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Abstract—Previous work has demonstrated that the image variation of many objects (human faces in particular) under variable

lighting can be effectively modeled by low-dimensional linear spaces, even when there are multiple light sources and shadowing. Basis

images spanning this space are usually obtained in one of three ways: A large set of images of the object under different lighting

conditions is acquired, and principal component analysis (PCA) is used to estimate a subspace. Alternatively, synthetic images are

rendered from a 3D model (perhaps reconstructed from images) under point sources and, again, PCA is used to estimate a subspace.

Finally, images rendered from a 3D model under diffuse lighting based on spherical harmonics are directly used as basis images. In

this paper, we show how to arrange physical lighting so that the acquired images of each object can be directly used as the basis

vectors of a low-dimensional linear space and that this subspace is close to those acquired by the other methods. More specifically,

there exist configurations of k point light source directions, with k typically ranging from 5 to 9, such that, by taking k images of an object

under these single sources, the resulting subspace is an effective representation for recognition under a wide range of lighting

conditions. Since the subspace is generated directly from real images, potentially complex and/or brittle intermediate steps such as

3D reconstruction can be completely avoided; nor is it necessary to acquire large numbers of training images or to physically construct

complex diffuse (harmonic) light fields. We validate the use of subspaces constructed in this fashion within the context of face

recognition.

Index Terms—Illumination subspaces, illumination cone, face recognition, harmonic images, harmonic subspaces, ambient lighting.

�

1 INTRODUCTION

TO build a robust and efficient face recognition system,

the problem of lighting variation is one of the main

technical challenges facing system designers. In the past
few years, many appearance-based methods have been

proposed to handle this problem, and new theoretical

insights, as well as good recognition results, have been

reported [1], [2], [3], [5], [7], [9]. The main insight gained

from these results is that there are both empirical and

analytical justifications for using low-dimensional linear

subspaces to model image variations of human faces under

different lighting conditions. Early work showed that the
variability of images of a Lambertian surface in fixed pose,

but under variable lighting, where no surface point is

shadowed, is a three-dimensional linear subspace [9], [12],

[17], [22]. What has been perhaps more surprising is that,

even with cast and attached shadows, the set of images is

still well approximated by a relatively low-dimensional

subspace, albeit with a bit higher dimension [5].

Under the Lambertian assumption and accounting for
shadowing and multiple light sources, the set of images of
an object under all possible lighting conditions forms a
polyhedral cone, the illumination cone, in the image space
[3]. Therefore, the illumination cone contains all the image
variations of an object in fixed pose, and an accurate
representation of the cone would be a powerful tool for
recognizing objects across a wide range of illumination
variations. Indeed, successful work on applying this theory
to face recognition has been reported, e.g., [7]. For most
objects, the exact illumination cone is very difficult to
compute due to the large number of extreme rays that make
up their cones, e.g., for a convex, Lambertian surface, there
are Oðn2Þ extreme rays, where n is the number of pixels.
This complicates both quantitative and qualitative studies
of the illumination cone.

However, several recent results have indicated that,
although it provides a theoretical basis for discussions on
illumination problems, the computation of the full illumina-
tion cone may be unnecessary. Using a few “primary
images,” [22] proposes an analytical formula for computing
the covariance matrix that accounts for global illumination
effects. More recently, using spherical harmonics and
techniques from signal-processing, Basri and Jacobs have
shown that for a convex Lambertian surface, its illumination
cone can be accurately approximated by a nine-dimensional
linear subspace that they called the harmonic plane [2], [14],
[15]. The major contribution of their work is to treat
Lambertian reflection as a convolution process between
two spherical harmonics representing the lighting condition
and the Lambertian kernel. By observing that the Lambertian
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kernel contains only low-frequency components, they
deduce that the first nine (low frequency) spherical
harmonics capture more than 99 percent of the reflected
energy. Using this nine-dimensional harmonic plane, a
straightforward face recognition scheme can be developed,
and results obtained in [2] are excellent. Recently Rama-
moorthi [13] developed a novel method based on spherical
harmonics to analytically compute low-dimensional (less
than nine-dimensional) linear approximations to illumina-
tion cones. His results give a theoretical explanation to many
empirical results obtained earlier, e.g., [5].

For face recognition, one way to interpret Basri and
Jacobs’ result is that, for each of the more than six billion
human faces in the world, there exist nine “universal
virtual” lighting conditions such that the nine “harmonic
images” taken for each individual under these conditions
are sufficient to approximate his/her illumination cone
with the harmonic subspace H spanned by these images.
These nine “harmonic lights” are not real lighting condi-
tions because, for some directions, the intensity is negative,
as specified by the spherical harmonic functions. Similarly,
the nine “harmonic images” (basis images) are not real
images because some of the pixel values (image irradiance)
are negative. Therefore, these images must be the result of
some computation from real images or rendered from a
geometric model of a head under synthetic harmonic
lighting. This requires knowledge of the object’s surface
normals and albedos before the harmonic subspace can be
computed. On the other hand, simple linear algebra tells us
that any set of nine linearly independent vectors (or images)
in H is sufficient to recover the plane. This hints at the
possibility of an easier way to obtain the linear subspace,
that is, can we find a set of nine real images such that the
linear subspace spanned by them coincides with the
harmonic subspace? For all practical purposes, the answer
to this question is “no.” Any real image in H requires the
lighting over the sphere of directions to be a smooth
function specified by a linear combination of the first nine
spherical harmonics, and it would be very difficult to
physically construct such lighting conditions in a common
laboratory or application environment. However, one can
ask a different but related question: Is there another
nine-dimensional linear subspace R that can also provide
a good representation for face recognition? Can R be
constructed in some canonical fashion, perhaps with nine
physically and easily realized lighting conditions?

In this paper, we formulate the problem as follows: We
will consider only single distant and isotropic light sources.
Each such light source can be associated with a point on the
unit sphere s 2 S2 indicating its direction. Let � denote a
subset of the unit sphere S2. The problem we wish to solve
is the following: Given � and a small integer d (typically
nine or less), find a subset fs1; � � � ; sdg of � such that the
d corresponding lighting directions fls1 ; � � � ; lsdg and the
associated d-dimensional subspace R generated by d images
taken under these lighting conditions are a good approx-
imation to the illumination cones of a collection of human
faces. For computational reasons, the set � is always
assumed to have finite size and, in this paper, � is either

a uniformly sampled sphere or a uniformly sampled
hemisphere.

Since we know that the harmonic subspace H is a good
representation for face recognition under variable lighting,
it seems reasonable to find a plane R close to H. To make
this notion precise, we need a notion of distance between
two planes. In our first algorithm, the distance between two
planes (not necessarily of the same dimension) is defined to
be the square-sum of the cosines of the principal angles
between them. R is then defined as the plane that has the
smallest distance to H. From the recognition standpoint, it
is also preferable to require that the intersection between R

and the illumination cone C be as large as possible. This
condition is incorporated into our second algorithm. That is,
we want to find a k-dimensional linear subspace R, with k

ranging from 1 to 9, generated by elements in � such that
the distance between R and H is minimized (in some way)
while the (unit)-volume R \ C is maximized. In Section 3,
we formulate both algorithms in terms of maximizing an
objective function defined over �. Our end result is a set of
k directions (points) in �, and R is spanned by the images
taken under the lighting conditions specified by these
k directions.

