
Machine Learning, 5, 39-70 (1990)

© 1990 Kluwer Academic Publishers. Manufactured in The Netherlands.

Acquiring Recursive and Iterative Concepts
with Explanation-Based Learning

JUDE W. SHAVLIK SHAVLIK@CS.WISC.EDU

Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706

Editor: Pat Langley

Abstract. In explanation-based learning, a specific problem's solution is generalized into a form that can be

later used to solve conceptually similar problems. Most research in explanation-based learning involves relaxing
constraints on the variables in the explanation of a specific example, rather than generalizing the graphical struc-

ture of the explanation itself. However, this precludes the acquisition of concepts where an iterative or recursive

process is implicitly represented in the explanation by a fixed number of applications. This paper presents an

algorithm that generalizes explanation structures and reports empirical results that demonstrate the value of ac-

quiring recursive and iterative concepts. The BAGGER2 algorithm learns recursive and iterative concepts, integrates

results from multiple examples, and extracts useful subconcepts during generalization. On problems where learn-

ing a recursive rule is not appropriate, the system produces the same result as standard explanation-based methods.

Applying the learned recursive rules only requires a minor extension to a Pl~Oeor-like problem solver, namely,

the ability to explicitly call a specific rule. Empirical studies demonstrate that generalizing the structure of explan-

ations helps avoid the recently reported negative effects of learning.

Keywords. Explanation-based generalization, generalizing explanation structures, generalizing to N, generaliz-

ing number, utility of learning, operationality versus generality.

1. Introduct ion

Many real-world concepts involve an indefinite n u m b e r of components , and many real-

world plans involve an u n b o u n d ed n u m b e r of operations. For example, physical laws such

as m o m e n t u m and energy conservat ion apply to arbi t rary numbers of objects, construct ing

towers of blocks requires an arbi trary n u m b e r of repeated stacking actions, and setting a

table involves places for differing number s of guests. However, any specific example of

such concepts wil l only conta in a fixed n u m b e r of act ions or components . Systems that

learn from examples must be able to detect and correct ly general ize repeated port ions of

their t raining instances. In some cases, the n u m b e r of repeti t ions itself should be the sub-

ject of general izat ion; in others it is inappropria te to alter the n u m b e r of repetitions.

Explanat ion-based learning (EBL) [DeJong & Mooney, 1986; Mitchell , Keller, & Kedar-

Cabell i , 1986] provides an approach to this issue. In this type of learning, abstracting the

solution to a specific problem produces a general solution applicable to conceptually similar

problems. The generalization process is driven by the explanation of why the specific solution

works. Knowledge about the domain lets a learner develop and then general ize this ex-

planat ion. The explanat ion of repeated por t ions of a solut ion dictates when it is valid and

proper to general ize the n u m b e r of t imes they occur.

40 J.W. SHAVLIK

This paper addresses the important issue in EBL of genera l i z ing to N [Cheng & Car-

bonell, 1986; Cohen, 1988; Prieditis, 1986; Riddle, 1989; Shavlik, in press; Shavlik &

DeJong, 1985, 1987; Shell & Carbonell, 1989]. This involves generalizing such things as

the number of entities involved in a concept or the number of times some action is per-

formed. Previous research on explanation-based learning has largely ignored the generaliza-

tion of number. Instead, it has focused on changing constants into variables and determin-

ing the general constraints on those variables without significantly altering the underlying

graphical structure of the explanation. However, this precludes acquisition of concepts in

which a general iterative or recursive process is implicitly represented by a fixed number

of applications in the specific problem's explanation. A system that possesses the ability

to generalize the graphical structure of explanations, adding additional applications of in-

ference rules where appropriate, can learn recursive and iterative concepts from a specific

example. This article presents such a system.

To see the need for generalizing explanation structures, consider the LEAP system [Mit-

chell, Mahadevan, & Steinberg, 1985], an early application of explanation-based learning.

The system observes an example of using NOR gates to compute the Boolean AND of two

OR'S, and it discovers that the technique generalizes to computing the Boolean AND of any

two inverted Boolean functions. However, LEAP cannot generalize this technique to let it

construct the AND of an arbitrary number of inverted Boolean functions using a multi-input

OR gate. The system cannot do this even if its initial background knowledge includes the

general version of DeMorgan's Law and the concept of multi-input nOR gates. Generaliz-

ing the number of functions requires alteration of the original example's explanation.

Ellman's [1985] system also illustrates the need for generalizing number in explanation-

based learning. From an example of a four-bit circular shift registe~ his system constructs

a generalized design for an arbitrary four-bit permutation register, but again, it cannot pro-

duce a design for an N-bit circular shift register. As Ellman points out, such generaliza-

tion, though desirable, cannot be done using the technique of changing constants to variables.

Repetition of an action is not a sufficient condition for generalization to N to be appropriate.

For instance, generalizing to N is necessary if one observes a previously unknown method

of moving an obstructed block, but not when one sees a toy wagon being built for the first

time. The initial states of these two problems appear in Figure 1. Suppose a learning system

observes an expert achieving the desired states, and consider what general concept should

be acquired in each case. In the first example, the expert wishes to use a robot manipulator

to move a block that has four other blocks stacked in a tower on top of it. The manipulator

I I
 JLJ JJJJJJJI J

Figure 1. Initial states for two sample problems.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 41

can pick up only one block at a time. The expert's solution is to move each of the four

blocks in turn to some other location. After the underlying block has been cleared, it is

moved. In the second example, the expert wishes to construct a movable rectangular plat-

form, one that is stable while supporting any load whose center of mass is over the plat-

form. Given the platform, two axles, and four wheels, the expert's solution is to first attach

each of the axles to the platform, then to select each of the four wheels in turn and mount

it on an axle protrusion.

This comparison illustrates an important problem in explanation-based learning.

Generalizing the block-unstacking example should produce a plan for unstacking any number

of obstructing blocks, not just four as observed. However, in the wagon-building example

the number four should not be generalized. It makes no difference whether the system

experiences a pile of five, six, or 100 wheels, because exactly four wheels are needed to

fulfill the functional requirements of a stable wagon.

Standard explanation-based learning algorithms [for example, Fikes, Hart, & Nilsson,

1972; Hirsh, 1987; Kedar-Cabelli & McCarty, 1987; Mooney & Bennett, 1986] and similar

algorithms for chunking [Laird, Rosenbloom, & Newell, 1986] cannot treat these cases

differently. These methods, possibly after pruning the explanation to eliminate irrelevant

parts, replace constants with constrained variables. They cannot significantly augment the

explanation during generalization. Thus, the building-a-wagon type of concept will be cor-

rectly acquired but the unstacking-to-move concept will be undergeneralized. Their ac-

quired schema will have generalized the identity of the blocks so that the target block need

not be occluded by the same four blocks as in the example. Thus, any four obstructing

blocks can be unstacked, but there must be exactly four blocks. 1 Unstacking five or more

blocks is beyond the scope of the acquired concept. ~,

Of course, one could simply define the scope of EBL-type systems to exclude the

unstacking-to-move concept and similar ones, but this would be a mistake for three reasons.

First, the need for augmenting explanations is ubiquitous; many real-world domains manifest

it in one form or another. Second, if one simply defines the problem away, the resulting

system could never guarantee that any of its concepts were as general as they should be.

Even when such a system correctly constructed a concept like the building-a-wagon schema,

it could not know that it had generalized properly. The system could not tell which con-

cepts fell within its scope and which did not. Third, there is recent psychological evidence

[Ahn, Mooney, Brewer, & DeJong, 1987] that people can generalize number on the basis

of one example.

One may argue that the fault for not properly generalizing lies with the explanation module.

If the explainer used a vocabulary involving recursion, then it might not be necessary to

alter the graphical structure of the explanation. However, such an approach places a much

larger burden on the explanation module, as well as on the domain theory writer. Con-

structing explanations is a demanding, often intractable, task [Mitchell et al., 1986].

Generalization is more focused and less computationally intensive; hence it makes sense

to shift as much of the burden of learning onto this module. I f they are to scale to larger

problems, EBL systems must not expect the explanation module to do more than narrowly

explain the solution to the specific problem at hand. It is the generalization module's respon-

sibility to determine the breadth of a solution's applicability.

42 J.W. SHAVLIK

Observations of repeated rule or operator applications indicate that generalizing the

number of rules in the explanation may be appropriate. However, such observations alone

are insufficient. Number generalization is desirable only if there exists a certain recursive

structural pattern, in which each application achieves preconditions for the next. In stack-

ing blocks, for example, the same sort of repositioning of blocks occurs repeatedly, each

building on the last. This article adopts the vocabulary of predicate calculus to investigate

this notion of structural recursion. The desired form of recursion is manifested as repeated

application of inference rules in such a manner that a portion of each consequent is used

to satisfy some of the antecedents of the next application. This means that number generaliza-

tion will not occur solely because some rule appears repeatedly in an explanation. Instead,

the repetitions must be in a goal-subgoal relationship.

Generalizing number, like more traditional generalization in explanation-based learn-

ing, results in the acquisition of a new inference rule. Unlike traditional methods, it generates

a rule that describes the situation after one has made an indefinite number of world changes

or other inferences. Each such rule subsumes a potentially infinite class of rules that stan-

dard explanation-based generalization techniques would acquire. Thus, number-generalized

rules can dramatically improve storage efficiency, increase the expressive power of the

system, and, as shown later, improve the system's performance efficiency.

The following section presents the BAGGER2 algorithm for generalizing the structure of

explanations, illustrating the method with an example and empirically comparing its behavior

to a standard EBL algorithm. Section 3 describes some extensions to the basic algorithm

that increase the efficiency of the rules it acquires and presents empirical studies involving

a second domain. The final sections discuss related work and describe several open research

problems.

2. The basic BAGGER2 algorithm

Unlike most earlier approaches to explanation-based learning, the BAGGER2 algorithm

(Building Augmented Generalizations by Generating Extended Recurrences) is capable of

generalizing explanation structures. This system is a successor to an earlier structure-

generalizing EBL system [Shavlik, in press; Shavlik & DeJong, 1987] that learned iterative

concepts (manifested as linear chains of rule applications). Unlike its predecessor, BAGGER2

is capable of acquiring recursive concepts involving arbitrary tree-like applications of rules;

in addition, it can produce multiple generalizations to N from a single example and can

integrate the results of multiple examples.

