
University of Huddersfield Repository

Cresswell, S.N., McCluskey, T.L. and West, Margaret M.

Acquiring planning domain models using LOCM

Original Citation

Cresswell, S.N., McCluskey, T.L. and West, Margaret M. (2013) Acquiring planning domain models
using LOCM. Knowledge Engineering Review, 28 (2). pp. 195-213. ISSN 0269-8889

This version is available at http://eprints.hud.ac.uk/id/eprint/9052/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Acquiring planning domain models using LOCM

S. N. Cresswell, T. L. McCluskey and M. M. West
School of Computing and Engineering, The University of Huddersfield, Huddersfield HD1 3DH, UK
E-mail: {s.n.cresswell,t.l.mccluskey,m.m.west}@hud.ac.uk

Abstract

The problem of formulating knowledge bases containing action schema is a central concern in knowledge
engineering for AI Planning. This paper describesLOCM, a system which carries out the automated
generation of a planning domain model from example trainingplans. The novelty ofLOCM is that it
can induce action schema without being provided with any information about predicates or initial, goal
or intermediate state descriptions for the example action sequences. Each plan is assumed to be a sound
sequence of actions; each action in a plan is stated as a name and a list of objects that the action refers to.
LOCM exploits assumptions about the kinds of domain model it has to generate, rather than handcrafted
clues or planner-oriented knowledge. It assumes that actions change the state of objects, and require
objects to be in a certain state before they can be executed. In this paper we describe the implemented
LOCM algorithm, the assumptions that it is based on, and an evaluation using plans generated through
goal directed solutions, through random walk, and through logging human generated plans for the game
of Freecell. We analyse the performance ofLOCM by its application to the induction of domain models
from five domains.

1 Introduction

The area of Automated Planning Systems has progressed rapidly in the past 20 years. Planning algorithms
have the ability to reason with knowledge of action and change in order to synthesise plans to achieve
desired goals. The prevalent idea in Automated Planning research and development is that there is a
logical separation of planning engine and domain model representing the application and problem at hand.
However, these domain models are invariably hand crafted. As far as we are aware, all the domain models
used in the International Planning Competitions (IPC) havebeen hand crafted, as are those reportedly
used in leading applications such as those in the Space area.

The work reported here is motivated by the importance of the knowledge formulation process to the
success of applications, and to making planning engines more accessible and open to community use.
This encompasses automatically acquiring domain models ofnew domains, or automatically maintaining
existing domain models. This paper focuses on one way of opening up planning engines to general use:
to mine domain models from logged sequences of action applications, without the need for hand crafted
planner-oriented information such as predicate specification or state information. We describe a generic
tool calledLOCM (Learning Object-Centred Models) which illustrates the feasibility of automatically
generating a domain model from application knowledge in theform of plans in a range of application
areas. The input toLOCM is a sentence within an abstract language of observed instances and the output
is a solver-ready PDDL domain model. The originality ofLOCM lies in the simplicity of its input: its
observed instances are descriptions of plans or plan fragments within the application area.LOCMexploits
assumptions about the kind of domain it is constructing: a planning domain consists of sets (calledsorts)
of object instances, where each object behaves in the same way as any other object in its sort. In particular,
sorts have a defined set of states that their objects can occupy, and an object’s state may change (called
a state transition) as a result of action instance execution(Simpson, Kitchin, and McCluskey (2007)).

2 S. N. CRESSWELL ET AL.

Additionally we assume that there are many observations forit to use, and that the observations are
sequences of possible action applications within the domain where each action application is made up of
an identifier, and the names of objects that it affects.

LOCM works by assembling the transition behaviour of individualsorts, the co-ordinations between
transitions of different sorts, and the relationships between objects of different sorts. It does so by
exploiting the idea that actions change the state of objects, and that each time an action is executed,
the preconditions and effects on an object are the same. Under these assumptions,LOCM can induce
action schema without the need for background information such as specifications of initial/goal states,
intermediate states, fluents or other partial domain information. All other current systems e.g.Opmaker
(Richardson (2008)), ARMS (Wu, Yang, and Jiang (2005)), andthe system of Shahaf and Amir (2006)
require some of this background knowledge as essential to their operation.

We evaluate theLOCM system with five domains: the tyre-world, the blocks world, driverlog, IPC
Freecell and AoP-Freecell, with training sequences extracted from IPC solution plans, from using random
walks generated using existing domain models, or from logs of human plans. The most impressive result
is whereLOCM creates a usable PDDL domain model from a number of logs of a human playing the
Freecell game. This indicates the potential applications for such technology, where by observing logs
of actions, agents with planning capabilities will be able to induce domain models in order to carry out
planning themselves.

The paper is structured as follows. In the next section we describe the definitions and assumptions that
underlyLOCM and in doing so detail the steps in theLOCM algorithm. The following section details the
evaluation with the five domains listed above. Finally, we detail similar and related work, outline future
work and draw conclusions.

2 The LOCM System

2.1 LOCM Overview

The input toLOCM is an action training sequence, where each action is specified as a name followed by
a sequence of affected objects. It is in a sufficiently general format that it could originate from a varied
number of sources. The algorithm synthesises models in the form of Finite State Machines, and then
augments FSM states with parameters which record associations between objects. The output is, for the
purposes of this paper, a domain model in PDDL form. However,the internal representation would allow
output in other forms such as SAS+ (Bäckström (1992)).

In this work we assume no prior knowledge of the planning domain theory: no information is given
to the system about predicates, sorts, actions, goals, initial states, intermediate states etc - the only
knowledge available is via the input training sequences. The only exception to this is the option to specify
a “static” precondition, necessary in some domains which require static knowledge. Rather, we base our
work on a set of assumptions or ontological constraints ofthe kind of planning domain theory being
learned. These assumptions are detailed below. Hence, althoughLOCM does not require other inputs,
it makes a fundamental assumption about the domain: that it consists of collections of objects (called
sorts) which change state in such a way that this can be captured by parameterised finite state machines.
The following subsections are motivated by examples in which we establish a conceptual framework of
definitions, assumptionsand hypotheses. We use the heading of “ASSUMPTION” for facts about the
training sequence format and the domain’s structure. However these are independent of thecontentof the
training sequences; we use the heading of “hypothesis” for knowledge that we induce from the content of
the training sequence and hence the hypotheses are dependent on that content.

Example 1: Using the well knowntyre-worldas an example, the following is a action training sequence
containing ten action instances:

open(c1); fetchjack(j1,c1); fetchwrench(wr1,c1); close(c1); open(c2);
fetchwrench(wr2,c2); fetchjack(j2,c2); close(c2); open(c3); close(c3)

Acquiring planning domain models using LOCM 3

The intention is thatc1, c2, c3arecontainers(e.g. car trunks or boots),wr1, wr2arewrenches, andj1, j2
arejacks, though the system is not given this knowledge.