It turns out that the resulting k light source directions are
qualitatively very similar for different individuals. By
averaging the objective functions for different individuals
and maximizing this new objective function, we obtain a
sequence of configurations of light source directions, called
the universal configurations, such that, on average, the
linear spaces spanned by the corresponding images are a
good approximation to the corresponding illumination
cones. We demonstrate that, by using these universal
configurations, good face recognition results can be
obtained. In some cases, as few as five training images
per person are sufficient to produce reasonably accurate
face recognition results if a small error rate can be tolerated.

The main contribution of this paper is the demonstration,
both theoretically and empirically, that it is possible to
employ just a few real images (taken under single distant
and isotropic light sources) to model the various illumina-
tion effects on human faces, provided that the light source
locations are chosen carefully. From a practical standpoint,
acquiring images under a single distant and isotropic light
source is much easier and less costly than alternatives. That
is, the linear subspace R is lot easier to obtain than either the
harmonic subspace H or the illumination cone C. This is
particularly appropriate for acquiring training images of
individuals in a controlled environment such as a driver’s
license office, a bank, or a security office.

This paper is organized as follows: In Section 2, we
briefly summarize the idea of [2] using a harmonic subspace
H for face recognition. The relationship between H and the
illumination cone [3] is explained. Our algorithms for
computing R and the universal configuration are detailed in
Section 3, and Section 4 presents experimental results. The
final section contains a brief summary and conclusion of
this paper. Preliminary results on this topic were presented
in [10], [11]. Some notation used in this paper is listed in
Table 1.
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2 PRELIMINARIES

2.1 Illumination Cone

Let x 2 IRn denote an image with n pixels of a convex object
with a Lambertian reflectance function illuminated by a
single point source at infinity, represented by a vector s 2
IR3 such that its magnitude jsj represents the intensity of the
source and the unit normal s=jsj represents the direction.
Let B 2 IRn�3 be a matrix where each row b in B is the
product of the albedo with unit normal for a point on the
surface projecting to a particular pixel in the image. Under
the Lambertian assumption, x is given by

x ¼ maxðBs; 0Þ; ð1Þ
where maxðBs; 0Þ sets to zero all negative components of
the vector Bs. If the object is illuminated by k light sources
at infinity, then the image is given by the superposition of
the images that would have been produced by the
individual light sources, i.e.,

x ¼
X

k

i¼1

maxðBsi; 0Þ: ð2Þ

Due to this superposition, the set of all possible images C of
a convex Lambertian surface created by varying the
direction and strength of an arbitrary number of point light
sources at infinity is a convex cone. Furthermore, any image
in the illumination cone C (including the boundary) can be
determined as a convex combination of extreme rays
(images) given by

xij ¼ maxðBsij; 0Þ; ð3Þ
where sij ¼ bi � bj are rows of B with i 6¼ j. It is clear that
there are at most mðm� 1Þ extreme rays for m � n distinct
surface normals [7].

In computer vision, it has been a customary practice to
treat the human face as a Lambertian surface. Although
human faces are not convex, the degree of nonconvexity is
not serious enough to render the concept of the illumination
cone inapplicable [7]. The only difference between the
illumination cone of a human face and a convex object is
that (3) no longer accounts for all the extreme rays and there
are extreme rays that are the result of cast shadows.
Therefore, the formula for the upper bound on the number
of extreme rays is generally more complicated than the
quadratic expression mðm� 1Þ above. This poses a formid-
able difficulty for computing the exact illumination cone
(i.e., specifying all the extreme rays). Instead, a subset of the

illumination cone can be computed by sampling lighting
directions on the unit sphere, and (1) is accompanied by ray
tracing to account for the cast shadows.

2.2 Lambertian Reflection and Spherical Harmonics

In this section, we briefly summarize the recent work
presented in [2], [14], [15], [19]. Consider a convex
Lambertian object with uniform albedo illuminated by
distant isotropic light sources, and p is a point on the
surface of the object. Pick a local ðx; y; zÞ coordinates
system Fp centered at p such that the z-axis coincides with
the surface normal at p, and let ð�; �Þ1 denote the spherical
coordinates centered at p. Under the assumption of distant
and isotropic light sources, the configuration of lights that
illuminate the object can be expressed as a nonnegative
function Lð�; �Þ. The reflected radiance at p is given by

rðpÞ ¼ �

Z Z

S

kð�ÞLð�; �ÞdA

¼ �

Z 2�

0

Z �

0

kð�ÞLð�; �Þsin�d�d�;
ð4Þ

where � is the albedo, and kð�Þ ¼ maxðcos �; 0Þ is called the
Lambertian kernel. A similar integral can be formed for any
other point q on the surface to compute the reflected
radiance rðqÞ. The only difference between the integrals at p
and q is the lighting function L: At each point, L is
expressed in a local coordinate system (or coordinate frame
Fp) at that point. Therefore, considered as a function on the
unit sphere, Lp and Lq differ by a rotation given by
Lpð�; �Þ ¼ Lqðgð�; �ÞÞ, where gð�; �Þ rotates the directions
ð�; �Þ in the Lp to Lq frame.

The spherical harmonics are a set of functions that form
an orthonormal basis for the set of all square-integrable (L2)
functions defined on the unit sphere. They are the analogue
on the sphere to the Fourier basis on the line or circle. The
spherical harmonics, Ylm, are indexed by two integers l and
m obeying l � 0 and �l � m � l:

Ylmð�; �Þ ¼
NlmP

jmj
l ðcos�Þcosðjmj�Þ if m > 0;

NlmP
jmj
l ðcos�Þ if m ¼ 0;

NlmP
jmj
l ðcos�Þsinðjmj�Þ if m < 0;

8

>

<

>

:

ð5Þ

where Nlm is a normalization factor guaranteeing that the

integral of Ylm � Yl0m0 ¼ �mm0�ll0 , and P
jmj
l is the associated
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1. To conform with the notation used in spherical harmonics literature, �
denotes the elevation angle and � denotes the azimuth angle. In the next
section, however, we will switch the roles of � and �.
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Legendre functions (its precise definition is not important

here, however, see [20]). In particular, there are nine

spherical harmonics with l < 3. One significant property

of the spherical harmonics is that the polynomials with

fixed l-degree form an irreducible representation of the

symmetry group SOð3Þ, that is, a rotated harmonic is the

linear superposition of spherical harmonics of the same

l-degree. For a 3D rotation g 2 SOð3Þ:

Ylmðgð�; �ÞÞ ¼
X

l

n¼�l

glmnYlnð�; �Þ: ð6Þ

The coefficients glnm are real numbers and are determined
by g.

Expanding the Lambertian kernel kð�Þ in terms of Ylm,
one has k ¼ P1

l¼0 klYl0. Because kð�Þ has no �-dependency,
its expansion has no Ylm components with m 6¼ 0. An
analytic formula for kl was given in [2], [15]. It can be shown
that kl vanishes for odd values of l > 1, and the even terms
fall to zero rapidly; in addition, more than 99 percent of the
L2-energy of kð�Þ is captured by its first three terms, those
with l < 3. Because of these numerical properties of kl, by
(4), any high-frequency (l > 2) component of the lighting
function Lð�; �Þ will be severely attenuated. That is, the
Lambertian kernel acts as a low-pass filter. Therefore, for a
smooth lighting function L, the result of computing
reflected radiance using (4) can be accurately approximated
by the same integral with L replaced by L0, obtained by
truncating the harmonic expansion of L at l > 2. Since
rotations preserve the l-degree of the spherical harmonics
(see (6)), the same truncated L0 will work at every surface
point.

