. It is
written as a Lisp function, and it returns true if its first argument is smaller than the
second one. The possibility of including functions in the preconditions makes PDL very
powerful, since any computable function can be used as a precondition. But this same
property makes learning more difficult, as we describe in Section 4.1.

3.6.2 Learning in PRODIGY

Figure 3.4 depicts the different learning modules that have been developed for PRODIGY.

Learning is used to speed up problem solving through the automatic acquisition of
episodes useful for analogical reasoning [Veloso, 1992], producing abstraction hierarchies

[Knoblock, 19911, and learning control rules [Minton, 1988; Etzioni, 1990; P6rez and
Etzioni, 1992]. All these methods are designed to capture control knowledge to guide the
search process. The domain knowledge is never changed.

None of these learning methods address the issue of how the domain knowledge is
acquired. In PRODIGY learning at the knowledge level is done both from the user through
an apprentice-type system [Joseph, 1992] and from the environment through autonomous
learning via experimentation (as described in this thesis). The APPRENTICE system
provides a user-friendly in,.face for defining the operators and the problems in a domain.

EXPO is a module that automatically refines a knowledge base by direct intf raction
with the environment. Given some initial domain knowledge (defined through APPREN-

TICE or by any other way), EXPO monitors plan execution to detect faults in the op-
erators. Experimentation is used to correct these faults. Learning produces new and
improved definitions of the operators. Notice that, unlike APPRENTICE, EXPO does
not require interaction with a user, being the only module in PRODIGY that learns new

domain knowledge autonomously.
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Figure 3.4: A Schematic Representation of PRODIGY. EXPO is the only system that

acquires new domain knowledge autonomously.



Chapter 4

The Experimentation Process: Step

by Step

This chapter describes how to detect faults in a planner's domain knowledge, and how to
design experiments to pinpoint the faults and correct the domain. The experimentation
process is described in detail for one particular case: acquiring new preconditions of
operators. The chapter presents both general descriptions of the techniques used and
their particular implementation in EXPO.

The chapter begins describing a method for detecting operators that are missing
some preconditions. Then it shows how to construct hypotheses as a set of predicates
representing possible new preconditions of the operator. Section 4.3 describes a set of
heuristics that compare the hypotheses and choose the ones most likely to yield the
condition missing from the operator. Section 4.4 describes how to design experiments to
test each chosen hypothesis. Experiment design is cast as a search for a set of conditions
necessary to (dis)confirm the hypothesis. and a plan to bring them about. Many different
criteria considered for this design space are described in this section as policies. A
combination of policies forms a strategy, which guides the search to design experiments
that meet the desired criteria. This section describes two very different strategies used
by EXPO. The chapter continues describing how the experimentation process is carried
out until the missing precondition is found, and how problem solving is continued after
learning from the experiments. The chapter ends with a discussion on how the techniques
described compare with experimentation techniques of other systems.

47
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4.1 Detecting Missing Preconditions

Suppose that a planner is given the incomplete operator from the process planning domain
shown in Figure 4.1. This operator models the process of grinding a metallic surface. A
grinder holds a part with some holding device, and, using a grinding wheel as a tool, it
changes the size of the part along a selected dimension. This representation may seem
correct, but in fact the system will find additional facts that are required through its
experience. For example, the operator is missing the precondition that the grinder must
have cutting fluid. Grinding is an abrasive operation that generates heat as a result of
the friction between the tool and the part. If no cutting fluid if present to absorb the
heat, then the grinding process will not produce the desired size (the grinder and the

part will overheat instead.)

(GRIND-IICOMPLETE

(preconditions
(and

(is-a <machine> GRINDER)
(is-a <tool> GRINDING-WHEEL)

Cis-a <part> PART)
(holding-tool <machiue> <tool>)
(side-up-for-machining <dim> <side>)

(holding <machine> <holding-device> <part> <side>)))

(effects (
(add (surface-finish <part> <side> SMOOTH))

(add (size-of <part> <dim> <value>)))))

Figure 4.1: An incomplete model of grinding

Suppose that the system is trying to grind a part to make its length smaller. Before
grinding the part, the system checks that the preconditions are true in the external
world, as shown in Figure 4.2(a). Since the observations confirm the expectations, the

system goes ahead and applies the action to try to grind the part. After applying it,
the postcondition of GRIND is checked in the external state. The size of the part has
changed to be of size k, but the surface finish is not as it was expected, as shown in
Figure 4.2(b). This may be because the known effect that specifies the new surface finish
is wrong, or because the operator is missing a necessary precondition. We consider the
later hypothesis first. that some unknown precondition is not true in the state and thus
the grinding action is not working as the given operator specifies.

How could we find out what the missing precondition is? We can try to find out what
conditions were true in an earlier successful application of the operator that are not true

now. Figure 4.2(c) shows a previous successful situation when the grinder had fluid and
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Figure 4.2: Finding new preconditions of grinding

the operation worked. The system now puts fluid in the grinder, and tries again to apply

the operator. Now the action is successfully applied, and the operator is corrected.

But in the general case, there can be several differences between the state in which

the operator is applied successfully and the state in which a failure happens. Then,

experimentation is needed to determine which one of the differences is relevant for this
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particular failure. The method for learning new preconditions is summarized in Table 4.1.
Notice that A(Sold, Sc t) contains the following two sets of predicates: (1) predicates
in SL•d that are not in Su,.,.nt, and (2) the negation of predicates in SCU,.,..nt that are not
in Sold. So this method accounts for learning of positive as well as negative preconditions,
depending on which subset of the differences contains the relevant condition.

If after manipulating the world the effects of the operator 0 are not true,

then hypothesize that a precondition of the operator is missing.

1. Select candidate preconditions. The candidate set A(Sold, Scurrent) is

formed by calculating all the differences between the most similar earlier
state in the previous problem solving history in which 0 was applied suc-

cessfully (Sold) and the current state Scurent (an unsuccessful application

of 0).

2. Identify missing precondition. Formulate experiments observing if the
operator is successfully applied when one of the differences P is true in
the state. Use any information available to formulate the most promising
experiments first. In absence of knowledge, apply a divide and conquer

strategy to isolate the precondition from A(Sold, Scrrent).

3. Add P as a new precondition of operator 0.

Table 4.1: Method for learning new preconditions. When the effects of an operator do
not occur in the external world, a previous successful application of the operator is used

to find a missing condition of the operator.

This set of hypotheses does not necessarily contain the relevant condition as it may
not be represented as a single atomic observable expression. Other possible hypotheses

to be considered as candidate conditions are:

e Disjunctive expressions of predicates

e Inferred predicates deduced in a state by theorem proving

e Quantified expressions of some predicates

e Predicates that are never observed because they are not needed for planning (i.e..
the weight of a box)

o A functional relation of several predicate arguments
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So if the cause of the failure is not found after experimenting with A(SoId, Scurren),

then these additional hypotheses must be considered. EXPO does not expand the hy-
potheses further, and it confines the experiments to A(Sold, Scurrent). When it runs out

of hypotheses, it gives up learning and continues plan execution.

4.2 Constructing the Set of Hypotheses

As we described in the previous section, if there are several differences between the success
state and the failure state, experimentation is needed to find the relevant condition for
the failure.

Here is a typical set obtained by EXPO. In this case, GRIND(grinderl, wheell, visel,
part7, TOP) is successful but GRIND(grinderl. wheell, visel, part3, TOP) fails:

(size-of <part> WIDTH 3)
(size-of <part> LENGTH 7)

(size-of <part> HEIGHT 2.5)
(material-of <part> BRASS)

(has-fluid <machine>)
(surface-finish part26 <side> SAVCUT)

(holding drilll vise2 part26 <side>)
(material-of part26 STEEL)
(is-a drilll DRILL)
(is-a drill-biti DRILL-BIT)

(material-of part37 COPPER)

(has-hole part37 <side>)

The problem can now be specified as follows:

Given: an operator OP that has an incomplete set of preconditions

a set of predicates Candidates that contains a precondition that OP is missing

Find: which predicate in Candidates is the missing precondition of OP

If all the predicates in Candidates are equally likely as possible new conditions, a
divide and conquer strategy through the set Candidates is the most appropriate experi-
mentation strategy. The algorithm is described in Table 4.2. Notice that if the cardinality
of Candidates is n, this algorithm requires log(n) experiments. Furthermore, each exper-
iment has a large set of requirements. Besides Preconditions(OP), the first experiment
requires n/2 predicates to be satisfied. the second requires n/4, and so on until there
is only one predicate left (a total of 2n - I predicates). The algorithm always requires

log(n) experiments and a total of 2n - 1 predicates to achieve. The planner has to build
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a plan to set the environment in a state that satisfies that many predicates. Apart from
the planning effort involved, the execution of those plans raises non-trivial issues. Plan
execution may use up valuable resources (including time), produce non-desirable changes
in the environment that are hard to undo, and interfere with the main goals of the sys-
tem's task. For all these reasons. it is important to minimize the number of experiments
and their requirements.

Divide-andConquer-Experimentation (OP, Candidate)

1. New-Candidates - { }

2. Divide Candidates into two subsets of equal cardinality: CandidatesA and
CandidatesB.

3. Prepare experiment: achieve a state where Preconditions(OP) A Candidates.A are
satisfied.

4. Experiment: execute OP.

5. If execution is successful, then New-Candidates - CandidatesA else
New-Candidates 4- CandidatesB

6. If Cardinality(NewCandidates) = 1, then return NewCandidates else Di-
vide-andConquer(OP, NewCandidates).

Table 4.2: Algorithm for divide and conquer experimentation. The algorithm divides
the set of candidates into two subsets of the same size, and uses an experiment to find
out which subset contains the missing precondition, then the process is iterated on the
subset until its size is one. The algorithm always requires log(n) experiments and a total
of 2n - 1 predicates to achieve.

Another consideration is that the set of hypotheses constructed contains many can-
didates that may not be worth exploring unless everything else fails. In the hair dryer
example of Section 1.1 some of the initial candidate hypotheses were the time of the day
and the day of the week. In the set of hypotheses above for the GRIND operator, bogus
hypotheses include "GRIND fails if there is a part made of steel" and "GRIND fails if
there is a part that has a hole". Additionally, if the operator is missing more than one
condition, the algorithm will fail. The divide and conquer algorithm is very simple to
implement, but is definitely far from satisfactory. If any information is available to de-
termine a smaller subset of Candidates as more relevant, the experimentation effort may
be greatly reduced. In particular. if we could devise a way of ranking the predicates in
Candidates from most relevant to least. then each candidate could be tested individually.
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Such an informed algorithm is shown in Table 4.3. The number of experiments re-
quired is inversely proportional to the competence of the ranking procedure. And, most
importantly, only one predicate needs to be satisfied in each experiment (apart from
Preconditions(OP)). On average. n/2 experiments are needed In the worst case n ex-
periments are needed each involving also 1 top level goal.

Informed..Experimentation (OP, RankedCandidates)

1. Current -Candidate +- Pop(RankedCandidates)

2. Prepare experiment: achieve a state that satisfies Preconditions(OP) A

Current Candidate.

3. Experiment: execute OP.

4. If execution is successful then return Current-Candidate else return In-

formed..Experimentation( OP. Ranked-Candidates).

Table 4.3: Algorithm for informed experimentation. The candidates most likely to be
relevant are ranked higher. In average, n/2 experiments are needed (n in the worst case)
and each involves 1 top level goal.

Many systems discussed in Chapter 2 us- causal theories or other types of background
knowledge to build explanations that lead to the causes of the failure. EXPO relies
exclusively on the knowledge given initially for planning. This means that the learning
occurs even when no causal, structural, or common sense knowledge (other than the one
embedded in the domain model) is -vailable. This is a major advantage, since we do not
need to address in turn the acquisition and refinement of that additional and necessarily
complex background knowledge.

In summary, any information that may be used to rank the hypotheses greatly reduces
the experimentation effort. EXPO's approach is to use heuristics that extract any such
information strictly from the domain knowledge given to the planner. The heuristics for
choosing hypotheses presented in the next section are a step in this direction.

4.3 Choosing Hypotheses: Finding Relevant Con-

ditions for Failure

This section presents different ways to exploit knowledge about the planning task to
evaluate which predicates in a set of differences are more likely to have caused the failure.
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The section begins by describing three heuristics to choose hypotheses. Then, their

implementation in EXPO follows. Section 4.6 presents a discussion of these heuristics.

Their evaluation is presented in Chapter 6 together with other empirical results for

EXPO.

4.3.1 Locality of Actions

The first heuristic is the locality of actions. The preconditions and effects of actions are

concentrated locally, usually affecting the objects under direct influence of the action.

In our example we are grinding part7. The fact that this part is made of BRASS may

be relevant to the failure obtained. However, it is probably not important that part37

is made of COPPER. This means that we can select the predicates in the set related to

objects that the operator GRIND refers to directly.

This locality heuristic is implemented considering only the predicates in the state that

contain any of the objects included in the bindings of the parameters of the operator. In
our example, if we extract the predicates that include any of {grinderl, wheell, visel,

part7, TOP} we obtain the following subset:

(size-of <part> VIDTH 3)

(size-of <part> LENGTH 7)

(size-of <part> HEIGHT 2.5)
(material-of <part> BRASS)

(has-fluid <machine>)
(surface-finish part26 <side> SAWCUT)

(has-hole part37 <side>)
(holding drilll vise2 part37 <side>)

Notice that with this heuristic we eliminated from the list many predicates that were

in fact irrelevant for grinding. For example, many facts about parts not being ground

have disappeared.

This heuristic is not helpful when the set of variables that appears in an operator is
incomplete. If the operator for grinding lacks any predicates that have to do with the

tool being used, the system would never learn that the tool is important for the action.

A possible way around this problem is to give some structured knowledge to the state.

For example, to have information in the state about where everything is, and what things

are close to each other. In this work, we avoid this kind of approach because it requires
adding to the system knowledge that is not strictly required for planning.

Another problem is that this heuristic does not always propose relevant differences.

Consider the subset of differences just obtained. Because grinding is being done to
part7, all the facts about part7 could be relevant. But since the TOP is the side being
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ground, any facts that have to do with TOP are also considered relevant. This includes
for example the fact that part37 has a hole on the TOP, which is not relevant to the
application of the operator.

4.3.2 Generalization of Experience

Another helpful heuristic is generalization of past experience. Generalizing successful
situations tells us what predicates appear in all success states. This summary of past
experience helps us to locate relevant causes of failures.

This heuristic is implemented by generalizing successful situations through the bind-
ings of the operator. This gives us the set of predicates that have appeared in all of them.
After removing from that set the predicates that correspond to the preconditions of the
operator, we obtain the following set:

(material-of <part> BRASS)
(surface-finish <part> <side> SAWCUT)
(has-fluid <machine>)

Notice that this set is much smaller than the-one in the previous section, where we
only considered a single success situation. When the system encounters more successful
situations, then the set of differences becomes smaller.

If the system has no previous experience with the application of the operator this gen-
eralization strategy is not helpful. This strategy also fails when not much generalization
can be extracted from successful applications.

A generalization of all the possible situations where grinding is successfully applied
is exactly the correct precondition expression sought. The preconditions of an operator
express the sufficient conditions for applying the operator, and represent the class of
states in which the operator is applicable. Thus, learning the precondition expression of
an operator is a problem of concept learning. The initial precondition expression of an
operator is the initial description of the concept. Each successful execution of an action is
a positive example of th ! concept, and each failure a negative example. Experimentation
is an additional source of examples. and it provides the learner with the ability to design
instances and direct the learning.

However, this concept learning is simpler due to common simplifying idealized as-
sumptions of planning tasks. There are no misclassified examples. The effects of actions
can be observed immediately after execution. The observations are collected through
noise-free sensors. Under these assumptions, our classification of execution success and
failure never produces noisy data. As far as the language used for expressing the con-
cepts, the large majority of the precondition expressions in operators are conjunctions
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of predicates (or negations of predicates). This is because actions are easier to express
if their effects under different conditions are described in separate operators. Disjunc-
tions can be (and are) expressed explicitly in different operators. In this sense, limiting
learning to conjunctive expressions is still useful.

4.3.3 The Structure of Domain Knowledge

Operators for a single task are often closely related to one another. Some operators are
inverses, i.e., they undo each other's effects. Some operators have similar effects, but
are applied under different conditions. Both of these relations appear in the machining
domain. There are operators for holding a part with a certain holding device, and there
are operators to release the part from the device. There are operators for holding a
tool in a machine, and operators for releasing tools from machines. The operators for
drilling are all similar to one another. So are the operators for polishing surfaces. These
relations of similarity and reversibility constitute the heuristic of structural regularity of
the domain.

Structural similarity will help us identify what hypotheses are more plausible by
looking at similar operators to the operator being considered. This is a very general
idea, and it can be used for learning new preconditions, as described next.

One way to implement this heuristic is to organize the operators in a hierarchy, so that
similar operators can be easily located. The hierarchy can be built through comparing
the preconditions and effects of operators. In our machining domain, part of the hierarchy
that includes the grinding operation is shown in Figure 4.3.

change-surface-finish reduce-size

polish grind face-mill sic,
finish-turn rough-turn

Figure 4.3: Part of the operator hierarchy in the process planning domain.

Consider the set of differences obtained in the previous section as possible candidates
for a new precondition of grinding. Many other operators change the size of a part. Many



4.3 CHOOSING HYPOTHESES 57

of them require the use of cutting fluid, which is in fact the relevant condition for this
particular failure.' Only some of them have conditions about the material of the part.
And none of them has any conditions about the surface finish of a side of the part. The
heuristic suggests that the differences should be considered in the following order:

1. (has-fluid <machine>)
2. (material-of <part> BRASS)
3. (surface-finish <part> <side> SAWCUT)

This heuristic is not very helpful if there are no similar operators or if there are similar
operators but they are also incomplete.

4.3.4 Implementation

This section describes in detail the algorithms that implement in EXPO the heuristics
just described.

Each execution of the operator is either a success or a failure. As Section 3.2 described.
the precondition expression of an operator can be seen as a concept that represents the
states in which the operator can be executed successfully. A state in which a successful
execution occurs corresponds to a positive instance of the concept, and a state in which
a failure is obtained is a negative instance. Each constant in the instances must be
parameterized according to the bindings of the operator. For example, if the variable
<part> is bound to partl when we execute GRIND, and the state contains (material-of
part 1 BRASS) we would like the concept to contain a more generalized version of this fact,
i.e., (material-of <part> BRASS). EXPO keeps information about action executions
in situations, which are composed of:

"* Operator: the operator whose action was executed.

"* Result: the result of the execution, i.e., success or failure.

"* Bindings: the list of bindings for the operator variables.

"* State: the list of predicates believed to be true immediately prior to the operator
being executed.

'Cutting fluids cool both the cutting edges of the tool and the part, aid in chip clearance, and improve
the surface finish. Notice that a great deal of background information would be needed to explain that
the presence of cutting fluid is important for grinding.
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To generalize from experience, EXPO applies the algorithm presented in Table 4.4.
Given two situations, their generalization is a new situation generated as follows. First,
the corresponding bindings are generalized. Then the literals in the state are changed
substituting the constants and variables according to the new bindings. The state of the

generalization includes only the predicates that appear in the generalized states of both
situations.

Generalization(Si, S 2)

e Set,.Operator .- SI.Operator

"* Generate S,,,i.Bindings from SI.Bindings and S2 .Bindings

- the generalization of a variable and a constant is the variable itself.

- the generalization of two different constants is a variable.

- the generalization of two equal constants is the constant itself.

"* Generate A by substituting the constants and variables of S1.Bindings that appear
in S 1.State by the bindings in Sn,,e.Bindings

"* Generate B by substituting the constants and variables of S2.Bindings that appear
in S2 .State by the bindings in Se,.Bindings

"* Sn,,.State - A n B

"* Return S,,n

Table 4.4: Algorithm for generalizing two successful situations.

Notice that this generalization algorithm is biased to produce conjunctive descriptiolis
of the concept. This bias is appropriate for this application. The large majority of the

precondition expressions in operators are conjunctions of predicates (or negations of
predicates). This is because actions are easier to express if their effects under different
conditions are described in separate operators. In this sense, even if the system aims

to learn only conjunctive expressions of predicates it would be a great win. In fact,
even though PRODIGY allows for a very expressive language in the preconditions, the

generalization only contains the predicates in the preconditions that are part of the
conjunct. For example, if the precondition expression of an operator is (and (A B C D

(or E F))) E and F are never included in the generalization.

EXPO maintains the current description of each operator's preconditions as a version

space [Mitchell, 1978]. A version space is defined within a lattice of concept expressions
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that are ord -red from more general to more speific. Concept instances are the most
specific expressions. Successively more general descriptions are found at higher positions
in the lattice. A version space is defined by two boundary sets: a set of maximally
specific descriptions (S) and a set of minimally specific descriptions (G). A version space is
maintained for each operator. The examples correspond to situations in which the system
tried to apply the operator. Recall that successful situations are positive instances, and
failure situations are counterexamples or negative instances. Given two situations Si and
S2 , $S is more general than S2 if both of the following hold:

"* Each literal in the state of S1 has a corresponding literal in the state of S2. The
correspondence is done through the bindings of both situations.

"* The bindings of S1 are more general. A variable is more general than a constant.
If two constants are equal. the generalization is the constant itself.

The G set, the most general description, is initialized to the initial preconditions of
the operator and its value is kept to the current preconditions. The S set is updated
as new success situations are obtained using the generalization algorithm just described.
When a new failure situation is obtained, the S set is updated by removing from it
any conjuncts that also appear in the failure state. Because G is always the current
preconditions of the operator, G always covers failure situations and must be specialized.
Instead of following the usual procedure for updating G (which is highly inefficient when
there are many possible new conditions), EXPO waits until the missing condition is found
through experimentation, and then adds it to the current conjunct in the G set.

The version spaces implement the heuristic for selecting hypotheses based on its
generalization of experience. From the set of current candidate hypotheses, only the
ones that appear in S (the ones that are common to all successful situations) and do not
appear in G (since G contains the preconditions, they appear in the failure state) are
selected.

The set of hypotheses selected by the generalization heuristic is then filtered by the
locality heuristic. This heuristic sele-ts only the hypotheses that contain constants and
variables that appear i;, the bindings of the failure situation. This new subset of the
hypotheses is then ranked by the heuristic of structural similarity as we explain now.

All the domain operators are organized by EXPO in a hierarchy using a simple clus-
tering algorithm described in Table 4.5. The top node contains all the operators in the
hierarchy. For every node, the operators that are not in any of its children yet are exam-
ined to build a child node. The expression or expressions 2 that appear in a larger number

2preconditions, postconditions, or both. In our experience with EXPO's domains, this does not make
a difference in the effectiveness of the structural similarity heuristic.
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of operators define the child node, and the operators that contain them are transferred

to it. The algorithm works its way down in the tree until a node is reached that contains
only one operator or all of its operators expressions are included in the node. When a new
condition or effect for a, operator is learned, the hierarchy is updated by recomputing
the children of the node that contains the node operator.

BuildOperator.Hierarchy (Operators)

1. For each OP E Operators do
Expr(OP) 4- expressions in the preconditions and effects of OP.

2. Open -- 1}.

3. Node.Ops +- Operators

4. Open +- Node

5. Repeat

* Node 4- Pop(Open)

* Node.Subtypes +- ProduceSubtypes(Node)

"* Node.Ops -- Node.Subtypes

"* Push(Open, Noae.Subtypes)

Until Null(Open)

ProduceSubtypes(Node)

1. Repeat

(a) Find the set of expressions E that are most common for operators in

Node.Ops.

(b) Make a subtype node with all the operators in Node.Ops that have all the
expressions in E and remove them from Node.Ops.

Until Ops-inSubtypes = Node.Ops.

Table 4.5: Algorithm for building an operator hierarchy.

EXPO considers first the hypotheses that are selected by the three heuristics. Then,
it considers the ones that the structural regularity rejected, then the ones rejected by the
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locality heuristic. Last, EXPO considers the rest of the hypotheses in the initial set.

Determining the missing precondition is done through iterative experimentation with
the ranked list of candidate predicates. In EXPO, this process converges if the missing
condition is an observable and non-inferred predicate that is within a conjunctive ex-
pression. If this is the case, the missing condition is included in the group of candidate
hypotheses, and EXPO eventually encounters it and learns it through experimentation.

Although the algorithms presented in this section can be made more sophisticated,
we must keep in mind that they are used to build heuristics. In their simplicity, the
results in Chapter 6 show that they are effective for implementing these heuristics.

4.4 The Experimentation Search Space

The previous section described how to compare hypotheses heuristically to evaluate which
ones are more promising. Once a particular hypothesis is chosen, an experiment must
be designed to test it. In our particular example, the heuristics suggest that the most
promising hypothesis is that the precondition that the operator GRIND is missing is

(has-fluid <machine>).

In order to perform an experiment, the world must be brought to a state where the
conditions of the experiment are satisfied. In our example, we must reach a state where
the current known preconditions of GRIND and the hypothesized new condition are
satisfied. In other words, our goal is to reach a state where the following are true:

(exists (<machine> <tool> <part> <dim> <side> <holding-device>)
(and

(is-a <machine> GRINDER)
(is-a <tool> GRINDING-WHEEL)
(is-a <part> PART)
(holding-tool <machine> <tool>)
(side-up-for-machining <dim> <side>)
(holding <machine> <holding-device> <part> <side>)
(has-fluid <machine>)))

The planner must first come up with a plan to achieve this state from its current
state, which is the state in which the failure occured that triggered experimentation. We
call this search process pre-experiment planning.

Once the pre-experiment plan is executed, the experiment can be carried out. In our
example, we GRIND and check if this time the effects specified for GRIND are obtained.
If not. other hypotheses must be tested with other experiments. But if grinding works
now, then the missing condition must be (has-fluid <machine>). The new condition is
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added to the operator GRIND. Then, the original plan that failed must be continued in
order to achieve the original goal. If the pre-experiment plan has undone any of the facts
necessary for the original plan. then a post-experiment plan is needed to restore those
facts and continue with the main plan. Whether a post-experiment plan is used to enable
the continuation of the original plan or replanning is done to achieve the original goals is
not the issue here. The issue is that there is some effort needed to restore facts that were
undone during pre-experiment planning and we call that post-experiment-planning.

Clearly, some pre-experiment plans are better than others. Minimal interference with
the main plan is important. In our example, it would be better to use another holding
device for the experiments since visel is already holding partl. So maybe using grinder2,
wheel2, and vise2 is better. But perhaps it is more important to make the pre-experiment

plan as short as possible, so we can recover from the failure and go on with our main
plan. If this is the case, maybe using grinderl, wheell, and visel is better since they are
already set up and ready for grinding operation. So, one experiment may be better than
another one, depending on what policy is preferred.

EXPO designs experiments following a set of policies chosen by the user from a pool.
Each policy defines a preference to be used for decision making and can be thought of
as a piece of control knowledge to be used during experimentation planning. Policies are
grouped together to define strategies. We describe now EXPO's policies and strategies
in detail.

4.4.1 Experiment Policies

The experiment policies described in this section are grouped under four topics: search
depth and plan length, goal interactions, operator properties, and binding interactions.
They are summarized in Figure 4.4. Notice that all the policies described in this section

are domain independent.