The outline algorithm ofLOCM is as follows: each line of the algorithm is detailed in the sections
below.

procedureLOCM
Input: action training sequence
Output: PDDL domain model
Step 1. Create sort structure and finite state machines
Step 2. Perform Zero Analysis and add new finite state machineif necessary
Step 3. Create and test hypotheses for state parameters
Step 4. Create and merge state parameters
Step 5. Remove parameter flaws
Step 6. Extract static preconditions (optional step)
Step 7. Form action schemas
end

The output ofLOCM (given sufficient examples) is a domain model consisting of sorts, object
behaviour defined by state machines, predicates defining associations between sorts, and action schema
in PDDL form. The action schema are induced having a fixed listof parameters, where each parameter
ranges through objects belonging to some fixed sort.

2.2 Step 1: Induction of Finite State Machines

The input toLOCM is a training sequence ofN actions which all have the form:
Ai(Oi,1, ..., Oi,m[i]) for i= 1, ..., N

whereAi is the action name, and this is followed by a list of object names of lengthm[i]. If objectO is
a member ofOi,1, ..., Oi,m[i], for some actioni, we say that the actioncontainsO. Example 1 is such
a training sequence, withN = 10,A1 = open,A2 = fetch jack, etc, andm[1] = 1, m[2] = 2, m[3] = 2, etc.

Definition: Universe of Objects
The set of objects in the domain is the set of all objects in thetraining sequence:

OU = {O : O ∈Oi,1, ..., Oi,m[i], i ∈ 1, .., N}

In Example 1,
OU = {c1, j1, wr1, c2, wr2, j2, c3}

ASSUMPTION 1: Structure of the Universe
The Universe of objects is composed of a set of disjoint subsets, called sorts, such that:
– each object of each sort occupies astatewhich defines what is known about it at a certain stage of the
changing world,
– objects of the same sort behave in the same way when acted on by actions, thus an action is associated
with a single state. An example can be seen in Figure 1. However note that many actions can be associated
with a single state.
– objects of the same sort can all be described by the same set of states.

ASSUMPTION 2: Consistency of Action Format
Given ith andjth distinct elements of the training sequence where namesAi =Aj , thenm[i] =m[j],
and for eachk = 1, ..., m[i], objectsOi,k andOj,k share the same sort.

In Example 1,A1 = A5 = open, and hencec1 andc2 are in the same sort. Assumption 2 allows us to
hypothesise the membership of the disjoint sorts defined in Assumption 1 as follows:

4 S. N. CRESSWELL ET AL.

Hypothesis 1: Sort Formation
The set of sorts which structure the domain are those obtained by applying Assumption 2 to every pair of
actions with the same name in the training sequence.
Returning to Example 1, we can compute from it the hypothesisthatOU is composed of 3 sorts{c1, c2,
c3}, {wr1, wr2}, {j1,j2}.

Example 2:Consider the following extension to Example 1:

open(c1); fetchjack(j1,c1); fetchwrench(wr1,c1); close(c1); open(c2);
fetchwrench(wr2,c2); fetchjack(j2,c2); close(c2); open(c3); close(c3); close(wr1);

In this case, the final actionclose(wr1)would unite the container and wrench sorts into one, andOU

would be composed of 2 sorts{c1, c2, c3, wr1, wr2}, {j1,j2} .

ASSUMPTION 3: States of a Sort
The ith actionAi(Oi,1, ..., Oi,m[i]) is assumed to cause (possibly null) transitions to allm[i] objects it
contains. Theith action restricted to the single transition of thekth object,Oi,k, wherek ∈ 1, .., m[i],
is calledAi.k. Each transitionAi.k, for i ∈ 1, .., N andk ∈ 1, .., m[i], moves an object of some sortG
between a start statestart(Ai.k) to a not necessarily distinct end stateend(Ai.k). Thus, transitions such
asAi.k form transitions of a finite state machine for each sortG.

Definition: Consecutive Actions
Assume that theith andjth actions from the training sequence contain a common objectO of sort G; that
is O = Oi,k=Oj,l for somek, l. Then theith andjth actions are calledconsecutive with respect to object
O if i < j, and nop exists,i < p < j, such that actionp containsO.

In Example 1,A1 andA2 are consecutive with respect to object c1.

ASSUMPTION 4: Continuity of Object Transitions
If the ith andjth actions of the training sequence are consecutive with respect to an object O of sort G,
whereO = Oi,k=Oj,l for somek ∈ 1, .., m[i], l ∈ 1, .., m[j]; then the end state ofO’s transitionAi.k is
the same as the start state ofO’s transitionAj .l, that isend(Ai.k) = start(Aj .l).

Definition: Consecutive Transitions
The transitionsAi.k and Aj .l in Assumption 4 are calledconsecutive transitionsin the finite state
machine associated withG.

Returning to Example 1, consider transitionsfetch jack.2 from action 2, andfetch wrench.2 from
action 3, which both affect the same objectc1. The actions are consecutive with respect toc1, hence
end(fetch jack.2) = start(fetch wrench.2), andfetch jack.2 andfetch wrench.2 are consecutive
transitions.

ASSUMPTION 5: Transitions are 1-1
If there are distinctith andjth actions in the training sequence such thatAi =Aj , then for each pair
of transitionsAi.k andAj .k, k = 1...m[i], start(Ai.k) = start(Aj .k) andend(Ai.k) = end(Aj .k). In
other words, the name of each action restricted to any of its transitions forms a 1-1 map between object
states.

Hypothesis 2: State Machine Formation
The Assumptions above, together with the content of an action training sequence, induce the structure of
a finite state machine for each sort, determining the behaviour of the objects of that sort.