2.3 Harmonic Images

From the above discussion, it follows that the set of all
possible images of a convex Lambertian object under all
lighting conditions can be well approximated by nine
“harmonic images,” “images” formed under lighting con-
ditions specified by the first nine spherical harmonics.
Except for the first spherical harmonic (which is a constant),
all others have negative values and therefore, they do not
correspond to real lighting conditions. Hence, the corre-
sponding “harmonic images” are not real images, and as
pointed out by [2]: “they are abstractions.” Knowing the
object’s geometry and albedos, these harmonic images
can be synthesized using standard techniques, such as
ray-tracing.

For spherical harmonics, the spherical coordinates �; �
are a little bit complicated to work with. Instead, it is
usually convenient to write Ylm as a function of x; y; z rather
than angles. Each spherical harmonic Ylmðx; y; zÞ expressed
in terms of ðx; y; zÞ is a polynomial in ðx; y; zÞ of degree l.
The first nine spherical harmonics in Cartesian coordinates
(with rounded constant coefficients) are

Y00 ¼
ffiffiffiffiffiffi

1

4�

r

; ð7Þ

ðY11;Y10;Y1�1Þ ¼
ffiffiffiffiffiffi

3

4�

r

ðx; y; zÞ; ð8Þ

ðY21;Y2�1;Y2�2Þ ¼
ffiffiffiffiffiffi

15

4�

r

ðxz; yz;xyÞ; ð9Þ

Y20 ¼
ffiffiffiffiffiffiffiffi

5

16�

r

ð3z2 � 1Þ; ð10Þ

Y22 ¼
ffiffiffiffiffiffiffiffi

15

16�

r

ðx2 � y2Þ: ð11Þ

Fig. 1 shows the rendered harmonic images for a face
taken from the Yale Face Database B [7]. These synthetic
images are rendered by sampling 1,000 light source
directions on a hemisphere, and the final images are the
weighted sum of 1,000 ray-traced images. Unlike [2], which
only accounted for attached shadows, these harmonic
images also include the effects of cast shadows arising from
nonconvex surfaces. Therefore, all nine harmonic images
contain 3D information (i.e., the shadows) of the face. The
values of the spherical harmonics at a particular point are
computed easily using (7)-(11).

2.4 Motivations

The main goal of this paper is to give a set of configurations
of lighting directions such that the images taken under
these lighting conditions can serve as a good linear basis for
recognition. In the following paragraphs, we will explain, in
terms of illumination cones and harmonic images, some of
the heuristics that led us to believe in the possibility of the
existence of such configurations. The actual computational
problems that produce the configurations will be described
in the next section.

The good recognition results reported in [2] have
indicated very clearly that the linear subspace H generated
by the harmonic images is a good approximation to the
illumination cone C [3]. Fig. 2a gives a reasonable depiction
of the relation between H and C. In particular, we can
imagine geometrically that the illumination cone is “thick”
in the directions parallel toH, while it is “thin” in directions
perpendicular to H.

From its very definition, H can be considered as intrinsic
to C since both are completely determined by the object’s
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Fig. 1. The nine simulated harmonic images of a face from the Yale Face
Database B. These harmonic images are synthesized as the super-
position of ray-traced images and include the effects of cast shadows.
Light gray and dark gray respectively indicate the positive and negative
pixel values. Since Y00 is a constant, the corresponding harmonic image
simply scales the albedo values, as shown in Picture 1. Picture 4 is the
harmonic image corresponding to Y1�1 ¼ z and has positive values for
all pixels. Here, the image plane is defined as the xy-plane.



shape and albedo as expressed through the B matrix. It is
then natural to study the relation between H and C; in
particular, how H intersects C and how the set H \ C is
situated (or embedded) in C. If Fig. 2b can be a guide, one
interesting problem is to determine the set of extreme rays
that are close to H as measured by the L2 distance in the
image space Rn, which have their linear span as close to H
as possible and whose intersection of their linear span and
C is as large as possible. Any such set of extreme rays can
replace the harmonic images and serve as a good basis for
face recognition. Of course, for different people, there
would be a different set of such extreme rays (images)
because the associated illumination cones are different. That
is, their locations in the image space are different. However,
we can reasonably expect that the shape of the two
illumination cones would be similar. With our common
experience with human faces, it is reasonable to expect the
following:

Heuristic. Let e1�; e
1
� denote two images of a face (face one)

corresponding to the lighting directions l�; l�, and let
e2�; e

2
� correspond to two more images of another face

(face two) under the same pair of lighting conditions. If
the L2-difference between e1� and e1� is small (large), then
the L2-difference between e2� and e2� should also be small
(large).

That is, if two lighting conditions produce similar
(dissimilar) images for one person, they will also produce
similar (dissimilar) images for everyone else. This heuristic
implies that, if one illumination cone is “thick” in some
directions, then, for any other illumination cone, there will
be “corresponding” directions in which it is “thick.” At this
point, it is natural to inquire as to how such correspon-
dences in directions can be realized. What perhaps has been
neglected in the past is to regard an extreme ray both as an
image and as a direction (the direction of the light source
that generated it). With this understanding, it is straightfor-
ward to suspect that the lighting directions are responsible
for this type of correspondence between extreme rays of
different people. That is, two extreme rays from different
persons are considered to be in “correspondence” if they are
generated by the same lighting conditions (i.e., same
directions). Combining the arguments above, the following
statement becomes plausible. Let fe1; � � � ; ekg be a set of
extreme rays for one face that is a good approximation of
its illumination cone and harmonic subspace H and
fl1; � � � ; lkg are the corresponding lighting directions. For

any other face, if fe01; � � � ; e0kg are extreme rays generated by
fl1; � � � ; lkg, one should expect that fe01; � � � ; e0kg is a good
approximation (in the L2 sense) of the illumination cone.

Of course, there are many ways to arrive at a
k-dimensional linear subspace. The most common and
straightforward way is to sample images in the cone and
use the principal component analysis. However, principal
component analysis depends heavily on the sample images
used to define the correlation matrix whose eigenvectors
define the resulting PCA plane. A biased set of samples
(e.g., a small number of samples) would produce a PCA
plane that is not effective for face recognition, as illustrated
in Fig. 2c. Instead of gathering many images for each person
in order to produce an unbiased subspace using PCA, the
algorithm proposed in the next section offers a more
economical solution by specifying how a set fe1; � � � ; ekg of
extreme rays can be obtained directly by specifying
k different lighting conditions. Our task in the next section
is to formulate a computational problem to accomplish this.

3 LOW-DIMENSIONAL LINEAR APPROXIMATIONS OF

ILLUMINATION CONE

In this section, we detail our algorithm for computing R, a
low-dimensional linear approximation of an illumination
cone. Given a model (human face), we assume that we have
detailed knowledge of its surface normals and albedos.
Using the methods outlined in the previous section, we can
easily render the model’s harmonic images and construct
the harmonic subspaceH. Let C and EC denote the model’s
illumination cone and the set of normalized extreme (unit
length) rays in the cone, respectively. For notational
convenience, we will not make any distinction between an
extreme ray (which is an image) and the direction of the
corresponding light source; therefore, depending on the
context, an element of EC can denote either an image or a
light source direction.