Search Depth and Plan Length

Limiting the search depth helps control the search time. Limiting the plan length helps
control the execution time.

Each level of a search involves the application of an operator or an inference rule.
An inference rule represents a deduction from the current state, whereas an operator
represents an externally executable action. The final plan is composed only of actions.
This is why the depth of the search does not correspond to the length of the plan,
although they are related.
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"* Search depth and plan length

- Avoid deep nodes

- Prefer shallow nodes

- Avoid long plans

- Prefer short plans

- Avoid plans with too many state changes

- Prefer plans with fewer state changes

"* Goal interactions

- Support main goal concord

- Avoid main goal protection violation

- Avoid main prerequisite violation

"* Operator properties

- Avoid irreversible operators

- Prefer reversible operators

- Prefer operators that minimize state changes

- Prefer more reliable operators

- Avoid unreliable operators

"* Binding interactions

- Avoid objects of very high protection

- Prefer objects of lower degree of protection

- Prefer least number of protected objects

Figure 4.4: EXPO's experimentation policies.

EXPO's available policies that concern experimentation search depth and plan length
are:

* Avoid deep nodes: Never expand nodes below a certain depth. This maximum

depth for the experimentation search must be given a value.

e Prefer shallow nodes: Prefer expanding shallower nodes.

* Avoid long plans: Never choose plans that are longer than a given length.

* Prefer short plans: Prefer plans that are shorter.
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* Avoid plans with too many state changes: Never choose plans that cause
changes in the external world over a given number. The amount of changes that a
plan produces in the sum of the effects of the operators that compose it.

e Prefer plans with fewer state changes: Prefer plans that cause a smaller
amount of changes in the external world.

Goal Interactions

The goal interaction policies refer to the interactions between the goals in the experi-
mentation space and goals in the main search space. They are different from the types
of interactions within a search space. as in [Sussman. 1975; Sacerdoti, 1977], where for
example goal Gi may be preferred to another goal G2 if achieving G1 first causes G2

to undo G1. Here, a search path is preferred over another one it minimizes negative
interference (or maximizes positive interference) with the top level goals. Notice that the
preference is over which search paths to pursue, not over which goals.

EXPO's policies for interactions with the main goals are:

" Support main goal concord: If a search path achieves a goal that remains to
be achieved by the main plan. prefer it over other paths.

" Avoid main goal protection violation: If a search path clobbers a goal previ-
ously achieved by the main plan that is still needed to achieve the main goals, then
prefer other search paths over this one.

" Avoid main prerequisite violation: If a search path undoes a fact that the
remaining main plan requires to be true, then prefer other search paths to this one.

Operator Properties

Local decisions about which operator to prefer in order to achieve a goal may be based
on properties of the candidate operators. Some properties may be domain dependent.
such as the execution time of the operator or other resources involved (see Section 4.4.2
for more details on domain-dependent policies). These are EXPO's policies based on
domain-independent properties of operators:

e Avoid irreversible operators: Never use irreversible operators. Determining
that an operator is irreversible requires proving that there is no plan that can undo
its effects. This is at least undecidable, since planning is undecidable [Chapman.
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1987]. Also, the irreversibility of operators is not a binary feature: the same opera-
tor may be irreversible in some states and reversible in others. Because of these and

other issues that make the automatic determination of irreversibility very complex,
EXPO relies on a user-defined classification of operator's reversibility.

* Prefer easily reversible operators: If the effects of operator 01 are easier to
undo than the effects of operator 02, prefer 01 over 02. Determining the degree of
reversibility of an operator is not a simple matter, so EXPO relies on an ordered
list of operators defined by the user.

e Prefer operators that minimize state changes: If an operator 01 has less
effects than operator 02, prefer 01 over 02. This policy is a more local version of
the policy to prefer plans with fewer state changes.

* Prefer more reliable operators: If an operator 01 has a higher rate of success
to number of times that it has been used than operator 02, then prefer 01 over 02.

This policy avoids obtaining execution failures during the experiments.

* Avoid unreliable operators: If an operator's rate of failure to number of times
that it has been used is over a user-defined threshold, do not use it.

Binding Interactions

During planning, the variables of each operator are given values by binding them to
objects in the current state. Some bindings may be preferred to others. For example, we
may prefer to use in the experiments a different machine than the one that is being used
in the main plan, since the machine used in the main plan is probably all set up for the
operation. Other objects may not bring up such preferences. For example, if a brush is
being used in the main plan to clean the metal burrs in the part we may not mind using
it if needed during the experiment planning. In summary, there may be different binding
preferences for different types of objects.

One interesting case in the process planning domain is the type part. Suppose that
the main goal is to drill a hole of a certain width and depth in partl. Now suppose
that the drilling operation fails because of a missing precondition, and experiments with
the drilling operator are needed. If the experiments are done drilling partl, we may not
interfere with the main goal, but we would violate an implied goal: "Do not drill other
holes in the part other than the ones specified in the goal". In fact, when we specify a goal
to the planner in this domain (and many others) many such explicit goals are also desired
but too complex to specify. A planner works by default on building a plan to achieve

each of its given goals, so by default it would not interfere with the implied goals. But
since the experimentation process requires producing plans for other goals, such implicit
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goals may be violated by default. Notice that since the implicit goals are not declared in
the goal set of the main problem, they are not protected by the goal interaction policies.

We have addressed this problem through binding preferences as follows.

When a domain is defined, each type of object is assigned to one of the following

classes:

" Very high protection: The instances of these types that are being used in the main

plan are never to be used for the experiments.

" High protection: During experiment planning, other instances are preferred to in-
stances of these types that are being used for the main plan.

" Low protection: During experimentation planning, other instances are preferred to
instances of these types that are being used for the main plan. but never prefer

instances of high or very high protection.

" Very low protection: The instances of these types can be used any time during
experiment planning.

In the robot planning domain there are only four types of objects, classified as follows:

"* High protection: boxes

"* Low protection: doors, keys

"* Very low protection: rooms

The process planning domain is more complex. and has 33 types of objects, classified

as follows:

"* Very high protection: parts

"* High protection: holding devices

"* Low protection: machines. machine tools. objects consumed during an operation.

"* Very low protection: objects not consumed during an operation.

If necessary, the number of degrees of protection may be augmented, but the mecha-
nism would be the same.

Once the protection classes have been defined, they are used to determine the policies
that EXPO can use for choosing bindings. They are the following:
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"* Avoid objects of very high protection: Never use objects that are used in the
main plan and whose type is classified as very high protection.

" Prefer objects of lower degree of protection: If two objects used in the main
plan are being considered for binding the same variable, prefer the object with a
lower degree of protection.

" Prefer least number of protected objects: If several objects used in the main
plan are being considered for binding different variables, prefer the set of objects
that minimizes the total degree of protection.

In some domains, it may be desirable to have a policy to prefer bindings that were used

previously in successful executions of the operator. For example, in the process planning
domain it is preferable to use a tool that has worked previously with any materials, than
to use a tool that has not worked in the past for certain types of materials. This policy is
not implemented in EXPO. Since it is a policy that applies to the main planning process
as well, as we explain next.

4.4.2 Universal Policies

All the policies that the user may define for the main planning task are also applicable to
experiment planning. These policies correspond to the control knowledge (be it domain
independent or not) given to the planner to be used for decision making in the domain.
They can be considered universal policies, since they apply in both the main and the
experiment search spaces. For example. we would consider an experiment that uses
cheaper materials than another one to be better. But the same principle applies to any
two plans. The quality of the experiment plans is determined in many dimensions by
these policies that are to be addressed by other more specific work in plan quality.

Experiment policies and universal policies may be in conflict. When this is the case,
EXPO gives priority to universal policies.

4.4.3 Experimentation Strategies

The experiment policies described in the previous section express different concerns that
an experimenter may consider to design and choose experiments. Some of these policies
may be conflicting, but the experimenter must have some overall, global strategy that
determines which policies serve the strategy best.

In EXPO, many different strategies may be designed. In this section, we describe two
strategies that illustrate the capabilities of EXPO in this respect. The two strategies lie

in opposite sides of the spectrum:
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"* The learner-at-heart strategy. The main concern in this strategy is to acquire

new knowledge, and as such novel sutuations are preferred over ones already expe-

rienced, and short experiment plans are preferred over longer ones that may delay

learning.

"* The problem-solver-at-heart strategy. The main concern of this strategy is

to acquire new knowledge in order to solve the problem at hand. Consequently,

interactions with the main plan are avoided when possible, and repeating proven

solutions is preferred over trying new ones.

The learner-at-heart strategy is implemented using the following policies:

"* Avoid deep nodes

"* Prefer shallow nodes

"* Avoid long plans

"* Prefer short plans

"* Prefer unreliable operators

The problem-solver-at-heart strategy is implemented using the following policies:

"* Support main goal concord

"* Avoid main goal protection violation

"* Avoid main prerequisite violation

"* Avoid irreversible operators

"* Prefer reversible operators

"* Prefer more reliable operators

"* Avoid unreliable operators

"* Prefer plans with fewer state changes

"* Avoid plans with too many state changes

"* Prefer operators that minimize state changes

"* Avoid objects of very high protection

"* Prefer objects of lower degree of protection

"* Prefer least number of protected objects
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4.4.4 Implementation

Each policy is implemented in EXPO as a control rule for PRODIGY. We summarize now
briefly their syntax and semantics: more details can be found in [Minton et al., 1989b].

PRODIGY considers four choice points during the search process: which node to ex-
pand, which goal to achieve, which operator to use to achieve a goal, and which bindings
to use to instantiate the variables of an operator. For each type of decision, PRODIGY

makes a choice using a set of heuristic rules that recommend one candidate over another
one, to select a candidate and not consider any others, and to reject a candidate to be
never considered again for this decision point. The left-hand side of each control rule
expresses the criteria upon which the recommendation is based. These criteria are de-
scribed in terms of the planner's meta state (the current goal, the current state, etc) and

expressed as a special type of predicate called a meta predicate.

Appendix C contains all the policies that are defined in EXPO as control rules for

PRODIGY. This way of implementing the policies is very flexible. Any new policies can be
easily added as new control rules. Any new strategies can be easily defined by choosing a
set of control rules. At the same time, the current implementation of policies as control
rules can greatly be improved. The control rules in PRODIGY 2.0 have limited capabilities.
For example, good policies that cannot be expressed are policies that would suspend a
search path until a later point. Also, there is no framework in PRODIGY at present

to shift attention to different goals (in our case hypotheses) changing the definition of

the problem, although some efforts within the project were in this direction [Kuokka,

1990]. EXPO can benefit greatly of current ongoing research on control mechanisms for

PRODIGY.

4.5 Experiment Execution, Learning, and Recovery

After calibrating and prioritizing the set of hypotheses with its heuristics, EXPO tests
one hypothesis after another until it finds the one which is the missing condition of the

operator. For each hypothesis, EXPO designs a pre-experiment plan as the previous

section described. Then, the plan is executed to reach a state where the experiment can

be carried out. If any other failures are obtained during the execution, EXPO stores

them and comes back to learn from them after the cause of the current failure under

study is determined.

If the missing precondition is found. EXPO adds it immediately to the operator's

precondition expression. The new operator is used in any future planning. If none
of the hypotheses is found to be the missing condition, EXPO notifies the user that it

believes the operator's preconditions to be incomplete but that it cannot find the missing
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condition. Section 5.2 described the types of missing conditions that cannot be learned

by EXPO.

Since the missing precondition was the cause of the failure obtained in the main plan,
its acquisition allows the planner to overcome that failure. Now the execution of the
main plan may be continued. However, the experiments execution brought about many
changes in the external state since the time when the main plan was designed and it may
now be invalid. EXPO replans to achieve the top level goals from the current state of
the world. Then, EXPO continues with the execution of this new plan and continues
to watch for failures that signal faults in the domain knowledge that it can correct by
experimentation.

4.6 Discussion

TEIREISIAS [Davis, 1976] is a knowledge acquisition system with a similar technique to

EXPO's structural similarity heuristic. TEIREISIAS used a simple clustering algorithm
to discover similarity between rules. When the user entered a new rule that was clustered
together with other rules, TEIREISIAS checked that the new rule had the same predicates

in the left-hand side. If any was missing, TEIREISIAS would warn the user that it
believed that predicate should be mentioned n the rule. EXPO uses this structural
knowledge to refine rules not when they are defined, but when they are found to be
faulty. Also, EXPO uses the heuristic to discriminate among a set of hypotheses, which

TEIREISIAS never produced.

As described in Chapter 2. the COAST system [Rajamoney, 19881 has several cri-

teria for choosing experiments: preferring experiments whose observations can be col-
lected easier, preferring experiments that are guaranteed to disprove some hypothesis,
and changing the current state to enable experiments with different observations. In

EXPO's implementation all the cost of collecting any observation is considered the same,
but if this were not the case COAST's first strategy would be helpful. EXPO does have
the other two strategies, since every experiment proves or disproves a hypothesis and
every experiment causes changes to the external world.

KEKADA [Kulkarni, 1988] (described in detail in Section 2.1.2) contains many heuris-
tics for guiding experimentation in scientific discovery. Although EXPO's experimenta-

tion is geared to do more mundane learning, it is worth comparing both systems. Most

of the heuristics lead KEKADA to behavior that is similar to that of EXPO. Some of the
heuristicts are hard coded in EXPO (PCO. PCI, PC4, PC5, HG3, HG8, HSC1, HSC2,

ES4, PG1, and DM8), others are expr.!ssed as strategies (PC3, PC7, EP6, HM4, HM5,
DM1, DM2, DM3, DM5, DM6. and DM7). EXPO could be expanded with some of
KEKADA's heuristics. PC2, PC6. and PCS implement a task-handling mechanism that
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EXPO does not have. HG1, EP1, and ES3 provide KEKADA with class generalization,

which EXPO does not currently have. EP7, ES1, and ES2 have an exploratory flavor,

and as such are not appropriate for EXPO's task-driven learning. KEKADA has a mech-

anism for switching from one hypothesis to another based on confidence factors (CF3,

CF4, CF5, and DM4). EXPO sticks to one hypothesis until it is proven or ruled out, but

intelligent switch of attention would make EXPO more flexible.
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Chapter 5

Methods for Learning by

Experimentation

The previous chapter showed how a difference between the system's expectations and the
collected observations indicates a fault in the domain model. Differences are opportunities
for learning, so our system must bc able to idcLify them, hypothesize which part of
the domain is incomplete, determine the particular fact that is missing in the domain
model, and correct it accordingly. All these steps are different depending on the types
of failures, and the previous chapter described how to determine that a failure is caused
by an operator's incomplete preconditions. We present in this chapter a collection of
methods for learning under different types of failures. This collection is not exhaustive.
but it is indicative of how experimentation can be used to learn new knowledge from the

environment.

The cha•pter begins wi 'i a taxonomy ot the types of the facts that may be missing
when the domain knowledge is incomplete, which is used as a guideline for the presenta-

tion of the methods in the rest of the chapter.

5.1 Refining Incomplete Domain Knowledge

Section 3.3.5 described different types of incompleteness in a planner's domain knowledge.
Figure 5.1 summarizes them and describes every type in more detail. All these facts may
be acquired by experimentation. The methods in this chapter describe how it can be

done for some of the cases, which are highlighted in the figure.

In the first case, an existing operator can be missing ether a condition or an effect.
The condition may be a predicate or a negated predicate. Also, it can be a simple

73
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positive

precondition { negative

single

quantified

operator add

tondtio J delete
postcoditCof 1{unconditional

IIconditional

new

{e new object type
o new instance of a known object type

state I new I linear combination

attribute cornmposite ' nonlinear combination

range of a known attribute

value of an attribute of an object

Figure 5.1: Domain knowledge that can be theoretically acquired by experimentation.
EXPO concentrates on operator refinement.

predicate or one with a quantification over some of its variables. A missing effect can
be either in the add list or in the delete list. In either case, it may be unconditional or
context dependent (i.e., when it occurs only under certain state conditions). Section 5.2
describes a method that can be applied to acquire new conditions and effects of operators.

Entire operators may also be missing. If this is the case, several methods can be
applied that form an initial definition for the operator based on existing ones. This is
done by direct analogy, or by decomposition in a subsequence of operators, or by splitting
existing operators under different conditions. There is also the possiblity of probing the
environment by trying out the available actions under new conditions. These methods
are described in detail in Section 5.3.

The operators can be incomplete, but the state may also be missing many types of
knowledge. Certain types of objects may be unknown. New instances of objects types
may be encountered by the system. Attributes of objects may be missing. New attributes
can be discovered, either in isolation or as combinations of other attributes. The range
of a known attribute may also be determined through interactions with the environment.
Finally, the value of an object's attribute may be found through experimentation. This
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last case is addressed in Section 5.4.

The methods presented in this chapter and their implementation in EXPO are sum-
marized in Figure 5.12.

5.2 More on Operator Refinement

Section 4.1 described a method for learning missing preconditions of operators. But an
operator can also have an incomplete set of effects. Consider again the GRIND operator
shown in Figure 4.1. The operator is missing an effect: that grinding uses up cutting
fluid, so the machine does not have cutting fluid any longer. It is also missing information
about the surface finish of the part after grinding. As it turns out, depending on the
coarseness of the grit of the wheel the finish is either rough or smooth. We show in this
section how these facts can be learned.

The method for acquiring missing preconditions and effects will be referred to as the
Operator Refinement Method (ORNI).

5.2.1 Learning New Postconditions

Our model is still missing the fact that a grinding operation uses up the cutting fluid.
We show now how this new effect can be learned.

Suppose that our goal now is to grind part 1 so that it is smaller in height and width.
This involves two successive applications of the operator GRIND, one for each dimension,
as shown in Figure 5.2. For the first grinding operation, our system would check that
all the preconditions of GRIND are true in the external world. Since this is the case, it
continues planning by applying the operator. Then it checks that the postconditions of

GRIND are true in the external state. Notice that because the system doesn't know that
the grinder uses up the fluid the internal state reflects this fact by containing (has-fluid
grinder3) after GRIND is applied. In the real world, the fluid has disappeared, but the
system is not yet aware of that fact.

Before the system tries to grind for the second time, it checks if the preconditions
are true in the external world. It is at this point that it finds out that the grinder has
no fluid. The only action that was performed since the fluid was last checked has been
grinding. The system then concludes that one of the effects of grinding is consuming the
fluid in the machine, and so it modifies the delete list of the operator grinding.

But in the general case. several operators could have been applied since the fluid in
the grinder was last checked. In that case. experiments are needed in order to determine
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Figure 5.2: Finding new postconditions of grinding

which of those operators is missing a postcondition that specifies the deletion of the

predicate has-fluid from the state. The method is summarized in Table 5.1.

This example shows how to learn from failure but the same method can be used for

learning from unexpected successes. Notice that delete effects can also be learned from

this method, when the condition P is a negated predicate.

The heuristics in Section 4.3 were described for choosing hypotheses in the case of

missing preconditions, but they can also be used for learning new effects. Their use and

implementation is different. The first heuristic applied is locality. EXPO looks at the

bindings of the candidate operators and selects operators that affected the objects in

E. Notice that if the effect has any wildcard variables, E's objects do not appear in

the bindings of the candidate operators, and so this heuristic is not very helpful. Next,
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If a precondition P is true in the model, but it is not true in the external
world, then one of the operators applied after P was established in the model

has a previously unknown postcondition affecting P.

1. Select candidate operators. The candidate set consists of all operators

{01, 02,... 0,} applied since the P was last checked.

2. Identify incomplete operator. Formulate experiments over the candidate

set. In each experiment, after an operator is applied P is checked in the
external world. If as a result of an experiment with operator Oi, P is

unexpectedly changed in the world, then Oi is incompletely specified.

3. Add P as a new postcondition of operator Oi.

Table 5.1: Method for learning new postconditions

the structural similarity heuristic is applied. EXPO looks in the operator hierarchy for

operators that have the effect, and looks in neighboring nodes for the operator in the
list of candidates, and ranks them according to their distance. When EXPO finds the

incomplete operator 0, then it can use the generalization heuristic. It cannot be used
before because EXPO has focused attention and only observes known effects after the

execution of an operator. So E was never observed in previous executions of 0. EXPO
starts monitoring E and generalizes according to the observations collected. Through the

generalization, the objects in E may be kept constant, generalized to operator variables,
or generalized to wildcard variables.

The method described in this section is limited to observe only the known conditions
and effects of each operator. It is possible to learn new effects more quickly if a larger

set of predicates is observed after the execution of an action. This would detect changes
in the state immediately after the execution. However, limited observation capabilities

is a more realistic setting in domains where large collections of data may be observed.
and it is the one chosen for EXPO.

5.2.2 Learning Conditional Effects

Learning conditional effects is a mixture of learning new preconditions and new postcon-
ditions. But it requires that the system keeps additional information about the actions.

Suppose that the agent's goal is to grind two parts. Grinding part3 changes the
surface condition just as the system expects and is shown in Figure 5.3(a). Now it is
trying to grind part4. After executing the action. the effects of the operator are checked.
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At this point, the system finds out that the postcondition that specifies that grinding
makes the surface condition of the part be smooth does not always occur, as shown in
Figure 5.3(b). The system would then detect the presence of a conditional effect. Now
it will compare the state in which the effect happened and the state in which it did not

happen. The only difference in this case is the grit of the wheel, so it will add that as the
condition of the conditional effect. Another conditional effect can be learned to account

for the situation in which the surface finish produced by grinding is not smooth. Again,
if there are several differences between the states then experimentation would be needed
to determine the relevant one.

The method is summarized in Table 5.2. This example illustrates that the system will
sometimes encounter situations with a great potential for learning. In this case, it can
also learn about the conditional effect in case of using a wheel with coarse grit, which is

to produce a rough finish. Because the conditional expression associated with an effect
is a concept to be learned, it presents similar problems to precondition learning with
respect to the set of hypotheses.

If an effect of an operator takes place in situation SA but not in situation
SB, then it is a conditional effect of the operator.

1. Select candidate conditions for the effect. The candidate set A(SA, SB)

is formed by calculating all the differences between SA (the state in which
the effect occurs) and SB (the state in which the effect does not occur).

2. Identify missing condition. Formulate experiments observing if the ef-
fect of the operator occurs when one of the differences P is true in the
state. Use any information available to formulate the most promising

experiments first. In absence of knowledge, apply a binary search to
isolate the precondition from A(SA, SB).

3. Add P as a condition for the conditional effect of the operator 0.

Table 5.2: Method for learning new conditional effects

Let us return for a moment to our example. Let us go back to the point when the
system encountered the situation in Figure 5.3(a). When the situation in Figure 5.3(b) is
found, and the postcondition does not occur, then the system must have a way to retract

its knowledge restricting the effect with a condition that it learns applying the method
for learning conditional effects. This example illustrates how the methods presented here
are not completely independent. A framework must be devised to allow the system to
combine them and apply whichever one seems more appropriate at, each time as we will

discuss in Chapter 7.
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Figure 5.3: Finding conditional effects of grinding

5.3 Learning New Operators

There are many ways to learn new operators. Our methods are goal-directed: they are

triggered when the planner finds itself in a situation where it cannot solve a problem.
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The system assumes that the available knowledge is incomplete and tries the various
methods to formulate new operators. Learning is always incremental, preferring overly
incomplete specifications (that are progressively refined by the ORM) to more detailed
specifications that may be incorrect. None of the methods is guaranteed to work, only
the external execution of the new operators can show if the newly acquired operator has
a meaning in the domain. In this section, we describe through examples different ways
of learning new operators followed by a more formal description of each method.

5.3.1 Direct Analogy

New operators can be learned by direct analogy with existing ones. As an example,
suppose that the system has the knowledge about drilling holes shown in Figure 5.4(a).
A hole can be made if a drill has a high-helix drill bit of the size of the desired hole and
some cutting fluid, and if it is holding a part that has a spot hole in the appropriate
location. Suppose now that the system is given the goal of producing a part with a hole
in it, and there are no high-helix drill bits available. The preconditions of the operator for
drilling cannot be achieved, and PRODIGY is not able to solve the problem. But instead
of returning a failure, our system uses the following reasoning to derive a new operator
for drilling with other types of drill bits that might be available. The system finds that
both high-helix and twist drill bits are of the same object type: DRILL-BIT, and thus
it creates the new operator shown in plain font in Figure 5.4(b). The new operator only
gets from the original one the types of the objects that it is applied to, and the effect
that it is created for. Experiments are performed by executing the action under different
conditions until a successful application is found. We describe in the next paragraph
how the experiments can be designed efficiently. If the new operator cannot be applied
successfully, then the process is repeated with other types of drill bits. If this does not
yield any success either, then other object types are tried. In this case, a new operator
for drilling holes with a milling machine is acquired when a different type of machine is
considered. These experiments end when a successful application of a newly formulated
operator is found that proves its existence. Once this happens, the ORM helps to locate
additional conditions and effects that are specific to the new operator. They are shown
with a star (*) in Figure 5.4(b). The method is summarized in Table 5.3. Notice that the
power of this method comes from the possibility of relating P to P' through the object
type hierarchy.

Choosing the right experiments is an important issue for making learning efficient.
The conditions for the experiments are guided by the preconditions and effects of the
original operator. If there are several operators for drilling that are available, then exper-
iments that involve the preconditions and postconditions common to all drilling opera-
tions are preferred. The more available operators that already contain information about
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(DRILL-WITH-HIGH-HELIX-DRILL

(preconditions

(and (is-a <machine> DRILL)

(is-a <drill-bit> HIGH-HELII-DRILL-BIT)

(same <drill-bit-diameter> <hole-diameter>)

(diameter-of-drill-bit <drill-bit> <drill-bit-diameter>)

(has-fluid <machine> <fluid> <part>)

(has-spot <part> <hole> <side> <loc-x> <loc-y>)

(holding-tool <machine> <drill-bit>)

(holding <machine> <holding-device> <part> <side>)))

(effects (

(del (is-clean <part>))

(add (has-burrs <part>))

(del (has-spot <part> <hole> <side> <loc-x> <loc-y>))

(add (has-hole <part> <hole> <side> <hole-depth>

<hole-diameter> <loc-x> <loc-y>)))))

(a) An operator for drilling a hole using a high-helix drill bit

(DRILL-WITH-TWIST-DRILL

(preconditions

(and

(is-a <machine> DRILL)

(is-a <drill-bit> TWIST-DRILL-BIT)
"* (same <drill-bit-diameter> <hole-diameter>)

"* (diameter-of-drill-bit <drill-bit> <drill-bit-diameter>)

"* (has-spot <part> <hole> <side> <loc-x> <loc-y>)

"* (holding-tool <machine> <drill-bit>)

"* (holding <machine> <holding-device> <part> <side>)))

(effects (

"* (del (is-clean <part>))

"* (add (has-burrs <part>))

"* (del (has-spot <part> <hole> <side> <loc-x> <loc-y>))

(add (has-hole <part> <hole> <side> <hole-depth>

<hole-diameter> <loc-x> <loc-y>)))))

(b) New operator for drilling with a twist drill bit. The stars indicate new facts

acquired by the Operator Refinement Method for the new operator.