Acquiring planning domain models using LOCM 5

Consider objects of sort{c1, c2, c3} in Example 1. Focusing on the effect of the first four actions on
objectc1:

open(c1); fetchjack(j,c1); fetchwrench(wr1,c1); close(c1);

let us assign state namesS1, S2, .., S8 to the input and output states of transitions affectingc1:

S1 =⇒ open.1 =⇒ S2

S3 =⇒ close.1 =⇒ S4

S5 =⇒ fetch jack.2 =⇒ S6

S7 =⇒ fetch wrench.2 =⇒ S8

Using Assumption 4 (continuity of object transitions) we can deduce thatS2 = S5,S6 = S7, andS8 = S3.
Taking into account the next four actions:

open(c2); fetchwrench(wr1,c2); fetchjack(j,c2); close(c2);

and Assumptions 4 and 5, we further deduce thatS2 = S7, S8 = S5, S6 = S3, and hence
S2, S3, S5, S6, S7, S8 all refer to the same state. Finally, utilising the last two actions

close(c3); open(c3);

We deduce thatS4 = S1. Using the example training sequence with the Assumptions above, we have thus
created an hypothesis for the behaviour of sort{c1, c2, c3}. This is meant to represent the sortcontainer
(such as thetrunkor bootof a car - refer to Fig. 1).

container_state0 container_state1
open.1
close.1

fetch_wrench.2
fetch_jack.2

Figure 1 FSM generated for the container sort

Algorithm for the induction of state machines:
Hypothesis 2, the assumptions above and the constraints that they entail leads naturally to an algorithm,
used in Step 1 ofLOCM to induce the Universe of each sort, and the state machines governing behaviour
of the objects in each sort. The algorithm is described belowin pseudo-code. In lines 1. through to 4., the
set of states and transitions are built up. In lines 5. and 6.,the continuity assumption is used to reduce the
set of states by removing equivalent ones. At the end of Step 1, LOCMhas induced a set of state machines,
each of which can be identified with a sort, using Hypothesis 1.

Step 1
Input: action training sequence of length N
Output: transition setTS, set of object statesOS

1. Initialise state setOS and transition setTS to empty
2. Iterate throughAi, i ∈ 1, .., N , andj ∈ 1, .., m[i], as follows:
3. Add state identifiersstart(Ai.j) andend(Ai.j) toOS

4. AddAi.j to TS

5. For each pair of consecutive transitionsT1, T2 in TS

6. Unify statesend(T1) andstart(T2) in setOS

end

6 S. N. CRESSWELL ET AL.

2.3 Step 2: Zero analysis

For some domains the induced domain model may be too permissive because the behaviour of an implicit
backgroundobject has not been captured. An example of this occurs in theAoP-freecell domain, a card
game in which there are separatepick-upandput actions. Without further analysis, the constraint that
pick-upandputactions must alternate is missing. The reason that this restriction would not be detected in
Step 1 above is that there is no single object named in the domain whose state indicates whether apickor
putaction comes next. The domain effectively contains an implicit handobject, which alternates between
anemptystate and aholdingstate.

Strictly, this addresses a problem that is outside the scopeof our assumptions, but the situation is
common enough in extant domains that it is worth addressing.The state space of this kind of implicit
object can be captured by assuming that every action has an implicit zeroth argument, which always
refers to a dummy objectzero-object, i.e. For alli ∈ 1 . . . N, Oi,0 =zero-object.

The algorithm ofLOCM Step 1 is then repeated for thezero-object, and this results in a state
machine. If the state machine for the zero object contains only one state, it is dropped and plays no further
role. If the machine contains multiple states, then some information about the behaviour of an implicit
object has been revealed, and this is Incorporated into the output PDDL domain. The zero state machine
from the AoP-freecell domain is included in Fig. 9. The states of the zero machine give rise to predicates
with no arguments in the output PDDL model.

We take the termzero analysisfrom a similar refinement in the TIM domain analysis tool (Foxand
Long (1998)).

2.4 Step 3: Induction of Parameterised FSMs

Step 1 ofLOCM creates a FSM for each sort found. States in a sort’s FSM capture state information
about an object of that sort occupying the state. To capture relational information between objects, we let
states be parameterised by the sorts of related objects. Here state parameters will record pairwise dynamic
associations between objects.

Consider the statewrenchstate0 for the wrench sort (Fig. 2). Considering the actions forput-
awaywrench(wrench,container), andfetchwrench(wrench,container). For a given wrench, consecutive
transitionsputawaywrench, fetchwrench, in any example action sequence, always have the same value
as theircontainerparameter. From this observation, we can induce that the state wrenchstate0has a
state variable representingcontainer. The same observation does not hold true forwrenchstate1. We can
observe instances in the training data where the wrench is fetched from one container, and put away in a
different container.

wrench_state0
[container]

wrench_state1
fetch_wrench.1

putaway_wrench.1

do_up.3
undo.3

tighten.3
loosen.3

Figure 2 FSM generated for the Wrench sort.

In general, there is a stateS between two consecutive transitionsB.k and C.l within the FSM
associated with sort G, that is whereB moves an objectO of sortG intoS, andC movesO out ofS. When
both actionsB andC contain another argument of the same sortG′ in positionk′ andl′ respectively, we

Acquiring planning domain models using LOCM 7

hypothesise that there may be a relation between sortsG andG′. The hypothesis is retained if, for all
consecutive actionsp andq in the training sequence with the names asB andC, we find that thesame
objectO′ of sortG′ appears in both, in the specified positions, that isO′ =Op,k′ =Oq,l′ (see diagram
below).

B(. . . , O, . . . , O′, . . .)

k k′

C(. . . , O, . . . , O′, . . .)

l l′

We formalise this as follows:

Hypothesis 3: Parameter Association
AssumeB.k andC.l are consecutive transitions in the FSM of sortG, and the actions with namesB
andC contain a parameter of a sortG′ in positionsk′ andl′ respectively. Then we hypothesise that state
end(B.k) (= start(C.l)) has a parametric association of sortG′.

Example 3:Consider the training sequence:

open(c1); putawayjack(j1,c1); close(c1); open(c2); putawayjack(j2,c2); open(c1);
fetch jack(j1,c1); fetchwrench(wr1,c1); fetchjack(j2,c2); close(c1);

From Step 1, we have transitionsB.k = putawayjack.1 andC.l = fetch jack.1 are consecutive, transitions
to/from a particular state of the FSM for sortj1, j2. Both actionsputawayjack and fetch jack share an
argument of sort{c1,c2,c3} in positionk′ = 2 andl′ = 2, so we hypothesise the state of a jack after
putaway jack.1 has an association with the container sort.

Hypothesis Filtering
Assume we have a parameter match hypothesis specified by the values of〈S, B, k, k′, C, l, l′, G, G′〉

as given above. Then considerall pairs of action at stepsp andq, consecutive with respect to some object
O of sortG where

• Ap =B andAq = C,
• O =Op,k =Oq,l

If, for actionsp andq, Op,k′ 6=Oq,l′ , the hypothesis is falsified and removed from the set. Otherwise, the
hypothesis is retained.
Returning to Example 3, we examine all pairs of actions whichare consecutive with respect to some
object in{j1,j2 }. There are two pairs: the first pair is wherep= 2 andq = 7. Here the actions in positions
p andq are consecutive with respect to objectj1, and there is an object (c1) which is of sort{c1,c2,c3} in
bothputawayjack(j1,c1)andfetch jack(j1,c1). The second pair is wherep= 5, q = 9. Here the actions
in positionsp andq are consecutive with respect to objectj2, and there is an object (c2) which is of
sort{c1,c2,c3} in bothputawayjack(j2,c2)andfetch jack(j2,c2). Hence, in this training sequence, the
hypothesis is retained.