This section describes the basic components of BAGGER2. The first subsection compares

it to standard explanation-based generalization. The next presents algorithmic details and

a correctness proof. Next, a circuit implementation task illustrates the algorithm. Follow-

ing that appears a discussion of learning from multiple examples and a description of how

learned rules are used during future problem solving. Finally, an empirical study

demonstrates BAGGER2'S efficacy.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 43

2.1. Comparison to standard explanation-based generalization

BAGGER2 extends Mooney and Bennett's [1986] EGGS algorithm, a standard domain-

independent method for explanation-based generalization. Both techniques assume that,

in the course of solving a problem, the solver interconnects a collection of pieces of general

knowledge (for example, inference rules, rewrite rules, or plan schemata), using unifica-

tion to insure compatibility. The generalizers then produce an explanation structure [Mit-

chell et al., 1986] from the specific problem's explanation. To build the explanation struc-

ture, they first strip away the details of the specific problem and then replace each instan-

tiated rule in the explanation with a copy of the original general rule. I f the same general

rule is used multiple times, its variables are renamed each time it appears in the explana-

tion structure. This prevents spurious equalities among variables in the explanation structure.

EGGS determines the most general unifier that lets the solver connect the explanation

structure's general pieces of knowledge, and produces a new composite knowledge struc-

ture which contains the unifications that must hold in order to combine the knowledge

pieces in the given way. If one assumes tree-structured explanations, then satisfaction of

the leaf nodes implies that the root (goal) node will also be satisfied. There is no need

to reason again about combining the pieces of knowledge to achieve the goal. The problem

solver may have performed a substantial amount of work constructing the original solu-

tion, following many unsuccessful paths and then backtracking. The new knowledge struc-

ture can lead more rapidly to solutions in the future, because it avoids the unsuccessful

paths and eliminates the need to rederive the intermediate conclusions. However, note that

EGGS does not change the graphical structure of the explanation. If some process is repeated

three times in the specific problem's explanation, it will be repeated exactly three times

in the rule EGGS acquires.

In contrast, BAGGER2 generalizes explanation structures by looking for repeated, inter-

dependent substructures in an explanation. Figure 2 schematically presents this process.

Assume that in explaining how a goal is achieved, the same general subproblem (P) arises

goal

p-

P ~ P

/3\ / 4 \
P

/s\

t

/ x

i ! x x

I ! \x

11 2 ,

I I \

x

x
p ,'

/6 \

Figure 2. Partitioning the structure of an explanation.

44 J.W. SHAVLIK

several times. The full explanation can be divided into several qualitatively different portions.

First, there are the snbexplanations in which an instantiation of P is supported by the explan-

ations of other instantiations of the general problem P. In the figure, these are the subexplana-

tions marked 1 and 4. Second, there are the subexplanations in which an instantiation of

P is explained without reference to another instantiation of itself. These are the subexplana-

tions labeled 3, 5, and 6. Finally, there are the portions not involving P (subexplanation 2).

The explanation in Figure 2 can be viewed as the trace of a recursive process. This is

exactly what one must recognize in the explanation of a specific example in order to learn

a recursive or iterative concept. The generalizations of subexplanations 1 and 4 form the

recursive portion of the concept, whereas the generalizations of subexplanations 3, 5, and

6 produce the termination conditions. BA6CER2 partitions explanations into groups, as

Figure 2 illustrates, from which it produces a new recursive concept.

Roughly speaking, BAGGER2 produces the following two rules from Figure 2's explanation:

goal ~ P A gen2.

P ~ gen3 V gen5 V gen6 V recursive-gen~ V recursive-gen4.

To achieve the goal, a problem solver must satisfy the recursive subgoal P and whatever

general preconditions subexplanation 2 requires. The solver can satisfy P by satisfying the

general preconditions of any of the non-recursive or recursive subexplanations; the

generalizations of the recursive subexplanations lead to recursive calls to subgoal P.

2.2. Algori thmic details and correctness proo f

Table 1 contains the ~6GE~ generalization algorithm. Although the algorithm appears here

in a pseudo-code, the actual implementation is written in COMMON LISP. The remainder

of this subsection elaborates the pseudo-code and presents a theorem about its correctness.

The BAGGER2 approach assumes that explanations are derivation trees, which are struc-

tures that could be produced by a Horn clause theorem prover such as eROLO6. The algorithm

starts at the root of the explanation. If the general consequent at the root appears elsewhere

in the structure, then the method produces a recursive rule (called a recurrence) whose

consequent is the root node. Otherwise, it collects the general version of the root node's

antecedents and produces a new rule. Since a recurrence can also arise within an explana-

tion structure, this discussion will assume that the root node does not directly lead to a

recurrence.

As shown in Table 1, CollectGeneralAnteeedents produces sufficient requirements for

the consequent of a rule to hold. Ignoring for a moment the possibility of recurrences be-

ing constructed, this entails traversing through the explanation structure and stopping at

operational [Keller, 1988] nodes. Operational nodes are antecedents somehow judged to

be easily satisfied, for example, because they are satisfied by a problem-specific fact. Along

the way, the function collects all the unifications necessary to connect the rules in the ex-

planation structure, thus eliminating the need to check these when the acquired rule is

later applied. This portion of the algorithm is merely a rehash of ECCS. Hence, when

BAGGER2 detects no potential generalizations to N, it produces the same result as E66S.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 45

Table 1. The BAGGER2 generalization algorithm.

Procedure BuildNewBAGGEP,2Rule(goal-node) /* Generalize the explanation headed by this node. */

Let consequent be the consequent of the goal node.

If consequent is supported by a term that unifies with it,

Then return ProduceRecurrence(goal-node),

Else let antecedents be CollectGeneralAntecedents(goal-node)

and return the rule consequent ~ antecedents.

Procedure CollectGenemlAntecedents(node) l* Collect the generalized version of the antecedents of node. */

Let result be the empty set.

For each direct antecedent of node,

If it is operational or a call to a recurrence,

Then conjunctively add it to result,

Else if it is supported by a term that unifies with it, /* Found a potential recurrence. */

Then conjunctively add ProduceRecurrence(antecedent) to result,

Else if it is directly supported by the consequent of a rule,

Then: Let consequent be the rule's consequent.

Conjunctively add to result the equalities that must hold to unify antecedent and consequent.

Conjunctively add CollectGeneralAntecedents(consequent) to result.

Else return false. /* Reached a non-operational leaf node. */

Return result.

Procedure ProduceRecurreI~6e(node) /* Produce a BAGGER2 recurrence from the subexplanation headed by

node. */

Let consequent he the root of node.

Let antecedents be the empty set.

For each terminal and recursive subproof supporting node: /* Look at alternative ways of satisfying

node. */

Let subconsequent be the root of subproof.

Let disjunct contain the equalities that must hold to unify subconsequent and node.

Conjunctively add CollectGeneralAntecedents(subconsequenO to disjunct.

Disjunctively add disjunct to antecedents.

Construct the recurrence consequent ~- antecedents and return a call to it.

M o r e interesting events occur when BAGGER2 detects a potential recurrence. This is done

by seeing i f a unif iable vers ion of the general antecedent appears in its own derivat ion (for

example, the P ' s in F igure 2). I f so, P r o d u c e R e c u r r e n c e part i t ions the explanat ion struc-

ture headed by the genera l antecedent into two types of subexplanations: t e rmina l proofs ,

where a unif iable vers ion o f the antecedent does not appear in its proof, and recurs ive p ro -

ofs, where at least one does. In the recurs ive proofs, the funct ion replaces the recurs ive

subexplanat ions by a cal l to the recur rence being constructed. These calls contain the te rm

that must be unif ied with the consequent of the recurrence. Hence , when cutting out Figure

2's subexplanat ion 1, the funct ion removes subexplanat ions 3 and 4 and replaces them by

a call to the recur rence whose consequent is P. Not ice that the subexplanat ions are

non-over lapping.

Once P r o d u c e R e c u r r e n c e produces the subexplanations, i t general izes each by cal l ing

BA6GEP,2. This means that another recurrence may be found within a subexplanation, allow-

ing mul t ip le general iza t ions to N in a single example. W h e n general iz ing the subexplana-

tions, the funct ion col lects the necessary unif icat ions be tween the root o f the subexplana-

t ion and the consequent o f the recur rence under construct ion. Satisfying these unif icat ions

46 J.W. SHAVLIK

insures that the general solution in the subexplanation applies to the recurrence's conse-

quent. The function disjunctively combines the generalizations of the subexplanations and

produces a recurrence.

Notice that, rather than only learning a single rule from an explanation, BAGGER2 also

produces several useful subrules (the recurrences). The detection of recurrences provides

a useful decomposition of explanations. Because recurrences are separate entities from the

rule produced for the full explanation, they support transfer of the results learned during

one task to the performance of another, provided the two tasks involve common subtasks.

This separation also supports learning from multiple examples. If the system encounters

a new method for satisfying the consequent of a recurrence, it can merge the new method

with the previous disjuncts ? as discussed further in Section 2.4.

Before BAGGER2 produces a new rule, it removes redundant antecedents and reorders the

others to increase the efficiency of future retrievals. In recurrences, if an antecedent appears

in every terminal disjunct, it can be removed from the recursive disjuncts, provided it is

independent of the variables in the recurrence's consequent. Dropping them from the recur-

sive disjuncts is valid because these antecedents will be checked when retrieval reaches

a terminal disjunct.

Assuming that explanations are logical proofs, the BAGGER2 algorithm can be proved cor-

rect, as shown in the following theorem.

THEOREM 1. The basic BAGGER2 algorithm is sound, in that the rules it learns will never

derive anything that cannot be derived by the initial domain theory.

Proof Consider the explanation in Figure 2. Basically, one must show that the algorithm prop-

erly generalizes the subexplanations and that the method for combining subexplanations pre-

serves soundness. Assume for the moment that there are no potential recurrences other than

P within Figure 2's explanation. Since the E ~ S algorithm has been proven sound [Mooney,

in press], BA~ER2 will correctly generalize each of the numbered subexplanations. The re-

sult from subexplanation 2 is handled the same by BA~ER2 and EG~S; it will not be consid-

ered further. Next, consider the recursive portion of the explanation. To derive the generalized

goal, the uppermost P must be satisfied using the generalization of either a terminal or a

recursive subproof. The soundness of a derivation using only a terminal proof follows directly

from the proof for E66S and the fact that the algorithm maintains the unifications necessary

to insure that the generalized consequent of a subexplanation matches P A derivation using

a recursive proof must terminate by using the results of terminal proofs. Since these final

derivation steps are sound, and soundness between steps is maintained by checking the

necessary inter-step unifications, the soundness of recursive derivations follows inductively.