Figure 5.4: Learning a new operator for drilling by analogy with an existing one.

drilling, the more efficient the experiments designed to refine the new operator. Notice

that these are heuristics and they do not make any guarantees about the convergence of

the process.
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If a given problem cannot be solved by a set of operators because a pre-
condition P that specifies the type of an object of an operator 0 cannot be
achieved, formulate a new operator by direct analogy with 0 through P.

1. Find a related predicate. Look through the type hierarchy of the objects
in the domain and find P' such that it refers to objects of the same type
of the unachievable precondition P.

2. Formulate a new operator. Construct a new operator 0' with the effects
of 0 that the original problem subgoaled on and all the object types of

O except P.

3. Experiment with the new operator. Execute the action. If the desired
effects are not obtained, apply experimentation to isolate which of the
other preconditions of 0 need to be added to 0'. If 0' is applied suc-
cessfully in some state, then continue with step 4. Otherwise, go back

to step 1, either looking for a different P' or considering a different P.

4. Refine the new operator. Apply the ORM to find all the preconditions
and additional effects of the new operator.

Table 5.3: Method for learning a new operator by direct analogy with an existing one.

5.3.2 Micro-operator Formation

New operators can also be acquired by learning useful partial specifications of an existing
one. One possible way to do this is when the system encounters situations in which only
some of the effects of the action are desired. If this is the case then experimentation is
used to find if only some of the preconditions are required for the partial effects needed.

Suppose the system has the operator for cutting specified in Figure 5.5(a). The
operator expresses that if a circular saw has a type of attachment called friction saw and
some cutting fluid and if it is holding a part, then the size of the part can be reduced and
the resulting surface is smooth. Now suppose that the system is given a problem whose
goal is to make the size of a part smaller, and that no fluids are available in the initial
state. The goal cannot be achieved with the available knowledge, and yet there is a way
to solve the problem. The system formulates a new cutting operator that has only the

effects that it needs from the original one, and only the preconditions that specify the
type of the objects required for the operator. The action is then executed. If the desired
effect is not obtained, then the system finds which additional conditions are required.
This is done by experimenting with the action applying it under different situations.
The experiments are guided by the preconditions of the known operator for cutting.
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This process ends when a successful application of the new operator is found (thereby
proving its existence). This happens when the desired effect is obtained in a state where
not all the preconditions of the original operator are true. Finally, the ORM is called to
further refine the operator. The result is a cutting operator without the preconditions
and effects that have to do with obtaining a reasonable surface condition quality (having
fluid on the machine), as shown in Figure 5.5(b). This method for iearning a partial
operator is summarized in Table 5.4.

(CUT-WITH-CIRCULAR-FRICTION-SAW

(params (<machine> <part> <attachment> <holding-device> <dim> <value>))

(preconds (and
(is-a <part> PART)
(is-a <machine> CIRCULAR-SAW)
(is-a <attachment> FRICTION-SAW)

(has-fluid <machine> <fluid> <part>)
(size-of <part> <dim> <value-old>)
(smaller <value> <value-old>)
(side-up-for-machining <dim> <side>)

(holding-tool <machine> <attachment>)

(holding <machine> <holding-device> <part> <side>)))
(effects (

(del (has-fluid <machine> <fluid> <part>))
(add (surface-finish-side <part> <side> SMOOTH))
(add (size-of <part> <dim> <value>)))))

(a) An operator for cutting

(CUT-TO-SIZE

(params (<machine> <part> <attachment> <holding-device> <dim> <value>))

(preconds (and
(is-a <part> PART)
(is-a <machine> CIRCULAR-SAW)
(is-a <attachment> FRICTION-SAW)

* (size-of <part> <dim> <value-old>)
* (smaller <value> <value-old>)
* (side-up-for-machining <dim> <side>)

* (holding-tool <machine> <attachment>)
* (holding <machine> <holding-device> <part> <side>)))

(effects (
(add (size-of <part> <dim> <value>)))))

(b) New operator for cutting to reduce the size. The stars indicate new facts acquired

by the Operator Refinement Method for the New Operator.

Figure 5.5: Micro-operator formation when only some effects are needed.

A second possibility is sequencing, i.e. to detect a sequence of subactions that are cur-
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When a given problem cannot be solved by the current set of operators
because a precondition P of an operator 0 cannot be achieved, formulate a

new operator 0'.

1. Formulate a new operator. Construct a new operator 0' with the de-
sired effect and the type of the objects in 0.

2. Experiment with the new operator. Execute the action. If the desired

effects are not obtained, apply experimentation to isolate which of the
other preconditions of 0 (not including P) need to be added to 0'. End
the process when 0' is successful in a state where the preconditions of

O are not true.

3. Refine the new operator. Use the ORM to find additional preconditions
and effects of 0'.

Table 5.4: Method for learning a new operator by micro-operator formation

rently represented by an operator. As an example, consider the operator in Figure 5.6(a)

used to set up a machine for performing a machining operation. The operator has several
preconditions that check the availability of a machine, a holding device, a tool and a part.
The set up consists of holding the tool in the tool holder, having a holding device on the

machine, and holding the part with the holding device. Since a different setup is used
for each machining operation, representing this set of actions as a single operator is an
efficient way of expressing the configuration for the next operation. Now, suppose that
we want to perform some manual operation on a part. We ask the system to find a plan

to hold it. With the available knowledge, holding a part is not possible because there

are no tools that can be installed in the machine. But instead of returning a failure our
system tries to find if the operator can be divided into a sequence of actions, one of them
involving only holding the part. The operator to do the setup gives several independent
operators, shown in Figure 5.6(b). Sequencing is done by following the same basic steps

shown in Figure 5.4, but in this case additional operators are formulated with the effects
not originally needed.

The two methods just presented for acquiring new operators by sequencing or by
partially specifying a given one are engaged in a process that we call micro-operator
formation'. Notice that the original operator is not discarded since it can still be useful
to solve some problems efficiently.

'These methods can be thought of as opposite to the formation of macro-operators. However, learning

micro-operators is not necessarily the reverse process because it does not imply the decomposition of an
operator into a set of operators.



5.3. LEARNING NEW OPERATORS 85

(SETUP

(preconditions

(and

(is-a <machine> MACHINE)

(is-of-type <tool> MACHINE-TOOL)

(is-of-type <holding-device> HOLDING-DEVICE)

(is-available-tool-holder <machine>)

(is-available-tool <tool>)

(is-available-table <machine>)

(is-available-holding-device <holding-device>)
(has-device <machine> <holding-device>)
(is-empty-holding-device <holding-device> <machine>)

(is-clean <part>)

(- (has-burrs <part>))))

(effects (

(add (holding-tool <machine> <tool>))
(add (has-device <machine> <holding-device>))

(add (holding <machine> <holding-device> <part> <side>)))))

(a) Operator to set up a machine for an operation

(SETUP-HOLDING-DEVICE

(preconditions

(is-a <machine> MACHINE)
(is-of-type <holding-device> HOLDING-DEVICE)

(is-available-table <machine>)
(is-available-holding-device <holding-device>)))

(effects (

(add (has-device <machine> <holding-device>))))

(SETUP-HOLD

(preconditions
(is-a <machine> MACHINE)

(is-of-type <holding-device> HOLDING-DEVICE)

(has-device <machine> <holding-device>)

(is-empty-holding-device <holding-device> <machine>)

(is-clean <part>)

(- (has-burrs <part>))

(effects (

(add (holding <machine> <holding-device> <part> <side>)')))

(SETUP-TOOL

(preconditions
(and

(is-a <machine> MACHINE)

(is-of-type <tool> MACHINE-TOOL)
(is-available-tool-holder <machine>)

(is-available-tool <tool>)))

(effects (
(add (holding-tool <machine> <tool>)))))

(b) New operators for different aspects of a setup

Figure 5.6: Micro-operator formation by dividing an operator into sequential actions.
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5.3.3 Learning New Operators by Splitting Existing Ones

One way is to refine an existing operator by distinguishing different aspects of the action
that it represents.

Shen [Shen, 19891 describes a method for learning operators by splitting an existing
one. This method takes advantage of failures like the one described in Figure 5.2. When
the effects of the operator do not occur as expected we described how to refine the
operator adding the condition necessary to obtain the desired effects. But we can also
learn an additional operator with the effects that were observed instead of the expected
effects. For example in the situation of Figure 5.2, the system learns an operator for
grinding without fluid shown in Figure 5.7. The description of this method is shown
in Table 5.5. Since either method can be selected under the same circumstances, the
decision to be made is if both actions are interesting to the system.

(GRIND-WITH-FLUID

(preconds

(and

(ia-a <machine> GRINDER)
Cis-a <wheel> GRINDING-WHEEL)

* (has-fluid <machine>)

(holding-tool <machine> <wheel>)

(side-up-for-machining <dim> <side>)
(holding <machine> <holding-device> <part> <side>)))

(effects (

* (add (surface-finish <part> <side> SMOOTH))

(add (size-of <part> <dim> <value>)))))

(GRIND-WITHOUT-FLUID

(preconds

(and
(is-a <machine> GRINDER)

(is-a <wheel> GRINDING-WHEEL)

(holding-tool <machine> <wheel>)

(side-up-for-machining <dim> <side>)
(holding <machine> <holding-device> <part> <side>)))

(effects (

(add (size-of <part> <dim> <value>)))))

Figure 5.7: Spliting the operator GRIND when effects are different.
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If after manipulating the world only a subset E of the effects of the oper-

ator happer,, then a precondition of the operator is missing.

1. Select candidate preconditions. The candidate set A(Sold, Scurrnt) is
formed by calculating all the differences between the most similar earlier

state in the previous problem solving history in which 0 was applied suc-
cessfully Sold and the current state Scurrent (an unsuccessful applicat-:n

of 0).

2. Identify missing precondition. Formulate experiments observing if the

operator is successfully applied when one of the differences £7 -, true in
the state. Use any information available to formulate the most promising

experiments first. In absence of knowledge, apply a binary search to

isolate the precondition from A(Sold, Scurrent).

3. Substitute 0 by the two new operators 01 and 02. 01 is formed with

O and the additional precondition P. 02 is formed by the preconditions

of 0 and the set of effects E.

Table 5.5: Method for splitting an -)perator (Shen, 1989).

5.3.4 Explicit Expressions

Another method for splitting operators follows the same steps described for learning
conditional effects. Given the situation described in Figure 5.3 we could obtain two

operators for grinding instead of learning new conditional effects. One would be built
with the original version with the additional condition that the grit of the wheel be fink,

and the additional effect that the surface finish is smooth. A secopd operator would be
built with the original one plus the precondition that the wheel is not of fine grit. The

result is shown in Figure 5.8. The method is summarized in Table 5.6.

Yet another possibility along this line is to split disjunctive concepts among different

operators. Suppose that using the method for refining preconditions presented in Figure

4.1 we learn the disjunctive precondition expression shown in Figure 5.9(a). To grind a
par t, we need to hold it first, and to do so we need to have some kind of holding device

in , he grinder. This operator represents the action of putting a holding device in the
grii~der. The disjunction expresses that a grinder can use two different holding devices:

a ma•,netic chuck and a vise. But instead, we rould express the same ccacepA as two

different operators: one for putting a vise in a grinder, and another one for putting a
maqnetic chuck. The two operators are expressed in Figure 5.9(b).

Let us have a rloser look at the last two methods for learning new operators by split-
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(GRIND-WITH-COARSE-GRIT

(preconds

(and
(is-a <machine> GRINDER)
(is-a <wheel> GRINDING-WHEEL)

(has-fluid <machine>)
(holding-tool <machine> <wheel>)

(side-up-for-machining <dim> <side>)
(holding <machine> <holding-device> <part> <side>)

* (grit-of-wheel <wheel> FINE-GRIT)))

(effects (
* (add (surface-finish <part> <side> SMOOTH))

(del (has-fluid <machine>))
(add (size-of <part> <dim> <value>)))))

(GRIND-WITH-NON-COARSE-GRIT

(preconds

(and

(is-a <machine> GRINDER)

(is-a <wheel> GRINDING-WHEEL)
(has-fluid <machine>)
(holding-tool <machine> <wheel>)

(side-up-for-machining <dim> <side>)
(holding <machine> <holding-device> <part> <side>)

* (grit-of-wheel <wheel> COARSE-GRIT)))

(effects (
* (add (surface-finish <part> <side> ROUGH))

(del (has-fluid <machine>))
(add (size-of <part> <dim> <value>)))))

Figure 5.8: Splitting the operator GRIND according to its conditional effect

ting an existing one. Instead of learning a new conditional effect for an operator, we
split it into two different operators using the effect and its conditions. Instead of learn-
ing a disjunctive precondition expression, we split the preconditions into two different
operators. In both cases, what the system is doing is expressing some features of the
action in the form of several operators thereby representing more explicitly what other
methods already seen can learn. The new operators represent information in a different
but logically equivalent manner. However, it is important to provide the system with this
ability because it makes the description of actions easier to understand. As we mentioned
in Section 3.4, an action can be represented by many operators, each operator reflecting
"a certain aspect of the action. It is our experience that when the domain knowledge for
"a planner is written, the user expresses actions not in a single complex operator, but in
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If an effect E of an operator takes place in situation A but not in situation

B, then it is a conditional effect of the operator.

1. Select candidate conditions for the effect. The candidate set A(SA, SB)

is formed by calculating all the differences between SA (the state in which
the effect occurs) and SB (the state in which the effect does not occur).

2. Identify missing condition. Formulate experiments observing if the ef-
fect of the operator occurs when one of the differences P is true in the
state. Use any information available to formulate the most promising
experiments first. In absence of knowledge, apply a binary search to
isolate the precondition from A(SA, SB).

3. Substitute 0 by the two new operators 01 and 02. 01 is formed with
0 adding the additional precondition P and the effect E. 02 is formed
by the preconditions of 0 and the effects of 0 excluding E.

Table 5.6: Method for splitting operators according to conditional effects

several simpler and more detailed operators that are easier for humans to understand.

5.3.5 Learning New Operators by Probing the Environment

Another way to create operators is to start with an empty description of the action and
try it out in the external world and observe the changes that are produced. In this case,
the system would learn a new action from null knowledge about it. This is very common
in systems that explore the environment, and so they often try actions to learn about
their capabilities [Shen, 1989]. We call this method probing, and is shown in Table 5.7.
The most important part of the method is what to perceive in order to notice the effects
of the action and its conditions, yet not requiring that the system collects all possible
observations. A set of predicates P is chosen, to direct the system's attention. First the
predicates in P are observed, then the action is executed, and finally the predicates in P
are observed again. Whatever changes are observed in any P' in P are included as effects
of the new operator. If no changes are observed, a new set of predicates is tried and the
process is iterated. If the action still doesn't seem to change the environment, then the
system tries to change the state by applying other known actions and iterate the process
again. For example, suppose that we are exploring an action that pushes the drill spindle
over the drill table. The drill spindle raises again after the action of pushing is stopped. If
there is no part on the table, the environment remains unchanged. Executing the action
in a new state when there is a part on the table will yield observations of changes in the
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(PUT-HOLDIIG-DEVICE-Il-GRINDER

(preconds
(and

(is-a <machine> GRINDER)
* (or (is-a <holding-device> MAGNETIC-CHUCK)

* (is-a <holding-device> VISE))

(is-available-table <machine>)
(is-available-holding-device <holding-device>)))

(effects ( (add (has-device <machine> <holding-device>)))))

(a) Disjunction

(PUT-MAGNETIC-CHUCK-IN-GRINDER

(preconds

(and
(is-a <machine> GRINDER)

* (is-a <holding-device> MAGNETIC-CHUCK)

(is-available-table <machine>)

(is-available-holding-device <holding-device>)))
(effects ( (add (has-device <machine> <holding-device>)))))

(PUT-VISE-Il-GRINDER

(preconds

(and

(is-a <machine> GRINDER)
* (is-a <holding-device> VISE)

(is-available-table <machine>)
(is-available-holding-device <holding-device>)))

(effects ( (add (has-device <machine> <holding-device>)))))

(b) Explicit disjunction

Figure 5.9: Splitting an operator by a disjunction

external state.

5.4 Learning New Facts about the State

Even when a system has perfect knowledge about the operators of its task domain it

might be impossible to solve some problems without the ability to interact with the
environment. The internal state might not contain all the data about the world needed

to plan. Some missing data can be acquired by direct observation, like the color of an

object within the visual field. Other observations require planning. For example, in
order to observe the color of an object in a distant room we first have to plan how to get
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When there is an available action with no corresponding operator, probe
the action and try to find a model of the action.

1. Choose what to observe. Choose a set of predicates P to observe. Col-
lect observations.

2. Execute the action. Then, observe all predicates in P again. Make the
effects of the operator be the subset of predicates P' in P that changed.

If no changes are observed, either go back to step 1 or change the world
by performing known actions and then go to step 1.

3. Refine the new operator. Apply the operator refinement method to find
additional preconditions and effects of the new operator.

Table 5.7: Method for probing available actions to learn new operators

there. But perception and planning might not be enough to collect information about
a situation, and experimentation may be the only way to acquire some facts about the

state of the world.

Consider for example the observation of the lock status of a door. This is not directly
observable by looking at the door. Yet we can design an experiment to collect this obser-
vation as follows. Since the predicate (unlocked <door>) is one of the preconditions of
the operator OPEN, we can design an experiment to try to open the door. If the door is
unlocked, then all the conditions of OPEN are true and the door will open. If the door
is locked, then OPEN will fail. The experiment used a special version of OPEN that is
missing the unknown predicate in the preconditions

Other observations need a more complicated experimentation process. For example,
consider a domain where an agent can carry objects of weight smaller than its own. A
simplified description of the knowledge necessary is presented in Figure 5.10. Suppose
that the agent does not know its own weight. Since this observation is absolutely neces-
sary to solve any problems involving carrying objects, the system engages in the process
of acquiring this particular piece of data through experimentation.

To ,to so, it experiments with the action of carrying different objects and see if it can
carry them or not, as shown in Figure 5.11. The weight of the objects is a controllable
parameter that is chosen as part of the design of the experiments and depends on the

availability of the objects. A special version of the operator is used in the experiments,
constructed by dropping the preconditions which correspond to the unknown and its
relationship with the controllable variable. In our example they correspond to the weight
of the robot and the predicate bmaller-than. When the action succeeds, then the
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(CARRY-OBJECT
(preconditions

(and
(arm-empty <robot>)

(next-to <robot> <obj>)

(weight-of <obj> <obj-weight>)

(weight-of <robot> <robot-weight>)

(smaller-than <obj-weight> <robot-weight>)))

(effects (

(del (arm-empty <robot>))

(del (next-to <robot> <obj>))

(del (next-to <*other-obj> <obj>))

(add (holding <obj>)))))

Figure 5.10: Operator for carrying objects of smaller weight than the agent.

preconditions of CARRY-OBJECT are true, including the relationship in question. Each

experiment collects new data about this relationship, constraining more the possible

values of the unknown variable. Determining the value of a parameter doing binary

search over its possible values is a well known experimentation method, and the process

eventually converges to a value of the maximum weight that the agent can carry, which

is equal to its own. Notice that this is different from situations where we need to know

the value of an attribute that is deducible from observations whose acquisition requires

planning. Here, we are describing a more complicated process in which the system needs

to engage with experimentation strategies.

5.5 Notes on Other Types of Imperfect Knowledge

This thesis addresses the problem of acquiring knowledge in incomplete domains. As we

mentioned in Section 3.3, other types of imperfections require additional mechanisms.

We point out why in this section.

5.5.1 Refining Incorrect Knowledge

Incorrect postconditions can be corrected in a very straight forward way. Since the system

always observes the effects of an operator immediately after applying an action, it can

detect the effects that are incorrect because they will not be true in the external world.

Effects that appear only sometimes should be considered conditional effects.
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OBSERVATIONS COLLECTED:

(weight-of <obj> <weight>) CARRY-OBJECT succeeded? range of <robot-weight>

(weight-of objectl 2) y [1,?)
(weight-of object2 100) n [1,100)

(weight-of object3 50) y [50,100)

(weight-of object4 75) n [50,75)

(weight-of objectS 62) y [62,75)

(weight-of object6 69) n 162,69)

(weight-of object7 65) n [62,65)

(weight-of objectS 62) n [62,62)

RESULT: (weight-of ROBOT 62)

Figure 5.11: Gathering data from the state by directed experimentation. Repeated
execution of the operator with objects of different weight uncovers the weight of the

robot.

Detecting and removing incorrect preconditions from the operators requires mecha-
nisms additional to the ones described above. The preconditions describe the class of
states where the action can be applied. If the preconditions are incorrect, they are.over-

specific. This implies that the operator will be only applied to a subset of the class of
states where the action can be executed. The system would need additional mechanisms
that allow it to consider an incorrect operator applicable even if some of its preconditions
are not matched.

The presence of incorrect knowledge might be detected by introspection if it yields

inconsistencies. Experimentation could be used to determine the source of the inconsis-
tencies and the necessary corrections.

5.5.2 Learning with an Inadequate Domain Model

The attributes known to the system might not be enough to describe the state of the
external world. New attributes can be discovered from the environment when the system
detects that the given attributes are not sufficient to discriminate between situations that
produce different results. Shen [Shen, 1989] presents a method to discover new attributes.
Another problem arises when the predicates used to represent the attributes are missing
certain parameters that are important. We will suppose in our work that the system is
given the necessary attributes.
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Attributes observable in the world can be combined to deduce new attributes that are

not directly observable. For example, the material of an object and its size determine its
weight. Combinations of attributes are functional constructs. Learning these constructs

requires providing the system with some basic constructs that it can combine to find the

right expressions for calculating the values of the derived attribute. For example, consider

our model for grinding. The operators are still incomplete because they do not contain

any information about the fact that they can only be applied when the dimensions of

the part become smaller (and not bigger). If a situation arises when grinding is applied
with that purpose, we could detect using experimentation strategies that there is an

relationship between the predicates

(size-of <part> <dim> <value>)
(size-of <part> <dim> <value-old>)

that is relevant for grinding and that should appear in the preconditions.

In fact the correct precondition expression to be learned in this case would contain:

(size-of <part> <dim> <value>)
(size-of <part> <dim> <value-old>)
(smaller <value> <value-old>)

Ledrning these expressions is an issue that discovery systems address and is beyond
the scope of this work.

5.5.3 Learning in Intractable Domain Models

Intractability arises when control knowledge is missing. Control knowledge avoids plan-
ning inefficiencies. But in some cases, planning failures may be caused by unknown

interactions among operators because the system is missing the control knowledge that
represents those interactions.

A method for learning control rules by experimentation is described in [Carbonell and

Gil, 1990]. The method consists of detecting goal interactions when the system observes
that an action undoes a previously achieved subgoal. A lot of research has been done on

learning control rules by other methods [Minton et al., 1989a; Laird et al., 1986; Mostow
and Bhatnagar, 1987], but learning control knowledge from experience may prove to a
very powerful approach.
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5.6 Summary

Figure 5.12 presents a summary of all the methods described in this chapter. Notice that
the method determines the type of knowledge acquired. Each method is triggered by a

certain type of failure.

All the methods in Figure 5.12 have been implemented in EXPO to demonstrate the

feasibility of learning by experimentation. They are triggered when EXPO detects a lack
of domain knowledge, but the subsequent experimentation process is simulated manually.

The full experimentation process (as we described in Chapter 4) is implemented only for
learning new preconditions and new effects. Empirical tests on this implementation are

described in detail in the next chapter.

WHAT IS LEARNED WHEN IT IS LEARNED

new preconditions when an action fails but it succeeded before,

some unknown precondition was true before and

is not true now.
new effects when an observation contradicts information

in the internal state, some action was executed

that had unknown effects
new conditional when an expected effect only occurs sometimes

effects after an action is executed

new operators
analogy formulate operator by analogy with a known one

splitting when an action fails but it succeeded before

learn one operator for each outcome
conditional when an effect only occurs sometimes, learn an

effects operator for each case (when effect occurs

and when it does not)
disjunction make disjunction explicit having several operators

microoperators when only some effects are wanted, build partial

operator
attribute values when needed to plan: observe, infer, and plan

if needed. Design observations if several

are needed.

Figure 5.12: EXPO's methods for refining incomplete domain knowledge. EXPO can
acquire new preconditions, effects, operators, and attribute values.
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Chapter 6

Empirical Results

Given any learning method, it is important to demonstrate its effectiveness, i.e., that it
can indeed be used to acquire new knowledge. In many cases, the efficiency of learning
(the time spent acquiring new knowledge) is also a main concern. This chapter presents
empirical measurements that demonstrate the effectiveness and efficiency of the meth-
ods for learning by experimentation described in this thesis. The first section contains
results that show the effectiveness of EXPO as it learns to refine the domain operators.
And more importantly, we show that the new versions of the operators are useful for
the problem solver. The second section demonstrates EXPO's efficiency. Our learning

methods are very directed, and the experiments actually performed are geared towards
testing the most promising hypotheses. This translates into an efficient use of time and
other resources of concern.

EXPO implements the techniques for learning by experimentation presented in Chap-
ters 5 and 4. The baseline planner is the PRODIGY system described in Section 3.6. EXPO
was not tested interacting with a physical environment, but with a software system that
simulates one. The details of this simulation are described in Section 3.4.2.

The results presented in this chapter correspond to two different domains. One do-
main is the large and complex model of process planning described in Appendix B. The
other one is a simpler robot planning domain, presented in full length in Appendix A.

6.1 Effectiveness

The results presented in this section confirm that learning by experimentation is a useful
technique to acquire new domain knowledge. By useful we mean that whatever is learned

is needed in order to solve a task (i.e., a given set of problems). Notice how this differs

97
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from other work on learning from the environment [Shen, 1989], where the focus is more
on exploring and on learning what is unknown about the external world be it useful or
not.

We want to control the degree of incompleteness of a domain in the tests. We have
available a complete domain D which has all the operators with all their corresponding
conditions and effects. Only c conditions and e effects are learnable by EXPO. With this
complete domain, we can artificially produce domains D' that have certain percentage of

incompleteness (i.e., 20% of the preconditions are missing) by removing preconditions or
effects from D randomly. We will use D',,c20 to denote a domain that is incomplete andP

is missing 20% of the c learnable conditions. D', t2o is a domain missing 20% of the e
postconditions. Notice that EXPO never has access to D, only to the incomplete domain

DO.

EXPO learns new conditions and effects of incomplete operators. What is a good
measure of the ampunt of new knowledge acquired by EXPO? As we described in Section
3.3, an incomplete domain may cause plan execution failures. Consider the case when
an operator 0 is missing a condition p. Now suppose that we want to execute 0 in
state S. If p happens to be true in S then the execution will be successful, since p is

a necessary condition of 0. But if p is not true in S, then the execution of 0 will fail.
This means that missing preconditions can cause execution failures. Notice that after
EXPO learns that p is a condition of 0, the problem may be solved (if subgoaling on the
unsatisfied new precondition P yields a subplan to achieve P and the rest of the plan
does not yield any execution failures.) If knowledge is sufficiently complete then a plan
is always successfully executed. If knowledge is incomplete then a plan is not necessarily
successfully executed. Thus, an increment in the number of successful executions of plans
after learning is indicative of the amount of new preconditions acquired.