An algorithm for the hypothesis generation and retention / removal process as described below. It
performs an inductive process such that the hypotheses can be eitherrefutedor retainedaccording to the
example sequence, but it can never be definitely confirmed. Step 3 generally requires a larger amount of
training data to converge than Step 1 above.

8 S. N. CRESSWELL ET AL.

Step 3
Input: action sequenceSeq, Transition setTS, Object setObs

Output:HS retained hypotheses for state parameters
3.1 Form hypotheses from state machines
For each pairB.k andC.l in TS

such thatend(B.k) = S = start(C.l)
For each pairB.k′ andC.l′ sharing sortG′

andk 6= k′, l 6= l′

Store in hypothesis setHS the hypothesisH = 〈S, B, k, k′, C, l, l′, G, G′〉
end

3.2 Test hypotheses against example sequences
For each objectO occurring inOu

For each pair of transitionsAp.m andAq.n

consecutive forO in Seq

For each hypothesisH = 〈S, B, k, k′, C, l, l′, G, G′〉
matchingAp =B, m= k, Aq = C, n= l

if Op,k′ =Oq,l′

then flagH as having a positive instance
else removeH from hypothesis setHS

endif
end

end
end
Remove any hypothesisH from HS without a positive instance.

2.5 Step 4: Creation and merging of state parameters

Each hypothesis refers to an incoming and an outgoing transition through a particular state of an FSM,
and matching associated transitions can be considered tosetandreada parameter of the state. Since there
may be multiple transitions through a give state, it is possible for the same parameter to have multiple
pairwise occurrences.

Figure 3 shows an example of a state from the tyre-world for the sort nuts, with two incoming
transitions and two outgoing transitions, with all of the actions involved having a sorthubfor the second
argument.

do_up(N,H,...)

n2

undo(N,H,...)

tighten(N,H,...) loosen(N,H,...)

Figure 3 Part of FSM for sortnuts

This results after the first part of the Step 3 algorithm, in the example sequences support four parameter
match hypotheses, as follows:

Acquiring planning domain models using LOCM 9

〈n2, do up, 1, 2, tighten, 1, 2, nuts, hub〉

〈n2, do up, 1, 2, undo, l, 2, nuts, hub〉

〈n2, loosen, 1, 2, tighten, 1, 2, nuts, hub〉

〈n2, loosen, 1, 2, undo, 1, 2, nuts, hub〉

However, it is not appropriate to give staten2 four separate parameters of sorthub — it should have
only one. The first action of the pair in the hypothesissetsa state parameter. Wherever the same transitions
occur as the first in the pair, they must set the same state parameter, regardless of the second in the pair.

Similarly, the second actions of the pair can be considered to reada parameter from the state. Wherever
the same transitions occur as the second in the pair, they must always read the same state parameter,
regardless of the first action in the pair.

These inferred equality constraints are used to reduce the set of parameters associated with each state.
With each remaining hypothesish, we associate a parameterv, forming setbindings of pairs of〈h, v〉.

For any two pairs〈h1, v1〉 and〈h2, v2〉, such that:
h1 = 〈S1, B1, k1, k

′

1, C1, l1, l
′

1, G1, G
′

1〉 and
h2 = 〈S2, B2, k2, k

′

2, C2, l2, l
′

2, G2, G
′

2〉

then ifS1 = S2, B1 =B2, k1=k2 andk′1 = k′2. we must enforcev1 = v2 - i.e. the parameters must be
unified. Similarly, ifS1 = S2, C1 = C2, l1=l2 andl′1 = l′2, we enforcev1 = v2.

2.6 Step 5: Removing parameter flaws

A parameterP associated with an FSM stateS is said to beflawed if there exists a transition intoS
which does not supplyP with a value. This means that an object can reach stateS with P having an
indeterminate value. This may occur when there exists a transitionB.k whereend(B.k) = S, but there
exists noh such that:

h= 〈S, B, k, k′, C, l, l′, G, G′〉 and〈h, P 〉 ∈ bindings

For example, consider part of the FSM for sorthub in the tyre domain (Fig. 4). The actionsdo up and
undoboth have an argument of sortnuts, and testing against example data retains the following hypothesis:

H0 = 〈hub2, do up, 2, 1, undo, 2, 1, hub, nuts〉

This hypothesis says that wherever a hub undergoes ado up.2, and then its next transition is anundo.2
transition, then thenutsobject referred to in the first argument of thedo upaction is the same as the object
referred to in the first argument ofundoaction. In Step 4, we would create a parameterV 0 of sortnuts
associated with statehub2by a adding a binding〈H0, V 0〉.

hub2
[.., V0, ..]

do_up.2
undo.2

jack_down.2
jack_up.2

Figure 4 Part of FSM for sorthub, with flawed parameternuts.

However there is another transitionjack up.2which also leads to statehub2, and this transition does
not occur in any corresponding binding which would link it toV 0. Hence, there is a way to reach state
hub2without providing a value for the parameterV 0, so the parameter is flawed.

Step 5 detects and removes flawed parameters from the bindings set. The filtered set of bindings can
then be used to generate state predicates for the output in a generated domain model.

2.7 Step 6: Extraction of static preconditions

The LOCM process specified above can induce a representation only fordynamic aspect of objects. In
many domains, there is static background information, suchas the layout of roads in driverlog, or the
fixed relationships between specific cards in freecell. Although it is beyond the scope of the current work

10 S. N. CRESSWELL ET AL.

to extract such static relationships in a fully automatic way, the information is often present in the training
data and easy to extract.

An example from the freecell card game is that cards may only be placed in a homecell in the correct
sequence - hence the relationship is a precondition of action put on card in homecell. In instances of this
action, a successor relationship always holds between the first two arguments.

The difficulty lies in distinguishing relevant restrictions from irrelevant ones. So that the domain model
can be completed with the relevant static conditions,LOCM has an option allowing the user to declare
which arguments of which actions are subject to static restrictions. InLOCM+statics, this information is
declared in the following form:

static(next(C1,C2), put_on_card_in_homecell(C2,C1,_)).

These declarations are used in two ways:

• The relevant condition named in the first argument ofstatic is added as a precondition to the action
in the second argument, with the variable bindings implied by the shared variable names.

• From the example sequences, matching instances of the action header are used to extract the set of
static conditions which need to be declared in the initial state. This depends on the example data
including at least one action depending on each static condition. For instance, if a training data
sequences contains an actionput on card in homecell(card5 hearts,card4 hearts,home2), then we
add a static factnext(card4 hearts,card5 hearts)to the initial state.