For greater generality, we will slightly modify the
formulation of our problem. Let � denote a finite subset
of the unit sphere. In the following discussion, � will
invariably denote a set of uniformly sampled points on the
entire sphere or a set of uniformly sampled points on a
hemisphere. Abusing the notation slightly, we will also call
elements of � extreme rays. Following [7], the set � will be
considered as a subset of EC, and all computations
pertaining to the illumination cone will be carried out with
the set �, instead of the complete set of extreme rays EC.
This formulation allows greater flexibility in applying our
results to face recognition. For instance, if some prior
lighting distribution is known (e.g., light sources are
primarily frontal or lateral), � can represent a set of
sampled points according to the distribution. With � now
defined, the desired linear subspace R will be spanned by
the extreme rays in �, i.e., R 2 ID, with ID denoting the
discrete set of 9-dimensional linear subspaces generated by
the extreme rays in �. ID contains at most ðe9Þ points, where e
is the size of �.

3.1 Computing Linear Subspace R

Since R is meant to provide a basis for a good face
recognition method, we require R to satisfy the following
condition:

LEE ET AL.: ACQUIRING LINEAR SUBSPACES FOR FACE RECOGNITION UNDER VARIABLE LIGHTING 5

Fig. 2. An illustration of the cross section of an illumination cone C with
the solid circles denoting the extreme rays. (a) The intersection C \H is
shown as the solid line. Notice that the intersection does not contain
extreme rays, and H is parallel to the direction in which C is the thickest.
(b) A possible linear subspace passing through extreme rays that is
good for face recognition. (c) A PCA plane obtained by choosing a
biased set of extreme rays p, q, and r as samples.



Condition. The distance between R and H should be
minimized.

Since we know that H is good for face recognition, it is
reasonable to assume that any subspace close to H would
likewise be good for recognition. What is needed now is an
appropriate definition of the distance between two linear
subspaces. One such notion of distance between two planes
is the principal angles between them ([8, pp. 584-585]). If A
and B are matrices whose columns are orthonormal and
span R and H, respectively, the cosines of the principal
angles between the R and H are given by the singular
values of BTA. Let f�1; � � � ; �kg 2 be the singular values of
BTA,3 we can define the “similarity” between R and H as

SimðH;RÞ ¼
X

k

1

�2
i : ð12Þ

The desired linear subspace R will be a global maximum of
Sim on ID. Note that this equation still makes sense when
the dimension of R is no longer nine.

A straightforward way to solve the problem is to
evaluate Sim on the discrete set ID and locate its
maximum. Alas, although ID is discrete, its size is
prohibitively large. This prevents a direct solution to the
problem and, therefore, a local greedy algorithm to reach a
reasonable approximation is needed. Instead, we compute
R as a sequence of nested linear subspaces R0 � R1 �
. . . � Ri � � � � R9 ¼ R with Ri; i � 0 a linear subspace of
dimension i and R0 � ; as follows: First, we let �i denote
the set obtained by deleting i extreme rays from �. It
follows that �0 ¼ �. We will define Ri and �i inductively.
Assume that Ri�1 and �i�1 have been computed. The sets
�i and Ri are defined as follows: Let xi denote the element
in �i�1 such that

xi ¼ arg max
x2�i�1

Simðx	Ri�1; HÞ: ð13Þ

Ri is defined as the space spanned by xi and Ri�1:
Ri � xi 	Ri�1, and the set �i is defined as �i�1nxi. The
algorithm terminates after R9 � R is computed.

As with most greedy algorithms, the iterative process
incrementally produces a k-dimensional linear subspace for
each k ¼ 1; � � � 9. Each Rk can be regarded as a k-dimensional

subspace that is reasonably close to H and, hence, a
reasonable linear subspace for face recognition under
variable lighting. In Section 4, we will study a family of
such nested linear subspaces R0 � R1 � . . . � Ri � � � � R9 ¼
R for their effectiveness in face recognition.

3.2 Preliminary Experiments

In this section, we report our first results with the algorithm
outlined above. In this experiment, � is a set of 1,005 uni-
formly sampled points on S2. For each sampled direction
(point), we produce the corresponding extreme ray by
rendering an image under a single directional source
emanating from this direction (with intensity set to 1). This
set of 1,005 sampled extreme rays is used to define the
domain for the maximization procedure specified by (13).

We have implemented our algorithm for computing the
linear subspace R using the Yale Face Database B. For
10 individuals, the Yale database contains a 3D model
(surface normals and albedos) and 45 images under
different lighting conditions of each person. Since the face
is assumed to be Lambertian, the 3D model from the Yale
Face Database B allows quick rendering of a required image.

For five people in the database shown in Fig. 3, the result
of computing the nine-dimensional linear subspace R is
shown in Fig. 4. Since all lights are sampled from the unit
sphere S2, we use the usual spherical coordinates to denote
the light positions. The coordinates frame used in the
computation is defined such that the center of the face is
located at the origin, and the nose is facing toward the
positive z-axis. The x and y axes are parallel to the
horizontal and vertical axes of the image plane, respec-
tively. The spherical coordinates are expressed as the pair
ð�; �Þ (in degrees), where � is the elevation angle (angle
between the polar axis and the z-axis) with range
0 � � � 180, and � is the azimuth angle with range
�180 � � � 180. In all subsequent experiments, all results
are reported with respect to this coordinates frame. It is
worthwhile to note that the set of nine extreme rays chosen
by the algorithm has a particular type of configuration.
First, the first two directions chosen are frontal directions
(with small values of �). The first ray chosen, by definition,
is always the image that is closest to H and, in most cases, it
is the direct frontal light given by � ¼ 0. Second, after the
frontal images are chosen, the next five directions are from
the sides (with � 
 90). By examining the � values of these
directions, we see that these directions spread in a quasi-
uniformly manner around the lateral rim. Third, the eighth
direction is always from behind (with � > 90). This
accounts for all the light coming from the hemisphere that
is behind the face. And, finally, the last chosen direction
seems to be random. It is important to note that it is by no
mean clear a priori that our algorithm based on maximizing
the similarity with H will favor such types of configuration.
Furthermore and most importantly, the resulting config-
urations across all individuals are very similar.

3.3 An Explicit Calculation

By maximizing (12) using a greedy algorithm, we have
obtained a configuration of nine lighting directions for each
of the 10 individuals in the Yale Face Database B. Two
prominent and distinctive patterns emerged from the
computations. First, the configurations are very similar
(and, in many cases, identical) for different individuals.
Second, the configurations are composed almost entirely of
direct frontal lighting directions and several lateral lighting
directions. Because the size of the domain ID is too large for
a direct maximization of (12), we have employed a
straightforward greedy algorithm to reach the maxima;
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2. j�ij � 1 and R ¼ H if and only if all �i ¼ 1.
3. k is the minimum of the dimensions of R and H.