The case for embedded recurrences also follows inductively. After partitioning an ex-

planation there are no embedded P's in the subexplanations, since those at the leaves are

converted to a recurrence call. Hence, each subdivision of the explanation reduces the

number of potential recurrences. The deepest subexplanation contains only one recurrence,

and BAGCER2 correctly generalizes it according to the argument in the previous paragraph.

Encapsulating subexplanations are also correctly generalized, by induction. To see this,

assume correctness for i levels of embedded recurrences. The argument in the previous

paragraph can now be applied to demonstrate correctness for the level i+1.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 47

2.3. A circuit implementation example

As an example, consider the application of BAGGER2 in the domain of circuit implementa-

tion. Examples in this simple domain, commonly used to illustrate EBL techniques, clearly

show the weaknesses of standard EBL methods and demonstrate how BAGGER2 overcomes

them. Replication of structure is an important operation in the circuit domain.

The rules in Table 2 determine how to implement a circuit depending on the types of

gates available. PROLOG notation is used, except that leading question marks indicate

variables. The term ImplementBy(?x, ?y) means that circuit ?y can be used to implement

design ?x. Assuming one can use only AND and Nor gates, Figure 3 shows a circuit whose

implementation requires repeated application of DeMorgan's Law. The rules in the table

can be used to provide an explanation of how to accomplish this task.

Table 2. Initial rules for the domain of circuit implementation.

Rule

ImplementBy(Not(Not(?x)),?y)

ImplementBy(?x,?y).

ImplementBy(Not(And(?x,?y)),Nand(?a,?b))

HaveNands A ImplementBy(?x,?a) A ImplementBy(?y,?b).

ImplementBy(Not(?x), Nand(?y,1))

HaveNands A ImplementBy(?x,?y).

ImplementBy(And(?x,?y), Nand(Nand(?a,?b),l))

HaveNands A ImplementBy(?x,?a) A ImplernentBy(?y,?b).

ImplementBy(Not(?x),Not(?y))

HaveNots A ImplementBy(?x,?y).

ImplementBy(Or(?x,?y),Or(?a,?b))

HaveOrs /x lmplementBy(?x,?a) A ImplementBy(?y,?b).

ImplementBy(Or(?x,?y),Nand(?a,?b))

HaveNots A HaveNands A

ImplementBy(Not(?x),?a) A ImplementBy(Not(?y),?b).

ImplementBy(Not(Or(?x,?y)),And(?a,?b))
< . _

HaveAnds A

ImplementBy(Not(?x),?a) A ImplementBy(Not(?y),?b).

ImplementBy(?wire,?wire) *- Wire(?wire).

Description

Can eliminate double negations.

Can use nand's to implement

negated ands.

Can use nand's to implement

?lOt'S.

Can use nand's to implement

and' s.

Can use not's to implement if

they are available.

Can use or's to implement if

they are available.

A version of DeMorgan's Law.

Alternative version of

DeMorgan's Law.

Wires are already implemented.

48 J.W. SHAVLIK

C>o--

Figure 3. A sample circuit design to be implemented using only AND gates.

It is instructive to compare the behavior of EGGS and BAGGER2 on this problem. If EGGS

is applied to the resulIing explanation, the rule in Table 3 results. Notice that this rule

not only requires a fixed number of inputs, but also a fixed topology, that of Figure 3.

Clearly the explanation structure needs to be generalized. The result produced by BAGGER2

appears in Table 4. In this problem, the full explanation leads to a single recurrence, which

involves four disjuncts. The first applies when only a single application of DeMorgan's

Law is necessary, with AND gates being necessary if the resulting circuit is to be im-

plemented. The remaining three disjuncts are recursive. The second and third disjuncts

apply when one input is a wire, in which case the rule recurs on the other input. In the

final disjunct, recursion is needed for both inputs.

The notation in Tables 3 and 4 merits some discussion. For instance, the capitalized Or's,

And's, and Not's refer to gates in the circuit domain; they are not part of the rule descrip-

tion language. The matches operator unifies its two arguments. As an extension of PRO-

LOG, direct calls to recurrences are permitted in order to satisfy a goal. Finally, BAGGER2

renames the variables in recurrences; variables starting with V appear in the consequent,

whereas those starting with E are local variables.

Table 3. The rule acquired by ECrS for the circuit problem in Figure 3.

ImplementedBy(Not(Or(Or(Or(Not(?G6), Not(?G9)),

Or(Not(?G16), Or(Not(?G23), Not (?G26))))0

Or(Or(Not(?G37), Not(?G40)),

Not(?G43)))),

And(And(And(?G6, ?G9),

And(?G16, And(?G23, ?G26))),

And(And(?G37, ?G40) ,

?G43)))

HaveAnds A Wire(?G43) A Wire(?G6) A Wire(?G9) A Wire(?G16) A

Wire(?G37) A Wire(?G40) A Wire(?G23) A Wire(?G26).

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 49

Table 4. The recursive rule acquired by BAGGER2 for the circuit problem in Figure 3.

To satisfy: ImplementBy(Not(Or(?vl, ?v2)),And(?v3, ?v4))
One of the following must hold:

?vl matches Not(?v3) A ?v2 matches Not(?v4) A

HaveAnds A Wire(?v3) A Wire(?v4).
or

?vl matches Or(?el, ?el2) A ?v2 matches Not(?v4) A
?v3 matches And(?e3, ?e4) A Wire(?v4) A
recursively satisfy ImplementBy(Not(Or(?el, ?e2)), And(?e3, ?e4)).

o r

?vl matches Not(?v3) A ?v2 matches Or(?el, ?e2) A
?v4 matches And (?e3, ?e4) A Wire(?v3) A
recursively satisfy ImplementBy(Not(Or(?el, ?e2)), And(?e3, ?e4)).

or
?vl matches Or(?el, ?e2) A ?v2 matches Or(?e3, ?e4) A
?v3 matches And(?e5, ?e6) A ?v4 matches And(?e7, ?e8) A

recursively satisfy ImplementBy(Not(Or(?el, ?e2)), And(?e5, ?e6)) A
recursively satisfy ImplementBy(Not(Or(?e3, ?e4)), And(?e7, ?e8)).

/* no more gates *t

/* no gates on right */

/* no gates on left */

/* gates on both sides */

The rule BAGGER2 learns is a general version of DeMorgan's Law; it converts the nega-

tion of an N-input OR gate into an N-input AND gate. It applies to a much larger class of

problems than does the rule learned by E ~ S . Notice that the acquired recurrence does

not refer to any of the initial rules. Thus, it is self-contained and is topologically similar

to a recursive LISP function. The consequent specifies the parameters, and the antecedents

form something like a LISP conditional statement. This function is produced from a collec-

tion of simple declarative PROLOC-like rules, which are called explicitly rather than deter-

mining which rules in a large rule base unify with the current consequent. Hence, BAGGER2

provides a way to transform a simple, but inefficient, logic program into another program

stated in a more efficient language. Shavlik and Maclin [1988] investigate the application

of the approach to the problem of acquiring programs. Section 4 further discusses the rela-

tionship between BAGGER2 and automatic programming.

2.4 Learning f r o m mult iple examples

As mentioned earlier, BAGGER2 is capable of learning from multiple examples. Recurrences

are disjunctive subrules, and hence are prime candidates for enhancement during addi-

tional learning. When generalization of a new explanation produces a basic recurrence that

has the same consequent as a previous recurrence, the generalizer merges the disjuncts

in the new recurrence with those of the existing one. As an illustration, assume that the

training example in Figure 3 was simpler, and the second recursive case in Table 4 was

not encountered. A future training example involving the missing case would be needed

in order to completely learn Table 4's general version of DeMorgan's Law.

Commonly in explanation-based learning, additional examples lead to disjuncts in ac-

quired rules [for example, Cohen, 1988; Kedar-Cabell i , 1986; Minton, 1989]. There are

two important aspects of BAGGER2'S approach to learning from multiple examples. One, the

system need not learn disjuncts during the achievement of the same goal. For instance,

50 J.W. SHAVLIK

a technique learned during the building of an arch can improve what was previously learned

about building towers. Two, BAGGER2 does not require the explanation from which the ex-

isting recurrence arose, so there is no need to save old explanations. Hence, learning can

proceed incrementally without requiring full memory of all past experiences.

Learning from multiple examples produces much the same effect as initially learning

from a more complicated example. Since BAGGER2 breaks up explanations and merges

together similar generalizations (see Figure 2), in terms of generalization it does not mat-

ter if the subexplanations come from one example or many. However, there is an advantage

of learning from multiple examples in explanation-based learning. A complicated concept

can be acquired by observing several simple versions of the concept. This can greatly reduce

the load on the agent that produces the training examples and also simplifies the explana-

tion process. Looking at this a different way, if a rule is initially incompletely learned because

a training example is too simplistic, later experiences can refine the rule.

2.5. Problem solving with acquired rules

Later sections of this article empirically compare the performance of EGGS and BAGGER2

in two sample domains. This section presents how they apply their learned rules to new

problems.

The basic problem solver is a COMMON LISP implementation of PROLOG, which satisfies

goals using depth-first backward chaining. Besides returning variable bindings, it returns

a proof tree that explains how it satisfied the goal. BAGGER2'S recurrences require a slight

extension to PROLOG, namely the ability to explicitly call a specific rule. When it calls

a particular rule to satisfy a given subgoal, the problem solver applies no other rules to

that subgoal upon backtracking. To avoid wasted effort, when first calling a recurrence

the solver checks those terms in the recurrence's terminal disjuncts that are independent

of the variables in the recurrence's consequent. Such antecedents are unaffected by calls

to the recurrence, and if they cannot be satisfied the problem solver does not call the

recurrence.

Mooney [1989] has empirically shown, for depth-first problem solvers, that allowing ar-

bitrary chaining of learned rules can lead to worse performance than not learning at all.

As a result, the problem solver never combines learned rules when trying to solve a prob-

lem. To be successful, a learned rule must solve a problem completely by itself.

Situation calculus planning is used in a second sample domain (described later). One

potential problem with situation calculus in a depth-first problem solver is the possibility

of infinite regression. The solver can hypothesize an unbounded number of potential in-

termediate states when trying to achieve a goal. To avoid this, it places an upper bound

on the number of actions that can appear in the situation calculus plans it produces.

Specifically, in the blocks world domain the depth-first problem solver limits its search

to plans involving no more actions than there are blocks in the current scene.