Unlike the core ofLOCM, this process requires declared knowledge. In order to makeclear the
distinction, in the rest of the paper we refer to this knowledge-assisted part asLOCM+statics.

2.8 Step 7: Formation of PDDL action schema

Extraction of an action schema is performed by extracting the transitions corresponding to its parameters,
similar to automated action construction in the Object LifeHistory Editor (OLHE) process in Simpson,
Kitchin, and McCluskey (2007). OLHE is a tool in GIPO III enabling action models to be defined by
graphically constructing state machines.LOCMStep 7 creates one predicate to represent each object state.
The outputbindingsfrom steps 3-5 above provides correlations between the action parameters and state
parameters occurring in the start/end states of transitions. For example, the generatedputawaywrench
action schema in PDDL is:

(:action putaway_wrench
:parameters (?figure1 - wrench ?container2 - container)
:precondition (and (wrench_state1 ?wrench1)

(container_state1 ?container2))
:effect (and (wrench_state0 ?wrench1 ?container2)

(not (wrench_state1 ?wrench1))))

The generated predicateswrenchstate0, wrenchstate1, containerstate1 can be understood as
in container, havewrenchandopenrespectively. The generated schema can be used directly in aplanner.
It would also be simple to extract initial and final states from example sequences, but this is of limited
utility given that solution plans already exist for those tasks.

2.9 Use of the Domain Model in Planning Tasks

At the end of Step 7 described above,LOCM outputs a PDDL domain model. The PDDL representation
includes predicates with automatically-generated uniquelabels (representing FSM states). In order to use
the model for planning, a task description must be provided which describes initial and goal conditions
using theseLOCM-generated labels. It would be much more useful to be able to describe the initial and
goal conditions in a representation that is independent of the LOCM-generated labels. Otherwise it is
necessary for a human designer to examine and understand thestate machines produced before making
use of the induced model in a planner.

Acquiring planning domain models using LOCM 11

The solution we have adopted is to use actions to specify states. A direct analogy in the freecell
domain is that the initial configuration of the cards is generated by dealing the cards using the actions
put in emptycolumnandput on card in column. In doing so, we ignore the preconditions of the action,
and use only the end state of each object.

Similarly, the goal state can be specified by an action sequence usingput in emptyhomecelland
put on card in homecellactions which simply deal cards into their desired final positions.

Thus it is possible to specify a planning task independentlyof the state representation.

3 Evaluation of LOCM

LOCMhas been implemented in Prolog incorporating the algorithms detailed above. We have usedLOCM
to create state machines, object associations and action schema comprising a domain model in PDDL for
a range of domains. Here we attempt to analyse and evaluate itby its application to the acquisition of
existing and new domain models. We used example plans from three sources:

• existing domains built using GIPO III (Simpson, Kitchin, and McCluskey (2007)): Tyre-world and
Blocks World. In this case, we have created sets of example action sequences byrandom walk. A
random initial state is generated, then the set of all actions that can be applied to that state is generated.
Actions leading to a previously-visited state are filtered out. One of the action set is chosen at random,
and then applied to the initial state to create a new state. The process continues, treating the new state
as the initial state, until a predefined limit is reached, or no actions are applicable.

• domains which were used in the IPC3 planning competition1: Driverlog and Freecell. In this case,
example training sequences extracted from the solution plans in the publicly released competition
solutions have been used.

• logged events from a process: human players in Freecell. Freecell is a single player card game similar
to the domain of the same name used in the IPC3 competition. Itstarts with the cards in a deck being
randomly positioned in 8 columns face up. A player has to plana sequence of card moves between
freecells and card columns in order to leave all cards in 4 stacks in ascending order. We chose a
particular implementation - AoP (Ace of Penguins) Freecell, and amended the code to log the card
moves in the games played on it. Hence the action training sequences used were those that a human
player generated in order to try to win the game from a random initial state.

3.1 Evaluation Criteria

Before stating evaluation criteria, we need to introduce some notation.

• Convergence:we introduce a type of convergence for theLOCM algorithm. We say thatLOCM
converges after N steps if we can findN such that given a training sequence of length2N , it produces
output from Steps 1–2 or Step 3 using the training sequence oflengthN , and produces no changes in
its output from subsequenceN + 1 to 2N .

• Equivalence:we introduce a type of equivalence between two planning domain models: an operator
set and an initial state<Ops1, Init1 > are equivalent to<Ops2, Init2 > iff the two directed graphs
representing the space of reachable states are isomorphic (assuming edges are labeled with actions
and the vertices (states) are not labeled).

• Adequacy:a domain model to be adequate if:

– where there is an existing domain model, we can determine that the induced model is equivalent
to it, or contains redundant detail.

– where there is no existing domain model, given some initial state, the domain model permits all
and only valid action sequences with respect to the context in the real world.

Our empirical evaluations were designed to explore the following criteria:

1http://planning.cis.strath.ac.uk/competition/ [accessed 30/11/2009].

12 S. N. CRESSWELL ET AL.

1. How many instances in a training sequence are required forLOCM to converge to a set of FSMs
for each sort in the domain? How many instances in a training sequence are required forLOCM to
converge to a set of parameterised FSMs for each sort in the domain?

2. CanLOCM produce an adequate domain model for test domains?
3. What difference do the different types of training sequence (generated by random walk with domain

model; generated by planner with domain model; human-generated) make to the performance of
LOCM ?

4. What characterises the set of domain models thatLOCM can learn?

We will comment on the first two criteria for each of the first four test domains below, and then
comment on the second two criteria taking the test set as a whole. AoP-Freecell is used to testLOCM
+statics.

The Tyre-world (GIPO III version2). The input is a random walk training sequence. steps 1–2 converge
with a training sequence length of the order of N = 100, and step 3 with a length of the order of N
= 2000. Figure 5, Figure 1 and Figure 2 illustrate the parameterised machines derived. An adequate
domain theory is derived, which is equivalent to the domain theory used to generate the random
walk sequence. The structural difference between generated and hand crafted domains is that the
former contains extra states for thejack sort: when other parts of the assembly were changed (the
wheel was placed on the hub, the nuts were screwed into the hub) LOCM designated a change of
state for the jack. The extra states are redundant and hence do not compromise domain adequacy.

hub0
[jack]

hub1
[jack]

remove_wheel.2

hub2
[jack]

do_up.2

put_on_wheel.2

undo.2
hub3

[]
jack_down.1

jack_up.1

tighten.2
loosen.2

jack0
[hub]

jack1
[hub]

remove_wheel.3

jack2
[hub]

do_up.4

put_on_wheel.3

undo.4

jack3
[]

jack_down.2

jack_up.2

jack4
[boot]

putaway_jack.1

fetch_jack.1

nuts0
[]

nuts1
[hub]

do_up.1

undo.1 nuts2
[hub]

tighten.1

loosen.1

wheel0
[hub]

wheel1
[]

remove_wheel.1

put_on_wheel.1 wheel2
[boot]

putaway_wheel.1

fetch_wheel.1

Figure 5 State machines generated for the tyre-world in addition to Figure 1.