Fig. 3. Five of the 10 uncropped faces in the Yale Face Database B. The

results for each individual are listed in Fig. 4.



therefore, there is lingering doubt on whether the two
prominent patterns we have observed is an artifact of the
greedy algorithm or that they are indeed the intrinsic
properties of our solutions. In this section, we will
maximize (12) directly without using a greedy algorithm.
At the end, we will observe that the two prominent patterns
still persist after direct computation, and the results will
strongly suggest that the patterns are indeed intrinsic to our
solutions.

To accomplish this, we have to drastically reduce the
size of � from more than 1,000 sample points down to
only two dozen. We will compute a five-dimensional
linear subspace R generated by rays taken from two
collections of sampled points on S2, IU, and IU0. The first
collection IU contains 35 points. We place 4, 8, 10, 8, and 4
light source direction uniformly on the circles given by
� ¼ 45�, 65�, 90�, 105�, and 115�, respectively. In addition,
we place a light source at � ¼ 0�, which is the direct
frontal direction with respect to the face. We also define
the smaller collection IU0 of 21 points by placing 1, 4, 6,
and 10 points uniformly on the circles defined by � ¼ 0�,
45�, 90�, and 125�, respectively. Note that both collections
contain lighting directions from behind the face (those
with � > 90�) as well as frontal directions.

Our experiment is straightforward: For each collection,
we enumerate all possible five-dimensional linear planes
generated by rays in the collection. For each ray in the
collection, we render its corresponding image by using the
normals and albedo values provided by the Yale Face
Database B. We simplify the problem further by assuming
that R contains the frontal direction � ¼ 0�. Therefore, there
are 46,376 and 4,845 different planes for IU and IU0,
respectively. The final result is the plane that gives the
largest SimðR;HÞ value.

For IU0, we have rendered images of all 10 people in the
Yale Face Database B. Out of 4,845 different configurations,
our algorithm consistently picks one particular configura-
tion for all 10 people in the Yale Face Database B. This
configuration of five directions is (in spherical coordinates)

ð�; �Þ : fð0; 0Þ; ð90;�60Þ; ð90;�120Þ; ð90; 120Þ; ð90; 60Þg: ð14Þ
This configuration is symmetric with respect to the

symmetric axis of the human face. It contains frontal, side,
and top/down directions. For the much larger collection IU,
we have also run the explicit algorithm on the Yale Face

Database B, and the result is again quite consistent. Except
in 2 of 10 cases, our algorithm picks the same configuration
for all individuals. See Fig. 5.

In [9], Hallinan has shown empirically that there exists a
reasonably good five-dimensional approximation of the
illumination cone C and a detailed characterization of these
five basis images were given. These results are in good
agreement with Hallinan’s result [9]. However, our results
follow directly from the computational problem defined in
Section 3, while Hallinan’s result is obtained empirically by
acquiring a large number of images and applying PCA.

3.4 Maximizing the Intersection Volume

We have shown that, by defining R as the linear subspace
maximizing (12) for all individuals in the Yale Face Database
B, R can be formed by arranging single directional light
sources in a special way. Although the algorithm employed a
well-known concept of principal angles from linear algebra,
there are two serious drawbacks. First, because of the
singular value decomposition and Gramm-Schmidt process,
the algorithm has a long computation time. For each
individual, it takes approximately 15 minutes to compute
the nine lighting directions on a 1GHz PC. Second,
conceptually, the algorithm does not really tell us much
about the geometric relation betweenR and the illumination
cone. For instance, why there are lighting directions quasi-
uniformly distributed along the lateral rim? Clearly, the
answer to this question may depend on the geometric
relation betweenR and the illumination cone. SinceR is close
to H, the geometric relation between R and the illumination
cone can, in principle, be inferred from the relation between
H and the illumination cone. However, this is clearly not
very satisfactory and what we want is a formulation of the
problem that takes into account the geometric relations
between R and the entire illumination cone.

To this end, we require R to satisfy the following two
conditions (C denotes the illumination cone).

Condition 1. The distance between R and H should be
minimized.

Condition 2. The unit volume volðC \RÞ of C \R should
be maximized (the unit volume is defined as the volume
of the intersection of C \R with the unit ball).

Before turning these two seemingly innocuous condi-
tions into a workable computational problem, we need to
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Fig. 4. The nine lighting directions found by maximizing (12) for five of the 10 faces in Yale Face Database B shown in Fig. 3. The directions are

represented in spherical coordinates ð�; �Þ centered at the face. The first coordinate is the elevation angle with range 0 � � � 180 and the second

coordinate is the azimuth angle with range �180 � � � 180.



spell out precisely how the volume of C \R can be defined

and computed. First, note that C \R is always a subcone of
C; therefore, maximizing its unit volume is the same as
maximizing the (solid) angle subtended by it. If fx1; � � � ; xkg
with xi 2 � is a basis of R, the cone RC � R generated by xi:

RC ¼ xjx 2 R; x ¼
X

k

i¼1

�ixi; �i � 0

( )

ð15Þ

is always a subset of C \R. If C \R ¼ RC , volðC \RÞ can
be computed easily, e.g., taking the determinant of

fx1; � � � ; xkg.4 The following proposition will show that, in
practice, RC is indeed a worthy substitute for C \R.

Proposition 1. If C \R 6¼ RC , there exists a linear relation

among the elements of � containing some of the basis elements
of R, fx1; � � � ; xkg.

Proof. If C \R 6¼ RC , there must exist x 2 R such that x ¼
Pk

i¼1 �ixi with some �i < 0 and xi 2 R. On the other
hand, because x 2 C \R, x can be written as x ¼
Pl

i¼1 �ix
0
i with all �i � 0 and x0

i 2 �. This gives the
following:

�1x1 þ � � � þ �kxk ¼ �1x
0
1 þ � � ��lx

0
l

Since �i are all nonnegative and there exists at least one

negative �i, moving the left-hand side to the right, we
have a nontrivial linear relation among the elements of �
containing at least one element of fx1; � � � ; xkg. tu

Since j�j 
 1; 000 and the image space Rn typically has
dimension greater than 30,000 (using 168-by-192 images),

we expect that most of the extreme rays in � are linearly
independent. In fact, using an �with 500 elements, we have

observed that the linear subspace spanned by its extreme
rays has 497 dimensions. That is, there are only three linear
relations among the elements of �; therefore, if k is
sufficiently small (which is our case), we can avoid linear
relations involving our basis elements. What we have
discussed so far shows that, in practice, we can take C \R
to be RC , and we will maximize the (solid) angle subtended
by the cone RC .

To compute R, we can formulate the following computa-
tional problem: First, we let �i denote the set obtained by
deleting i extreme rays from �. Ri and �i will be defined
inductively in terms of Ri�1 and �i�1 as follows:

Let xi denote the element in �i�1 such that

xi ¼ arg max
x2�i�1

distðx;Ri�1Þ
distðx;HÞ ; ð16Þ

where, as before, Ri is defined as the space spanned by xi

and Ri�1, and the set �i is defined as �i�1nxi. When
computing R1, we define distðx;R0Þ ¼ distðx; ;Þ to be 1.
Therefore, the first element x1 is the extreme ray in � that is
closest to the harmonic subspace H. The algorithm
terminates after R9 � R is computed. In the equation above,
the distance function dist between a point x and H or Ri is
defined as the L2 distance between a point and a linear
subspace. Notice that the distance function dist is different
from Sim used earlier. At each stage, maximizing the
numerator distðx;Ri�1Þ gives us a linear subspace Ri �
x	Ri�1 that has a large solid angle. This is balanced by the
denominator, which ensures that R does not deviate too far
away from H. In principle, x =2 H and distðx;HÞ is always
nonzero for all x 2 �i.