The EGGS and BAGGER2 systems index rules acquired during training according to the goal

each rule achieves. When multiple rules achieve the same goal, the order they are applied

during problem solving depends on the learner. EGGS organizes situation calculus rules

according to the number of actions they specify. When facing a new problem, it first tries

to apply the rules that involve one action; if this fails, it tries rules involving two actions,

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 51

and so forth. Shavlik [in press] demonstrates the efficiency of this strategy, which is similar

to iterative deepening [Korf, 1985]; it works well because the effort required to produce

a plan can depend exponentially on the number of actions involved. For rules involving

the same number of actions or not expressed in situation calculus, EGGS tries rules in the

order it learned them, while BAGGER2 tries the most recently learned rules first. Shavlik

[in press] demonstrates these strategies are preferable for each system when problems are

randomly generated, for the following reasons. Probabilistically, earlier rules result from

more typical examples, while later rules result from examples that are less likely to occur

again soon. For EGGS, it is best to first try the rules that result from the most probable

situations. However, BAGGER2 often learns more from the more complicated, though less

likely, later examples and the acquired rule usually covers the simpler, previous examples.

2.6. Empirical studies of the basic algorithm

One may question the desirability of generalizing explanation structures. Such learning leads

to more general rules, but because the resulting rules are more complicated, applying them

entails more work. This question involves the relationship between the operationality and

generality of acquired rules [DeJong & Mooney, 1986; Keller, 1988; Mitchell et al., 1986;

Segre, 1987; Shavlik, DeJong, & Ross, 1987]. Experiments reported in this section investigate

whether it is better to learn a more general recursive rule or better to individually learn

the subsumed rules as they are needed. A secondary question focuses on whether

explanation-based learning is worthwhile at all. As more is learned, the process might slow

down a problem solver that uses the learned concepts [Fikes et al., 1972; Minton, 1988].

Using the circuit implementation rules, this study compares three systems: BAGGER2,

EGGS, and NO-LEARN--a system that does not learn any new rules. All three systems use

the backward-chaining problem solver described in the previous section.

The experimental hypothesis of the first experiment is that BAGGER2 requires less train-

ing than EGGS to acquire a concept; for a given amount of training, it will be more likely

to solve a new problem. The independent variables in this study are the generalization

algorithm used and the amount of training, while the dependent variable is the percentage

of novel examples solved using only a learned rule. In this study, problems consisted of

randomly generated designs of eight-input OR gates using binary OR'S. The final output

was negated; Figure 3 contains a sample design. As described in Section 2.1, the task was

to implement this gate using only NOr and binary AND gates. The first step in an experimental

run was to produce and save ten randomly-generated test problems. Next, 250 randomly-

generated circuit designs were produced, and the two learners implemented them. If they

used more than one rule to do so, they generalized the resulting explanation and saved

the result. Periodically, their performance was measured on the ten test problems, during

which learning was turned off. There were ten experimental runs, each with a different

initial random number; hence each point in this study reflects the mean of 100 measurements.

Figure 4 presents the percentage of test problems solved using only each system's ac-

quired rules. Clearly, BAGGER2 needs significantly fewer training examples to learn the con-

cept than does EGGS. The reason is that BAGGER2 learns a rule that encodes a general

strategy for repeatedly applying DeMorgan's Law to implement any network of binary OR

gates, while EGGS learns separate rules for each possible layout. EGGS can only apply its

52 J.W. SHAVLIK

100%

80%

Test Problems

Solved by 60%

Acquired 40% ~
Rules EGGS o o

BAGGER2 : :
20%

I I l I I I >

10 25 50 100 150 200 250

Number of Training Problems

Figure 4. New circuit problems solved with acquired rules as a function of amount of training.

learned rules to new problems that have the same topology as a previously seen one. This

illustrates one of the strengths of a system that restructures explanations; since it recognizes

repeated portions of explanations and generalizes the number of repetitions, it can require

less training to acquire a concept.

Being able to apply learned rules to solve new problems is of little use if doing so re-

quires a substantial amount of effort. The second study investigates the speedup achieved

by using the explanation-based systems. This study's independent variables are the identity

of the system and the size of the space of possible problems. The dependent variable is

the average problem-solving time following learning. The primary hypothesis is that per-

forming explanation-based learning is better than solving all problems by only resorting

to the initial domain rules. The secondary hypothesis is that BAGGER2'S learned rules pro-

duce solutions faster than EGG'S rules. It is possible that the added complexity of recursive

rules leads to longer solution times. Although EGGS must learn more rules than BAGGER2.

to cover a concept involving recursion, a problem solver may be able to more efficiently

search through these non-recursive rules for a solution.

To examine the hypothesis, each learning system was trained on OR circuit problems of var-

ious sizes (from five to ten inputs).3 For each problem size, 1000 random circuits constituted

the training set. Following training, all three systems attempted to solve the same ten test

problems, with learning turned off. This was repeated ten times, each time with different test

problems, so again the plotted points represent the means of 100 measurements. EGGS organ-

ized its rules according to the number of inputs involved (that is, in six groups) and only

checked possibly relevant rules during problem solving. For EGGS, only the time spent on

problems solved by a learned rule was recorded. Both this and the assumption about rule

organization favor EGGS over BAGGER2. Figure 5 contains the mean solution time on the

test problems. Learning recursive rules is always better than not learning at all. However,

there are several places where EGGS' performance curve crosses another system's curve.

When there are a small number of possible problems, EGGS does better than BAGGER, but

it soon becomes worthwhile to learn recursive rules. Note that after awhile, it would be

better to not learn at all than to use EGGS. The locations in Figure 5 where curves cross

merit discussion.

A C Q U I R I N G R E C U R S I V E A N D I T E R A T 1 V E C O N C E P T S 53

Solution

Time

(msec)

2000.

1 5 0 0

1000,

5 0 0

/
NO-LEARN o- - - -o /

EGGS o o

BAGGER2 • •

/

I I I I I I

5 6 7 8 9 10

N u m b e r o f I n p u t s

Figure 5. M e a n so lu t ion t ime for c i rcui t imp lemen ta t i on as a func t ion o f p r o b l e m size.

Explanation-based generalizers produce composite rules that capture useful combinations

of other rules. Using the resulting generalization, a problem solver can solve many prob-

lems more quickly than without it; the solver need not spend time rediscovering the suc-

cessful combination. However, as a system acquires more new rules, its problem-solving

time can increase, because it may spend substantial time trying to apply learned rules that

appear promising, but ultimately fail [Minton, 1988]. This explains why EGGS performs

worse than NO-LEARN when the space of possible circuit designs i~ large; the solver must

try too many promising but unfruitful rules before succeeding. Because BA~CER2 can cap-

ture a concept in a single rule, a solver need not waste time searching through a collection

of closely related rules looking for an appropriate one; for this reason BAOOE~ helps avoid

the negative effects of learning recently reported by Minton.

The results in Figure 5 can be better understood by considering the difference between

the rules EGGS learns and those BAGGER2 learns. One can view the rules EGGS learns as

fixed-sized templates, each of which contains a fixed number of variables to bind. Prob-

lem solving with these rules involves matching their preconditions to the current task; if

the problem is similar to a previous one, the solver can apply the generalized version of

the previous solution. It does not produce new solutions, but only determines if it can reuse

an old one. Conversely, BAC, CER2 learns a technique for generating new solutions, in which

an arbitrary number of variables can be bound. By analyzing an explanation, it extracts

an algorithm reflected in a specific problem's solution. This generative capability means

it can express an unbounded number of templates, while still maintaining the efficiencies

obtained by performing explanation-based learning.

In summary, these studies demonstrate that a structure-generalizing EBL algorithm such

as BAGGER2 can learn rules that are both more general and more efficient than the corres-

ponding ones EGGS learns. The ability to scale to larger problems is an important property

of any learning system; as the space of possible problems grows, BAOOE~'S edge over EGOS

increases.

54 J.W. SHAVLIK

3. Improving the efficiency of the rules BAGGER2 learns

The basic BAGGER2 algorithm produces valid generalizations of specific solutions, but the re-

suits produced can be often made more efficient without any loss of generality. This section

presents three techniques for improving the efficiency of rules learned by the basic approach.

These extensions to the basic method are particularly useful for generalizing actions in

plans. Often portions of plans are iterative; a set of actions is repeated until a subgoal is

achieved. The presented techniques can improve the efficiency of inherently iterative tasks;

the blocks-world task of building towers of various heights illustrates them. An appropriate

plan is to stack clear blocks until reaching the desired height. Unlike the circuit implemen-

tation solution, this is inherently an iterative strategy, in the sense that an action (or set

of actions) is repeated until achieving some target. In addition, the circuit domain primarily

involves repeated components, while building towers primarily involves repeated actions.

After describing the representation used for the tower-building task, this section uses

tower building to illustrate the extensions. A second empirical study evaluates the exten-

sions and compares BAGGER2, EGGS, and NO-LEARN in the blocks world.

3.1. A tower-building task

The situation calculus [McCarthy, 1963] is used in this section's example to reason about

actions, in the style of Green [1969]. In this formalism, predicates and functions whose

values may change over time possess an extra argument that indicates the situation in which

they are being evaluated. For example, rather than using the predicate On(x,y) to indicate

that x is on y, the predicate On(x,y,s) is used to indicate that x is on y in situation s. In

this framework, operators are represented as functions that map from one situation to another

situation. For instance, the term Do(Transfer(A,B,sO)) represents the situation that results

from the initial situation upon transferring block A to block B. Problem solving involves

transforming situations until a path from the initial situation to the goal situation is found.

As an example, consider the following situation calculus rule:

On(?x, ?y, Do(Transfer(?x, ?y), ?s)) ~- AchievableState(Do(Transfer(?x, ?y), ?s)).

This rule formalizes one effect of a transfer. It says that if one can legally achieve the

situation represented by the term Do(Transfer(?x, ?y), ?s)), then in this situation ?x is on

?y. A separate rule defines legal transfers. Tables 5 and 6 contain the rules for the tower-

building domain.

Two tyes of inference rules are used: intersituational rules, which specify attributes that

a new situation will have after application of a particular operator, and intrasituational
rules, which embellish a problem solver's knowledge of a situation by specifying addi-

tional conclusions that can be drawn within that situation. Reasoning within a situation

is assumed to be operational, while reasoning between situations is not, because hypothesiz-

ing intermediary states can proceed without bound. The learning task is to produce new

rules whose preconditions can be checked by reasoning only about the initial situation,

ignoring the details of all the intermediate situations traversed on the way to the goal situa-

tion. Because intrasituational reasoning is considered operational, subproofs that only in-

volve intrasituational rules are ignored during generalization.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 55

Table 5. Some initial rules for the blocks domain.