The Blocks World (GIPO III version). The input is a random walk training sequence. steps 1–2 converge
with a training sequence length of the order of N = 50, and step3 with a length of the order of N

2available from http://planform.hud.ac.uk/gipo/ [accessed 30/11/2009].

Acquiring planning domain models using LOCM 13

= 300. Figure 6 illustrates the parameterised machines derived. Here the block states correspond to
the original as follows:
block0 - on a block and clear
block1 - gripped by [gripper]
block2 - on a block and covered by [block]
block3 - on table and clear
block4 - on table and covered by [block]
An adequate domain theory is derived, which is equivalent tothe 6 operator domain theory used to
generate the random walk sequence.

block0
[]

block1
[gripper]

grip_from_blocks.1

grip_from_one_block.1

block2
[block]

put_on_blocks.3

put_on_blocks.1

put_on_one_block.1

block3
[]

put_on_table.1

grip_from_blocks.3

grip_from_table.1
block4
[block]

put_on_one_block.3
grip_from_one_block.3

gripper0
[block]

gripper1
[]

put_on_table.2

put_on_blocks.2

put_on_one_block.2
grip_from_blocks.2

grip_from_table.2

grip_from_one_block.2

Figure 6 State machines generated for the blocks world.

Driverlog (IPC PDDL-STRIPS version). The inputs are training sequences from the IPC archives. Steps
1–2 converge with a training sequence length of the order of N= 200, and Step 3 converges with a
length of the order of N = 3000. Figure 7 illustrates the parameterised machines derived. The domain
theory derived was not adequate in one respect: within the trucks machine, the distinction of states
with/without driver is lost, and an extra state parameter (driver) is retained. The state machine for
driver is shown in fig. 7.

driver0
[place]

walk.1

driver1
[place,truck]

board_truck.1
disembark_truck.1

drive_truck.4

Figure 7 Induced state machine for driver in driverlog domain.

Freecell (IPC PDDL-STRIPS version). The inputs are training sequences from the IPC archives. There
are three sorts discovered in the freecell domain - suits, cards and numbers. In the IPC version of
freecell, number objects are used to represent denominations of cards and to count free cells and

14 S. N. CRESSWELL ET AL.

free columns. The state machine derived for the cards has 7 states. The states (see Fig. 8) can be
understood as follows:

• card3 - in a column and covered by another card
• card4 - in a column and not covered
• card5 - in a free cell
• card0 - in a home cell
• card1, card2, card6 - in a home cell and covered

It is not helpful to distinguish the 3 final states, butLOCMcannot determine that they are equivalent.
The domain theory derived is not adequate: whilst theLOCM results from Freecell are amongst the
more interesting we found, there are a number of problems that LOCM version 1 is not equipped to
handle:

• The distinction is lost between cards which are the bottom ofa column and other cards
which are in a column. Solving this problem requires weakening of the strong assumptions
underpinning steps 1–2.

• LOCM does not automatically detect background relationships between objects— the adja-
cency of pairs of numbers, and the alternation of black cardson red cards. This problem is
tackled is the next example.

card0

card1sendtohome.5

card2
sendtohome_b.4

card6

homefromfreecell.4

card3

card4

sendtonewcol.2

sendtofree.2

sendtohome.2

move.2

sendtohome.1

sendtohome_b.1

colfromfreecell.2

move_b.2

move.3

move.1
sendtonewcol.1

move_b.1

card5

sendtofree_b.1

sendtofree.1
homefromfreecell.1

colfromfreecell.1

newcolfromfreecell.1

Figure 8 Induced state machine for cards in IPC-Freecell domain.

AoP-Freecell
The AoP-freecell results are based on action traces collected by humans playing the game on a

computer. An open source version of the freecell game3 was modified in order to provide action traces,
which were then used to induce the planning model.

The differences with the IPC freecell domain are:

• There are no sorts to represent the suit, colour or number of acard - the cards are only identified by
unique object names.

3Ace-of-Penguins by D. J. Delorie, http://www.delorie.com/store/ace [accessed 30/11/2009].

Acquiring planning domain models using LOCM 15

• Instead of using direct move actions, there are separate pick-up and put-down actions. This reduces
the total number of operators from 10 to 8.

• Freecells, homecells, and columns are each named objects. This is a much simpler and more natural
approach than the IPC freecell, which uses a more sophisticated approach in which symmetries are
eliminated by counting empty freecells, homecells and columns.

Using AoP-freecell action traces,LOCM induced a domain which was correct in its dynamic aspects.
Because there is no named object which performs thepick-upandput-downactions, yet these actions
always alternate, the zero analysis induces a 2-state machine.

However, the static relationships between cards are not detected, and to obtain these, we need to deploy
LOCM+statics (i.e. Step 6), which depends on a minimal declarative hint of three lines.

static(first(C1), put_in_empty_homecell(C1,_)).
static(stackable(C1,C2), put_on_card_in_column(C1,C2)).
static(next(C1,C2), put_on_card_in_homecell(C2,C1,_)).

These correspond to three static predicates required in freecell:

first only aces may be placed into empty home cells,

next a card place on top of another card in a home cell must be of the same suit and of one value higher
than the card beneath it,

stackable a card stacked in a column must be of a different colour and onevalue lower than the card
beneath it.

From the example sequences, matching instances of the action header are used to extract the set of static
conditions which need to be declared in the initial state. This leads to the following static conditions being
extracted from the examples:

• 4 instances offirst (complete - one for ace of each suit),

(first card_1_clubs)
(first card_1_diamonds)
(first card_1_hearts)
(first card_1_spades)

• 48 instances ofnext(complete - 12 for each suit)

(next card_1_clubs card_2_clubs)
(next card_2_clubs card_3_clubs)
...

• 88 instances of stackable (the complete set would comprise 96 instances, but whilst it is legal to place
red/black ace on a black/red two, this is never useful, and sonever occurs in the training data)

(stackable card_2_clubs card_3_diamonds)
(stackable card_2_clubs card_3_hearts)
(stackable card_3_clubs card_4_diamonds)
...

Hence, by deployingLOCM+statics with three lines of declared knowledge, the AoP-freecell was
completed into a correct and usable planning domain. The resulting parameterised state machines are
shown in Fig. 9.