Now consider a case where an operator 0 is missing the postcondition (add (P)).
If we apply 0 in state S where P is not true, P will continue not to be true after 0
is applied. Sometime later, we may need P to be true (e.g., if it is a condition of a

subsequent operator). The system believes P to be false, and after checking the external
world it finds out that P is true. Incorrect predictions of literals trigger learning to

acquire new effects (in this case (add (P)) for 0). After learning, P is always predicted
to be true after applying 0. 'i hus. a reduction in the number of incorrectly predicted

literals is indicative of the amount of new effects acquired.

We generated n problems randomly. All of the n problems were solvable within the
time bound that PRODIGY was given. From the set of n solvable problems, we randomly

cliose m of them to be the training set. The rest constituted the test set. Notice that both
sets are independent (they do not have any common instances). Initially, PRODIGY is

given the incomplete domain and EXPO starts running the training problems. For each
problem, EXPO obtains a plan from PRODIGY and tries to execute it in the simulated
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environment. EXPO examines any expectation failures and applies the methods for
learning by experimentation described in this thesis. The more failures encountered
during training, the more opportunities for learning. At certain points during learning,

we run the test set. Learning is turned off at test time, so when a failure is found the
internal state is corrected to reflect the observations but no learning occurs.

In the robot planning domain, there were 60 training problems and 12 test problems,
taken from previous work in PRODIGY [Minton, 1988]. We ran tests with 20% and

50% missing preconditions. D',,c2o is missing 12 preconditions, and D',rec, is missing
28. Figures 6.1(a) and 6.2(a) show the number of failures that EXPO detects during

training with Dr,,2o and DP',ec5o respectively. Figures 6.1(b) and 6.2(b) show how many

solutions for problems in the test set were successfully executed with Dp'rc 20 and DpreS0

respectively. The number of plans that PRODIGY is able to execute correctly increases
with learning. This is because the problems in the training set cause expectation failures,

which EXPO uses to gain new knowledge after undergoing experimentation.

For D' c20 EXPO has not examined enough failures to acquire all domain knowledge,
but it has acquired the knowledge necessary to execute successfully the solutions to all

the problems in the test set. For D',c0 only 4 solutions to the test problems are

executed successfully. This is because the training set does not contain problems that

cause failures that yield the knowledge necessary to overcome the execution failures in

the test set. After training with the test set, one more new condition is learned which

turns out to be the common cause of the execution failures in the test set and thus the

solutions to all the test problems can be successfully executed.

In the process planning domain, there were two sets of training and test problems.

Each training set had 100 problems, and each test set had 20 problems. The problems

were generated randomly, as we explain in Appendix B. The tests were run in domains
with 10% and 30% incompleteness. Figures 6.3 and 6.4 present results for D',,c, 0 and

D'rrc 3o respectively when EXPO acquires new preconditions. The curves show results

very similar to the results obtained for the robot planning domain

As an example of what is learned. EXPO refines the operator GRIND shown in Figure

4.1 adding the facts shown with a star (*) in Figure 6.5.

We also run tests with domains where 20% and 50% of the postconditions of operators
were missing. Figures 6.6 and 6.7 show the results for D'o,12o and Do,50 respectively

in the robot planning domain. As more failures are encountered, EXPO acquires new

effects of operators. Thus, the number of incorrect predictions when running the test set

is reduced continuously.
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Figure 6.1: Effectiveness in the robot planning domain with 20% of the preconditions

missing (Dr,,e20). (a) Cumulative number of failures in the execution of solutions to train-
ing problems encountered by EXPO as the size of the training set increases. Each failure
presents an opportunity for learning. (b) The number of plans successfully executed in
the test set increases Rs EXPO examines more failures. The number of additional plans
successfully executed is indicative of the amount of knowledge acquired by EXPO.
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Figure 6.2: Effectiveness in the robot planning domain with 50% of the preconditions

missing (D',ec50). (a) Cumulative number of failures in the execution of solutions to train-

ing problems encountered by EXPO as the size of the training set increases. Each failure

presents an opportunity for learning. (b) The number of plans successfully executed in

the test set increases as EXPO examines more failures. The number of additional plans

successfully executed is indicative of the amount of knowledge acquired by EXPO.
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Figure 6.3: Effectiveness in the process planning domain with 10% of the preconditions
missing (D'ecio). (a) Cumulative number of failures in the execution of solutions to train-
ing problems encountered by EXPO as the size of the training set increases. Each failure

presents an opportunity for learning. (b) The number of plans successfully executed in
the test set increases as EXPO examines more failures. The number of additional plans
successfully executed is indicative of the amount of knowledge acquired by EXPO.
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Figure 6.4: Effectiveness in the process planning domain with 30% of the preconditions

missing (De ,w). (a) Cumulative number of failures in the execution of solutions to train-

ing problems encountered by EXPO as the size of the training set increases. Each failure

presents an opportunity for learning. (b) The number of plans successfully executed in

the test set increases as EXPO examines more failures. The number of additional plans

successfully executed is indicative of the amount of knowledge acquired by EXPO.
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(GRIND

(preconditions

(and
(is-a <machine> GRINDER)

(is-a <tool> GRINDING-WHEEL)

(is-a <part> PART)
* (is-clean <part>)

( - (has-burrs <part>))

* (has-fluid <machine>)

(- (same <dim> DIAMETER))

(holding-tool <machine> <tool>)
(side-up-for-machining <dim> <side>)

(holding <machine> <holding-device> <part> <side>)))
(effects (

"* (del (is-clean <part>))
"* (add (has-burrs <part>))
"* (del (has-fluid <machine>))

" (del (surface-finish <part> <side> <s-q>))

(del (size-of <part> <dim> <value-old>))

(add (size-of <part> <dim> <value>)))))

Figure 6.5: A More Complete Model of Grinding

6.2 Efficiency

The previous section showed that EXPO is indeed able to acquire new knowledge through
experimentation. So the techniques presented in this thesis are effective in that they do

lead EXPO to the cause and repair of the failures it encounters. But this is not the
only desirable property of this type of learning. In fact, as we discussed in Chapter 4,
minimising the number of experiments is another important concern. This section takes
a close look at the efficiency of the experimentation process.

Figures 6.8 and 6.9 present the number of experiments that are required to recover
from the failures shown in Figures 6.1(a) and 6.2(a) respectively. The heuristics used are
represented by a letter: g for generalization, s for structural similarity, and 1 for locality.

Without any of our hypothesis-selection heuristics, many experiments are needed. The
other curves show how effective each heuristic is individually and in combination with
others. Each heuristic contributes in its own way to reducing the number of experiments.
Notice that although the divide and conquer experimentation does a smaller number of
experiments than some of the heuristics used in isolation, every experiment requires a
larger number of goal statements to satisfy, as explained in Section 4.2. For 20% incom-
pleteness, the three heuristics combined yield the best results. For 50% incompleteness,

gl is about as good as gls. This is because when the operators are very incomplete similar
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Figure 6.6: Acquisition of new effects in the robot planning domain with 20% of the
effects missing (D,,,t20 ). (a) Cumulative number of failures in the execution of training
problems encountered by EXPO as the size of the training set increases. Each failure
presents an opportunity for learning. (b) The number of incorrectly predicted literals in
the test set decreases as EXPO examines more failures. This is indicative of the amount
of new effects of operators acquired by EXPO.
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Figure 6.7: Acquisition of new effects in the robot planning domain with 50% of the
effects missing (D•,1 5o). (a) Cumulative number of failures in the execution of training
problems encountered by EXPO as the size of the training set increases. Each failure
presents an opportunity for learning. (b) The number of incorrectly predicted literals in
the test set decreases as EXPO examines more failures. This is indicative of the amount
of new effects of operators acquired by EXPO.
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Figure 6.8: Given Dpec2o number of experiments that are necessary with all the com-

binations of the three hypotheses-selection heuristics: generalization of experience (g),

locality (1), and structural similarity (s). The number of experiments needed is greatly

reduced when the three of them are used.

operators may be missing the same conditions, so s is not very helpful. The effectiveness

of s improves as new knowledge is added to the domain, this can be seen in the numbers

of the last rows of the tables presented next.

The following tables show the numerical results that are summarized in Figures 6.8
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Figure 6.9: Given D'.ecso number of experiments that are necessary with all the com-
binations of the three hypotheses-selection heuristics: generalization of experience (g),
locality (1), and structural similarity (s). The number of experiments needed is greatly

reduced when the three of them are used.
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and 6.9. The number of experiments needed with each combination of heuristics is
shown for each failure. Also shown is the number of experiments needed if no heuristics

are used, which corresponds to the ranking by default of the missing condition in the
list of hypotheses. The last column shows the total number of hypotheses in the set of

candidates.

With Dprec2o.

number of experiments total number of

gs[ gl gs I JI I g 1 1 s no heuristics of hypotheses

1 2 1 2 3 9 2 29 59

5 15 15 3 50 5 13 21 67

1 15 1 1 51 16 1 65 66
2 8 2 2 63 4 2 30 77
1 1 1 17 1 16 76 70 77

2 1 3 5 3 4 39 30 78
1 4 2 1 6 11 14 44 60
1 1 1 44 1 13 40 9 86
1 1 1 2 1 7 2 24 68
2 1 4 7 3 5 14 10 24

With D',pec50*
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number of experiments total number of

gls[I gl gs [ Is g I liI s no heuristics of hypotheses

2 1 17 2 9 5 18 80 81
2 3 18 2 53 2 18 43 82
18 6 50 16 26 1 41 2 73

1 6 2 1 57 5 2 28 76

17 8 42 14 27 14 39 52 70
1 2 1 2 7 18 2 62 69

5 8 8 7 21 18 15 65 68
1 1 1 1 5 17 1 57 59
7 4 9 8 15 21 10 66 67

17 16 59 6 56 1 31 5 56
1 3 1 1 16 5 2 16 66
7 19 9 5 63 7 7 25 66
1 1 1 14 1 10 61 41 74

1 1 1 41 1 40 40 38 81
1 1 2 4 1 12 15 50 87
2 7 2 6 7 19 8 70 86
5 4 5 4 5 6 15 28 73

Let us examine this last table more closely, and look at the effects of each heuristic in
the ranking of candidate conditions. As we pointed out before, the heuristic of structural
similarity is increasingly more effective, since the operators in the hierarchy become
more complete through learning. The predicate (inroom <key> <room>) is added as
a new precondition of LOCK in the 7th failure (row 7 in the table), and also as a
new precondition of UNLOCK in the 16th failure (row 16). In the 7th failure, the

similarity heuristic does not find similar operators with this condition, so it ranks it
low. In the 16th failure, LOCK is found very close to UNLOCK in the hierarchy and

it has the precondition (inroom <key> <room>), so this candidate is ranked high. The
generalization of past experience also becomes more effective when more executions of
the operators are examined. Row 14 corresponds to the new precondition (arm-empty)

of the operator PICKUP-OBJ. Notice that the new precondition does not have any of
the parameters of the operator, and as a result, the locality heuristic ranks this candidate

very low.

In summary, the combination of the three heuristics (generalization of experience,
structural similarity, and locality) reduces dramatically the number of experiments re-
quired, and yileds the best performance. A divide and conquer strategy over the set of
candidates requires many more experiments that also have more complex setups.



Chapter 7

Conclusions and Future Work

This chapter summarizes the contributions and limitations of this thesis, and outlines
some areas of future work.

7.1 Summary of the Approach and Results

The thesis presents a general framework and an effective and efficient approach to the
practical implementation of learning by experimentation. The methods presented are do-
main independent, and do not require any knowledge other than the domain defined by
the user for planning. The thesis shows that it is possible to recover from knowledge-level

impasses autonomously without need of causal explanations of the failure. Automated
learning by experimentation is a desirable capability of autonomous systems and it re-
lieves humans of much work in the engineering of knowledge, taking over the burden
of ensuring knowledge completeness and maintenance once an initial knowledge base is

constructed. This thesis presents a step in that direction.

The work in this thesis is applicable to a wide range of planning problems in which
the following items are feasible:

* discrete-valued features describe the state of the world.

a actions are axiomatizable as deterministic operators in terms of the features that

describe the state.

* reliable observations are available on demand.

* noise-free sensors.
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9 no other agents are present whose actions interfere with the planner's.

Future work includes extensions in all these areas, and is discussed in Section 7.3.

7.2 Contributions

The theoretical contributions described in this thesis are:

e A closed-loop integration of planning and learning from the environment by exper-
imentation where new knowledge is immediately incorporated, tested, and used by
the planner

e Systematic augmentation of a given incomplete domain by directed experimenta-
tion, triggered each time that there is a knowledge impasse

e Acquisition of domain knowledge of a planner so it is able to solve problems it could
not solve before learning

* Computationally effective methodology for correcting incomplete domain knowl-
euge

* Exploration of methods for learning by experimentation, including hypothesis gen-
eration, filtering, prioritization, and empirical validation.

e Domain-independent heuristics for finding relevant hypotheses

e Efficient and customizable experimentation control strategies maximizing conver-
gence on identification of missing knowledge

e A framework for the interaction between the main planning space and the experi-

mentation planning space

EXPO's implementation of the above presents the following practical contributions:

" An implementation that demonstrates the synergistic interactions between a plan-
ning system and an active learner that acquires domain knowledge from the envi-
ronment

"* An empirical evaluation of methods with various degrees of initial incompleteness
in the domain, and with different sets of experimentation heuristics to identify the

sources of power and extensibility of the approach.

"* Multi-domain generality (robot planning and complex process planning)
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7.3 EXPO's Limitations and Future Work

This section describes the limitations of this thesis and some suggestions for future work.
The section is organized under three major areas: the specific methods for learning by
experimentation, the interaction with the environment, and the global framework for
experimentation.

7.3.1 Extensions to th,2 Learning Methods

EXPO's current implementation for learning new preconditions, described in Chapter 4,
is limited to acquiring a new conjunct which is an observable predicate. Every member
of the set of candidate new preconditions is an observable predicate. EXPO considers
as hypotheses only the members of that set, and tests them through experiments. If the
experiments show that none of the predicates in the set is a new precondition, EXPO
gives up on acquiring the precondition autonomously: it notifies the user that it knows
that the operator is missing a precondition and that it cannot find it. EXPO considers
only the inclusion of additional conjunctive predicates (the most common and useful
scenario). Other possible hypotheses to be considered as candidate conditions are:

* Disjunctive expressions of predicates

* Inferred predicates deduced from a state by theorem proving (or other inferential

processes)

e Quantified expressions of some piedicates

o Predicates that are never observed because they were not needed for planning before
(i.e., the weight of a box)

* A functional relation of several predicate arguments

EXPO examines the hypotheses produced by the method. If the experiments show
that the missing condition is not one of them, then it should consider the above possibil-
ities. However, to simplify the implementation, EXPO abardons learning and continues
plan execution.

Using a more sophisticated concept learning algorithm for generalization3 would ex-
pand EXPO's capabilities to acquire expressions other than conjunctive ones, including
disjunctions and quantified expressions. Functional relations between predicate argu-
ments require an algorithm with the capability to construct new functions, such as BA-

CON [Langley et al., 1987].



114 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Learning preconditions that are inferred or unobserved predicates is an open research
question. EXPO could expand its set of hypotheses to inferred and unobserved predicates,
and deduce or observe their value during the experiments. This solution would be very

inefficient because a large number of predicates may belong to this group.

EXPO assumes an initially incomplete knowledge base, but many other types of
imperfections are possible, as described in Section 3.3. The domain knowledge can be
incorrect, inadequate, or intractable. Section 5.5 outlined some possibilities to address
these different types of imperfections.

We described in Chapter 5 how experimentation is needed to collect observations
from the state. When we can't observe directly if a door is locked or unlocked, we can
experiment on opening it and we know immediately the answer. Robotics systems may
benefit enormously from using this capablity of experimentation.

Expanding the system's vocabulary by learning new features about objects in the
state is an open area. [Shen, 19891 addressed this problem in the LIVE system, which
could detect hidden features and learn their value. Research on constructive learning
is expanding horizons in this direction, and the area of autonomous learning from the
environment should benefit from that.

In short, whereas this dissertation makes a subst-ntial contribution to learning by
experimentation, there is a vast open spa,'e of additional research topics in proactive
experimentation.

7.3.2 Interaction with the Environment

The work in this thesis has a limited form of interaction with the environment. The
assumption of noise-free sensors allows the algorithms to count on reliable feedback, but
it is not a very realistic assumption for some domains. Work on inductive learning from
noisy data could be applied if sensors were unreliable. Experience on robotics research

leads us to believe that this is not a simple problem.

The presence of other agents that can change the environment and inadvertently may
cause the internal state to diverge from the external world. Their differences would cause
failures that are not due to a f;ault in the knowledge base. A solution to the problem
of determining the cause of divergence could be a more sophisticated credit-assignment
system for failures. Nondeterminism in the actions would cause a similar problem.

Learning by experimentation autonomously from the environment is not as direct for
many applications outside planning. Other intelligent systems are focused on tasks where
the interaction with the environment is expensive, impractical, or simply impossible to
obtain. Medical diagnosis :,ystems are a good example. However, it is conceivable to
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use EXPO's strategies in such systems to produce experiments that would translate into
questions for an expert, or a request for additional data gathering.

7.3.3 Toward a Framework for Learning by Experimentation

Figure 7.1 summarizes the framework for learning from the environment by experimen-

tation presented in this thesis. Given a goal, a plan to achieve it is executed while the
external environment is monitored. Any differences with the internal state are detected
by various methods that suggest a type of fault in the domain knowledge that may have
caused the expectation failure. The methods also construct a set of concrete hypothe-
ses to repair the fault. After being heuristically filtered, one hypothesis is tested at a
time with an experiment. After the experiment's requirements are designed, a plan is
constructed to achieve the situation desired. After the execution of the plan and the ex-
periment, observations are collected to conclude if the experiment was successful or not.

Upon success, the hypothesis is confirmed and the domain knowledge is adjusted. Upon
failure, the experimentation process is iterated until success or until no more hypotheses
are left to be considered. This framework has shown to be an effective way to address
experimentation but also raises many issues.

The learning methods are not completely independent, and may be triggered by the
same failure. For example, suppose that a known effect of an operator does not occur
upon execution. This triggers two methods that suggest different adjustments to the
domain knowledge: either the effect of the operator is conditional, or a precondition
is missing. Another example of the strong interaction between methods is raised by a
problem that the planner cannot solve. It may be unsolvable because an existing operator
is incomplete (i.e., missing an effect) or because the domain is missing one operator, or
simply be unsolvable regardless of completeness of knowledge. A framework to address
the interdependencies of the methods is needed. One method is chosen to be the first,
and if the experiments do not uncover the knowledge fault the other method is tried.
This issue suggests that intelligent shift of attention would be very advantageous.

In fact, intelligent shift of attention is necessary at all levels of the experimentation
process, as shown in Figure 7.1. If the current hypothesis (general or particular) has taken
enough time, another hypothesis may be chosen for consideration. If no satisfactory plan

is found for an experiment, the experiment design may be changed. And if a reasonable
amount of time and resources have been spent on studying a failure, the study may be
suspended and continued in the future when more information becomes available.

Learning from the environment is a necessary capability for autonomous intelligent
agents that must solve tasks in the real world. This thesis presents a step towards the
autonomous refinement of knowledge through experimentation.
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Figure 7.1: Toward a framework for learning by experimentation. Failures in the exe-

cution of a plan trigger learning. A general cause for the failure is hypothesized, then
instantiated to a particular hypothesis. The design of experiments includes planning the
experimental setup. A flexible framework for experimentation would include intelligent

shift of attention at all levels of the process. as indicated by the arrows on the right of

the figure.



Appendix A

The Robot Planning Domain

This appendix describes the robot planning domain implemented in the PRODIGY archi-
tecture used for examples and empirical tests in this thesis.

First, it includes a description of a domain and a quantitative and qualitative char-
acterization. Then, the implementation of this domain in the PRODIGY architecture is
listed. The rest of the appendix includes the incomplete versions and problems used in
the empirical tests, and the numerical results obtained that were used in the graphs for
Chapter 6.

This domain was chosen to test EXPO because of its realistic description of a robot
task, its medium size, and because it has been used extensively for testing other learning
methods [Minton, 1988; Etzioni, 1990; Knoblock, 1991; P6rez and Etzioni, 1992]. The
domain is essentially the same used in these references, except that variable types have
been added to the preconditions. PRODIGY needs generators for every variable, and the
original domain used the predicates in the conditions as such. If a predicate that is a
generator is missing from the preconditions, PRODIGY could not use the operators for

planning.

A.1 Description of the Domain

This domain is an extension of the one used for STRIPS [Fikes and Nilsson, 1971]. In
the original domain, a robot could move between rooms and transport boxes. In this

domain, the robot can also open and close doors, and if it is holding the right key it can
lock and unlock doors. Boxes are carriable or pushable, and all keys are carriable. Boxes
and keys are objects. Only carriable objects may be held by the robot for transportation,
other objects must be pushed to be moved. The actions available are: pickup an object,
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put down and object, put down an object next to another one, push an object to a door,
push an object through a door to another room, go through a door to another room, go
next to a door, push an object, go next to an object, and open, close, lock, and unlock
a door.

The domain can be qualitatively and quantitatively described as follows:

* Some quantitative features are:

- There are 14 operators.

- There are 11 predicates: connects, carriable, pushable, is-room, is-object,
is-door, is-key, dr-to-rm, inroom, next-to, holding. Only 3 of them
(inroom, next-to, holding) are changed by the operators.

- There are four types of variables: object, room, door, and key.

- The average number of parameters for an operator is 2.

- The average number of preconditions of operators is 4.

- The average number of effects of operators is 4.

- 57 preconditions and 38 effects are learnable, a total of 95 learnable items.

e All the operators' effects are reversible.

e There are no inference rules for deducing new facts about a given state.

* Tbr-e are no functions that compute the value of a predicate.

e The precondition expression of all the operators is a conjunction of predicates that
are included in the state (i.e., are not to be derived or computed through a function,
as explained in Section 3.6.).

* There are no negations in the precondition expressions.

* All effects of all operators are unconditional, i.e., their occurence is not dependent
on the context given by the state at application time (as explained in Section 3.6).

All preconditions that are not type specifications are learnable by EXPO. The type
specifications must be present in the operator as generators for PRODIGY 2.0, the version
of the system on which EXPO is implemented (for more details on generators see [Minton
et al., 1989b]). However, this isnot a deficiency of EXPO, but of PRODIGY 2.0, one that
is being corrected in later versions of the system [Veloso, 1989; Carbonell et al., 1992].
Only the effects used for backchaining are not learnable by EXPO. The reason for this
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is that an operator must be used by the planner in order for EXPO to observe the
outcomes of its execution. When operators are written by a human, they express an
action or change in the world, so it is reasonable to assume that the operators initially
given to EXPO have some effect.
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A.2 Domain Operators

(PICI[UP-OBJ (PUSH-THiU-DR

(par.s. (<object>)) (parase (<object> <door> <room> <other-room>))

(preconds (and (preconds (and

(arm-empty) (is-room <room>)

(next-to robot <object>) (dr-to-rm <door> <room>)

(is-object <object>) (is-door <door>)

(carriable <object>))) (dr-open <door>)

(effects ( (next-to <object> <door>)

(del (arm-empty)) (next-to robot <object>)

(del (next-to (object> <eothor-ob30>)) (is-object <object>)

(del (next-to <Oother-ob3i> <object>)) (pushable <object>)

(add (holding <object>))))) (connects <door> <room> <other-room>)

(is-room <other-room>)

(PUTDOU (Unroom <object> <other-room>)))

(parem. (<object>)) (effects (

(precond. (and (del (next-to robot <eother-obi>))

(holding <object>) (del (next-to <object> <*other-obI2>))

(is-object <object>))) (del (next-to <eother-ob7> <object>))

(effects ( (del (inroom robot <eother-ob21>))

(del (holding <*other-ob36>)) (del (inroom <object> <*other-ob22>))

(add (next-to robot <object>)) (add (inroom robot <room>))

(add (arm-empty))))) (add (inroom <object> <room>))

(add (next-to robot <object>)))))

(PUTDOVU-N(XT-TO

(params (<object> <other-ob> <room>)) (GO-THiU-DR

(preconds (and (params (<door> <room> <other-room)))

(holding <object>) (preconds (and

(is-object <object>) (arm-empty)

(is-object <other-ob>) (is-room <room>)

(inroom <other-ob> <room>) (dr-to-rm <door> <room>)

(is-room <room>) (is-door <door>)

(inroom <object> <room>) (dr-open <door>)

(next-to robot <other-ob>))) (next-to robot <door>)

(effects ( (connects <door> <room> <other-room>)

(del (holding <eothor-ob36>)) (is-room <other-room>)

(add (next-to <object> <other-ob>)) (inroom robot <other-room>)))

(add (next-to robot <object>)) (effects (

(add (next-to <other-ob> <object>)) (del (next-to robot <*other-ob19>))

(add (arm-empty))))) (del (inroom robot <*other-ob20>))

(add (inroom robot <room>)))))

(PUSH-TO-DR

(pars.s (<object> <door> <room>)) (CAILRY-THRU-DR

(precond. (and (par.ms (<object> <door> <room> <other-room>))

(is-door <door>) (preconds (and

(dr-to-rm <door> <room>) (is-room <room>)

(is-room <room>) (dr-to-rm <door> <room>)

(inroom <object> <room>) (is-door <door>)

(is-object <object>) (dr-open <door>)

(next-to robot <object>) (is-object <object>)

(pushable <object>))))) (holding <object>)

(effects ( (connects <door> <room> <other-room>)

(del (next-to robot <eother-ob3>)) (is-room <other-room>)

(del (next-to <object> <eother-obS>)) (inroom <object> <other-room>)

(del (next-to <eother-ob13> <object>)) (inroom robot <other-room>)

(add (next-to <object> <door>)) (next-to robot <door>)))

(add (next-to robot <object>))))) (effects



A.2. DOMAIN OPERATORS 121

(del (next-to robot <eothor-ob48))) (CLOSE

(del (inroom robot <eother-ob41>)) (par.ms (<doorW))

(del (inroom <object> <oother-ob42>)) (preconds (and

(add (inroom robot <room))) (is-door <door>)

(add (inroom <object> <roomW))))) (next-to robot <door>)

(dr-open <door>)))

(OOTO-DA (effects (

(params (<door> <room))) (del (dr-open <door>))

(preconds (and (add (dr-closed <door)))))

(is-door <door>)

(dr-to-ru <door> <room>) (LOCK

(inroom robot <room>) (pars=@ (<door> <key> <room>))

(is-room (room>))) (preconds (and

(effects ( (is-door <door>)

(del (next-to robot <eother-obl8:)) (is-key <door> <key>)

(add (next-to robot <door>))))) (holding <key>)

(dr-to-ru <door> <room>)

(PUSH-BOX (is-room <room>)

(params (<object> <other-ob> <room>)) (inroom <key> <room>)

(preconds (and (next-to robot <door>)

(is-object (object>) (dr-closed <door>)

(is-object (other-ob>) (unlocked <door))))

(inroom <other-ob> <room>) (effects (

(is-room <room>) (del (unlocked <doorW))