Rule Description

AchievableState(S0). The initial state is always achievable. A state is

achievable if legal application of some sequence of
operators can lead to it.

AchievableState(Do(Transfer(?x,?y),?s)) If the top of an object is clear in some achievable state and
'-- there is free space on another object, then the first object

AchievableState(?s) A Liftable(?x,?s) A can be moved from its present location to the new loca-

FreeSpace(?y,?s) A ?x ~ ?y. tion. However, an object cannot be moved onto itself.

Tower(?topObj ,?yMin,?yMax,?xMin,?xMax,?s)
4 - -

AchievableState(?s) A Clear(?topObj,?s) A

Xpos(?topObj ,?xPos,?s) A

?xPos ----- ?xMin A ?xPos _ ?xMax A

Ypos(?topObj ,?y Pos,?s) A
?yPos _> ?yMin A ?yPos _< ?yMax.

A tower exists if a clear block is located within this

region in a valid state.

On(?x,?y, Do(Transfer(?x,?y),?s)) After an object is moved, it is on the destination

object.
AchievableState(Do(Transfer(?x,?y),?s)).

On(?a,?b,Do(Transfer(?x,?y),?s)) If not moved, an object stays where it is (frame

axiom).

On(?a,?b,?s) A ?a ~ ?x.

Clear(?x,Do(Transfer(?x,?y),?s)) After an object is moved, it is clear.

AchievableState(Do(Transfer(?x,?y),?s)).

Clear(?z,Do(Transfer(?x,?y),?s)) After an object is moved, the previously supporting ob-

ject is clear, if it is a block and the moved object is
On(?x,?z,?s) A Block(?z) A ?z ¢ ?y. not placed back on top of it.

Clear(?a,Do(Transfer(?x,?y),?s)) If nothing is placed on it, an object stays clear.

Clear(?a,?s) A ?a ;~ ?y.

Table 6 Remaining initial rules for the blocks domain.

Rule Description

Xpos(?x,?xpos,Do(Transfer(?x,?y),?s)) After a transfer, the object moved is centered (in the X-

direction) on the object upon which it is placed.
Xpos(?y,?xpos,?s).

Ypos(?x,?ypos2,Do(Transfer(?x,?y),?s)) After a transfer, the Y-position of the object moved is

*-- determined by adding its height to the Y-position of the
Ypos(?y,?ypos,?s) A Height(?x,?hx) A object upon which it is placed.

?x ~ ?y A ?ypos2 = (?hx + ?ypos).

Xpos(?a,?xpos,Do(Transfer(?x,?y),?s)) All blocks, other than the one moved, remain in the same
X-position after a transfer (frame axiom).

Xpos(?z,?xpos,?s) A ?a ¢ ?x.

Ypos(?a,?xpos,Do(Tmnsfer(?x,?y),?s)) All blocks, other than the one moved, remain in the same
Y-position after a transfer (frame axiom).

Ypos(?a,?xpos,?s) A ?a ~ ?x.

FreeSpace(?x,?s) I f an object is clear and has a fiat top, then space is
'-- available.

Clear(?x,?s) /', FlatTop(?x).

Liftable(?x,?s) ,-- Clear(?x,?s) A Block(?x). A block is liftable if it is clear.

FlatTop(?x) *-- Box(?x). Boxes have flat tops.

FlatTop(?x) ,-- Table(?x). Tables have flat tops.

56 J.W. SHAVLIK

Situation calculus is appealing because it expresses planning in a deductive framework.

All problem-solving knowledge is explicit and inspectable by the learner. For example,

in Green's formulation frame axioms are explicit rules, unlike in a STRIPS planner. Because

situation calculus is deductive, the circuit domain's problem solver can be used.

In the blocks world, an initial situation is created by randomly generating N blocks on

a table. All possible configurations, from all N stacked to all N directly on the table, are

possible. Once it places the blocks, the problem generator selects a goal height, centered

above a second table. The goal height randomly ranges from one to N block heights, and

the goal is to produce a plan such that a block is at this location. The goal is expressed

by the following conjunctive rule:

Tower(?topObj, ?yMin, ?yMax, ?xMin,

AchievableState(?s) A Clear(?topObj,

Xpos(?topObj, ?xPos, ?s) A ?xPos >_

Ypos(?topObj, ?yPos, ?s) /x ?yPos _

?xMax, ?s)

?s) A

?xMin A ?xPos -< ?xMax A

?yMin A ?yPos -< ?yMax.

This rule says that one has a tower at a given location in some state, provided there is

a clear block in this region and the state can be legally reached. As previously mentioned,

the problem solver limits plans to at most N actions to prevent unbounded back chaining.

Using the rules appearing in Tables 5 and 6, the solver can produce a plan for satisfying

the goal, starting from the specific situation in Figure 6. This plan stacks the three blocks

that are clear in the initial situation (Blocks B, C, and E) to build the desired tower.

,'-- - -7
I (

I]

L

B E

A C D

l tablel] I table2]

Figure 6. The initial state for a sample tower-building task.

By generalizing the resulting explanation, the basic BAGGER2 algorithm produces the rule

in Table 7. Notice that, unlike the rule that EGGS would produce, it is not limited to cases

in which three blocks need be moved. Also notice that the recurrences only test predicates

that are either situation-independent or that refer to the initial situation, sO. The main rule

says that to build a tower, one should first find an achievable situation, then see if the final

block moved is at the goal location. This generate-and-test approach leads to wasted work,

as demonstrated later; it would be better if the problem solver started the tower at an ac-

ceptable horizontal position and checked the tower's height while producing a valid final

state. The next section describes how one can produce a rule that embodies this strategy.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 57

Table 7. Rules learned by the basic BAGGER2 algorithm in the blocks world.

Rule Tower-2: /* Build a tower of arbitrary height. */

Tower(?vl, ?v2, ?v3, ?v4, ?v5, Do(Transfer(?vl, ?v6), ?v7))

call recurrence AchievableState-1 to satisfy AchievableState(Do(Transfer(?vl, ?v6), ?v7)) A

call recurrence Xpos-1 to satisfy Xpos(?vl, ?v8, Do(Transfer(?vl, ?v6), ?v7)) A

?v8 ___ ?v4 A ?v8 < ?v5 A

call recurrence Ypos-1 to satisfy Ypos(?vl, ?v9, Do(Transfer(?vl, ?v6), ?v7)) A

?v9 _> ?v2 A ?v9 < ?v3.

Recurrence AchievableState-l: /* Reach legal states by moving clear blocks. */

To satisfy: AchievableState(Do(Transfer(?vl, ?v2, ?v3))

One of the following must hold:

?v3 matches sO A Liftable(?vl, sO) A FreeSpace(?v2, sO) A ?vl ~ ?v2.

?v3 matches Do(Transfer(?v2, ?el), ?e2) A recursively satisfy AchievableState(?v3) A

call recurrence Clear-1 to satisfy Clear(?vl, ?v3) A Block(?vl) A FlatTop(?v2) A ?vl ~ ?v2.

Recurrence Xpos-l: /* Determine the x-position of the last block moved by finding the first supporting object. */

To satisfy: Xpos(?vl, ?v2, Do(Transfer(?vl, ?v3), ?v4))

One of the following must hold:

?v4 matches sO A Xpos(?v3, ?v2, sO).

or

?v4 matches Do(Transfer(?v3, ?el,), ?e2) A recursively satisfy Xpos(?v3, ?v2, ?v4).

Recurrence Ypos-l: /* Determine the y-position of a block by summing heights. */

To satisfy: Ypos(?vl, ?v2, Do(Transfer(?vl, ?v3), ?v4))

One of the following must hold:

?v4 matches sO A Ypos(?v3, ?e2, sO) A Height(?vl, ?el) A ?vl ;~ ?v3 A ?v2 = ?el + ?e2.

or

?v4 matches Do(Transfer(?v3, ?el), ?e2) A recursively satisfy Ypos(?v3, ?e4, ?v4) A

Height(?vl, ?e3) A ?vl ~ ?v3 A ?v2 = ?e3 + ?e4.

Recurrence Clear-l: /* See if a block is clear due to nothing being placed on it. */

To satisfy: Clear(?vl, Do(Transfer(?v2, ?v3), ?v4))

One of the following must hoM:

?v4 matches sO A Clear(?vl, sO) A ?vl ~ ?v3.

or

?v4 matches Do(Transfer(?el, ?e2), ?e3) A recursively satisfy Clear(?vl, ?v4) A ?vl ~ ?v3.

3.2. Three e x t e n s i o n s to the bas ic a l g o r i t h m

T h e e x t e n d e d BAGGZP,2 a l g o r i t h m ca r r i e s ou t t h r e e add i t iona l p r o c e s s i n g s teps ; each o f t h e s e

c a n i m p r o v e t h e e f f i c i e n c y o f t he a c q u i r e d ru le , as S e c t i o n 3.3 d e m o n s t r a t e s . Table 8 c o n -

ra ins t h e r e su l t s o f a p p l y i n g t h e e x t e n s i o n s o f B A ~ E ~ to t he ru l e s in Table 7. T h i s s e c t i o n

d e s c r i b e s t h e t h r e e e x t e n s i o n s a n d e x p l a i n s h o w they p r o d u c e the r e su l t s in Table 8.

T h e f i r s t e x t e n s i o n a p p l i e s w h e n m u l t i p l e ca l l s to r e c u r r e n c e s a p p e a r in t h e a n t e c e d e n t s

o f a r u l e (as in t he f i r s t r u l e o f Table 7). I f t h e s e r e c u r r e n c e s c a n b e a s c e r t a i n e d to o c c u r

t o g e t h e r in a c o m p a t i b l e way, they c a n b e m e r g e d , a n d t h e g e n e r a l i z e r c a n r e p l a c e t h e

58 J.W. SHAVLIK

Table 8. Rules learned by the extended BAGGER2 algorithm in the blocks world.

Rule Tower-3: /* Build a tower of arbitrary height. */

Tower(?vl, ?v2, ?v3, ?v4, ?v5, Do(Transfer(?vl, ?v6), ?v7))
4---

call recurrence AchievableState-Xpos-Ypos-1 to satisfy

AND(AchievableState(Do(Transfer(?vl, ?v6), ?v7)),

Xpos(?vl, ?gl, Do(Transfer(?vl, ?v6), ?v7)),

Ypos(?vl, ?v9, Do(Transfer(?vl, ?v6), ?v7)),

?gl _> ?v4, ?gl _< ?v5) A

?v9 _> ?v2 A ?v9 < ?v3.