Results SummaryThe size of the training sequence required forLOCM to converge for step 3 is
an order of magnitude greater than for steps 1–2. The size of the training sequence across domains
depends on the number and complexity of sorts and the interactions between state machines (the number
of associations). The blocks world requires a lower number as there are only 2 sorts in the domain, both
of which are involved in every action.

16 S. N. CRESSWELL ET AL.

zero0
[]

zero1
[]

pickup_from_card_in_column.0

pickup_from_freecell.0

pickup_last_from_column.0

put_in_freecell.0
put_in_empty_homecell.0

put_on_card_in_column.0

put_in_empty_column.0

put_on_card_in_homecell.0

card0
[card]

card1
[]

pickup_from_card_in_column.2

put_on_card_in_column.2 card2
[]

pickup_last_from_column.1

pickup_from_card_in_column.1
put_on_card_in_column.1

put_in_empty_column.1

card5
[freecell]

put_in_freecell.1

card3
[home]

put_on_card_in_homecell.1

put_in_empty_homecell.1

pickup_from_freecell.1

card4
[]

put_on_card_in_homecell.2

col0
[card]

col1
[]

pickup_last_from_column.2

put_in_empty_column.2

freecell0
[]

freecell1
[card]

put_in_freecell.2

pickup_from_freecell.2

home0
[]

home1
[]

put_in_empty_homecell.2

put_on_card_in_homecell.3

Figure 9 Parameterised state machines for AoP-freecell

Addressing the third criteria, we note that randomly-generated example data can be different in
character from purposeful, goal-directed plans. In a sense, random data is more informative, because
the random plan is likely to visit more permutations of action sequences which a goal-directed sequence
may not. However, if the useful, goal-directed sequences lead to induction of a state machine with more
states, this could be seen as useful heuristic information.Where there is only one object of a particular sort
(e.g. gripper, wrench, container) all hypotheses about matching that sort always hold, and the sort tends
to become an internal state parameter of everything. For this reason, it is important to use training data in
which more than one object of each sort is used, and this tendsto favour the use of randomly-generated
training sequences.

We now consider the fourth criterion - the class of domain theories that can be induced. From the
Assumptions about the kind of structure we are expecting (inparticular Assumption 3, which stipulates
that transitions are 1-1), and from the empirical evaluation above, it follows thatLOCM can induce
adequate domain models for a restricted form of STRIPS. The type of training sequence is one that
utilises more than one object of each sort. Assumption 3 implies that an action moves the objects in
its arguments between clearly-defined substates. Objects which are passively involved in an action may
make a transition to the same state, but cannot be in adon’t carestate.

The main restriction is that static background information, such as the specific fixed relationships
between objects (e.g. which places are connected), is not automatically analysed by the system. In general,
this can lead to missing preconditions. TheLOCMalgorithm assumes that all information about an object
is represented in its state and state parameters. In general, this form of information may vary between
training examples.

4 Related Work

Learning and refining action knowledge from examples and observations has attracted a long history of
research from early work in MACROPS by Fikes, Hart, and Nilsson (1972), to the more recent work
described in the IJCAI-09 workshop:Learning Structural Knowledge From Observations(e.g. Zhuo, Hu,

Acquiring planning domain models using LOCM 17

and Yang (2009)). This research is motivated in several ways: some argue that for intelligent agents to be
able to adapt and plan in unseen domains, they must be able to learn a new domain model; others argue that
correct domain models are impossible to know a priori, and agents must be able to incrementally adjust
their existing model. Others use the less ambitious motivation that human-driven knowledge acquisition
and maintenance requires automated support.

The area ofprocess miningis a technique used in Business Process Management (BPM) which seeks to
use events or logs recorded while a (business) process is being executed. The outcome is a business process
model that would explain the logs. An example is provided by Hoffmann, Weber, and Kraft (2009) where
work is described which induces a model which is then turned into a workflow. The focus of process
mining research is on learning from sequences of events: forexample, assuming an event alphabet of A,
B, C, D, E, the input to the algorithm is a set of observations such as AABCA, ABCCAD, AEDDDCC
etc. The process mining algorithms induce process models inthe form of machines such as Petri Nets.
This is similar to the machine learning area of grammar induction, and techniques seem to draw on this
area. Process mining is more general in that it assumes that asequence of concurrent processes causes the
events, and therefore has to deal with concepts of process synchronisation.

The rationale for process mining is in part to help in the difficult problem of engineering a model and in
this respect it is similar to that of learning action knowledge. However the results of learning are different
from those used in AI Planning. In BPM the technique is used toaid the construction and analysis of
a process model, whereas in Planning the results are input toa planning engine. Also, the induction of
planning actions from traces is at a higher degree of granularity and requires stronger assumptions. An
induced domain model will contain a model of objects, relations and attributes, in which the physics of
actions are captured. Hence traces are also sequences of “events”, but events are action applications, and
each is described in terms of a name and all the objects that are affected or are needed during the event.
Then there is the assumption about objects having their behaviour described by a machine. The PDDL or
OCL which is output byLOCM is more expressive than the kind of Petri Nets induced by process mining.

Learning STRIPS-type action schema has also attracted a large amount of research in recent years.
Some systems learn from many plan examples with little background knowledge (e.g. the ARMS system
of Wu, Yang, and Jiang (2005)). In contrastOpmakerlearns from a single example together with a partial
domain model. TheOpmakeralgorithm detailed in McCluskey et al. (2009); Richardson (2008) is one of
a family of algorithms which commenced with McCluskey, Richardson, and Simpson (2002).Opmaker
is described more fully in a Ph.D. thesis (Richardson (2008)), who also details how it is able to learn
heuristics in the form of hierarchical action representations containing plan fragments. EachOpmaker
system acquired knowledge from sequences of actions which,given an initial state, solve a given task.
The system assumes knowledge of objects, object classes, domain constraints, and possible states of
objects - collectively called static knowledge, or partialdomain knowledge. For example, for each action
in the sequence, it is known which object(s) change and whichdo not. In addition, domain invariants are
provided which aid the production of unique action schemas.