(inroom <object> <room)) (add (locked <door)))))

(pushable <object>)

(next-to robot <object>))) (UNLOCK

(effects ( (params (<door> <key> <room>))

(del (next-to robot <eother-obl4>)) (preconds (and

(del (next-to <object> <(othor-obSW)) (is-door <door>)

(del (next-to <eother-obG> <object>)) (is-key <door> <key>)

(add (next-to robot <object>)) (holding <key>)

(Add (melt-to robot <other-ob>)) (dr-to-ru <door> <room>)

(add (next-to <object> <otbor-ob>)) (is-room <room>)

(add (next-to <other-ob> <object)))))) (inroom <key> <room>)

(inroom robot <room>)

(OOTO-OBJ (next-to robot <door>)

(params (<object> <room))) (locked <doorW)))

(preconds (and (effects (

(is-object <objectW) (del (locked <door>))

(inroom <object) <room>) (add (unlocked <door)))))

(is-room <room>)

(inroom robot <room)))

(effects (

(add (next-to robot <object>))

(del (next-to robot <*other-obi09>)))))

(OPEN

(params (<door>))

(preconds (and

(is-door <door>)

(unlocked <door>)

(next-to robot <door>)

(dr-closed <doorW)))

(effects (

(del (dr-closed <door)))

(add (dr-open <door>)))))
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A.3 Incomplete Domains

The 12 preconditions missing in D' 20 are the following:

operator precondition

pickup-obj (arm-empty)
push-to-dr (dr-to-rm <door> <room>)
go-thru-dr (dr-open <door>)

carry-thru-dr (connects <door> <room> <other-room>)

carry-thru-dr (next-to robot <door> )

goto-obj (inroom robot <room>)

open (unlocked <door>)

open (next-to robot <door>)
lock (next-to robot <door>)

unlock (holding <key>)

unlock (inroom robot <room>)

unlock (next-to robot <door>)

The 8 effects missing in DPo0,2o are the following:

operator postcondition

pickup-obj (del (next-to <*other-ob3l> <object>))

putdown-next-to (del (holding <*other-ob35>))

push-thru-dr (del (next-to <*other-ob7> <object>))

push-thru-dr (del (inroom robot <*other-ob21>))

carry-thru-dr (del (inroom robot <*other-ob41>))

carry-thru-dr (del (inroom <object> <*other-ob42>))

open (del (dr-closed <door>))

close (del (dr-open <door>))
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The 28 preconditions missing in Dý,,50 are the following:

operator precondition

pickup-obj (arm-empty)

pickup-obj (next-to robot <object>)

putdown (holding <object>)

putdown-next-to (inroom <object> <room>)

push-to-dr (inroom <object> <room>)

push-to-dr (next-to robot <object>)

push-thru-dr (dr-to-rm <door> <room>)

push-thru-dr (dr-open <door>)

push-thru-dr (next-to <object> <door>)

push-thru-dr (inroom <object> <other-room>)

carry-thru-dr (next-to robot <door>)

goto-dr (dr-to-rm <door> <room>)

push-box (pushable <object>)

push-box (next-to robot <object>)

goto-obj (inroom <object> <room>)

open (dr-closed <door>)

close (next-to robot <door>)

close (dr-open <door>)

lock (holding <key>)

lock (dr-to-rm <door> <other-room>)

lock (inroom <key> <other-room>)

lock (next-to robot <door>)

lock (dr-closed <door>)

unlock (holding <key>)

unlock (dr-to-rm <door> <room>)

unlock (inroom <key> <room>)

unlock (inroom robot <room>)

unlock (locked <door>)
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The 19 effects missing in Do,,o 50 are the following:

operator postcondition

putdown (add (next-to robot <object>))

putdown-next-to (del (holding <*other-ob35>))
putdown-next-to (add (next-to robot <object>))

push-to-dr (add (next-to <object> <*other-ob5>))

push-to-dr (add (next-to robot <object>))
push-thru-dr (del (next-to robot <*other-obl>))

push-thru-dr (del (next-to <object> <*other-ob12>))

push-thru-dr (del (inroom <object> <*other-ob22>))

push-thru-dr (add (next-to robot <object>))

go-thru-dr (del (next-to robot <*other-obl9>))

carry-thru-dr (del (inroom <object> <*other-ob42>))
push-box (del (ne;.-t-to <object> <*other-ob5>))
push-box (d,-. aext-to <*other-ob6> <object>))

push-box a d (next-to robot <objecu>))

push-box (add (next-to robot <other-ob>))

goto-obj (del (next-to robot <*other-obl09>))

close (del (dr-open <door>))

lock (del (unlocked <door>))

unlock (del (locked <door>))

A.4 Training and Test Problems

The problems used to test this domain are a subset of those used in [Minton, 1988].
The problems were generated randomly, following a procedure described in the reference

mentioned. We used 60 training problems and 12 test problems. Problems 1 to 20 are
taken from psO and psl, and are called Trainl. Problems 21 to 40 are taken from ps2

and ps3 and form Train2. Problems 41 to 60 are taken from ps5 and ps6, and are called

Train3. The twelve test problems are in ps4.

A.5 Tables of Results

This section presents the numerical results that were used for the graphs in Chapter 6.
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A.5.1 Missing 20% of the Preconditions

The following table shows the numerical results that are summarized in Figure 6.1 (20%

incompleteness):

number of cumulative number of number of plans

training problems learning opportunities I successfully executed in test set

0 0 2

20 8 10

40 9 12

60 10 12

Notice that after training with Train2, 100% of the test problems can be solved.

However, the domain knowledge is still not complete, so EXPO continues learning new

facts in subsequent training problems.

New preconditions for D'r.c2 o were learned by EXPO in the following order:

1. (next-to robot <door>) of CARRY-THRU-DR

2. (next-to robot <door>) of UNLOCK

3. (holding <key>) of UNLOCK

4. (next-to robot <door>) of OPEN

5. (inroom robot <room>) of GOTO-GBJ

6. (unlocked <door>) of OPEN

7. (dr-open <door>) of GO-THRU-DR

8. (arm-empty) of PICKUP-OBJ

9. (next-to robot <door>) of LOCK

10. (dr-to-rm <door> <room>) of PUSH-TO-DR
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A.5.2 Missing 50% of the Preconditions

The following table shows the numerical results that are summarized in Figure 6.2 (50%
incompleteness):

number of cumulative number of number of plans

training problems learning opportunities successfully executed in test set

0 0 0
20 13 1

40 14 1

60 17 4
Testset 18 12

In this case, 4 of the 12 test problems cannot be successfully executed after training
with all the training sets. This is due to the nature of the training sets, which may not

uncover all the necessary failures. This is shown by training EXPO with the test set,
after which all the test problems can be solved.

New preconditions for Dp,,co were learned by EXPO in the following order:

1. (next-to robot <object>) of PICXUP-OBJ

2. (holding <object>) of PUTDOWN

3. (dr-closed <door>) of LOCK

4. (next-to robot <door>) of CLOSE

5. (holding <key>) of LOCK

6. (next-to robot <door>) of LOCK

7. (inroom <key> <room>) of LOCK

8. (next-to robot <door>) of CARRY-THRU-DR

9. (next-to robot <object>) of PUSH-TO-DR

10. (next-to <object> <door>) of PUSH-THRU-DR

11. (inroom <object> <room>) of PUSH-TO-DR
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12. (holding <key>) of UNLOCK

13. (inroom <object> <room>) of GOTO-OBJ

14. (arm-empty) of PICKUP-OBJ

15. (dr-to-rm <door> <room>) of GOTO-DR

16. (inroom robot <room>) of UNLOCK

17. (dr-open <door>) of PUSH-THRU-DR

A.5.3 Missing 20% of the Effects

The following table shows the numerical results obtained from EXPO that are summa-
rized in Figure ?? for the domain with 20% incompleteness.

number of cumulative number of number of
training problems learning opportunities [incorrect predictions

0 0 52
20 1 48

40 3 26
60 5 10

The postconditions learned by EXPO given D',,0 20 are (in this order):

1. (del (dr-open <door>)) of CLOSE

2. (del (dr-closed <door>)) of OPEN

3. (del (inroom robot <other-room>)) of CARRY-THRU-DR

4. (del (next-to robot <object>)) of PICKUP-OBJ

5. (del (inroom robot <*var>)) of PUSH-THRU-DR

Notice that items 3 and 4 are more specific than the effects that actually appear in the

original domain. But in fact, in item 3 the effect (del (inroom robot <other-:-,om>))

learned by EXPO is the correct one for the operator: (del (inroom robot <*other-ob41>))
is overly general since the robot is leaving the room <other-room>. In item 4, (del
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(next-to robot <object>)) is overly specific because <object> ceases to be next to
anything else besides the robot. In this case, EXPO can learn that fact by adding another
effect (del (next-to <*var> <object>)).

A.5.4 Missing 50% of the Effects

The following table shows the numerical results obtained from EXPO that are summa-
rized in Figure ?? for the domain with 50% incompleteness.

number of cumulative number of I number of
training problems learning opportunities incorrect predictions

0 0 59

20 5 24

40 7 20

60 7 20

The postconditions learned by EXPO given D' o,150 are (in this order):

1. (add (next-to robot <object>)) of PUSH-TO-DR

2. (add (next-to robot <object>)) of PUSH-THRU-DR

3. (del (next-to robot <*var>)) of GOTO-OBJ

4. (del (dr-open <door>)) of CLOSE

5. (del (inroom <object> <*var>)) of PUSH-THRU-DR

6. (del (next-to robot <*var>)) of GO-THRU-DR

7. (add (next-to robot <other-ob>)) of PUSH-BOX



Appendix B

The Process Planning Domain

This appendix describes the process planning domain used in the examples and in the

empirical test of this thesis. This domain is different from the scheduling domain used in

other work in PRODIGY. First, the appendix describes a domain and gives a quantitative

and qualitative characterization of it. Then, the implementation in the PRODIGY system

is listed. The rest of the appendix includes the incomplete versions and problems used
in the empirical tests, and the numerical results obtained that were used in the graphs

for Chapter 6.

A more complete description of the technical content of this process planning speci-

fication can be found in [Gil, 1991].

This domain was chosen to test EXPO because it is very elabotate and knowledge

intensive. The variety of alternative processes, their complexity, and their interactions

make the planning task very complex.

B.1 Description of the Domain

Process planning is a major component of product manufacturing. A product is designed

to satisfy some desired set of specifications. A product is typically made of several

components, also called parts. When the design is completed, production continues by

planning the sequences of processes to be performed on raw material to produce a part.

This process planning includes operations to machine, join and finish parts. Machining

processes include cutting the part to a certain size, inflicting a feature such as a hole,

and producing a certain roughness on a surface. Joining operations include bolting and

welding parts. Finishing operations give the part a certain surface coating, such as a rust

resistant finish.

129
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Drill Bit ,'

Figure B.1: The Setup for a Drilling Operation

Each operation involves a machine, a holding device to grasp the part, and a tool.
Figure B.1 depicts a setup for drilling a hole.

A drilling machine holds a tool called a drill bit, and on its table there is a holding

device called a vise that is grasping the part.

There are many constraints for the tools and holding devices that can be used with
each machine.

An expert machinist assisted in the construction of the domain, and helped with the
description of real machine setups and sample parts for constructing problems. Figure

B.2 shows an actual request. It is one of the examples included in [Hayes, 1990], selected

from a job shop that serves the Mechanical Engineering Department of Carnegie Mellon

University.
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L 2.775D ,q,--l0",,-,,m

0.5 1.75

1/8 pipe tread

tap drill

3M3

Materal Brass

Figure B.2: An Example of a Request for a Part (from [Hayes, 1990])
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This domain can be qualitatively and quantitatively described as follows:

9 Some qualitative parameters are:

- There are 117 rules, that include 73 operators and 44 inference rules.

- There are 33 different types of objects.

- There are 93 predicates. 55 of them are static (i.e., do not change during

problem solving), 27 of them are closed world (i.e., appear in the effects of
some operator but not in the effects of inference rules), 26 of them are open
world (i.e., deduced by inference rules), and 7 are computed by Lisp functions.

- The average number of parameters for an operator is 5.

- The average number of preconditions for an operator is 8.

- The average number of effects for an operator is 6.

- 163 preconditions and 154 effects are learnable, a total of 317 learnable items.

o The effects of most operators are not reversible.

* The precondition expression of some operators involves facts not present in the

state such as negations, predicates computed by functions, and predicates derived

by inference rules.

o There are context-dependent effects in some operators.

As explained in Appendix A, type specifications and backchaining effects are not
learnable by EXPO.

B.2 The Domain

The domain operators, inference rules, and function predicates are listed below.
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B.2.1 Operators

;;*;eeeeeeeeeeeeoeeeeeeeeeeeoeeoeeeeeee~eee~eeeeeeee~e**

; M IE: DRILL (effects ((del (is-clean <part>))

operators for making holes (add (has-burrs <part>))
(del (has-spot <part> <hole> <side> <(ec-x>

(DRILL-YITI-SPOT-DRILL <loc-y>))

(para.s ((machine> (drill-bit> <holding-doy> (add (has-hole <part> <hole> <side> <hole-depth>

<part> <hole> <side>)) <hole-dia,> <(oc-x> <loc-y>)))))

(preconds (and

(is-a <part> PART) (DRILL-¥ITR-STRAIOET-FLUTED-DRILL

(is-a (machine> DRILL) (params (<machine> <drill-bit> <holding-dey>

(is-a <drill-bit> SPOT-DRILL) <part> <hole> <side> <hole-depth>

(holding-tool <machina> <drill-bit>) (hole-diam>))

(holding (machine> (holding-dev> <part> <side>))) (preconds (and

(effects ( (is-a <part> PART)

(del (is-clean <part>)) (is-a <machine> DRILL)

(add (has-burrs <part>)) (same (drill-bit-diae> <hole-dian>)

(add (has-spot <part> <hole> <side> <1cc-x> (diameter-of-drill-bit <drill-bit>

<lee-y>))))) <drill-bit-diem>)(is-a (drill-bit> STRAIGHT-FLUTED-DRILL)

(DRILL-VITH-TVIST-DRILL (smaller <hole-depth> 2)

(para.s (<machine> <drill-bit> <holding-dev> (material-of <part> BRASS).

<part> <hole> <side> <hole-depth> (has-spot <part> <hole> <side> <lec-x> <loc-y>)

<hole-diam>)) (holding-tool (machine> <drill-bit>)

(preconds (and (holding (machine> <holding-dew> <part> <side>)))

(is-a <part> PART) (effects (

(is-a (machine> DRILL) (del (is-clean <part>))

(same (drill-bit-diem> (hole-diem>) (add (has-burrs <part>))

(diemeter-of-drill-bit <drill-bit> (del (has-spot <part> <hole> <side> <(oc-x>

(drill-bit-diem>) <loc-y>))

(is-a <drill-bit> TVIST-DRILL) (add (has-hole <part> <hole> <side> <hole-depth)

(has-spot <part> <hole> <side> <(oc-x> <loc-y>) <hole-diae> <loc-x> <loc-y>)))))

(holding-tool <machine> <drill-bit>)

(holding <machine> <holding-dew> <part> <side>))) (DRILL-VITH-OIL-HOLE-DRILL

(effects ( (par.ms (<machine> <drill-bit> <holding-dew>

(del (is-clean <part>)) <part> <hole> <side> <hole-depth>

(add (has-burrs <part>)) <hole-diam>))

(del (has-spot <part> <hole> <side> <(ec-x> (preconds (and

<loc-y>)) (is-a <part> PART)

(add (has-hole <part> <hole> <side> <hole-depth> (is-a (machine> DRILL)

<hole-diae> <lcc-x> <loc-y>))))) (same <drill-bit-diam> <hole-diem>)

(diemeter-of-drill-bit <drill-bit>

(DRILL-WITH-HIGH-HELIX-DRILL <drill-bit-diem>)

(params (<machine> <drill-bit> <holding-dew> (is-a <drill-bit> OIL-HOLE-DRILL)

<part> <hole> <side> <hole-depth> (smaller <hole-depth> 20)

(hole-di.))) (has-fluid <machine> <fluid> <part>)

(preconds (and (has-spot <part> <hole> <side> <loc-x> <loc-y>)

(is-a <part> PART) (holding-tool <machine> <drill-bit>)

(is-a <machine> DRILL) (holding <machine> <holding-dev> <part> <side>)))

(same <drill-bit-diem <hole-diam>) (effects (

(diametoer-of-drill-bit (drill-bit> (del (is-clean <part>))

(drill-bit-diem>) (add (has-burrs <part>))

(is-a (drill-bit> HION-NILIX-DRILL) (del (has-spot <part> <hole> <side> <loc-x>

(has-fluid (machine> <fluid> <part>) <loc-y>))

(has-spot <part> <hole> <side> <l(c-x> <loc-y>) (add (has-hole <part> <hole> <side> <hole-depth>

(holding-tool <machine> <drill-bit>) <hole-dim) <loc-x> <loc-y>)))))

(holding <machine> <holding-dew> <part> <side>)))
(DRILL-VITK-CUU-DRILL
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(par.s. (<machine> <drill-bit> <holding-dev> <hole-dim)> <loc-x> <loc-y>)

<part> <hole> <side> <hole-depth> (holding-tool <machine> <drill-bit>)

<hole-dim.))) ( (has-burrs <part>))

(preconds (and (is-clean <partW)

(ia-a <part> PART) (holding <machine> <hol, ev> <part> <side>)))

(is-a <machine> DRILL) (effects (

(ame (drill-bit-diem) (hole-diem>) (del (ia-clean (part>))

(diameter-of-drill-bit (drill-bit> (add (has-burrs <partW))

<drill-bit-diem>) (del (is-reamed <part> <hole> <side> <hole-depth>

(is-a (drill-bit> GUI-DRILL) <hole-diem> <loc-x> <loc-y>))

(has-fluid <machine> <fluid> <part>) (add (is-tapped <part> <hole> <side> <hole-depth>

(has-spot <part> <hole> <aide> <loc-x> <loc-y>) <hole-diem> <loc-x> <loc-y>)))))

(holding-tool <machine> <drill-bit))

(holding <machine> <holding-dev> <part> <sideW))) (COUNTERSINK

(effects ( (parems (<machine> <drill-bit> <holding-dev>

(del (is-clean <part))) <part> <hole>))

(add (has-burrs <part>)) (preconds (and

(del (has-spot <part> <hole> <side> <loc-x> (ia-a <part> PART)

<loc-y>)) (is-a <machine> DRILL)

(add (has-hole <part> <hole> <aide> <hole-depth> (angle-of-drill-bit <drill-bit> <angle>)

<hole-dim)> <loc-x> (loc-y>))))) (is-a (drill-bit> COUNTERSIIK)

(has-hole <part> <hole> <side> <hole-depth>

<hole-diam <loc-x> <loc-y>)

(DRILL-VITH-CUTER-DRILL (holding-tool <machine> <drill-bit>)

(parame ((machine> <drill-bit> <holding-dev> (- (has-burrs <part>))

<part> <hole> <aide> <drill-bit-dim.> (is-clean <part))

<loc-x> <1oc-y>)) (holding <machine> <holding-dev> <part> <sideW)))

(preconds (and (effect$ (

(ia-a <part> PART) (del (is-clean <part>))

(is-a <machine> DRILL) (add (has-burrs <partM))

(diameter-of-drill-bit <drill-bit> (add (is-countersinked <part> <hole> <side>

<drill-bit-diem>) <hole-depth> <hole-diem> <loc-x>

(same <drill-bit-diam) <hole-diam>) <loc-y> <angle)))))

(is-a <drill-bit> CENTE-DRILL)

(has-spot <part> <hole> <side> <loc-x> <loc-y>) (COUNTERBORS

(holding-tool <machine> <drill-bit)) (parems (<machine) <drill-bit> <holding-dev>

(holding <machine> <holding-dev> <part> <sideW))) <part> <hole>))

(effects ( (preconds (and

(del (is-clean <part))) (ia-a <part> PART)

(add (has-burrs <part>)) (ia-a <machine> DRILL)

(del (has-spot <part> <hole> <side> <loc-x> (size-of-drill-bit <drill-bit> <counterbore-size>)

<loc-y>)) (is-a <drill-bit> COUUTERBORE)

(add (has-hole <part> <hole> <side> 1/8 (has-hole <part> <hole> <side> <hole-depth>

<hole-diam> <loc-x> <loc-y>)) <hole-dim)> <(oc-x> <loc-y>)

(add (haa-center-hole <part> <hole> <side> (holding-tool (machine> (drill-bit))

<(oc-x> <loc-y>))))) (- (has-burrs <part>))

(is-clean <part>)

operators for finishing holes (holdIng (machine> (holding-dev> <part> <side>)))

(effects (

(TAP (del (is-clean <part)))

(parems ((machine> <drill-bit> <holding-dev> (add (has-burrs <part>))

<part> (hole))) (add (is-counterbored <part> <hole> <(ide>

(preconds (and <hole-depth> <hole-diem> <(oc-z>

(ia-a <part> PART) <loc-y> <counterbore-size>)))))

(is-a (machine> DRILL)

(same <drill-bit-dim) <hole-diem>) (REAR

(dimeeter-of-drill-bit <drill-bit> (pare. (<machine> <drill-bit> <holding-dev> <part>

<drill-bit-diem>) <hole> (aide> (hole-depth> (holo-diae>))

(ia-a (drill-bit> TAP) (preconds (and

(has-hole <part> <hole> <aide> <hole-depth> (ia-a <part> PART)
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(is-a <machine> DRILL) (size-of <part> <dim> <value-old>)

(same <drill-bit-diem> (hole-diem>) (smaller <value> <value-old>)

(diameter-of-drill-bit <drill-bit> (side-up-for-machining <dim> <side>)

<drill-bit-diem>) (holding-tool <machine> <milling-cutter>)

(is-a <drill-bit> REAKER) (holding <machine> <holding-dev> <part> <sideM)))

(smaller <hole-depth> 2) (effects (

(has-fluid <machine> <fluid> <part>) (del (is-clean <part>))

(has-hole <part> <hole> <side> <hole-depth> (add (has-burrs <part>))

<hole-diem) <Ioc-x> <loc-y>) (del (surface-coating-side <part> <side>

(holding-tool <machine> <drill-bit>) <esurface-coating>))

(- (has-burrs <partM)) (del (surface-finish-side <part> <side> <(s-q>))

(is-clean <part>) (add (surface-finish-side <part> <side>

(holding <machine> <holding-dev> <part> <side>))) ROUGH-MILL))

(effects ( (add (size-of <part> <dim> <value>))

(del (is-clean <part>)) (del (size-of <part> <dim> <value-old)))))

(add (has-burrs <part>))

(del (is-tapped <part> <hole> <side> <hole-depth> (DRILL-VITH-SPOT-DRILL-II-NILLING-NACHIIE

<hole-diem) <loc-x> <loc-y>)) (paraus (<machine> <drill-bit> <holding-dew>

(add (is-reamed 'part> <hole> <side> <hole-depth> <part> <hole> <side>))

<hole-diam> <(oc-x> <loc-y>))) (preconds (and

(is-a <part> PART)

(is-a <machine> MILLING-MACHINE)

,**seeeeoeeeeeeseeeeesea)eeeeee**** eeeeeee****ee*eee (is-a <drill-bit> SPOT-DRILL)

(holding-tool <machine> <drill-bit>)
MACHINE: MILLING MACHINE (holding <machine> <holding-dev> <part> <side>)))

(effects (

(SIDE-RILL (del (is-clean <part>))

(paroms (<machine> <part> <milling-cutter> (add (has-burrs <partW))

<holding-dew> <side> <dim> <value>)) (add (has-spot <part> <hole> <side> <lec-x>

(preconds (and <loc-y>))))

(is-a <part> PART)

(is-a (machine> MILLING-RACHIIE) (DRILL-VITH-TVIST-DRILL-IN-MILLING-MACHIIN

(is-of-type <milling-cutter> MILLING-CUTTER) (params (<machine> <drill-bit> <holding-dev>
(or (sam <dim> WIDTH) <part> <hole> <side> <hole-depth>

(same <dim> LENGTH)) <hole-diem>))

(size-of <part> <dim) <value-old>) (preconds (and
(smaller <value> <value-old>) (is-a <part> PART)

(smaller-than-21n <value-old> <value>) (is-a (machine> MILLING-MACHINE)

(side-up-for-machining <dim> <side>) (same <drill-bit-diam> <hole-diem>)

(holding-tool <machine> <milling-cutter>) (diaeoter-of-drill-bit <drill-bit>

(holding (machine> (holding-dev> <part> <side>))) <drill-bit-diem>)

(effects ( (is-a <drill-bit> TVIST-DRILL)

(del (is-clean <partW)) (has-spot <part> <hole> <side> <(ec-x> <loc-y>)

(add (has-burrs <part))) (holding-tool <machine> <drill-bit>)

(del (surface-coating-side <part) <side> (holding <machine> (holding-dev> <part> <sideW)))

<*surface-coating>)) (effects (

(del (surface-finish-side <part> <side> <(s-q>)) (del (is-clean <part>))

(add (surface-finish-side <part> <side> (add (has-burrs <partW))

ROUGH-RILL)) (del (has-spot <part> <hole> <side> <loc-x>
(add (size-of <part> <dim> <value>)) <loc-y>))

(del (size-of <part> <dim> <value-old>))))) (add (has-hole <part> <hole> <side> <hole-depth>

<hole-diem> <loc-> <loc-y>))))

(FACE-MILL

(parems (<machine> <part> <milling-cutter> eeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeee****

<holding-dev> <side> <dim> <value>)) MACHINE: LATHE

(preconds (and

(is-a <part> PART) (ROUGH-TUU-IRECTANGULAR-PART

(is-a <machine> MILLING-MACHINE) (parms (<machineo <part> <toolbit> <holding-dev>

(is-of-type (milling-cutter> MILLING-CUTTER) <diameter-new)))

(same <dim> HEIGHT) (preconds (and
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(is-& (machine> LATHE) (is-a (machine> LATHS)

(ia-a <toolbit> ROUGN-TOOLBIT) (is-a <toolbit> FIgISH-TOOLBIT)

(shape-of <part> RICTANGULAR) (shape-of (part> CYLINDRICAL)

(size-of <part> NEIGHT <h>) (size-of <part> DIAMETER <diam>)

(size-of (part> WIDTH <(>) (finishing-size <diem> <diameter-new>)

(smaller (diameter-new) <h>) (holding-tool <machine> <toolbit>)

(smaller (diameter-nae> <w>) ( (has-burrs <part>))

(holding-tool <machine> <toolbit>) (is-clean <partW)

(oide-up-for-machining DIANETER <side>) (holding (machine> <holding-dev> <part> SIDEO)))

(holding (machine> <holding-dev> (part> (side>))) (effects (

(effects ( (del (is-clean <part>))

(del (is-clean (part>)) (add (has-burrs <part>))

(add (has-burrs <part>)) (del (size-of (part> DIAMETER <diem>))

(del (size-of <part> NIGHT <h>)) (add (size-of (part> DIAMETER <diameter-new>))