Forward Recurrence AchievableState-Xpos-Ypos-l: /* Legally stack blocks and keep track of their positions. */

To satisfy: AND (AchievableState(Do(Transfer(?vl, ?v3), ?v4)),

Xpos(?vl, ?gl, Do(Transfer(?vl, ?v3), ?v4)),

Ypos(?vl, ?v2, Do(Transfer(?vl, ?v3), ?v4)),

)gl __. ?g2, ?gl < ?g3)

One of the following must hold:

?v4 matches sO A Liftable(?vl, sO) A Height(?vl, ?el) A FreeSpace(?v3, sO) A ?vl ;e ?v3 A

Xpos(?v3, ?gl, sO) A ?gl _> ?g2 A ?gl --< ?g3 A Ypos(?v3, ?e2, sO) A ?v2 = ?el + ?e2.

or

?v4 matches Do(Transfer(?v3, ?el), ?e2) A

recursively satsify AND (AchievableState(Do(Transfer(?v3, ?31), ?e2)),

Xpos(?vl, ?gl, Do(Transfer(?v3, ?el), ?e2)),

Ypos(?vl, ?e4, Do(Transfer(?v3, ?el), ?e2)),

?gl -> ?g2, ?gl _< ?g3) A

call recurrence Clear-1 to satisfy Clear(?vl, ?v4) A

Block(?vl) A FlatTop(?v3) A ?vl ;~ ?v3 A Height(?vl, ?e3) A ?v2 = ?e3 + ?e4.

Forward Recurrence Clear-l: /* See if a block is clear due to nothing being placed on it. */

To satisfy: Clear(?gl, Do(Transfer(?v2, ?v3), ?v4))

One of the following must hold:

?v4 matches sO A Clear(?gl, sO) /x ?gl ¢ ?v3.

o r

?v4 matches Do(Transfer(?el, ?e2), ?e3) A recursively satisfy Clear(?gl, ?v4) A ? v l ¢ ?v3.

multiple calls by a single call to the merged recurrence. One class of compatible recurrences

contains those that traverse through the same sequence of situations; each individual recur-

rence places constraints on an acceptable traversal. Rather than satisfying these constraints

successively for each recurrence, the problem solver can satisfy them simultaneously. When

this extension merges several recurrences together, it names the new recurrence by concaten-

ating the names of the individual recurrences, and basically produces the union of the indi-

vidual recurrences. In a sense, this extension further restructures an explanation; it merges

independent portions of an explanation structure. A specific solution may involve several

independent recursive tasks, while the acquired rule may address these tasks concurrently.

In Table 7's acquired rule for tower-building, the calls to AchievableState-1, Xpos-1, and

Ypos-1 all involve the same final state. Since in situation calculus the final state is defined

in terms of a path starting at the initial state, all three recurrences must traverse the same

sequence of states and, hence, they can be merged together. Merging requires making copies

of the recurrences involved, using the fact that all of the recurrences traverse the same

sequence of situations to properly rename variables, and then producing all possible

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 59

combinations of recursive disjuncts and terminating disjuncts. In the table, the recurrences

involved each only have one recursive and one terminating disjunct, so there is only one

way to combine them, but in general combination can be explosive. For example, if two

recurrences each have three terminating disjuncts, the combined recurrence will have up

to nine distinct terminating disjuncts.

The second step determines unchanging variables; its value primarily arises in combination

with the third step, as will be seen momentarily. Determining the variables that remain

unchanged is easy; a variable in a recurrence's consequent is unchanged if, in all possible

recursive calls, it appears in the same position. For readability, variables that remain un-

changed are renamed to start with g, indicating they are global variables.

The final step determines i fa linear recurrence should be satisfied forward or backward.

If a recurrence only involves a linear chain of recursive calls, it may be more efficient

to satisfy the recurrence by starting at the initial state and working forward until reaching

the desired final state. BAGGER2 heuristically chooses the direction to satisfy recurrences.

It selects working forward from the initial state only when any unchanging variables are

present, since these variables specify constraints on the initial action to be performed.

When the problem solver is to satisfy a recurrence from the initial state forward, some

terms in the conjunct that calls the recurrence may be pushed down into the recurrence's

terminating disjuncts, as these extra terms further constrain the initial action. The terms

pushed down are those that only involve variables that are unchanging or independent of

the recurrence. This is done for the inequalities involving ?v8 in Table 7's tower-building

rule. It is preferable to satisfy these constraints early, rather than after the recurrence pro-

duces a candidate tower. The x-location of the first block moved determines the x-location

of the tower, so the inequalities eliminate time wasted investigating improperly placed towers.

Here an extension also restructures an explanation; it moves preconditions from the end

of a linear chain of rule applications down to the first step in the sequence.

The result in Table 8 is essentially an iterative plan. It is a notational variant on the result

produced by the original BAGGER [Shavlik, in press]. Blocks are stacked until a tower of

the desired height is produced; at each step in the iteration the problem solver must choose

a block to move. The plan does not require the use of any other intersituational rule in

the rule base. There may be many ways to build towers or to verify that a block is clear,

but the solver expends no resources trying out these portions of the search space. Atten-

tion during problem solving is tightly focused; any testing done outside of the acquired

plan only involves checking properties of the initial state.

For a further illustration of learning from multiple examples, consider again the rule

in Table 8. This rule only supports stacking blocks that are clear in the initial state, which

is reasonable given that it is produced from a solution which stacks three initially clear

blocks upon one another. One can also move some initially obstructed block x if the block

on top of it has been moved and no other blocks have been placed on block x. If, after

learning the hale in Table 8, BA66ER2 observes a solution where Figure 6's blocks are moved

in reverse alphabetical order, it replaces the call to Clear-1 with the following disjunction:

call recurrence Clear-1 to satisfy Clear(?vl, ?v4).

o r

call recurrence On-1 to satisfy On(?v3, ?vl, ?e2) A ?vl ~ ?el.

60 J.W. SHAVLIK

This disjunction specifies constraints on the next block (?vl) to be stacked, which must

either be originally clear or must have originally supported the block moved in the previous

step (?v3), provided ?v3 was not placed on ?vl. A call to the appropriate recurrence in-

sures that the relevant relationship in the initial state still holds, given the plan constructed

so far. 4

There are two technical points concerning the interaction of learning from multiple ex-

amples and the three extensions to the basic BA6CER2 method. First, the extensions can alter

the consequent of the recurrence, which complicates determining that a new recurrence's

disjuncts support the same conclusion as that of an old one. Second, the addition of a dis-

junct can invalidate the applicability of an extension. For these reasons, modified recur-

rences maintain records of the basic recurrences from which they were produced. The

generalizer only adds new disjuncts to pre-existing basic recurrences; it then reconstructs

all of the modified recurrences that depend on the basic recurrences.

3.3. Empirical studies of the extended algorithm

This section empirically ascertains the value of the three extensions to the basic algorithm,

and compares BA66ER2, EGGS, and NO-LEARN in a second domain. Considering a second

domain partially investigates whether or not the results in the first domain are anomalous.

The first study investigates the hypothesis that the extensions improve BAC6ER2'S perfor-

mance. Using the blocks-world domain, it compares the basic and extended algorithms,

as well as the three partial extensions that result from dropping one technique. These par-

tial extensions provide information of the individual contributions of the three refinements.

Each configuration generalized the solution where the blocks in F~igure 6 are stacked in

reverse alphabetical order on the second table. The problem generator then produced 100

random configurations of five blocks on one table, and the goal was to build a five-block

tower on a second table. Finally, each configuration solved the 100 test problems, and its

mean solution time was recorded. Table 9 contains the results, which demonstrate the value

of the three extensions.

Table 9. Evaluat ion o f the extensions to the bas ic BAGGER2 algor i thm.

System M e a n Solution Time

Basic BAGGER2

Extended BAGGER2

without me rg ing related recur rences

without ma rk ing unchang ing var iables

without selecting problem-so lv ing direct ion

53.7 sec.

3.8 sec.

7 .9 sec.

5 .9 sec.

14.8 sec.

In this experiment, the three extensions provide a speedup of more than ten over the

basic approach. The bottom rows in Table 9 indicate the individual contributions of the

three extensions. Deciding that the problem solver should satisfy recurrences from the

initial state forward provides the largest contribution. Tower-building is a task for which

planning naturally proceeds from the first action forward: select the starting position, then

choose movable blocks and stack them. When it starts by choosing the last block to stack,

A C Q U I R I N G R E C U R S I V E A N D 1TERATIVE C O N C E P T S 61

the problem solver may perform substantial work before realizing that, given the bound

on the number of actions, no plan exists where this block is moved last. Conversely, some

plans more naturally proceed from the last action backward. The task of clearing a block

is one example: move the block on top after first clearing it.

The second largest contribution to efficiency is produced by merging recurrences that

traverse through the same situations; while producing legal states, it is worthwhile to also

record the positions of the blocks moved. Finally, marking variables that remain constant

throughout a recurrence produces additional speedup. In the stacking problem, this allows

BAGGER2 to move the requirements on the starting x-position into the recurrence. This in-

sures that the problem solver only considers properly located bases for the tower. Although

the relative contributions of the three extensions heavily depend on the task of tower-building,

this study indicates the value of reorganizing a collection of basic recurrences.

The remaining two studies compare BAGGER2, EGGS, and NO-LEARN. The methodology

for these experiments was basically the same as that used in the circuit implementation

experiment. However, when the learners could not solve a training problem using their

acquired rules, they were provided a solution to the problem (consisting of a sequence

of transfers), which they then explained and generalized. Having the learners solve large

problems using only the initial domain theory rules was intractable, as the performance

o f N O - L E A R N s h o w s . , "

The second study re-addresses the hypothesis that BAGGER2 requires less training than

EGGS does, this time using the blocks world. As in the circuit domain, the amount of train-

ing and the learning algorithm are the independent variables, while the study measures

the percentage of novel problems solved using a learned rule. It followed the same

methodology as the first circuit implementation study; again there were 250 randomly-

generated training problems in each of the ten experimental runs. During each run, the

two learners periodically attempted to solve the same ten test problems, during which learn-

ing was turned off; hence each point is the mean of 100 measurements. A given run used

the same ten test problems throughout, but each run had its own test set. For all problems,

five blocks were randomly dropped over a table (see Figure 6), and the goal height was

randomly chosen to be from one to five blocks.