Other systems require richer input: ARMS Wu, Yang, and Jiang(2005); Zhuo, Hu, and Yang (2009)
makes use of some background knowledge as input, comprisingtypes, relations and initial and goal
states and also uses sets of examples. However ARMS takes a consistently predicate-centric view, unlike
OpmakerandLOCM which are object-centric. Learning in ARMS is statistical in nature, and outputs
a solution which is optimal with respect to reducederror andredundancyrates. The former is defined
as the proportion of preconditions that cannot be established by any action in thepreviouspart of the
plan. The latter establishes the degree of redundancy created in the action model in the example set. The
Opmakeralgorithm relies on an object-centred approach similar toLOCM, but it too requires a partial
domain model as input as well as a training instance.LOCM is distinct from other systems that learn
action schema from examples in that it does not require domain knowledge as input; its success is based
on the assumption that the output domain model can be represented in an object-centred representation.
The system of Shahaf and Amir (2006) appears to efficiently build expressive action schema, but requires
specifications of fluents as input, as well as partial observations of intermediate states between action
executions. UnlikeLOCM, their algorithms are provided with partial state descriptions at each step. They

18 S. N. CRESSWELL ET AL.

do, however, use a richer representation for action schema.The TIM domain analysis tool (Fox and Long
(1998)) uses a similar intermediate representation toLOCM (i.e. state space for each sort), but in TIM, the
object state machines are extracted from a complete domain definition and problem definition, and then
used to derive hierarchical sorts and state invariants.

Both LOCM and Opmakeruse positive examples in the solution sequence. The Planning Operator
Induction (POI) system of (Grant (1996)) learns from positive examples and uses a default rule to provide
negative information which boosts the positive training instances. In more recent work (Grant (2007)),
POI is extended to a multi-agent system. The work is based on representations of operators and constraints
which between them model the domains, so the modelling process is fundamentally different from ours.
The author presents a good assessment and diagrammatic model of planning in the case where an initially
complete domain model is shown to be capable of receiving andassimilating sensory feedback. Because
this initial domain model is distributed across several agents who, as a set, have complete knowledge,
individual agents will have only partial knowledge and mustshare this knowledge for planning to be
successful. The emphasis in Grant (2007) is on how the recipient agent assimilates the knowledge of
another agent.

Learning expressive models from examples is a central goal in the Inductive Logic Programming
community. In his thesis Benson (1996), reasons about TRAIL, which represents actions viateleo-
reactive(TR) programs. TR programs are durative rather than discrete. Benson describes an ILP method
for learning action schema in TRAIL, using background knowledge and multiple positive and negative
training examples. Additional knowledge is provided in theform of mode definitionsfor predicates
(i.e. input and output). Action schema are learned by transforming first-order instance descriptions to
propositional form and using a method based on the FOIL algorithm of Quinlan (1990).

5 Conclusion

In this paper we have described theLOCMsystem and its use in learning domain information (comprising
object sorts, state descriptions, state machines and action schema), and outputting usable PDDL domain
models, when input with training action sequences. Characteristic of previous work in this area is that
input to the learning process includes some planning oriented knowledge, such as state information,
predicate descriptions, plan goals and initial state, etc., as well as the training data. For domains such as
the tyre-world,LOCM learns an adequate model without any a priori domain specificknowledge.LOCM
also learned an adequate domain model for the AoP Freecell game from training sequences obtained via
logs of actual games, although in this case the system required the specification of three simple static
preconditions.

We view LOCM as the first step in creating tools which can truly learn planning domain models by
observing, without the need for human intervention or handcrafting. Results of our evaluation using five
domain models showLOCM’s success, but also point to future work:

– although it is unrealistic to expect example training sequences to be available for all new domains,
we expect the technique to be beneficial in domains where automatic logging of some existing process
yields plentiful training data, e.g. games, workflow, or online transactions. We are currently building up
an idea of the scope of such a tool within the context of the growing availability of online data;

– in the near future, we plan to developLOCM in two directions (i) to give it the capability to develop
sorts with objects that are described by more than one state machine. This would provide a elegant solution
to domains such as driverlog, where objects have aspects that change subject to different state machines;
(ii) to investigate the feasibility of learning static preconditions from the examples, rather than stipulating
that they need to be given along with the training sequences;

– a significant extension would be to create a version ofLOCM for metric domains where parameters
include timings or other resources. In this case, the induction process would need to induce intervals from
timings within the example data.

Acquiring planning domain models using LOCM 19

References

Bäckström, C. 1992. Equivalence and tractability results for SAS+ planning. In Swartout, B., and Nebel,
B., eds.,Proceedings of the 3rd International Conference on Principles on Knowledge Representation
and Reasoning (KR-92), 126–137. Cambridge, MA, USA: Morgan Kaufmann.

Benson, S. S. 1996.Learning Action Models for Reactive Autonomous Agents. Ph.D. Dissertation, Dept
of Computer Science, Stanford University.

Fikes, R.; Hart, P. E.; and Nilsson, N. J. 1972. Learning and executing generalized robot plans.Artif.
Intell. 3(1-3):251–288.

Fox, M., and Long, D. 1998. The automatic inference of state invariants in TIM. J. Artif. Intell. Res.
(JAIR)9:367–421.

Grant, T. J. 1996.Inductive Learning of Knowledge-Based Planning Operators. Ph.D. Dissertation, de
Rijksuniversiteit Limburg te Maastricht, Netherlands.

Grant, T. J. 2007. Assimilating planning domain knowledge from other agents. InProceedings of the
26th Workshop of the UK Planning and Scheduling Special Interest Group, Prague, Czech Republic,
December 2007.

Hoffmann, J.; Weber, I.; and Kraft, F. M. 2009. Planning@SAP: An application in business process man-
agement. InProceedings of the 2nd International Scheduling and Planning Applications woRKshop
(SPARK’09), at ICAPS’09.

McCluskey, T. L.; Cresswell, S. N.; Richardson, N. E.; and West, M. M. 2009. Automated acquisition of
action knowledge. InInternational Conference on Agents and Artificial Intelligence (ICAART), 93–100.

McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M. 2002.An Interactive Method for Inducing
Operator Descriptions. InThe Sixth International Conference on Artificial Intelligence Planning
Systems (AIPS), 151–160. AAAI Press.

Quinlan, J. 1990. Learning logical definitions from relations. Machine Learning5:239–266.

Richardson, N. E. 2008.An Operator Induction Tool Supporting Knowledge Engineering in Planning.
Ph.D. Dissertation, School of Computing and Engineering, University of Huddersfield, UK.

Shahaf, D., and Amir, E. 2006. Learning partially observable action schemas. InProceedings, The
Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications
of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA. AAAI Press.

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007. Planning domain definition using GIPO.
Knowl. Eng. Rev.22(2):117–134.

Wu, K.; Yang, Q.; and Jiang, Y. 2005. ARMS: Action-relation modelling system for learning acquisition
models. InProceedings of the First International Competition on Knowledge Engineering for AI
Planning.

Zhuo, H. H.; Hu, D. H.; and Yang, Q. 2009. Learning applicability conditions in AI planning from partial
observations. InWorkshop on Learning Structural Knowledge From Observations at IJCAI-09.