(del (size-of <part> WIDTH <W>)) (del (surfaco-coating-side (part> SIDEO

(add (size-of (part> DIAMETER <diameter-new>)) <*esurface-coating>))

(del (surface-coating-side <part> SIDEl (del (surface-finish-side <part> SIDEO <af>))
(esurface-coating>)) (add (surface-finish-side <part> SIDEO

(del (surface-coating-side <part> SIDE2 FIRISH-TURN)))))

<*surface-coating>))

(del (surface-coating-side (part> SIDE4 (MAKE-THREAD-WITH-LATHE

(esurface-coating>)) (parems ((machine> (part> <holding-dew> <side>))

(del (surface-coating-side (part> SIDES (preconds (and

<esurface-coating>)) (is-a (part> PART)

(del (surface-coating-side <part> SIDEO (is-a (machine> LATHE)

<esurface-coating>)) (is-a <toolbit> V-THREAD)

(del (surface-finish-side <part> SIDEl <sf1>)) (shape-of <part> CYLINDRICAL)

(del (surface-finish-side <part> SIDE2 <sf2>)) (holding-tool (machine> <toolbit>)

(del (surface-finish-side (part> SIDE4 <sf4>)) (- (has-burrs (part>))

(del (surface-finish-side <part> SIDES <sfS>)) (is-clean (part>)

(add (surface-finish-side <part> SIDEO (holding (machine> (holding-dey> <part> SIDEO)))

ROUGH-TURN))))) (effects (

(del (is-clean <part>))

(ROUGN-TUU-CYLINDRICAL-PART (add (has-burrs <part>))

(params ((machine> <part> <toolbit> <holding-dew> (del (surface-coating-side <part> SIDEO

<diameter-new>)) <esurface-coating>))

(preconds (and (del (surface-finish-side <part> SIDEO <(f>))

(is-a <machine> LATHS) (add (surface-finish-side <part> SIDEO TAPPED)))))

(is-a <toolbit> ROUGH-TOOLBIT)

(shape-of <part> CYLINDRICAL) (MAKE-KNURL-VITH-LATIIE

(size-of (part> DIANETER (diem>) (parses ((machine> (part> (holding-dev> (side>))

(smaller (diameter-na.> <diem>) (preconds (and

(holding-tool (machine> <toolbit>) (is-a (part> PART)

(side-up-for-machining DIAMETER (side>) (is-a <machine> LATHE)

(holding <machine> <holding-dew> (part> <side>))) (is-a <toolbit> KIU)

(effects ( (shape-of (part> CYLINDRICAL)

(del (is-clean (part>)) (holding-tool (machine> <toolbit>)

(add (has-burrs (part>)) ( (has-burrs <part>))

(del (size-of <part> DIAMETER <diam>)) (is-clean <part>)

(add (size-of (part> DIAMETER <diameter-new>)) (holding <machine> <holding-dew> <part> SIDEO)))

(del (surface-coating-side (part> SIDEO (effects (

<esurface-coating>)) (del (is-clean (part>))

(del (surface-finish-side <part> SIDEO <(a>)) (add (has-burrs <part>))

(add (surface-finish-side <part> SIDEO (del (surface-coating-side (part> SIDEO

ROUGH-TURU))))) (esurface-coating>))

(del (surface-finish-side (part> SIDEO <(a>))

(FINISH-TURN (add (surface-finish-side (part> SIDEO

(parems ((machine> (part> <toolbit> (holding-dev> KNURLED)))))

(diameter-neW>))

(proconds (and (FILE-VITH-LATHE
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(params (<machine> <part> (holding-dev> (del (is-clean <part>))
<lathe-file> <diameter-new))) (add (has-burrs <part>))

(preconds (and (del (surface-coating-side <part> <side>

(is-a <part> PART) <esurface-coating>))

(is-a <machine> LATHE) (del (surface-finish-side <part> <side> <(s-q>))

(is-a <lathe-file> LATHE-FILE) (add (surface-finish-side <part> <side>

(shape-of <part> CYLINDRICAL) ROUGH-SHAPED))

(size-of <part> DIANITER (die>) (add (size-of <part> <dim> <value>))

(finishing-size <diem> <diameter-new>) (del (size-of <part> <dim> <value-old)))))

(- (has-burrs <part>))

(is-clean <part>) (FINISH-SHAPE

(holding (machine> (holding-dev> <part> SIDEO))) (params (<machine> <part> <cutting-tool>

(effects ( <holding-de)> <side> <dim> <value>))

(del (is-clean <part))) (preconds (and

(add (han-burrs (part>)) (is-a <part> PART)

(del (size-of <part> DIAMETER <diam))) (is-a (machine> SHAPER)

(add (size-of <part> DIAMETER <diameter-ne.>)) (is-a <cutting-tool> FINISMIZOG-CUTTI]G-TOOL)

(del (surface-coating-side <part> SIDEO (size-of <part> <dim> <value-old>)

<esurface-coating>)) (finishing-size (value-old> <value>)

(del (surface-finish-side <part> SIDEO <sf>)) (side-up-for-machining <dim> <side>)

(add (surface-finish-side <part> SIDEO (holding-tool <machine> <cutting-tool>)

IOUGH-GRIND))))) ( (has-burrs <partW))

(is-clean <part>)

(POLISH-VITH-LATHE (holding (machine> <holding-dew> <part> <side>)))

(paraes (<machine> <part> <holding-dev> <cloth> (effects (

<diameter-new>)) (del (is-clean <part>))

(preconds (and (add (has-burrs <part>))

(is-a <part> PART) (del (surface-coating-side <part> <side>

(is-a (machine> LATHE) <esurface-coating>))

(is-a <cloth> ABRASIVE-CLOTH) (del (surface-finish-side <part> <side) <*s-q>))

(material-of-abrasive-cloth <cloth> EMERY) (add (surface-finish-side <part> <side>

(shape-of <part> CYLINDRICAL) FINISH-SHAPED))

( (has-burrs <part>)) (add (size-of <part> <dim> <value)))

(is-clean <partW) (del (size-of <part> <dim> <value-old>)))))

(holding (machine> <holding-dev> <part> SIDEO)))

(effects ( eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

(del (is-clean <part>)) MACHINE: PLANER

(add (has-burrs <part>))

(del (surface-coating-side <part> SIDEO (ROUGH-SHAPE-WITH-PLAIER

<esurfaco-coating>)) (parems (<machine> <part> <cutting-tool>

(del (surface-finish-side <part> SIDEO <es-q))) <holding-dev> <side> <dim> <value>))

(add (surface-finish-side <part> SIDEO (preconds (and

POLISHED))))) (is-a <part> PART)

(is-a (machine> PLANER)
eeeee~eeeeeeeeeeeeeeeeeeeeeeoe~eeeeeseee~ee~eeeeeeee (is-a <cutting-tool> ROUGHING-CUTTING-TOOL)

MACHINK: SHAPER (size-of <part> <dim> <value-old>)

(smaller <value> <value-old>)

(ROUGH-SHAPE (side-up-for-machining <dim> <side>)

(paraes ((machine> <part> <cutting-tool> (holding-tool <machine> <cutting-tool>)

(holding-dev> <side> <dim> <value>)) (holding <machine> (holding-dev> <part> <side>)))

(preconds (and (effects (

(is-a <part> PART) (del (is-clean <partW))

(is-a (machine> SHAPER) (add (has-burrs <partW))

(is-a (cutting-too> ROUNHIXG-CUTTING-TOOL) (del (surface-coating-side <part> <side>

(size-of (part> <dim) <value-old>) <esurface-coating>))

(smaller <value) (value-old>) (del (surface-finish-side <part> <side> <*s-q>))

(side-up-for-machining <dim> <side>) (add (surface-finish-side <part> <side>

(holding-tool <hachine> <cutting-tool>) ROUGH-PLAED))

(holding <(achine> <holding-dov> <part> <side>))) (add (size-of <part> <dim> <value)))

(effects ( (del (size-of <part> <dim> <value-old)))))
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<:ide> <dim> <value>))

(FINISM-SHAPS-VITH-PLAsn (preconds (and

(params (<machine> <part> <cutting-tool> (is-a <part> PART)

<holding-de)> (side> <dim> <value>)) (is-a <machine> GRINDER)

(preconds (and (is-a <wheel> GRINDING-VHEEL)

(is-a <part> PART) (has-fluid <machine> <fluid> <part>)

(is-a f(achine> PLAN•) (hardness-of-wheel <wheel> SOFT)

(is-a <cutting-tool> FINISHING-CUTTING-TOOL) (hardness-of <part> HARD)

(size-of <part> <dim> <value-old>) (grit-of-wheel <wheel> COARSE-GRIT)

(finishing-size (value-old) <value>) (size-of <part> <dim> <value-old>)

(side-up-for-machining <dim) <side>) (smaller <value> <value-old>)

(holding-tool (machine> <cutting-tool)) (side-up-for-machining <dim> <side>)

( (has-burrs <part>)) (holding-tool (machine> <wheel>)

(is-clean <part)) (holding (machine> <holding-dev> <part> <side>)))

(holding (machine> <holding-dev> <part> <side)))) (effects (

(effects ( (del (is-clean <part))

(del (is-clean <part>)) (add (has-burrs <part>))

(add (has-burrs <part>)) (del (surface-coating-side <part> <side>

(del (surface-coating-side <part> <side> <*surface-coating>))

<esurface-coating>)) (del (surface-finish-side <part> <side> <as-q>))

(del (surface-finish-side <part> <side> <as-q>)) (add (surface-finish-side <part> <side>

(add (surface-finish-side <part> <side> ROUGH-GRIND))

FINlSH-PLANED)) (add (size-of <part> <din> <value>))

(add (size-of <part> <dim) <value>)) (del (size-of <part> <dim> <value-old>)))))

(del (size-of <part> <din> <value-old>)))))
(FINISH-GRIID-VITH-HARD-WHEEL

;eeeeeeeeeeeeeeeeeeeeeeeeeeoeeeemeeeeeeeeeeeeoeeeee (params ((machine> <part> <(heel> <holding-dew>

RACHINE: GRINDER <side> <dim> <value>))

(preconds (and

(ROUGH-GRIND-VITH-HARD-VHEEL (is-a <part> PART)

(parsas (<machine> <part> <wheel> <holding-dev> (is-a (machine> GRINDER)

<side> <dim> <value))) (is-a <wheel> GRINDING-WHEEL)

(preconds (and (has-fluid (machine> <fluid> <part>)

(is-a <part> PART) (hardness-of-wheel <wheel> HARD)

(is-a (machine> GRINDER) (hardness-of <part> SOFT)

(is-a <wheel> GRIIDING-WHVEL) ( (material-of <part> BRONZE))

(has-fluid (machine> <fluid> <part>) ( (material-of <part> COPPER))

(hardness-of-wheol <(heel> HARD) (grit-of-wheel <wheel> FINE-GRIT)

(hardness-of <part> SOFT) (size-of <part> <dim> <value-old>)

( (material-of <part> BRONZE)) (finishing-size <value-old> <value>)

( (material-of <part> COPPER)) (side-up-for-machining <dim> <side>)

(grit-of-whoel <wheel> COARSE-GRIT) (holding-tool <machine> <wheel>)

(size-of <part> <dim) <value-old>) ( (has-burrs <part>))

(smaller <value> <value-old>) (is-clean <part>)

(side-up-for-machining <dim> <side>) (holding <machine> <holding-dew> <part> <side>)))

(holding-tool <machine> <wheel>) (effects (

(holding <machine> <holding-dew> <part> <sideW))) (del (is-clean <part>))

(effects ( (add (has-burrs <part>))

(del (is-clean <part>)) (del (surface-coating-side <part> <side>

(add (has-burrs <part>)) <esurface-coating)))

(del (surface-coating-side <part> <side> (del (surface-finish-side <part> <side> <*s-q>))

<esurface-coating>)) (add (surface-finish-side <part> <side>

(del (surface-finish-side <part> <side> <(s-q>)) FINISH-GRID))

(add (surface-finish-side <part> <side> (add (size-of <part> <dim> <value>))

RDUGH-GRIND)) (del (size-of <part> <dim) <value-old>)))))

(add (size-of <part> <dim> <value>))

(del (size-of <part> <dim> <value-old>)))))

(FINISH-GRIND-WITH-SOFT-WHEEL

(ROUGH-GRIND-WITH-SOFT-WSEEL (params (<machine> <part> <wheel> <holding-dev>

(parasi (<machine> <part> <wheel> <holding-dev> <side> <dim> <value))
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(preconds (and (size-of <part> <dim> <value-old>)

(is-a <part> PART) (smaller <value> <value-old>)

(is-a <machine> GRINDER) (side-up-for-machining <dim> <side>)

(is-a <wheel> GRINDING-VHEEL) (holding-tool <machine> <attachment>)

(has-fluid <machine> <fluid> <part>) (holding <machine> <holding-dev> <part> <side>)))

(hardness-of-wheel <wheel> SOFT) (effects (

(hardness-of <part> HARD) (del (in-clean <part>))

(grit-of-wheel <wheel> FINE-GRIT) (add (has-burrs <part>))

(size-of <part> <dim> <value-old>) (del (surface-coating-side <part> <side>

(finishing-size <value-old> <value>) <*surface-coating>))

(side-up-for-machining <dim> <side>) (del (surface-finish-side <part> <side> <*s-q>))

(holding-tool <machine> <whoel>) (add (surface-finish-side <part> <side>

( (has-burrs <part>)) ROUGH-MILL))

(is-clean <part>) (del (size-of <part> <dim> <valie-old>))

(holding <machine> <holding-dev> <part> <side>))) (add (size-of <part> <dim> <value>)))))

(effects (

(del (is-clean <part>)) eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

(add (has-burrs <part>)) MACHINE: BAND-SAM

(del (surface-coating-side <part> <side>
<*surface-coating>)) (CUT-MITH-BAID-SAM

(del (surface-finish-side <part> <side> <(s-q>)) (params (<machine> <part> <attachment> <dim>

(add (surface-finish-side <part> <side> <value>))

FINISH-GRIND)) (pretcnds (and

(add (size-of <part> <dim> <value>)) (is-a <part> PART)

(del (size-of <part> <dim> <value-old>))))) (is-a <machine> BAlD-SAM)

(is-a <attachment> SAM-BAND)
;;;*eeeeeeeeeeeeeeeeeeeeeee eeeeeeeeea eeeeeeeesese* (size-of <part> <dim> <value-old>)

MACHINE: CIRCULAR-SAM (smaller <value> <value-old>)

(side-up-for-machining <dim> <side>)

(CUT-VITN-CIRCULAI-COLD-SAM (holding-tool <machine> <attachment>)

(params (<machine> <part> <attachment> (- (has-burrs <part>))

<holding-dev> <dim> (value>)) (is-clean <part>)

(preconds (and (on-table <machine> <part>)))

(is-a <part> PART) (effects (

(is-a (machine> CIRCULAR-SAM) (del (is-clean <part>))

(is-a <attachment> COLD-SAM) (add (has-burrs <part>))

(size-of <part> <dim> <value-old>) (del (surface-coating-side <part> <side>

(smaller <value> <value-old>) <*surface-coating>))

(side-up-for-sachining <dim> <side>) (del (surface-finish-side <part> <side> <*s-q>))

(holding-tool (machine> <attachment>) (add (surface-finish-side <part> <side> SAVCUT))

(holding <machine> (holding-dev> <part> <side>))) (del (size-of <part> <dim> <value-old>))

(effects ( (add (size-of <part> <dim> <value>)))))

(del (is-clean <part>))

(add (has-burrs <part>)) (POLISH-MITH-BAND-SAM

(del (surface-coating-side <part> <side> (params (<machine> <part> <attachment> <side>))

<esurface-coating>)) (preconds (and

(del (surface-finish-side <part> <side> <0s-qQ)) (is-a <part> PART)

(add (surface-finish-side <part> <side> (is-a (machine> BAND-SAM)

FINISH-HILL)) (is-a <attachment> SAM-BAND)

(del (size-of <part> <dim> <value-old>)) (side-up-for-machining <dim> <side>)

(add (size-of <part> <dim> <value>))))) (holding-tool (machine> <attachment>)

( (has-burrs <part>))

(CUT-MITU-CIRCULAi-FRICTIOI-SAM (is-clean <part>)

(parama (<machine> (part> <attachment> (on-table <machine> <part>)))

<holding-dev> <dim) <value>)) (effects (

(preconds (and (del (is-clean <part>))

(is-a <part> PART) (add (has-burrs <part>))

(ia-a (machine> CIRCULAR-SAM) (del (surface-coating-side <part> <side>

(is-a <attachment> FRICTION-SAV) <*surface-coating>))

(has-fluid (machine> <fluid> <part>) (del (surface-finish-side <part> <side>
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<eold-sf-cond>)) (del (waterial-of <part2> <nateria12>))

(add (surface-finish-side <part> <aide> (del (is-clean <parti>))

POLISHED)))) (del (is-clean <part2>))
(del (surface-coating-side (parti> <eside&>

(esurt-coatinga>)

eeeeeee. eeeeeeeeeeeeeeeeeee~eeeeeeeeee (del (surface-coating-aide <part2> (asideb>

MACHINE: WELDER (esurf-coatingb>))

(del (surface-finish-side (parti> (esidec>
(WELD-CYLINDEUS-NETAL-ARC (esfc>)))

(parems ((machine) (parti> <part2> <part> (del (surface-finish-side <part2> (eaided>

(electrode> (holding-dew> (length>)) (aafd>)))))

(preconds (and

(is-a <parti> PART) (WELD-CYLINDERS-GAS
(is-a (part2> PART) (params ((machine> (parti> <part2> (part> <rod>

(- (same (parti> 4part2W) (holding-dew> (length>)))
(is-a (machine> METAL-ARC-WELDER) (preconds (and
(is-a (electrode> ELECTRODE) (is-a (parti> PART)

(material-of (parti> (sateriali>) (ia-a <part2> PART)

(material-of <par%2> <uaterial2>) C (same <partl> <part>))
(ahape-of (parti> CYLINDRICAL) (is-a (machine> GAS-WELDER)

(shape-of <part2> CYLINDRICAL) (is-a (rod> WELDING-ROD)
C (exists ((hole>) (is-a <torch> TORCH)

(has-hole (parti> (hole> <eside> (edepth> (material-of (parti> (materiali>)

(ediam) (aboc-I> (eloc-y>))) (material-of <part2> <material2>)

C (exists ((hole>) (same (materiall> <material2>)

(has-hole <Part2> (hole> <*s ide> <adepth> (shape-of (parti> CYLINDRICAL)
(edian> (eloc-x> (aloc-y>))) (shape-of <part2> CYLINDRICAL)

(size-of (partl> DIAMETER (diameteri)) C (exists ((hole>)

(size-of <part2> DIAMETE (diameter2>) (has-hole (parti> (hole> <*side> <*depth>

(same (dianeteri> <diameter2>) (adieu> (Cloc-x> (Cloc-y>)))
(size-of (partl> LENGTH <lengthl>) C (exists ((hole>)

(size-of <part2> LENGTH <length2>) (has-hole <part2> (hole> <*side> (edepth>

(new-size (lengthl> <lengtb2> (length>) (ediam> <eloc-z> (eloc-y>))

(flew-part <part> (parti> <part2>) (size-of (parti> DIAMETER (diameteri>)

(new-material <material> muateriall> <material2>) (size-of <part2> DIAMETER <diameter2>)

(holding-tool (machine> (electrode>) (same (diemeteri> <diamieter2>)

(holding (machine> (holding-dew> (part2> SIDE3))) (size-of (parti> LENGTH <longthl>)

(effects ( (size-of <part2> LENGTH <length2>)

(del (is-a (parti> PART)) (new-size (lengthl> <length2> <length>)

(del (is-a <part2> PART)) (new-part (part> (parti> (part2>)

(add (is-a <part> PART) (holding (machine> (holding-dev> <part2> SIDE3)))

(add (material-of (part> (material))) (effects (

(add (size-of (part> DIAMETER (diemeteri>)) (del (is-a (parti> PART)

(add (size-of (part> LUNG?! (length>)) (del (ia-a <part2> PART))

(add (surface-finish-side (part> SIDEO SAWCIJT)) (add (is-a (part> PART)
(if (surface-finish-side (parti> SIDE3 (sf31>) (add (material-of (part> (materiall>))

(add (sur-face-finish-aide (part> SIDE3 (add (size-of (part> DIAMETER (dianeteri>))

(sf31>))) (add (size-of (part> LENGTH (lengt.h>))

(if (surface-finish-aide <part2> SIDEG (sf62>) (add (surface-finish-side (part> SIDEC SAVCIJT))
(add (surface-finish-side <part) SIDES (if (surface-finish-side (parti> SIDE3 (sf31>)

(sf62>))) (add (surface-finish-side (part> SIDE3

(del (holding <machine> (holding-dew> (part2> (sf31>)))
SIDE3)) (if (surface-finish-aide (part2> SIDE6 (sf62>)

(add (holding (machine> (holding-dew> (part> (add (surface-finish-side (part> SIDE6

SIDE3)) (sf62>)))

(del (size-of <partl> DIAMETER (diam>) (del (holding (machine> (holding-dev> (part2>

(del (size-of <partl> LUNGTH (lengthi>)) SIDE3))
(del (size-of <part2> DIAMETER (diam))) (add (holding (machine> (holding-dew> (part>

(del (size-of <part2> LUNG?! (length2>)) SID93))

(del (material-of (parti> (materiali>)) (del (size-of (parti> DIAMETER (diem>))
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(del (size-of <partl> LENGTH <lengthl>)) (del (surface-coating-side <part> <side>

(del (size-of <part2> DIAMETER <diam>)) FUSED-METAL)))))

(del (size-of <part2> LENGTH <length2>))

(del (material-of <parti> <(ateriall>))
(del (material-of <part2> <material2>)) (METAL-SPRAY-COATING-WEAA-s4 SISiANT

(del (is-clean <part1>)) (parsas (<machine> <wire> <part> <side>

(del (is-clean <partW)) <another-machine> <holding-dev>))

(del (surface-coating-side <partl> <*sides> (preconds (and

<*surface-coatinga))) (is-a <part> PART)

(del (surface-coating-side <part2> <*sideb> (is-a <machine> ELECTRIC-ARC-SPRAY-GUN)

<*surface-coatingb>)) (is-* <wire> SPRAYING-METUL-WIRE)

(del (surface-finish-side <partl> <*sidec> (material-of-wire <wire> ALUMINUM-OXIDE)
<(sfc>)) ( (material-of-wire <wire> TUNGSTEN))

(del (surface-finish-side <part2> <*sided> ( (material-of-wire <wire> MOLYBDENUM))

<*sfd>))))) (is-clean <part>)

(- (has-burrs <part>))
eeeeeeeee*eeeeeeeeeeeeeeeeeeeeeeeeee*e*eeee*eee** (surface-coating-side <part> <side> FUSED-METAL)

METAL-COATING (is-of-type <another-machine> MACHINE)

(holding <another-machine> <holding-dev> <part>
(METAL-SPRAY-COATING-CORROSION-LESISTANT <side>)))

(paraes (<machine> <wire> <part> <side> (effects (

<another-machins> <holding-dev>)) (add (surface-coating-side <part> <side>

(preconds (and WEAR-RESISTANT))

(is-a <part> PART) (del (surface-coating-side <part> <side>

(is-a <machine> ELECTRIC-ARC-SPRAY-GUN) FUSED-METAL))))'

(is-a <wire> SPRAYING-METAL-WIRE)
(material-of-wire <wire> STAINLESS-STEEL) (METAL-SPRAY-PREPARE

(- (material-of-wire <wire> TUNGSTEN)) (parans (<machine> <wire> <part> <side>

C (material-of-wirs (wire> MOLYBDENUM)) <another-machine> <holding-deW>))

(is-clean <part>) (preconds (and

(- (has-burrs <part>)) (is-a <part> PART)

(surface-coating-side <part> <side> FUSED-METAL) (is-a <machine> ELECTRIC-ARC-SPRAY-GUN)

(is-of-type <another-sachine> MACHINE) (is-a <wire> SPRAYING-METAL-WIRE)

(holding <another-machine> <holding-dey> <part> (has-high-melting-point <wire>)

<side>))) (is-clean <part>)

(effects ( (- (has-burrs <part>))
(add (surface-coating-side <part> <side> (is-of-type <another-machine> MACHINE)

CORROSION-RESISTANT)) (holding <another-machine> <holding-dew> <part>

(del (surface-coating-side <part> <side> <side>)))

FUSED-METAL))))) (effects (

(del (surface-coating-side <part> <side> <*s-f>))

(METAL-SPRAY-COATING-HEAT-RESISTANT (add (surface-coating-side <part> <side>

(params (<machine> <wire> <part> <side> FUSED-METAL)))))

<another-machine> <holding-dew>))

(preconds (and * eee eee**eeeeeeee*eeeee*eee**e**ee****************

(is-a <part> PART) OTHER OPERATIONS

(is-a <machine> ELECTRIC-ARC-SPRAY-GUN)

(is-a <wire> SPRAYING-METAL-WIRE) (CLEAN

(material-of-wire <wire> ZIRCONIUM-OXIDE) (params (<part>))

( (material-of-wire <wire> TUNGSTEN)) (preconds (and

( (material-of-wire <wire> MOLYBDENUM)) (is-a <part> PART)

(is-clean <part>) (is-available-part <part>)))

(- (han-burrs <part>)) (effects (

(surface-coating-side <part> <side> FUSED-METAL) (add (is-clean <part>)))))

(is-of-type <another-machine> MACHINE)

(holding <another-machine> <holding-dew> <part> (REMOVE-BURRS

<side>))) (params (<part> <brush>))

(effects ( (preconds (and

(add (sirface-coating-side <part> <side> (is-a <part> PART)

HEAT-RESISTANT)) (is-a <brush> BRUSH)
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(is-available-part <part>))) (is-available-tool-holder <machine..