3.5 Discussion and Results

To satisfy Condition 1, it is tempting to find the nine
extreme rays that are closest to H and define R as the linear
space spanned by these rays. We have observed that these
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Fig. 5. (a) Twenty-one images from the collection IU0. (b) The five images for the resulting configuration of five lighting directions

fð0; 0Þ; ð90;�60Þ; ð90;�120Þ; ð0; 120Þ; ð0; 60Þg obtained by maximizing (12) explicitly.

4. fx1; � � � ; xkg are projected to the k-dimensional subspace generated by
themselves. volðC \RÞ is then the volume of solid angle subtended by the
projected vectors.



nine extreme rays are generally clustered around the direct
frontal direction, and the resulting linear space R is a poor
approximation of the illumination cone. The explanation,
according to Condition Two, is because of the resulting
intersection R \ C has small volume. Geometrically, using
nearby (with respect to H) rays is no guarantee that R will
be a good approximation of H. Indeed, one can easily create
a counter example in three dimensions showing the peril of
choosing nearby rays for this purpose, and the situation
becomes trickier when R has a large codimension (which is
our case).

On the other hand, the collection of images that are
produced by extreme lighting conditions (lighting from the
sides, up/down, or behind) generally produce large
intersection volume volðC \RÞ, see Fig. 6. Notice that these
four images are mutually orthogonal in the sense that their
mutual L2-inner product is 0. This is because the sets of
pixels illuminated in each image are mutually disjoint.
Therefore, they will produce the maximal possible value of
ffiffiffi

2
p

for distðx;Ri�1Þ, and the solid angle subtended by them
will be maximal. However, the resulting intersection R \ C
is only on the boundary of C and does not contain the
interior of C. To correct these pathological cases, we need
Condition 1 to “pull the plane inside.” Heuristically, the
first condition favors lighting directions that are nearly
frontal, while the second condition favors lateral lighting
conditions. In this sense, the two conditions actually
complement each other.

The results of running the second algorithm on a set of
1,005 uniformly sampled points on S2 are reported in Fig. 7.
As neither a singular value decomposition nor a Gramm-
Schmidt process are computed, the algorithm runs two to
three times faster than the previous algorithm. The general
characteristic of the configurations obtained this time is
similar to the configurations we have obtained earlier: The
first three directions are concentrated in the frontal area and
the next four directions are spread quasi-uniformly to the

lateral area. According to the discussion in the previous

paragraphs, the quasi-uniform spread in the lateral area

occurring in both sets of results can be attributed geome-

trically to the fact that the intersection R \ C tends to have a

large volume.

3.6 Computing a Universal Configuration

The results in the previous section demonstrate that, for

each individual, there exists a configuration of nine lighting

directions such that the linear subspace spanned by these

images is a good linear approximation of the illumination

cone. The configurations are qualitatively similar for

different individuals with small variations in each lighting

direction. It is then logical to seek a fixed configuration of

nine lighting directions for all individuals such that, for

each individual, on average, the linear space spanned by the

corresponding extreme rays is a good linear approximation

to the illumination cone.
To find such a configuration, we can modify our

previous method slightly by computing the average of the

quotient in (16) over all the available training models. With

all the notations defined as above, we find the nested linear

subspaces R0 � R1 � . . . � Ri � � � � R9 ¼ R by computing

each xi such that

xi ¼ arg max
x2�i�1

X

l

k¼1

distðxk;Rk
i�1Þ

distðxk;HkÞ : ð17Þ

Since we are computing (16) for all the available face

models (indexed by k) simultaneously, for each x 2 �, xk

denotes the image of model k taken under a single light

source with direction x. �i denotes the set obtained by

deleting i elements from �. k indexes the available face

models. Hk denotes the harmonic subspace of model k, and

Rk
i�1 represents the linear subspace spanned by the images

fxk
1; � � � ; xk

i g of model k under light source directions

fx1; � � � ; xig.
For the application to face recognition experiments in the

next section, we will let � denote a set of 200 uniformly

sampled points on the “frontal hemisphere.” Since all the

test images, both Yale Face Database B and the CMU PIE

Database, were taken with lighting directions located on the

frontal hemisphere, � here is appropriately taken to contain

points sampled only from the frontal hemisphere.
We call the resulting configuration of nine directions

the universal configuration. These directions are:
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Fig. 6. If R is the plane generated by these four images (taken under four
extreme illumination conditions), the intersection volume volðC \RÞ will
be large according to our definition. Note that these four images are
mutually orthogonal in the sense that their mutual L2-inner product is 0.
This is quite obvious since their unshadowed regions never intersect.

Fig. 7. The nine lighting directions found by maximizing (16) for five of the 10 faces in the Yale Face Database B shown in Fig. 3.



fð0; 0Þ; ð68;�90Þ; ð74; 108Þ; ð80; 52Þ; ð85;�42Þ;
ð85;�137Þ; ð85; 146Þ; ð85;�4Þ; ð51; 67Þg:

They, along with the 200 samples on the hemisphere, are
plotted in Fig. 8. In the next section, this set of nested linear
subspaces, R0 � R1 � . . . � Ri � � � � R9 ¼ R, will be applied
in face recognition experiments.

4 EXPERIMENTS AND RESULTS

In the previous section, we computed a configuration of
lighting positions based on the idea that the linear subspace
formed by the images taken under these lighting conditions
should have a large intersection volume with the illumina-
tion cone. The subspace is also required to be close to the
harmonic subspace that is known to model the illumination
cone well. The main result is a nested sequence of linear
subspaces, R0 � R1 � . . . � Ri � � � � R9 ¼ R, with basis
images consisting of images taken under lighting conditions
specified by these lighting directions. In this section, we
report on the results from a series of comprehensive
experiments that validate our argument for favoring such
configurations. First, we use the largest available subspace
R9 in the nested sequence above for face recognition as the
choice of nine dimensions is largely motivated by the
results in [2], [15]. Second, we use all the subspaces in the
nested sequence for recognition. As shown below, these
results demonstrate that subspaces with dimension greater
than four all produce remarkably good recognition results.
In the third subsection, we demonstrate experimentally that
our lighting configuration is indeed special in the sense that
it (almost) always provides a better face recognition
performance compared with a randomly generated lighting
configuration. In the last part of this section, we study the
effectiveness of our subspaces in recognition experiments
with diffuse illumination rather than just a single point
source. In all the experiments, the actual recognition
algorithm is straightforward. For each test image, we
compute the usual L2 distance between the image and all

the subspaces. The identity associated with the subspace
that gives the minimal distance to the image is declared to
be its identity.

4.1 Recognition Experiments with Nine Points of
Light

In this section, we apply the nine-dimensional subspace R9

in a recognition experiment to see if the universal
configuration of nine directions leads to effective face
recognition compared to other published methods. For the
experiments, we used images from the Yale Face Database B
[7] that contains images of 10 faces each under 45 different
lighting conditions, and the test is performed on all of the
450 images. Following [7], the images are grouped into four
subsets according to the lighting angle with respect to the
camera axis. The first two subsets cover the angular range
0� to 25�, the third subset covers 25� to 50�, and the fourth
subset covers 50� to 77�. See Fig. 9 for an example.