1 0 0 %

80%

Test Problems

Solved by 6 0 %

Acquired 4 0 %

Rules

2 0 %

EGGS o - - - - - o

BAGGER2 : :

i i t I i

10 25 50 100 150 200

Number of Training P r o b l e m s

Figure 7. Percentage of new tower problems solved as a funct ion of amount o f training.

250

62 J.W. SHAVLIK

Figure 7 presents the results of this study. As in the circuit implementation experiment,

BAGGER2 requires less training than does EGGS to acquire completely the ability to build

towers. EGGS learns templates that describe situations in which it can build a tower of fixed

height: plans for stacking three clear blocks, inverting a five-block stack at one position

on to another, using the top two blocks of two existing towers to build a four-block stack,

etc. As in the circuit domain, it must receive many training examples before it encounters

enough inherently different configurations to capture the concept. (On average, EGGS learns

14.6 rules per run.) BAGGE~ instead learns a strategy for building towers: stack clear blocks

until the goal is met. It needs to learn it can move a block initially clear or one made clear

by previously moving the block it supports. Once it observes solutions involving these sub-

tasks, it can build towers of any height. (Usually BAGGER2 learns one tower-building rule

per run; occasionally the first training example does not support generalization to N and

several rules are learned.)

The third study in this section re-addresses the hypotheses that explanation-based learning

speeds up a problem solver and that BA60~R2 outperforms EGGS. As before, the independent

variables are the identity of the system used and the size of the space of possible problems, while

the dependent variable is the average problem-solving time following learning. Incrementing

the upper limit on possible tower heights increases the number of possible problems; at each

point the system solved problems requiring stacking from one to Nblocks, for some fixed N,

in a scene containing Nblocks. In this experiment, 500 training examples were presented at

each point to insure that both learning systems sufficiently learned how to build towers. The

results were averaged over five experimental runs, and in each run performance was measured

on 20 different random problems, producing a total of 100 measurements per point. For a

given problem size, all systems received the same training examples and solved the same test

problems. When N was above five, after training EGGS occasionally could not solve a problem

using its acquired rules; however, only the time spent on problems solved was recorded.

Figure 8 presents the performance of the two learning systems, along with that of the

system that does not learn, on the tower-building task as a function of the range of possible

tower heights. Notice that times are plotted on a logarithmic scale, where exponentially

Solution

Time

(see)

J

lO 2-

10

0.1

/ N O - L E A R N o - - - - o

/ E G G S o o

II II B A ~

I I I [I I I
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

Range of Possible Tower Heights (in blocks)

Figure 8. Mean solution time for tower building as a function of problem complexity.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 63

increasing functions produce straight lines. As with circuit implementation, as the prob-

lem complexity increases, BAGGE~ begins to outperform ECGS. For both learning systems,

one can clearly see the advantage over not learning at all.

In this study the relative performance of EGGS and BA66E~ is qualitatively the same as

in the circuit implementation study; for small range s of possible problems, collecting and

matching fixed-sized templates is effective, but it is better to learn a general solution strategy

when there are many possible configurations. Unlike the circuit domain, Figure 8 pro-

vides no indication that explanation-based learning is detrimental in this domain. The

negative effects of learning depend on the relationship between the basic problem-solving

complexity of a set of domain rules and the number of qualitatively different composite

rules required in that domain. Explanation-based learning may prove particularly beneficial

in domains where the number of composite rules a problem solver needs is small com-

pared to the number of possible combinations of the basic domain rules. Analytical studies

of explanation-based learning may provide important insight on this issue [Cohen, 1989].

4. Related work

In addition to BAGGER2 and its predecessor BA~ER [Shavlik, in press; Shavlik & DeJong,

1987], which only learns iterative concepts, several other explanation-based approaches

to generalizing number have been proposed. This section briefly presents these other ap-

proaches and compares them to BAGCEP,2. Also, some related projects involving similarity-

based learning and automatic programming are discussed.

For instance, Cohen's [1988] ADEPT system generalizes number by constructing a finite-

state control mechanism that deterministically directs the construction of proofs similar

to the one used to justify the specific example. His approach can acquire recursive and

disjunctive concepts, as well as learn from multiple examples. However, in order to eliminate

backtracking when applying the learned rule, his system assumes that operational terms

can be matched by no more than one fact in the database. By disallowing backtracking,

ADEZr improves efficiency at the cost of some expressiveness. This means that, unlike

BACGEm, it cannot learn how to build towers in a situation where Blocks A, C, and E are

initially clear and then apply its learned strategy in a situation where Blocks B, D, and

F are initially clear. Another difference from BACCE~ is that, to learn from multiple ex-

amples, ADEPT requires the previous examples be present in their entirety. Cohen's method

also differs from other explanation-based algorithms in that it does not eliminate internal

nodes of the explanation during generalization. In other approaches, only the leaves of

the operationalized explanation appear in the acquired rule's antecedents. In Cohen's ap-

proach, every inference rule used in the original explanation is explicitly incorporated into

the final result. Each rule may again be applied when satisfying the acquired rule. Finally,

unlike BA~CER2, Cohen's system does not separately extract subconcepts from portions of

an explanation.

On another front, Prieditis [1986] developed a system which learns macro-operators that

represent linear sequences of repeated sT~Ps-like operators. His approach analyzes the

constraints imposed by the unbounded connection of the precondition, add, and delete lists

of the operators deemed to be of interest. This produces an iterative macro-operator that

64 J.W. SHAVLIK

accommodates an indefinite number of repeated operator inter-connections. Although his

approach produces iterative rules, it can learn neither recursive nor disjunctive rules. Also,

unlike Prieditis' approach, BAG6ER2 allows arbitrary inference rules to intervene between

applications of the predicate whose number of appearances is being generalized.

A third system, Cheng and Carbonell's FERMI [1986], recognizes cyclic patterns using

empirical methods, and generalizes the detected repeated pattern using explanation-based

learning techniques. A major strength of the system is the incorporation of conditionals

within the learned macro-operator. However, unlike the techniques implemented in

BA6CER2, the rules acquired by FERMI are not fully based on an explanation-based analysis

of an example, and so are not guaranteed to always work. For example, the system learns

a strategy for solving a set of linear algebraic equations, but none of the preconditions

of the strategy check that the equations are linearly independent. Thus, the learned strategy

will appear applicable to the problem of determining x and y from the equations 3x +

y = 5 and 6x + 2y = 10, and after a significant amount of work, it will terminate unsuc-

cessfully. Shell and Carbonell [1989] present improvements that increase the efficiency of

the macro-operators FERMI learns.

Shavlik and DeJong [1985, in press] developed the first explanation-based learning system

that generalized number. Their PHYSICS 101 system acquires the knowledge that momentum

is conserved for any N~objects from an example involving the collision of a fixed number

of balls. It differs from the above approaches, including t3A66ER2, in that the need for

generalizing number is motivated by an analytic justification of an example's solution and

general domain knowledge. In the momentum problem, information about number, localized

in a single physics formula, leads to a global restructuring of a specific solution's explana-

tion. However, PHYSICS 101 is designed to reason about the use of mathematical formulae,

and its generalization algorithm takes great advantage of the properties of algebraic cancella-

tion (for example, x - x = 0). To constitute a broad solution of the generalization to N

problem, an approach must also handle non-mathematical domains.

A related task is generalizing the organization of the nodes in the explanation, rather

than generalizing their number. Mooney [1988] presents an approach along these lines.

His method, which is limited to domains expressed in the STRIPS formalism, determines

the minimal set of constraints on the order of a plan's actions. Without this knowledge,

the actions in the generalized plan must occur in the same order as in the training example.

Strictly speaking, his approach does not alter the explanation structure. Rather, it produces

the most general partial ordering of the plan's actions that maintains all connections be-

tween preconditions and effects in the original example. Though his technique cannot han-

dle it, Mooney discusses an example where the generalization of operator order requires

alteration of the explanation.

The problem of generalizing to N has also been addressed within the paradigm of em-

pirical or similarity-based learning [for example, Andreae, 1984; Dietterich & Michalski,

1984, Sammut & Banerji, 1986]. Like BAGGER2, the MARVIN system of Sammut and Banerji

[1986] uses Horn clauses to represent concepts. The recursive concept column, which is

a stack of objects, is one of the objects it learns to recognize. It learns by inductively

generalizing training instances; these generalizations are corroborated by generating new

examples and asking its teacher if they are a member of the concept being taught. A major

difference between MARVIN'S and BAGGER2'S approaches is that due to the former's inductive

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 65

nature, it can incorrectly learn a concept. BAGGER2'S explanation-based concepts are im-

mediately deductively supported by the domain theory; hence confirmation and revision

are unnecessary. Also, MARVIN strives to learn abstract recognition rules, while BAGGER2'S

goal is to acquire efficiently applicable (operational) ones--it already possesses a general

description of a tower.

As previously discussed, BAGGER2 recurrences are essentially recursive programs. Unlike

the simple template-matching rules EGGS learns, BAGGER'S rules can produce solutions of

various sizes. Some research in automatic programming shares many characteristics with

this approach, namely that involving program synthesis from examples [for example, Bauer,

1979; Biermann, 1978; Kodratoff, 1979; Summers, 1977]. In these approaches, sequences

of input/output pairs for recursive functions provide information on the control structure

of the algorithm being specified. A major problem with input/output pairs is that for com-

plex operations the amount of search needed to find the proper algorithm is prohibitive.

Automatic programming systems that use examples must search for a consistent hypothesis

because, unlike an explanation-based system, they do not have the information that specifies

the dependencies between successive recursive calls. In this sense, they are similar to

similarity-based learning algorithms; both must make unjustified generalizations, unlike

those an explanation-based system makes.

5. Some open research issues

Although the BAGGER2 system has taken important steps towards the solution to the

generalization to N problem, the research is still incomplete. From the vantage point of

the current results, several avenues of future research are apparent.

A major weakness of the rules learned by BAGGER2 is that a problem solver can expend

much useless effort when they fail. For example, assume the task at hand is to find enough

heavy rocks in a storehouse to serve as ballast for a ship. An acquired rule may first add

the weights in some order, find that the total weight of all the rocks in the room is insuffi-

cient, and then try another ordering for adding the weights. The system should be capable

of realizing that the actions in an acquired rule produce the same result regardless of their

order. This could be accomplished by reasoning about the semantics of the system's predicate

calculus functions and predicates. Properties such as symmetry, transitivity, and reflexivi-

ty may help determine constraints on order independence. Programmers use PROLOG'S CUt

operator [Clocksin & Mellish, 1984] to indicate where backtracking will be a waste of

time, and it may prove fruitful to have a learning system decide where to place cuts in

the rules it acquires.