(effects ( (is-available-tool <wheel>)))

(del (is-clean <part>)) (effects (

(del (has-burrs <partW))))) (add (h Iding-tool <machine> <wheel>)))

(PUT-CIRCULAR-SAW-ATTACNEUT-IN-CIRCULAR-SAW

;;;,eeseeeeeeeeeeee*eeeeeeeeeeeeee**eeeeeee*****o** (params (<machine> <attachment>))

e***e*eeeeee*e*ee**eee*eeeee*eee*e***ee*eeee*****ee (precends (and

operators for preparing the machines (is-a <machine> CIRCULAR-SAW)

(is-of-type <attachment> CIRCULAR-SAW-ATTACHMENT)
;;;eeeeee*ee*ee*eeeee*.eeeeeeee*e*eeeeeeeeeeeeeeeee (is-available-tool-holder <machine>)

; tools in machines (is-available-tool <attachment>)))

(effects (

(PUT-TOOL-ON-MILLINO-MACKINE (add (holding-tool <machine> <attachment>)))))

(params (<machine> <attachment>))

(preconds (and (PUT-BAND-SAW-ATTACHIEMT-IN-BAID-SAW

(is-a <machine> MILLING-MACNINE) (params (<machine> <attachment>))

(or (is-of-type <attachment> MILLING-CUTTER) (preconds (and

(is-of-type <attachment> DRILL-BIT)) (is-a <machine> BAND-SAW)

(is-available-tool-holder <machine>) (is-of-type <attachment> BAND-SAW-ATTACHMENT)

(is-available-tool <attachment>))) (is-available-tool-holder <machine>)

(effects ( (is-available-tool <attachment>)))

(add (holding-tool <machine> <attachment>))))) (effects (

(add (holding-tool <machine> <attachmentW)))))

(PUT-IN-DRILL-SPINDLE

(params (<machine> <drill-bit>)) (PUT-ELECTRODE-IN-WELDER

(preconds (and (params (<machine> <electrode>))

(is-a <machine> DRILL) (preconds (and

(is-of-type <drill-bit> DRILL-BI1, (is-a <machine> METAL-ARC-WELDER)

(is-available-tool-holder <machine>) (is-a <electrode> ELECTRODE)

(is-available-tool <drill-bit)))) (is-available-tool-holder <machine>)

(effects ( (is-available-tool <electrode>)))

(add (holding-tool <machine> <drill-bit>))))) (effects (

(add (holding-tool <machine> <electrode>)))))

(PUT-TOOLBIT-I1-LATHE

(params (<machine> <toolbit>)) (REMOVE-TOOL-FR]M-MACHINE

(preconds (and (params (<machine> <tool>))

(is-a <machine> LATHE) (preconds (and

(is-of-type <toolbit> LATHE-TOOLBIT) (is-of-type <machine> MACHINE)

(is-available-tool-holder <machine>) (is-of-type <tool> MACHINE-TOOL)

(is-available-tool <toolbit)))) (holding-tool <machine> <tool>)))

(effects ( (effects (

(add (holding-tool <machine> <toolbit>))))) (del (holding-tool <machine> <tool)))))

(PUT-CUTTIIG-TDOL-II-SNAPER-OR-PLAIER e**e*****ee***e********** e*e***e**ee*******e***e

(params (<machine> <cutting-tool>)) holding devices in machines

(preconds (and
(or (is-a <machine> SHAPER) (PUT-HOLDING-DEVICE-IN-MILLING-MACHINE

(is-a <machine> PLANER)) (params (<machine> <holding-dey>))

(is-of-type <cutting-tool> CUTTING-TOOL) (preconds (and

(is-available-tool-holder <machine>) (is-a <machine> MILLING-MACHINE)

(is-available-tool <cutting-tool>))) (or
(effects ( (is-a <holding-dev> 4-JAW-CNUCK)

(add (holding-tool <machine> <cutt.ng-tool>))))) (is-a <holding-dev> V-BLOCK)

(is-a <holding-dev> VISE)

(PUT-WHEEL-IN-GRINDER (is-a <holding-dev> COLLET-CHUCK)

(parans (<machine> <wheel>)) (is-a <holding-dev> TOE-CLAMP))

(preconds (and (is-available-table <machine> <holding-dev>)

(is-a <machine> GRINDER) (is-available-holding-device <holding-deev)))

(Os-a <wheel> GRIIDING-UNEEL) (effects
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(add (han-device (macbin.) <holding-day)))))) (PUI.-H0LDING-DEVICE-1N-CIRCULAR-SAV
(params (<machine> (holding-day>)))

(PUT-HOLDING0-DEVICE-II-DRILL (preconds (and

(pareas (<machin*> (holding-dev>)) (is-a. (machine> CIRCULAR-SAV)

(preconds (and (or (is-a <holding-dev> VISE)

(is-a <machine, DRILL) (is-a <holding-dey> V-BLOCK))

(or (is-available-table <machine> <holding-dev>)

(is-& (holding-dev> 4-JAM-CHUCK) (is-available-holding-device <holding-dev>)))

(is-a (holdiag-dev> V-BLOCK) (effects (
(is-a <holding-day) VISE) (add (has-device <machine> (holding-devW))))

(is-a <holdiag-dev> TOE-CLAMP))

(is-available-table <machine> <holding-deW> (PUT-HOLDINGO-DEVICE-IN1-MELDER

(is-available-holding-device (holding-dev>)) (params ((machine> (holding-dev>))

(effects ( (preconds (and

(add (has-device (machine) (holding-dev>)))) (is-of-type (machine> MELDER)

(or (is-a <holding-dev> VISE)

(PUT-HOLDING-DEVICE-INf-LATHE (is-a <holding-dev> TOE-CLAMP))

(paras. (fmachine> (holding-dev>)) (is-available-table (machine> (holding-dev>)

(preconds (and (is-available-holding-device (holding-dev>)))

(is-a <machine> LATHE) (effects (
(or (is-a <holding-dev> CENTERS) (add (has-device <machine> <holding-dev>)))))

(is-a (holding-dev> 4-JAV-CHUCK)

(is-a (holding-dev> COLLET-CHUCK))

(is-available-table (machine) (holding-dev>) (RtEMOVE-HOLDING-DEVICE-FROM-MACHINE
(is-available-holding-device <holding-dev>))) (parans ((machine> (holding-day>)

(effects ( (preconds (and

(add (has-device (machine> (holding-day)))))) (is-of-type (machine) MACHINE)

(is-of-type <holding-dev> HOLDING-DEVICE)

(PUT-HOLDING-DEVICE-IN-SHAPER (has-device (machine> (holding-day>)

(params ((machine> <holding-dev>)) (is-empty-holding-device <holding-dev>

(preconds (and (machine>)))

(is-a (machine> SHAPER) (effects (

(is-a. (holding-dev) VISE) (del (ham-device (machine> (holding-dev>))))

(is-available-table (machine> <holding-dev>)

(ia-available-holding-device (holding-day>)) aeeeaaeaeeaeaaaeseeeeaaea

(effects ( ;cutting fluid in machines

(add (has-device <machine> <holding-dev>)))))

(ADD-SOLUBLE-OIL

(PUT-HOLDING-DEVICE-IN-PLANER (paramis ((machine> <fluid>))

(params (<machine> (holding-dev>)) (preconds (and

(preconds (and (is-of-type (machine> MACHINE)

(is-a (machine> PLANER) (is-a (Part> PART)

(is-a <holding-dev> TOE-CLAMP) (or (material-of (part> STEEL)

(is-available-table (machine) (holding-dev>) (material-of (part> ALUMINUM))

(is-available-holding-device (holding-doy>)) (is-a <fluid) SOLUBLE-OIL))

(effects ( (effects

(add (has-device (machine> (holding-dey)))')) (add (has-fluid (machine> <fluid> (part>))))

(PUT-HOLDING-DEVICE-IN-GRINDER (ADD-MINERAL-OIL

(params ((machine> (holding-dev>) (params ((machine> (fluid>))

(preconds (and (preconds and

(is-a (machine) GRINDER) (is-of-type <machine) MACHINE)

(or (is-a (holding-dev> MAGNETIC-CHUCK) (is-a <part> PART)

(is-a (holding-dey) V-BLOCK) (is-a <fluid> MINERAL-OIL)

(is-a <holding-dev> VISE)) (material-of (part> IRON))

(is-available-table (machine> (holding-dey>) (effects

(is-available-holding-device (holding-devM)) (add (has-fluid (machine) <fluid> (part>))))

(effects

(add (has-device (machine) (holding-devW)))) (ADD-ANY-CUTTING-FLUID

(params ((machine> (fluid>)))
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(preconds (and (del (on-table <machine> <part>))

(is-of-type <machine> MACHINE) (add (holding-weakly <machine> <holding-dea>

(is-a <part> PART) <part> <side>)))))

(or (material-of <part> BRASS)

(material-of <part> BRONZE) (HOLD-WITH-VISE

(material-of <part> COPPER)) (paroma (<machine> <holding-dew> <part> <sideW))

(is-of-type <fluid> CUTTING-FLUID))) (preconds (and

(effects ( (is-of-type <machine> MACHINE)

(add (has-fluid <machine> <fluid> <part>))))) (is-a <part> PART)

(is-a <holding-dew> VISE)

(has-device <machine> <holding-dew>)
,; eeeeeeeeeeeeeeeeeeeeeeeeeeees * *e~oeeeeeeee (- (has-burrs <partW))

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee*ee.* (is-clean <partW)

operators for holding parts with a device in (on-table <machine> <part))

a machine (is-empty-holding-device <holding-day> <machine>)

(is-available-part <part>)))

(PUT-ON-RACBINE-TABLE (effects (

(parems (<machine> <partW)) (del (on-table <machine> <part>))

(preconds (and (if (shape-of <part> CYLINDRICAL)

(is-a <part> PART) (add (holding-weakly <machine> <holding-dev>

(is-of-type <machine> MACHINE) <part> <side>)))

( (is-a <machine) SHAPER)) (if (shape-of <part> RECTANGULAR)

(is-available-part <partW) (add (holding <machine> <holding-dew>

(is-available-machine <machine>))) <part> <side)))))

(effects (

(del (on-table <another-machine> <part))) (HOLD-VITH-TOE-CLAMP

(add (on-table <machine> <part)))))) (params (<machine> <holding-day> <part> <side>))
(preconds (and

(is-of-type <machine> MACHINE)

(PUT-ON-SHAPER-TABLE (is-a <part> PART)

(params (<machine> <part>)) (is-a <holding-dew> TOE-CLAMP)

(preconds (and (has-device <machine> <holding-dew>)

(is-a <part) PART) (- (has-burrs <part>))

(is-a <machine> SHAPER) (is-clean <part>)

(size-of-machine <machine> <shaper-size>) (or (shape-of <part> RECTANGULAR)

(size-of <part> LENGTH <part-size>) (same <side> SIDE3)

(smaller <part-size> <shaper-size>) (same <side> SIDE6))

(is-available-part <part>) (on-table <machine> <part>)

(is-available-machine <machine>))) (is-empty-holding-device <holding-dew> <machine>)

(effects ( (is-available-part <part>)))

(del (on-table <another-machine> <part>)) (effects (

(add (on-table <machine> <part>))))) (del (on-table <machine> <part>))

(add (holding <machine> <holding-dev> <part>

<side>)))))

(HOLD-WITH-V-BLOCK

(params (<machine> <holding-day> <part> <side>)) (SECURE-WITH-TOE-CLAMP

(preconds (paraes (<machine> <holding-dew> <part> <sideW))

(and (preconds (and

(is-of-type <machine> MACHINE) (is-of-type <machine> MACHINE)

(is-a <part> PART) (is-a <part> PART)

(is-a <holding-dev> V-BLOCK) (is-a <holding-day> TOE-CLAMP)

(has-device <machine> <holding-dev>) (has-device (machine> <holding-dew>)

(- (has-burrs <part>)) (- (has-burrs <part)))

(is-clean <part>) (is-clean <part>)

(on-tsble <machine) <part)) (shape-of <part> CYLINDRICAL)

(shape-of <part> CYLINDRICAL) (holding-weakly (machine> <another-holding-device>

(same <side> SIDEO) <part> <side>)

(is-empty-holding-device <holding-dew> <machine>) (is-empty-holding-devicc <holding-dew>

(is-available-part <part>))) <machine>)))

(effects ( (effects
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(del (on-table <machine> <part>)) (preconds (and

(add (holding <machine> <holding-dev> <part> (is-of-type (machine> MACHINE)

<aide)))))) (is-a <part> PART)

(is-a <holding-dey> NAGNETIC-CHUCK)

(HOLD-VITH-CENTERS (has-device <machine> <holding-dev>)

(params (<machine> <holding-dev> <part> <side>)) (- (has-burrs <part>))

(preconds (and (is-clean <part>)

(is-of-type (machine> MACNINE) (on-table (machine> <part>)

(is-a <part> PART) (is-empty-holding-device <holding-dew> <machine>)

(is-a <holding-dev> CENTERS) (is-available-part <part>)))

(has-device <machine> <holding-dew>) (effects (

(has-center-holes <part>) (del (on-table <machine> <part>))

( (has-burrs <part>)) (add (holding (machine> <holding-dew> <part>

(is-clean <part>) <side>)))))

(on-table (machine> <part>)

(shape-of <part> CYLINDRICAL) (RELEASE-FROM-HOLDING-DEVICE

(is-empty-holding-device <holding-dew> (machine>) (params (<machine> <holding-dew> <part> <side>))

(is-available-part <part>))) (preconds (and

(effects ( (is-of-type <machine> MACHINE)

(del (on-table (machine> <part>)) (is-a <part> PART)

(add (holding fmachine> <holding-dew> <part> (is-of-type <holding-dew> HOLDING-DEVICE)

<side>))))) (holding (machine> <holding-dov> <part> <side>)))

(effects (

(HOLD-VITH-4-JAV-CHUCK (del (holding (machine> <holding-dev> <part>

(params (<machine> <holding-dew> <part> <side>)) <side>))

(preconds (and (add (on-table (machine> <part>)))))

(is-of-type (machine> MACHINE)

(is-a <part> PART) (RELEASE-FRON-HOLDING-DEVICE-VEAI

(is-a <holding-dev> 4-JAM-CHUCK) (pars.. (<machine> <holding-dew> <part> <side>))

(has-device <machine> <holding-dew>) (preconds (and

(- (has-burrs (part>)) (is-of-type (machine> MACHINE)

(is-cloan <part>) (is-a <part> PART)

(on-table <machine> <part>) (is-of-type <holding-dev> HOLDING-DEVICE)

(is-empty-holding-device <holding-dew> (machine>) (holding-weakly <machine> <holding-dev> <part>

(is-available-part <part>))) <side>)))

(effects ( (effects (

(del (on-table <machine> <part>)) (del (holding-weakly (machine> <holding-dev>

(add (holding <machine> <holding-dew> <part> <part> <side>))

<side>))))) (add (on-table (machine> <part>)))))

(HOLD-WITH-COLLET-CHUCK

(parems (<machine> <holding-dew> <part> <side>))

(preconds (and B.2.2 Inference Rules
(is-of-type <machine> MACHINE)

(is-a <part> PART)

(is-a <holding-dew> COLLET-CHUCK) (Has (<at ><2<y)
(ha(-dovice <machine> <holding-dev>) (parans ((part> nd 2> (y2))
("(ham-device <pr>(precends (and

C (has-burrs <part>)) (is-a <part> PART)

(is-clean (part>))(r(n(on-table (machine> (part>) (or (and

(on-abl <mchin> <arW(shape-of (part> RECTANGULAR)
(shape-of <part> CYLINDRICAL) (size-of <part> WIDTH <x>)

(is-empty-holding-device <holding-dov> <machine>) (size-of <part> HEIGHT <y>))

(is-available-part <part>))) (and

(effects ( (shape-of <part> CYLINDRICAL)

(del (on-table (machine> <part>)) (size-of <part> DIAMETER <x>)

(add (holding (machine> <holding-dew> <part> (size-of <part> DIAMETER <y>)))

<side>))))) (half-of <x> <x2>)

(OOLD-VITH-RAGNETIC-CHUCK (half-of <y> <y2>)

S((machine> (holding-dew) (part> (side>)) (has-center-hole <part> CENTER-HOLE-SIDE3 SIDE3
<x2> <y2>)



146' APPENDIX B. THE PROCESS PLANNING DOMAIN

(is-countersinked <part> CENTER-HOLE-SIDE3 SIDE3 (effects (
1/8 1/16 <x2> <y2> 60) (add (is-available-machine <machine>)))))

(has-center-hole <part> CUNTKR-HOLE-SIDE6 SIDE6

<x2> (yW> (TOOL-HOLDER-AVAILABLE
(is-countersinked <part> CUNTER-HOLE-SIDEG SIDE6 (pare.. ((machine>))

1/8 1/16 <x2> <y2> 60)) (preconds (and

(effects ( (is-of-type (machine> MACHINE)

(add (has-center-holes (part>))))) (exists (<tool>))

(holding-tool (machine> (tool>)))))

eeeeeeeeeeeeee~eeeeeeeeeeeeeeeeeeeeeeee (effects (
(add (is-available-tool-holder (machine))))))

(SIDE-UP-FOR-NACHINING-LENGTH

(params (<side))) (TOOL-AVAILABLE

(preconds (and (Parsens ((tool>))

(same (dim) LENGTH) (preconds (and

(or (same <side> SID23) (is-of-type (tool> RACHIRE-TOOL)

(same <side> SIDEG)))) ((exists ((machine>)

(effects ( (holding-tool (machine> <tool>)))))

(add (side-up-tor-machining <dim) (side>))))) (effects ( (add (is-available-tool (tool>)))))

(SIDE-UP-FOR-NACHINING-WIDTH (TABLE-AVAILABLE

(params (<side>)) (params (<machine>))

(preconds (and (preconds (and

(same <din> VIDTE) (is-of-type (machine> MACHINE)

(or (same (side) SIDE2) (is-of-type (holding-dev> HOLDING-DEVICE)

(same (side> SIDES)))) (or

(effects ( (- (exists (<another-holding-device>)

(add (side-up-for-machining (dim) <side>))))) (has-device (machine)

(another-holding-device))))

(SIDE-VP-FOR-RACKINIEC-HEIGHT (is-a <holding-dev> TOE-CLAMP))))

(params ((side))) (effects (

(preconds (and (add (is-available-table (machine>

(same (dim> HEIGHT) <holding-dev>)))))

(or (same (side> SIDEl)
(same (side) SIDE4)))) (HOLDIIG-DEVICE-AVAILABLE

(effects ( (params ((machine> (holding-dev>)

(add (side-up-for-machining <dim) <side)))))) (preconds (and

(is-of-type (holding-dev) HOLDING-DEVICE)

(SIDE-UP-FOR-RACHINING-DIAMETER ((exists ((machine>))

(params ((side))) (has-device (machine> (holding-dev))))))
(preconds (and (effects

(same (dim) DIAMETER) (add (is-available-holding-device
(or (and (holding-dev>)))))

(shape-of (part> RECTANGULAR)

(same (side> SIDEl)) (PART-AVAILABLE

(and (params (<part>))
(shape-of (part> CYLINDRICAL) (preconds (and

(same <side> SIDEO)))) (is-a <part) PART)

(effects ( (- (exists ((machine>))
(add (side-up-for-machining (dim) (side>))))) (holding-weakly <machine> <*holding-dev>

(part) (eside>))

eeee~eeeeeeeeeeeeeeeeeeeeeee~eeeeee~e~e ((exists ((machine>)

inference rules for availability (holding (machine> <Canother-holding-dev)

(part) (aside>))))
(MACHINE-AVAILABLE (effects

(params ((machine>)) (add (is-available-part (part>)))))

(preconds (and

(is-of-type (machine) MACHINE) (HOLDING-DEVICE-EMPTY

((exists ((other-part> (paras. ((machine> (holding-devW)

(on-table (machine) (other-part>)))) (preconds (and
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(is-of-type <machine> MACHINE) inference rules for surface finish

(is-of-type <holding-dov> HOLDING-DEVICE)

( (exists (<part>) (IS-MACHINED-SURFACE-QUALITY

(holding-weakly <machine> <holding-dew> (parms (<part> <side>))

<part> <sideM))) (preconds (and

( (exists (<another-part)) (is-a <part> PART)

(holding fmachine> <holding-dev> (or

<another-part> <side>))))) (surface-finish-side <part> <side> ROUGH-MILL)

(effects ( (surface-finish-side <part> <side> ROUGH-TURN)

(add (is-empty-holding-device <holding-dev> (surface-finish-side <part> <side> ROUGH-SHAPED)

<machine)))))) (surface-finish-side <part> <side> ROUGH-PLANED)

(surface-finish-side <part> <side> FINISH-PLANED)
;;; eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeee~eeeeeeeeeee (surface-finish-side <part> <side> COLD-ROLLED)

inference rules for shape (surface-finish-side <part> <side> FINISH-MILL)

(surface-finish-side <part> <side> FINISH-TURN)

(IS-RECTANGULAR (surface-finish-quality-side <part> <side>

(params (<partM)) GROUND))))

(preconds (and (effects (

(is-a <part> PART) (add (surface-finish-quality-side <part> <side>

(size-of <part> LENGTH <1>) MACHINED)))))

(size-of <part> WIDTH <v>)

(size-of <part> HEIGHT 0h)))) (IS-GROUND-SURFACE-QUALITY

(effects ( (params (<part> <side>))

(add (shape-of <part> RECTANGULAR))))) (preconds (and

(is-a <part> PART)

(IS-CYLINDRICAL (or

(params (<partM)) (surface-finish-side <part> <side> ROUGH-GRIRD)

(preconds (and (surface-finish-side <part* <side>

(is-a <part> PART) FINISH-GRIND))))

(size-of <part> LENGTH <1>) (effects (

(size-of <part> DIAMETER <d>))) (add (surface-finish-quality-side <part> <side>

(effects ( GRGUIND)))))

(add (shape-of <part> CYLINDRICAL)))))

(ARE-SIDES-OF-RECTANGULAR-PART (HAS-SURFACE-FINISH-RECTANGULAR-PART

(params (<part>)) (params (<part>))

(preconds (and (preconds (and

(is-a <part> PART) (is-a <part> PART)

(shape-of <part> RECTANGULAR))) (shape-of <part> RECTANGULAR)

(effects ( (surface-finish-side <part> SIDEI <surface-finish>)

(add (side-of <part> SIDE1)) (surface-finish-side <part> SIDE2 <surface-finish>)

(add (side-of <part> SIDE2)) (surface-finish-side <part> SIDE3 <surface-finish>)

(add (side-of <part> SIDE3)) (surface-finish-side <part> SIDE4 <surface-finish>)

(add (side-of <part> SIDE4)) (surface-finish-side <part> SIDES <surface-finish>)

(add (side-of <part> SIDES)) (surface-finish-side <part> SIDES <surface-finish>)))

(add (side-of <part> SIDEG))))) (effects (

(add (surface-finish <part> <surface-finish>)))))

(ARE-SIDES-OF-CYLINDRICAL-PART (HAS-SURFACE-FINISH-CYLINDRICAL-PART

(params (<partW)) (params (<part>))

(preconds (and (preconds (and

(is-a <part> PART) (is-a <part> PART)

(shape-of <part> CYLINDRICAL))) (shape-of <part> CYLINDRICAL)

(effects ( (surface-finish-side <part> SiDEO <surface-finish>)

(add (side-of <part> SIDEO)) (surface-finish-side <part> SIDE3 <surface-finish>)

(add (side-of <part> SIDES)) (surface-finish-side <part> SIDE6 <surface-finish>)))

(add (side-of <part> SIDE6))))) (effects (

(add (surface-finish <part> <surface-finish))))

;;; eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee~eeeeeeeeeeseeee (HAVE-SURFACE-FINISH-RECTANGULAR-PAIT-SIDES
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(parans (<part))) (surface-coating <part> <surf-coat>)))
(preconds (and (effects (

(is-a <part> PART) (add (surface-coating-side <part) SIDEI <surf-coat>))

(shape-of <part> RECTANGULAR) (add (surface-coating-side <part> SIDE2 <surf-coat>))

(surface-finish <part> <surf-fin>))) (add (surface-coating-sido <part> SIDE3 <surf-coat>))

(effects ( (add (surface-coating-side <part> SIDE4 <surf-coat>))

(add (surface-finish-side <part> SIDEi <surf-fin>)) (add (surface-coating-side <part> SIDES <surf-coat>))

(add (surface-finish-side <part> SIDE2 <surf-fin))) (add (surface-coating-side <part> SIDE6 <surf-coat))))))

(add (surface-finish-side <part> SIDE3 <surf-fin>))

(add (surface-finish-side <part> SIDE4 <surf-fin>))(HAVE-SURFACE-COATING-CYLIIDRICAL-PART-SIDES

(add (surface-finish-side <part> SIDES <surf-fin))) (parems (<partM))

(add (surface-finish-side <part> SIDE6 <surf-fin>)))I)reconds (and

(is-a <part> PART)

(HAVE-SURFACE-FINISH-CTLIIDRICAL-PART-SIDES (shape-of <part> CYLINDRICAL)

(params (<part>)) (surface-coating <part> <surf-coat>)))

(preconds (and (effects (

(is-a <part) PART) (add (surface-coating-side <part> SIDEO <surf-coat)))

(shape-of <part> CYLINDRICAL) (add (surface-coating-side <part> SIDE3 <surf-coat>))

(surface-finish <part) <surf-fin>))) (add (surface-coating-side <part> SIDE6 <surf-coat>)))))

(effects (
(add (surface-finish-side <part> SIDEO (surf-fin)));;eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee*5555Cee

(add (surface-finish-side <part> SIDE3 <surf-fin>))

(add (surface-finish-side <part> SIDE6 <surf-fin>))NMATERIAL-FERROUS
(params (<part>))

(prz'nds (and

***eee*eeeeeeeeeeeeeeeee*eee*eeeeee*ee****eeeee*eee (is-a <part> PART)

inference rules for surface-coating (or

(material-of <part> STEEL)

(material-of <part> IROM))))

(HAS-SUSUACE-VOATING-R=cJGULAI-PAiT (effects (

(params (<part>)) (add (alloy-of <part> FERROUS)))))

(preconds (and

(is-a <part> PART) (MATERIAL-NO3-FERROUS

(shape-of <part> RECTANGULAR) (params (<part>))

(surface-coating-side <part> SIDEl <surf-coat>) (preconds (and

(surface-coating-side <part> SIDE2 <surf-coat>) (is-a <part> PART)

(surface-coating-side <part> SIDE3 <surf-coat>) (or

(surface-coating-side <part> SIDE4 <surf-coat>) (material-of <part) BRASS)

(surface-coating-sid. <part> SIDES <surf-coat)) (material-of <part> COPPER)

(surface-coating-side <part> SIDE6 <surf-coat>))) (material-of <part> BRONZE))))

(effects ( (effects (

(add (surface-coating <part> <surf-coat>))))) (add (alloy-of <part> ION-FERROUS)))))

(IAS-SURFACE-COATING-CYLINDRICAL-PART (HARDNESS-OF-HATERIAL-SOFT

(parans (<part>)) (params (<partW))

(preconds (and (preconds (and

(is-a <part> PART) (is-a <part> PART)

(shape-of <part> CYLINDRICAL) (or

(surface-coating-side <part> SIDEO <surf-coat>) (material-of <part> ALUMINUM)

(surface-coating-side <part> SIDE3 <surf-coat>) (alloy-of <part> NON-FERROUS))))

(surface-coating-side <part> SIDE6 <surf-coat>))) (effects (

(effects ( (add (hardness-of <part> SOFT)))))

(add (surface-coating <part> <surf-coat>)))))

(HARDNESS-OF-NATERIAL-HARD

(parsas (<part)))

(HAVE-SURFACE-COATING-RUCTANGULAR-PART-SIDES (preconds (and

(params (<partW)) (is-a <part) PART)

(preconds (and (alloy-of <part) FERROUS)))

(is-a <part> PART) (effects (

(shape-of <part> RECTANGULAR) (add (hardness-of <part> HARD)))))
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(is-of-type <attachment) KILLING-CUTTER)

(HIGH-RELTING-POINT (is-a <attachment> ELECTRODE)))

(parum. (<wire))) (effects (
(preconds (and (add (is-of-type <attachment> MACHIlE-TOOL)))))

(is-a (wire) SPRATING-NNTAL-WIRE)

(or (IS-DRILL-BIT

(smaterial-of-wire <wire> TUNGSTEN) (params (<drill-bit)))