Using the set of nine directions shown in Fig. 8, we
construct a linear subspace for each of the 10 people by
taking the images of each person under these lighting
conditions as the basis vectors of the linear subspace. In
practice, the nine images should be real; however, due to
the lack of real images acquired under these lighting
directions, we offer two slightly different variations. In the
first variation, which we call the Nine Points of Light (9PL)
with simulated images, the required images are rendered
using a geometric and albedo model from the Yale Face
Database B. In the second variation (9PL with real images),
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Fig. 8. (a) The universal configuration of nine light source directions with all 200 sample points plotted on a hemisphere. (b) Nine images of a person

illuminated by lights from the universal configuration.

Fig. 9. Images of one of the 10 individuals in the Yale Face Database B

under the four subsets of lighting. See [7] for more examples.



the required basis images are taken directly from the

database: Basis images are images whose lighting condi-

tions are closest to the lighting conditions specified by our

configuration. The recognition results of using our config-

uration of nine lighting directions together with recent

illumination-insensitive recognition algorithms, such as

Harmonic Images [2], Gradient Angle [4], and other

methods reported previously in [7], are shown in Table 2,

ordered by decreasing overall error rate.

The correlation method, the Eigenface methods, the

linear subspace method, and the cones methods were all

trained using images from Subsets 1 and 2. The correlation

method and Eigenface method are widely used face

recognition techniques, and they serve as a baseline.

Eigenfaces, where the first three principal components are

dropped, is commonly used to remove the effects of

lighting. The linear subspace method and illumination

cones methods attempt to model the set of images of an

object under differing lighting conditions. In the linear

subspace method, the set is treated as a 3D subspace, while

the Cones-attached method is based on constructing an

illumination cone that only accounts for attached shadows

whereas Cones-cast accounts for cast shadows. Note that

the recognition rate is perfect on this data set for Cones cast.

Using a 9D subspace defined by rendered Harmonic images

shows a 2.7 percent error rate for extreme lighting and note

that the 9PL method has a similar error rate (2.8 percent)

when rendered images are used; hence, it is likely that the

9D Harmonic planes and the 9D subspaces produced using

9PL for each individual are indeed very close to each other.

The gradient angle method introduced in [4] uses only a

single training image and compares images using a

measure which is insensitive to lighting variation. Finally,

when the subspace for the nine point algorithm is based on

real images, there are again no errors.

All of the other methods reported in the table (except the
Nearest Neighbor method and Gradient Angle) require
considerable amounts of offline processing on the training
data, such as 3D reconstruction or eigen decomposition of
the training data. For the Nine Points of Light method, no
training is involved! The work is almost minimal as only
nine images are needed.

At this point, it is reasonable to ponder whether it is

important to represent an individual by the 9D subspace

spanned by the nine images or would it be sufficient simply

to use the nine images as training images along with a

straightforward classifier such as nearest neighbor (or

perhaps something a bit more sophisticated such as

Eigenfaces or a feed forward neural network). To answer

this, we evaluated the recognition performance using the

nearest neighbor classifier with the same nine normalized

images as training data, and the results are also shown in

Table 2. Since most of the training samples are from

Subset 4, nearest neighbor does reasonably well for Subset 4

with an error rate of 7.0 percent. However, unlike our

method, which measures the distance to the subspace, the

nearest neighbor classifier does not generalize well to

Subsets 1, 2, and 3.

4.2 Recognition with Lower Dimensional
Subspaces

As shown in [3], the actual dimension of an illumination
cone is the number of distinct surface normals. Hence, for
human faces, the actual dimension of the illumination cone
is quite large; nevertheless, the previous results show that
the illumination cone for a human face (under a fixed pose)
admits a good approximation by a nine-dimensional linear
plane in the image space. The natural extension of this
conclusion is to further reduce the dimension of the linear
approximation and observe the resulting error rates.

We experimented with this type of dimensionality
reduction by successively using each linear subspace in
the nested sequence, R0 � R1 � . . . � Ri � � � � R9 ¼ R, for
face recognition. For this experiment, we used an extended
database with 1,710 images of 38 individuals from the Yale
Face Database B and C (extended Yale Face Database). As
there are no recognition results reported in the literature for
other methods using this extended database, we only report
on our own method. The results are shown in Fig. 10, and it
is clear that the recognition rate is still reasonably good,
even for five dimensions.

As alluded to earlier, these results corroborate well with

the much earlier results of [5], [9]. They have shown that

using 5 2 eigenimages is sufficient to provide a good

representation of the images of a human face under variable

lighting. The main distinctions between these earlier results

and ours are 1) the linear approximations provided by the

earlier work have always been characterized in terms of

eigenimages. In contrast, our linear approximations are

characterized by real images. 2) There is no report of

recognition results in these earlier works while we have

demonstrated that not only is a good low-dimensional

linear approximation of the illumination cone possible, but

it also provides reasonably good face recognition results.
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TABLE 2
The Error Rates for Various Recognition Methods

on Subsets of the Yale Face Database B

Some of the entries (indicated by citation) were taken from published
papers, whereas the 9PL, Harmonic Images, and Nearest Neighbor
results are from our own implementation.



The experimental results reported so far have all used
images in the Yale Face Database [7]. This database was
designed primarily for studying illumination effects on face
recognition. A more recent database designed for similar
purposes is the PIE database from CMU (see [18]). We have
tested our recognition algorithm on the PIE database, and
the results are shown in Fig. 10. For the illumination
component of the PIE database, there are 1,587 images of
69 individuals and 23 different illumination conditions. Due
to the lack of shape and albedo estimates, we cannot render
the images under the nine lighting directions specified in
the previous section. Instead, we have decided to use some
of the images provided by the database as training images.
For each lighting direction specified by our results, we
choose the image in the PIE database with the closest
lighting direction as the corresponding training image.
Since the lighting directions used in acquiring the PIE
database do not cover the sphere, two (out of nine)
directions do not have an appropriately nearby direction
in the PIE database. Therefore, we selected only seven
images for each individual from the database as the basis of
R. This leaves 16 test images for each individual.

4.3 Recognition Experiments with Randomly
Generated Lighting Configurations

The experiments reported in the preceding subsections
have demonstrated the effectiveness of the universal light-
ing configuration for face recognition. The universal light-
ing configuration shown in Fig. 8 is obtained by iteratively
maximizing an objective function (see (17)). Although the
implication of the optimization problem has been eluci-
dated in the previous section, it is still natural to wonder
whether there are other lighting configurations which are
capable of generating the same results. For example, can a
randomly generated lighting configuration have the same

performance in face recognition as our universal configura-
tion? We answer this question experimentally by randomly
generating a large number of different lighting configura-
tions and comparing the face recognition performance with
the face recognition results reported earlier using the
Universal Configuration.

In this experiment, we use the extended Yale Face
Database (1,710 images for 38 people). In this database,
each individual has his/her image taken under 45 differ-
ent lighting directions. We randomly generate configura-
tions of five lighting directions among these 45 different
lighting directions, and the corresponding five images are
taken to form the basis vector of a subspace. Therefore,
for each randomly generated lighting configuration, there
are five images for training and 40 images for testing. We
randomly generate 16,000 different configurations of five
lighting positions, and this number corresponds to
roughly 1.5 percent of the total number of configurations
ð455 Þ ¼ 1; 221; 759.