(material-of-wire <wire) NOLYBDENUM)))) (preconds

(effects ( (or

(add (hau-high-melting-point <wire>))))) (is-a <drill-bit> SPOT-DRILL)

(is-a <drill-bit> CENTER-DRILL)

(is-a <drill-bit> TWIST-DRILL)

*** eeeeee~eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eee**e**O (is-a <drill-bit> STRAIGHT-FLUTED-DRILL)

inference rules for types (is-a <drill-bit> HIGH-HELIX-DRILL)

(is-a <drill-bit> OIL-HOLE-DRILL)

(IS-MACNIlE (is-a <drill-bit> GUll-DRILL)

(pares- ((machine>)) (is-a <drill-bit> CORE-DRILL)

(preconds (is-a <drill-bit) TAP)

(or (is-a <drill-bit> COUNTERSINK)

(is-a <machine) DRILL) (is-a <drill-bit> COUNTERBORE)

(is-a <machine> LATHE) (is-a <drill-bit> REAMER)))

(is-a <machine) SHAPER) (effects (

(is-a (machine) PLANER) (add (is-of-type <drill-bit> DRILL-BIT)))))

(is-a <machine> GRINDER)

(is-a <machine) BAND-SAM) (IS-LATHE-TOOLBIT

(is-a (machine) CIRCULAR-SAW) (paraes (<toolbit>))

(is-a <machine) RILLING-MACHINE) (preconds

(is-of-type <machine> WELDrR))) (or

(effects ( (is-a <toolbit> ROUGH-TOOLBIT)

(add (is-of-type (machine) NkCHIINE)))) (is-a <toolbit> FINISH-TOOLBIT)

(is-a <toolbit> V-THREAD)

(IS-WELDER (is-a <toolbit> KNURL)))

(parame ((machine>)) (effects (

(preconds (add (is-of-type <toolbit> LATHE-TOOLBIT)))))

(or

(is-a (machine> METAL-ARC-WELDER) (IS-CUTTING-TOOL

(is-a <machine) GAS-WELDER))) (parems (<cutting-tool>))

(effects ( (preconds

(add (is-of-type (machine> WELDER))))) (or

(is-a <cutting-tool> ROUGHING-CUTTING-TOOL)

(IS-TOOL (is-a <cutting-tool> FINISHING-CUTTING-TOOL)))

(pare.. (<tool>)) (effects (

(preconds (add (is-of-type <cutting-tool> CUTTING-TOOL)))))

(or
(is-of-type <tool) MACHINE-TOOL) (IS-CIRCULAR-SAW-ATTACHMENT

(is-of-type <tool) OPERATOR-TOOL))) (parems (<attachment>))

(effects ( (preconds

(add (is-of-type <tool> TOOL))))) (or

(is-a <attachment> COLD-SAW)

(IS-MACHINK-TOOL (is-a <attachment> FRICTION-SAW)))

(par.ms (<attachment))) (effects (

(preconds (add (is-of-type <attachment>

(or CIRCULAR-SAW-ATTACHMENT)))))

(is-of-type <attachment> DRILL-BIT)

(is-of-type <attachment) LATHE-TOOLBIT)

(is-of-type <attachment> CUTTING-TOOL) (IS-BAND-SAW-ATTACHNENT

(is-a <attachment> GRINDING-WHEEL) (parems (<attachment))

(is-of-type <attachment> BAND-SAW-ATTACHMENT) (preconds

(is-of-type <attachment) (or

CIRCULAR-SAW-ATTACHMENT) (is-a <attachment> SAW-BAND)
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(ia-a <attachment> BAID-FILE))) (t

(effects ( (equal a M

(add (ia-of-type (attachment)

BANDý-SAV-ATTACNNEIT)))) (defun half-of (x y)

(cond ((i-variable z)

(IS-HILLIUG-CufTrm 'no-match-attempted)

(parae. ((milling-cutter))) ((is-variable y)

(preconda (return-binding y UI x 2))

(or ((w (U x 2) y) t))

(ia-a (milling-cutter) P~LAI-KILL)

(ia-a (milling-cutter) END-MILL))) (defun smaller (x y)

(effects ( (cond ((i-variable x)

(add (ia-of-type (milling-cutter) (if 0) (- y .5) 0)

NILLING-CUrrn))))) (return-binding a ( y .5))))

((i-variable y)
(IS-OPERATOR-TOOL (return-binding y (+ x 5)
(parama (<tool>))) ((< x Y) t))

(preconda

(or (defun smaller-than-21n (x y)

(ia-a <tool) LATHE-FILE) (cond ((i-variable x)

(ia-a (tool) ABRASIVE-CLOTH) Ino-match-attempted)

(ia-a <tool) TOWNI) ((i-variable y)

(ia-a <tool) VELDIUG-KOD) )no-match-attempted)

(ia-a <tool) 3PRATINIG-NETAL-VID.E) (t

(is-a (tool) BRUSN)) (<= (- x y) 2M)))

(effects (
(add (ia-of-type (tool) OPED.ATOR-TOOL)))))

Function used for finiah operations.

(IS-CUTTIVO-FLUID

(parama ((cutting-fluid))) (defun finishing-size (x y)
(preconda (cond ((and (ia-variable x)

(or (ia-variable y))

(ia-a (cutting-fluid) SOLUBLE-OIL) Pno-match-attempted)

(ia-a (cutting-fluid) NINERAL-OIL))) ((i-variable x)

(effects ( (return-binding x (+ y 0.002)))

(add (is-of-type (cutting-fluid) CUTTIRG-FLUID))))) ((i-variable y)

(if (> (- x 0.002) 0)
(IS-NOLDIIG-DEVICE (return-binding y (- x 0.002))))
(pare.. (<holding-dev>)))(

(preconda (<= (abs (- x y)) 0.003M)))

(or

(ia-a (holding-dev) V-BLOCK) Functions for generating new values when two

(ia-a (holding-dev) VISE) parts are welded together.

(is-a <holding-dev) TOE-CLAMP)

(ia-a <holding-dev> CENTERS) (defun new-size (di d2 d)

(is-a (holding-dev) 4-JAW-CHUCK) (cond ((ia-variable di)

(ia-a (holding-dev> COLLET-CUIUCK) 'no-match-attempted)

(ia-a (holding-dev) NAGIETIC-CHUCI))) ((i-variable d2)

(effects ( 'no-match-attempted)

(add (ia-of-type <holding-dov) HOLDING-DEVICE))))) ((i-variable d)

(return-binding d (+ dl d2)))

(t

(a d (+ di d2))))

B.2.3 Functions
(defun new-part (part parti part2)

(dofun same (a y) (cond ((i-variable part)

(cond ((i-variable x) (return-binding part (new-name parti part2))

(return-binding z y)) (W))

(return-binine y )) (defun new-material (material materiali material2)
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(if (is-variable material)

(cond ((same materiall masarial2)

(return-binding material materiall))

(t

(return-binding
material
(new-name materiall material2))))

t))

(defun new-nane (namel name2)

(intern (concatenate 'string

(symbol-name namet )

(symbol-name name2))))

; eooee ooeee*o eeeeo eeeeeeo e eeeee**CCCS~o~o~e eoCCCCCC*s

Return a PRODIGY binding: variable var is bound

to value val.

(de*fun return-binding (var val)

(list (list (list var val))))
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B.3 Incomplete Domains

The 16 preconditions missing in D',.eclo are the following:

operator Jprecondition
drill-with-high-helix-drill (holding-tool <machine> <drill-bit>)

drill-with-gun-drill (has-spot <part> <hole> <side> <loc-x> <loc-y>)

drill-with-center-drill (has-spot <part> <hole> <side> <loc-x> <loc-y>)

tap (holding-tool <machine> <drill-bit>)

tap (is-clean <part>)

counterbore (holding-tool <machine> <drill-bit>)

ream (has-fluid <machine> <fluid> <part>)

drill-with-twist-drill-in-milling-machine (holding-tool <machine> <drill-bit>)

make-knurl-with-lathe (holding-tool <machine> <toolbit>)

make-knurl-with-lathe ( (has-burrs <part>))

finish-shape ( (has-burrs <part>))

cut- with-circular-friction-saw (holding-tool <machine> <attachment>)

cut-with-band-saw (- (has-burrs <part>))

hold-with-v-block (on-table <machine> <part>)

hold-with-centers (on-table <machine> <part>)

hold-with-magnetic-chuck (- (has-burrs <part>))

The 44 preconditions missing in D',e, 30 are the following:
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operator precondition

drill-with-twist-drill (holding-tool <machine> <drill-bit>)

drill-with- high- helix-drill (has-fluid <machine> <fluid> <part>)

drill-with-high-helix-drill (holding-tool <machine> <drill-bit>)

drill-with-straight-fluted-drill (has-spot <part> <hole> <side> <lbc-x> <loc-y>)

drill-with-oil-hole-drill (has-fluid <machine> <fluid> <part>)

drill-with-gun-drill (holding-tool <machine> <drill-bit>)

tap (holding-tool <machine> <drill-bit>)

countersink (has-hole <part> <hole> <side> <depth> <diam> <lec-x> <loc-y>)

countersink ( (has-burrs <part>))

counterbore (holding-tool <machine> <drill-bit>)

counterbore ( (has-burrs <part>))

side-mill (holding-tool <machine> <milling-cutter>)

finish-turn (is-clean <part>)

make-thread-with-lathe (is-clean <part>)

make-knurl-with-lathe (holding-tool <machine> <toolbit>)

make-knurl-with-lathe (is-clean <part>)

polish-with-lathe (material-of-abrasive-cloth <cloth> EMERY)

finish-shape (holding-tool <machine> <cutting-tool>)

finish-shape (- (has-burrs <part>))

finish-shape-with-planer (holding-tool <machine> <cutting-tool>)

rough-grind-with-hard-wheel ( (material-of <part> BRONZE))

rough-grind-with-hard-wheel (- (material-of <part> COPPER))

rough-grind-with- hard-wheel (holding-tool <machine> <wheel>)

rough-grind-with-soft- wheel (hardness-of-wheel <wheel> SOFT)

rough-grind-with-soft-wheel (grit-of-wheel <wheel> COARSE-GRIT)

finish-grind-with- hard- wheel (has-fluid <machine> <fluid> <part>)

finish-grind-with-hard- wheel (grit-of-wheel <wheel> FINE-GRIT)

finish-grind-wit h-soft-wheel (grit-of-wheel <wheel> FINE-GRIT)

finish-grind-with-soft-wheel (is-clean <part>)

cut-with-circular-friction-saw (holding-tool <machine> <attachment>)

polish-with-band-saw (is-clean <part>)

metal-spray-coating- wear-resistant (- (material-of-wire <wire> TUNGSTEN))

metal-spray-coating-wear-resistant ( (material-of-wire <wire> MOLYBDENUM))

metal-spray-coating-wear-resistant (is-clean <part>)
metal-spray-prepare (is-clean <part>)

hold-with-v-block (is-clean <part>)
hold-with-v- block (on-table <machine> <part>)

hold-with-toe-clamp (is-clean <part>)

secure-with-toe-clamp (is-clean <part>)

hold-with-centers (- (has-burrs <part>))

hold-with-centers (on-table <machine> <part>)

hold-with-collet-chuck (has-device <machine> <holding-device>)

hold-wit h-collet-chuck (- (has-burrs <part>))

hold-with-magnetic-chuck (is-clean <part>)
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B.4 Problem Sets

The problems used to train and test EXPO were generated randomly as follows. A
random number of goals is chosen between 1 and 9. The goals are chosen from a list of
machining goals that include size, surface finish, surface coating, and holes. Then a start
state is generated from a machine shop description that contains a set of machines, tools,
holding devices, and raw materials. The solutions of the problems average one hundred

steps.

EXPO was tested with two different training sets of 100 problems each. Two test sets
of 20 problems each were used.

B.5 Tables of Results

This section presents the numerical results that were used for the graphs in Chapter 6.

B.5.1 Missing 10% of the Preconditions

The following tables show the numerical results that are summarized in Figure 6.3 (10%
incompleteness):

number of failures found

training problems training set 1 training set 2

0 0 0
10 6 7

20 6 7

30 9 7

40 9 10

50 9 10

60 0 0

70 0 0

80 0 0
90 0 0

100 0 0
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number of successfully executed solutions
training problems training set 1 training set 2

test set I [test set2 test set I test set2

0 5 5 5 6

10 15 15 17 19

20 15 15 17 19
30 15 15 18 20
40 15 20 20 20

50 15 20 20 20
60 15 20 20 20
70 15 20 20 20
80 15 20 20 20
90 15 20 20 20

100 15 [ 20 20 20

New preconditions for D',eclo were learned by EXPO with the first training set in the
following order:

1. (- (has-burrs <part>)) of operator cut-with-band-saw

2. (holding-tool <machine> <drill-bit>) of operator drill-with-high-helix-drill

3. (holding-tool <machine> <drill-bit>) of operator tap

4. (is-clean <part>) of operator tap

5. (has-fluid <machine> <fluid> <part>) of operator ream

6. (holding-tool <machine> <attachment>) of operator cut-with-circular-friction-

saw

7. (on-table <machine> <part>) of operator hold-with-v-block

8. ( (has-burrs <part>)) of operator hold-with-magnetic-chuck

9. (" (has-burrs <part>)) of operator finish-shape

New preconditions for D',,, were learned by EXPO with the second training set in
the following order:

1. (holding-tool <machine> <drill-bit>) of operator drill-with-high-helix-drill
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2. (holding-tool <machine> <drill-bit>) of operator tap

3. (is-clean <part>) of operator tap

4. (holding-tool <machine> <drill-bit>) of operator counterbore

5. (has-fluid <machine> <fluid> <part>) of operator ream

6. (holding-tool <machine> <attachment>) of operator cut-with-circular-friction-
saw

7. (- (has-burrs <part>)) of operator cut-with-band-saw

8. (on-table <machine> <part>) of operator hold-with-v-block

9. ( (has-burrs <part>)) of operator hold-with-magnetic-chuck

10. ( (has-burrs <part>)) of operator finish-shape

B.5.2 Missing 30% of the Preconditions

The following tables show the numerical results that are summarized in Figure 6.4 (30%

incompleteness):

number of failures found
training problems training set 1 training set 2

0 0 0

10 19 16

20 "292

30 4 4

40 9 5

50 0 4

60 1 0
70 0 0

80 0 1

90 0 0

100 0 0
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number of successfully executed solutions

training problems training set 1 training set 2

test set I test set 2 test set 1 test set 2

0 1 2 1 1

10 3 13 2 14

20 9 15 7 14

30 9 18 8 15

40 11 18 13 17

50 19 18 17 17

60 19 18 17 17
70 19 18 17 17

80 19 19 17 19

90 19 19 17 19

100 19 19 17 19

New preconditions for D',,c3owere learned by EXPO with the first training set in the

following order:

1. (is-clean <part>) of operator polish-with-band-saw

2. (is-clean <part>) of operator hold-with-toe-clamp

3. (holding-tool <machine> <drill-bit?) of operator drill-with-twist-drill

4. (has-fluid <machine> <fluid> <part>) of operator drill-with-high-helix-drill

I. (holding-tool <machine> <drill-bit>) of operator drill-with-high-helix-drill

6. (has-hole <part> <hole> <side> <depth> <diam> <loc-x> <loc-y>)of oper-
ator countersink

7. ( (has-burrs <part>)) of operator countersink

8. (holding-tool <machine> <drill-bit>) of operator counterbore

9. (- (has-burrs <part>)) of operator counterbore

10. (hardness-of -wheel <wheel> SOFT) of operator rough-grind-with-soft-wheel

11. (is-clean <part>) of operator secure-with-toe-clamp

12. (holding-tool <machine> <drill-bit>) of operator tap
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13. (holding-tool <machine> <attachment>) of operator cut-with-circular-friction-

saw

14. (holding-tool <machine> <wheel>) of operator rough-grind-with-hard-wheel

15. (is-clean <part>) of operator metal-spray-prepare

16. (has-fluid <machine> <fluid> <part>) of operator drill-with-oil-hole-drill

17. (is-clean <part>) of operator hold-with-v-block

18. (on-table <machine> <part>) of operator hold-with-v-block

19. (is-clean <part>) of operator hold-with-magnetic-chuck

20. (holding-tool <machine> <cutting-tool>) of operator finish-shape

21. (- (has-burrs <part>)) of operator finish-shape

22. (grit-of -wheel <wheel> FINE-GRIT) of operator finish-grind-with-soft-wheel

23. (is-clean <part>) of operator finish-grind-with-soft-wheel

24. (holding-tool <machine> <milling-cutter>) of operator side-mill

New preconditions for D',ec30 were learned by EXPO with the second training set in

the following order:

1. (holding-tool <machine> <drill-bit>) of operator drill-with-twist-drill

2. (has-fluid <machine> <fluid> <part>) of operator drill-with-high-helix-drill

3. (holding-tool <machine> <drill-bit>) of operator tap

4. (holding-tool <machine> <drill-bit>) of operator drill-with-high-helix-drill

5. (holding-tool <machine> <drill-bit>) of operator counterbore

6. (- (has-burrs <part>)) of operator counterbore

7. (is-clean <part>) of operator metal-spray-prepare

S. (has-fluid <machine> <fluid> <part>) of operator finish-grind-with-hard-wheel

9. (grit-of-wheel <wheel> FINE-GRIT) of operator finish-grind-with-hard-wheel
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10. (holding-tool <machine> <wheel>) of operator rough-grind-with-hard-wheel

11. (is-clean <part>) of operator hold-with-toe-clamp

12. (has-hole <part> <hole> <side> <depth> <diam> <loc-x> <loc-y>)of oper-

ator countersink

13. (- (has-burrs <part>)) of operator countersink

14. (is-clean <part>) of operator secure-with-toe-clamp

15. (holding-tool <machine> <attachment>) of operator cut-with-circular-friction-

saw

16. (- (material-of -wire <wire> TUNGSTEN)) of operator metal-spray-coating-wear-

resistant

17. (- (material-of-wire <wire> MOLYBDENUM)) of operator metal-spray-coating-
wear-resistant

18. (is-clean <part>) of operator metal-spray-coating-wear-resistant

19. (has-fluid <machine> <fluid> <part>) of operator drill-with-oil-hole-drill

20. (is-clean <part>) of operator hold-with-v-block

21. (on-table <machine> <part>) of operator hold-with-v-block

22. (is-clean <part>) of operator hold-with-magnetic-chuck

23. (holding-tool <machine> <cutting-tool>) of operator finish-shape

24. (- (has-burrs <part>)) of operator finish-shape

25. (grit-of-wheel <wheel> FINE-GRIT) of operator finish-grind-with-soft-wheel

26. (is-clean <part>) of operator finish-grind-with-soft-wheel

27. (holding-tool <machine> <milling-cutter>) of operator side-mill
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Appendix C

EXPO's Implementation of

Experimentation Policies

The control rules below implement EXPO's experimentation strategies for PRODIGY, as
described in Section 4.4.1. The meta predicates that are used by these control rules are

described afterwards.

C.1 Policies

Search Depth and Plan Length

(AVOID-DEEP-BODES

(Mhe (and (primary-candidate-node <nod*>)

(below-exp-depth-limit <node>)))

(rhs (reject node <nodeW)))

(AVOID-LONG-PLANS

(ihs (and (primary-candidate-node <node>)

(current-plan <node> <plan>)

(Is-too-long-plan <plan>)))

(rhs (reject node <node>)))

(PREFER-SHORT-PLAIS

(priority 10)

(iha (and (candidate-node <nodel>)

(candidate-node <node2>)

(node-pret-not-cached <nodel> <node2>)

(current-plan <nodel> <pll>)

(current-plan <node2> <p12>)
(is-longer <pl2> <pll>)))

(rhs (prefer node <nodel> <node2>)))

(PREFER-PLANS-VITH-FEVER-STATE-CHANGES
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(priority 10)

(lbs (and (candidate-node <nodal>)

(candidate-node <node2>)

(node-prof-not-cached <nodal> <nod%2>)

(current-state <nodal> <statel>)

(current-state <nod*2> (state2>)

(has-fewer-changes (statel> (state2>)))

(rhs (prefer node <nodal> <node2)))

Goal Interactions

(SUPPOIT-TOP-0OAL-CONCORD

(priority 10)

(lhs (and (candidate-node <nodal>)

(candidate-node <node2>)
(nod.-pref-not-cachad <nodel) <node2>)

(current-goal <nodal> <goall))

(current-goal <node2> <goal2>)

(does-top-goal-concord <goall>)

(not-doos-top-goal-concord <goal2>))))

(rho (prefer nods <nodel) <node2>)))

(AVOID-TOP-PaROTCIION-VIOLATION

(prio'rity 10)

(lbs (and (candidate-node <nodal>)

(candidate-node <node2>)

(node-prof-not-cached <nodal> <node2>)

(current-goal <nodal> (goali))

(current-goal (node2> <goal2>)

(d@.s-top-protection-violat ion <goal2>)

(not-does-top-protection-violation <goall>)))

(rbe (prefer node <nodal> <node2W))

(AVOID-'0P-PftERQUISITE-VIOLATION

(priority 10)

(lbs (and (candidate-node <nodal>))

(candidate-node <node2>)

(node-pref-not-cached <nodal> <nocle2>)

(current-goal <nodal> <goall>)

(current-goal <node2) (goal2>)
(does-top-prerequisite-violation Cgoal2>)

(not-does-top-prerequisite-violation <goallW))

(r~e (prefer node <nodal> <node2W))

Operators

(fBEC'T- IRREVKISIBLE-OPS
(lbs (and (current-node <node>))

(candidate-op <node) (op))

(not-is-roversible (op))))

(rbs (reject operator <op)))

(PliEFER-OPS-VITN-FKE1E-STATE-CHIAUGES

(priority LO)

(lbs (and (current-node <node>)

(candidate-op <node> (op>))
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(candidate-op <node> <op2>)

(are-effects-of <opt> <o.11))

(are-effects-of (op2> (eff2>)

(is-longer <eff2> <effi)))

(rhs (prefer operator <opt> op2>))))

(PUEFER-IELXABIZ-OPS

(priority 10)

(lb (and (current-node <node>))

(candidate-op <node> <opt>)
(candidate-op <node> <op2>)

(is-more-reliable <opt> <op2>))))

(rho (prefer operator <opt> <op2>))))

(PREFl-UNRW.IABLE-OPS

(priority 10)

(lbs (and (current-node <node>))

(candidate-op <node) (opi)

(candidate-op (node) <op2>)

(not-reliable <apt>))))

(rhs (prefer operator <apt> <op2)))

(PRUFER-REVEISIILE-OPS

(priority 10)

(lbs (and (current-node (node>))

(candidate-op (node> <opi>))

(candidate-op (node) <op2>)

(is-reversible <opt>)

(not-is-reversible <op2>))))

(rhs (prefer operator <opt> <op2W))

Binding Interactions

(PRE M -1O-ODS-VEUY-HIGH-PROTECTIOR
(priority 10)

(lbs (and (current-node <node>))

(new-candidate-bindings (node) (binding-list-I))

(new-candidate-bindings (node) <binding-list-2>)

(not-equal-lists (binding-list-i) <binding-list-2>)

(has-objs-used-very-higb-protection <binding-list-2>)

(not-has-objs-used-very-high-protection (binding-list-i)))

(rhs (prefer bindings (binding-list-I) <binding-list-2>M)

(PREWKR-LKAST-ODJS-VKKY-HIOII-PROTECTION

(priority 10)

(lb (and (current-node (node>))

(new-candidate-bindings (node) (binding-list-I))

(new-candidate-bindings (node) <bind ing-l ist-2>)

(not-equal-lists (binding-list-i) <binding-list-2>)

(nuai-objs-used-very-high-protection (binding-list-i) (ni>)

(numk-obis-used-very-high-protection <binding-list-2> <n2>)

(smaller (ni) <n2W))

(rho (prefer bindings (binding-list-i) <binding-list-2>M)
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C.2 Metapredicates

The meta-predicates defined for EXPO are the following:

"* (BELOW-EXP-DEPTH-LIMIT <node>)

Tests whether a node is below a user-defined depth.

"* (CURRENT-PS <ps>)

Used to set a context for the activation of the rule. Tests the current problem

solving context. Two contexts are currently defined: main and experimentation.

"* (NODE-LEVEL <node> <level>)

Returns the depth of a node.

"* (IS-CURRENT-STATE <node> <state>)

Returns the current state at that node.

"* (CURRENT-PLAN <node> <plan>)

Returns the current plan at that node.

"* (IS-TOO-LONG-PLAN <plan>)

Tests whether the plan is longer than a user-defined length.

"* (HAS-FEWER-CHANGES <statel> <state2>)

Tests whether the number of differences with the initial state is smaller for istatel,

than for istate2Z,.

"* (DOES-TOP-GOAL-CONCORD <goal>)

(NOT-DOES-TOP-GOAL-CONCORD <goal>)

Test whether the goal is the same as any pending goals in the main plan.

"* (DOES-TOP-PROTECTION-VIOLATION <goal>)

(NOT-DOES-TOP-PROTECTION-VIOLATION <goal>)

Test whether the goal clobbers a goal previosly achieved for the main plan.
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" (DOES-TOP-PREREQUISITE-VIOLATION <goal>)

(NOT-DOES-TOP-PREREQUISITE-VIOLATION <goal>)

Test whether the goal clobbers a predicate needed for later steps of the main plan.

"* (HAS-OBJS-USED-VERY-HIGH-PROTECTION <obj>)

(NOT-HAS-OBJS-USED-VERY-HIGH-PROTECTION <obj>)

Test whether any of the objects is of a very high protection type.

"* (NUM-OBJS-USED-VERY-HIGH-PROTECTION <objs> <n>)

Returns how many objects are of a very high protection type.

"* (IS-MORE-RELIABLE <opt> <op2>)

(NOT-RELIABLE <opl> <op 2 >)

Test whether one operator is more reliable than another. The reliability is computed

as the ratio of the number of successful and the number of failed executions.

"* (IS-REVERSIBLE <op>)

(NOT-IS-REVERSIBLE <op>)

Test whether the operator is reversible.

"* (ARE-EFFECTS-OF <op> <effects-list>)

Returns the effects list of the operator.

The meta level predicates used by EXPO that are provided by PRODIGY are the
following:

"* (CANDIDATE-NODE <node>)

Should be used in selecting, rejecting, and preferring nodes. Tests whether a node
is among the candidate set of nodes in the search tree.

"* (CURRENT-NODE <node>)

Tests whether <node> has been chosen as current node in this decision phase.
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" (CANDIDATE-OP <node> <op>)

Tests whether <op> is a member of the relevant operators being considered at the
current <node>.

"* (CURRENT-OP <node> <op>)

Tests whether <op> is the current iop, for the current goal at the current node.

"* (CANDIDATE-BINDINGS <bindings> <node>)

Tests whether <bindings> is a member of the default set of candidate bindings for
the current operator, goal. and node.

"* (KNOWN <node> <expression>)

Tests if an expression is true in the current state at the node.

"* (IS-EQUAL <x> <y>)

(NOT-EQUAL <x> <y>)

These test for equality and inequality.
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