Using our configuration of five lights (R5), the recogni-
tion result is remarkable: With an error rate of 0.2 percent,
only four images out of the total of 1,710 images are
incorrectly recognized. The mean error rate for randomly
generated source directions is just under 10 percent
(165 images) with the median of about 4 percent. Therefore,
by randomly picking lighting conditions to form subspaces,
we expect the error rate to be an order of magnitude larger
than using our configuration. Most impressive is the fact
that there are only three lighting configurations (out of the
total 16,000 tested configurations) that perform better than
our configuration. Furthermore, these three configurations
all share the same basic pattern with our configuration in
the spatial distribution of their lighting directions, that is, a
frontal lighting direction coupled with four (near) lateral
directions.
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Fig. 10. The error rates for face recognition using successively smaller linear subspaces. The abscissa represents the dimension of the linear
subspace, while the ordinate gives the error rate. (a) In this experiment, the extended Yale Face Database, containing 1,710 images of 38
individuals, was used. (b) In this experiment, the CMU PIE database, containing 1,587 images of 69 individuals, was used. The database contains
two sets of images. The first set of images was taken under single directional light sources without any background illumination. The recognition
results for this set of images are marked with crosses. The other set of images was taken under the same set of single directional light sources as the
first set, but with background illumination. The results for this set of images are marked with circles. Note that we have used a seven-dimensional
subspace instead of the usual nine-dimensional subspace. The lowest error rates obtained by using seven-dimensional subspaces for recognition
with and without background illumination are 2.8 percent and 1.9 percent, respectively.



4.4 Recognition with Ambient Lighting

So far, the empirical study of illumination effects on face
recognition has focused on test images taken under single
distant point light sources [7]. It has been conjectured earlier
that, with significant ambient lighting or multiple distant
point sources, recognition should be simpler [3]. Using the
illumination cone, it is straightforward to explain this
conjecture. The images formed with ambient lighting or
multiple distant point sources are located in the interior of
the illumination cones. On the other hand, images formed
by single direct distant sources belong to the boundary of
the illumination cone. Therefore, the latter type of images
are harder to recognize than the former type. In this
subsection, we verify this conjecture experimentally using
both the CMU PIE database and the Yale Face Database B.

The CMU PIE database contains two similar sets of

images with exactly the same set of single distant lighting

directions. The difference is that one set contains ambient

illumination while the other does not. With ambient

lighting, images generally do not contain hard (cast and

attached) shadows caused by the geometry of the face;

instead, soft shadows are present. We tested our method

(with R of dimension seven) on the set of images with

ambient lighting exactly as in the previous section, and the

results are shown in Fig. 10. Note the recognition results

from testing images with ambient lighting are consistently

better than the results without ambient lighting. In

particular, using only one image (the image under the

frontal lighting) as the training image, the error rate is about

50 percent. With 69 individuals in the database, a random

pick will have an error rate of 98.5 percent.

To further verify this conjecture, we will again turn to

simulated images. The basic idea of the next set of

experiments is simple. We start with a single distant light

source and try to simulate the effect of successively turning

on more light sources. The main question that needs to be

resolved by the experiments is whether adding more light

sources indeed makes the recognition task easier.
More precisely, for each experiment, we will define a

sequence of 12 lighting conditions, L ¼ fL1; � � � ; L12g. The
first lighting condition, L1, consists of only one single light
source. For 1 � k � 11, an additional source lk will be added
to the sequence successively.

Lkþ1 ¼ Lk [ flkg: ð18Þ
Since the Yale Face Database B is used in the experiment,

the light sources lk will all be taken from the light sources

present in the database. For each individual and each
lighting condition Lk, we simulate the image taken under Lk

by taking suitable linear combinations of images in the
database. More precisely, if the lighting condition Lk

consists of k different single distant direct light sources,
fl1; � � � ;k g, for each individual, we simulate the image taken
under Lk by taking the average of the corresponding images
(real, not rendered) in the Yale Face Database B:

ILk ¼ Il1 � � � þ Ilk
k

; ð19Þ

where Ili is the image in the database taken under the
light source direction li. These simulated images will
constitute the test images for the experiment. As before,
we will use the nested sequence of linear subspaces,
R0�R1� . . .�Ri� � ��R9¼R, in the recognition experi-
ments. In this experiment, 50 randomly generated
sequences of L were selected, and Fig. 11 shows one
example of a sequence of seven images of an individual
from the Yale Face Database B under a randomly
generated sequence of lighting conditions L. Please notice
the softening of the shadows as the sequence progresses.

The average recognition results are shown in Fig. 12.
These results support the conjecture stated earlier. That is,
adding lights that can remove shadows does decrease the
error rate and makes recognition task easier. We can see
that the error rate goes below 10 percent when enough
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Fig. 11. An example of seven images from a 12 image sequence Ln created by turning on successively more distant light sources. The numeral

indicates the number of distant sources used to synthesize each image. The gradual disappearance of shadows is noticeable, particularly in the

areas around the eye sockets and the lower cheek.

Fig. 12. The error rates for face recognition under the sequence of
lighting conditions that resolves soft shadows at the end. The abscissa
represents the number of single distance light sources used. The figure
includes all the results using all nine linear subspaces. From dimension 5
to 9 of those linear subspaces, the error rates are almost zero.



lights are turned on, even though the method was trained
with a single frontally illuminated image. The results show
that the ambient lighting conditions from those randomly
generated testing sequences make the recognition problem
particularly easy.

5 CONCLUSIONS

We have shown that there exist configurations of single
light source directions that are effective for face recognition.
Depending on the difficulty of the lighting condition (e.g.,
strong or weak ambient lighting) and the degree of accuracy
required, the number of single light source directions in the
configuration can range from five to nine. The linear
subspace spanned by the corresponding images is a good
approximation to the illumination cone, and it provides
good face recognition results under a wide range of difficult
lighting conditions. We obtain the set by maximizing a
function defined on the set of extreme rays of the
illumination cone. Our result provides a recipe for building
a simple but robust face recognition system. By taking
several images of each individual with single light sources
emanating from these directions, our results show that
these nine images are already sufficient for the task of
recognizing faces under different illumination conditions.
The usual complicated intermediate steps, such as the
3D reconstruction, can be completely avoided.

Recently, Schechner et al. [16] pointed out that, taking a
set of images under multiplexed illumination rather than by
a collection of single point light sources, the signal-to-noise
ratio (SNR) will be reduced. Without noise, the resulting
images acquired under multiplexed illumination would
span the exact same subspace as with just the nine single
source images. But, presumably, the lower SNR would lead
to lower error rates.

One surprising conclusion of our work is that, for
modeling the effect of illumination on human faces, linear
superpositions of images acquired under a few directional
sources are likely to be sufficient and effective. The basis
images invariably contain one or two frontally lit images
and four to five laterally lit images. Furthermore, as few as
one or two frontally lit images may already be sufficient as
the training images if the lighting conditions are known to
contain strong ambient components. This hints at an
interesting avenue for future research. Suppose some prior
knowledge of the lighting distribution is known. How can a
recognition algorithm use a minimal number of training
images, and under what conditions should they be
acquired.
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