A related area of future research involves determining the most efficient ordering of con-

junctive goals [Smith & Genesereth, 1985] in recursive rules. Consider an acquired iterative

rule that builds towers of a desired height, subject to the constraint that no block can be

placed upon a narrower block. The goal of building such towers is conjunctive: the correct

height must be achieved and the width of the stacked blocks must be monotonically non-

increasing. The optimal ordering can be found by selecting the blocks subject only to the

height requirements and then sorting them by size to determine their position in the tower.

This strategy works because it guarantees a non-increasing ordering of widths on any set

66 J.W. SHAVLIK

of blocks, so that no additional block-selection constraints are imposed by this conjunct.

The system should ultimately detect and exploit this kind of decomposability to improve

the efficiency of the new rules.

BAtGEI~ uses a relatively simple technique for parsing explanations (c.f., Figure 2). The

class of recursive concepts this technique recognizes needs to be characterized, and

~66Ert2 should be extended to cover a wider range of recursive rule applications. Tech-

niques for detecting recursive patterns developed in automatic programming research may

be applicable to this task [Smith, 1984]. However, such approaches can introduce backtrack-

ing search into the generalization process, thereby leading to problems of intractability.

Also, if they allow multiple parses of an explanation, techniques for choosing the best parse

may be required.

Often an explanation will not be a tree, as has been assumed in this article, and some

portions of the explanations will be shared. These shared portions can arise when one ac-

tion satisfies preconditions for several subsequent actions. The BAGGER2 algorithm can han-

dle shared subexplanations by replicating them. Although this will lead to a more general

concept, the efficiency of sharing is lost. The problem with shared nodes in a system that

generalizes explanation structures involves synchronization. In one recurrence the shared

node can be encountered on the i-th cycle, while in another it may be the j-th cycle. This

complicates the identification of variables that should be equated. One solution involves

having recurrences check for shared nodes during problem solving. If a node is marked,

then there is no need to continue the recurrence. Instead, the current term can be unified

with the term that did the marking.

Another extension would simplify loops during learning. Often a repeated process has

a closed form solution. For example, summing the first N integer produces N(N+I)/2, and

there is no need to compute the intermediate partial summations. A recurrence relation

is a recursive method for computing a sequence of numbers. Many recurrences can be

solved to produce efficient ways to determine the n-th result in a sequence. It is this prop-

erty that motivates the requirement that BAGGER2'S preconditions be expressed solely in

terms of the initial state. The system would be more efficient if it could produce, whenever

possible, number-generalized rules in closed form. For instance, if BAt~ER2 observes the

summation of four numbers it will not produce the efficient result mentioned above; in-

stead it will produce a rule that performs the intermediate summations. One possible ex-

tension is to create a library of templates for soluble recurrences, then match them against

explanations [Shell & Carbonell, 1989]. However, a more direct approach, such as Weld's

[1986] aggregation technique, may be more fruitful; aggregation creates a description of

a continuous process from a series of discrete events.

A major weakness of current EBL algorithms that generalize explanation structures is that

they do not generalize the structure of the goal. The examples studied do not require this type

of generalization. For example, the goal of having a block at a given height should not be gen-

eralized to having N blocks at M heights. Instead, the number of blocks stacked should be

generalized so that a given block can be placed at any height. However, if the specific plan

involved finding the average of five numbers in an array, the general plan acquired should

support the determination of the average of any size array. One approach to this issue is

to develop methods for determining general versions of specific goals, then construct the

explanation for the general goal, using the specific problem's explanation for guidance.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 67

Another area of future research is to investigate how BAGGER2 and related systems might

acquire accessory inter-situational rules, such as frame axioms, to complement their acquired

rules. Currently, each of the learned inference rules specifies how to achieve a goal that

involves some arbitrary aggregation of objects by applying some number of operators. These

rules are useful in directly achieving goals that match the consequent, but they do not effec-

tively improve BAGGER2'S backward-chaining problem-solving ability. This is because the

current system does not construct new frame axioms for the rules it learns? There are several

methods of acquiring such accessory rules. One technique would construct them directly by

combining the accessory rules of operators that make up the acquired rule. However, the

number of accessory rules for initial operators may be so large as to make this intractable.

Another, potentially more attractive approach, is to treat the domain theory as intractable.

Since new accessory rules can be derived from existing knowledge of initial operators,

the approach taken by Chien [1989] might be used to acquire the unstated but derivable

accessory rules when they are needed. Chien's system makes simplifying assumptions during

plan understanding in order to keep the task tractable. Failure in later applying a learned

plan leads to in-depth investigation of the assumptions and then refinement of the plan.

There is also a need for research on the generalization to N problem in the context of

imperfect domain models [Mitchell, Keller, & Kedar-Cabelli, 1986; Rajamoney & DeJong,

1987]. In any real-world domain, a computer system's model can only approximate reality.

Furthermore, the complexity of problem solving prohibits any semblance of completeness.

Thus far, BAGGER2 has relied on a correct domain model. Also, it has not addressed issues

of intractability, other than using an outside agent to provide sample solutions when the

internal construction of solutions is intractable. One relevant form of theory imperfection

occurs when the effects of an operator are not precisely specified. In this case, small errors

may accumulate when repeatedly applying the operator. An approach to this problem is to

monitor the actions in recursive plans, seeing how well their effects match the system's

expectations. When the system detects significant divergence, it can limit the recursive plan

to some maximum length or correct the plan to accommodate the uncertainty in the operators.

A final area of research concerns termination. One weakness of systems that generalize

explanation structures is that they fall into infinite loops. Although the halting problem is

undecidable in general, one can prove termination in restricted circumstances [Manna, 1974].

Systems that generalize number need to incorporate techniques for proving termination.

BAGGER2 contains a partial solution to this problem. If a recurrence involves unchanging
variables, before calling the recurrence the problem solver checks those terms which involve

these variables and which also appear in all the recurrence's terminating disjuncts. If it

cannot satisfy these terms, the problem solver does not call the recurrence. These checks

reduce the chance of unbounded recursive calls, but they do not guarantee termination.

A less appealing, but safe, solution is to place resource bounds on the algorithms that apply

number-generalized rules, potentially excluding successful applications.

6. Conclusion

Explanation-based learning systems must generalize number if they are to fully extract

general concepts inherent in the solutions to specific examples. This article has presented

and proven correct a general approach for generalizing to N. The BAG~EPa algorithm learns

68 J.W. SHAVLIK

recursive and iterative concepts, integrates results from multiple examples, and extracts

useful subconcepts during generalization. On problems for which learning a recursive rule

is not appropriate, the system produces the same result as Mooney's EGGS algorithm, a

standard EBL technique. Applying the learned recursive rules only requires a minor ex-

tension to a PROLOG-like system, namely, the abili ty to explicitly call a specific rule. This

lets the problem solver focus its attention on a small subset of a large rule base.

The empirical studies reported in Sections 2 and 3 demonstrate that generalizing the struc-

ture of explanations helps avoid the negative effects of learning [Fikes et al . , 1972; Minton,

1988]. These experiments tentatively indicate that BAGGER2 produces substantial perfor-

mance improvements over standard explanation-based methods and problem solvers that

do not learn. In two sample domains, it learns rules that are both more general and more

efficient that those learned by a standard EBL system, and its advantage grows as the com-

plexity of the task increases. Its strength arises from its ability to extract a general algorithm

from the solution to a specific problem. In one sample domain it learns a general version

of a DeMorgan's Law upon observing the repeated application of a two-gate version. In

a second domain it learns how to build towers by observing three blocks being stacked.

The standard explanation-based system learns rules that state how to apply DeMorgan's

Law exactly seven times or how to stack three blocks. Because it does not generalize the

number of repetitions, such a system must learn many separate rules. Searching through

this large collection of rules greatly reduces the gains learning can produce; in the circuit

domain experiments, the standard EBL system performs worse than not learning at all.

BA6GE~'S rules encapsulate focused traversals through the basic domain rules and in the

experiments never lead to performance worse than achieved by only using the basic rules.

Generalizing to Nis an important property that is currently lacking in most explanation-based

systems. This research contributes to the theory and practice of explanation-based learning by

developing and testing methods for extending the structure of explanations during generaliza-

tion. As such, it brings the field of machine learning closer to its goal of being able to

acquire all of the knowledge inherent in the solution to a specific problem.

Acknowledgments

This work was supported by a grant from the University of Wisconsin Graduate School.

Discussions with Jerry DeJong, Ray Mooney, Pat Langley, Yves Kodratoff, Eric Gutstein,

Rich Maclin, and Geoff Towell substantially improved the research and its reporting. Their

comments and suggestions, plus those of three anonymous reviewers, are greatly appreciated.

Notes

1. The SOAR system [Laird et al, 1986] would seem to acquire a number of concepts that together are slightly
more general. In addition to a new operator for moving four blocks, the system would acquire new operators
for moving three blocks, two blocks, and one block, but not for five or more. Anderson's [1986] knowledge-
compilation process would acquire a similar set of rules.

2. This may lead to poor performance if too many disjuncts are learned. The user can decide when a concept
is sufficiently learned and tell the system to freeze all of its recurrences. After that, new recurrences will be
constructed even if they have the same consequent as an existing one.

3. The number of different ways to implement an N-input OR gate with binary gates is (2N-2)!/N! (N-l)! [Jacob-
son, 1951, p. 18].

4. The recurrence On-1 is analogous to Clear-1 and, hence, is not shown.
5. This problem is not specific to systems that generalize explanation structures. Standard EBL algorithms must

also face it when dealing with situation calculus.

ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 69

References

Ahn, W., Mooney, R.J., Brewer, W.E, & DeJong, G.E (1987). Schema acquisition from one example: Psychological

evidence for explanation-based learning. Proceedings of the Ninth Annual Conference of the Cognitive Science

Society (pp. 50-57). Seattle, WA: Lawrence Erlbaum.

Anderson, J.R. (1986). Knowledge compilation: The general learning mechanism. In R.S. Michalski, J.G. Carbonell,

& T.M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2). San Mateo, CA: Morgan

Kaufmann.

Andreae, P.M. (1984). Justified generalization: Acquiring procedures from example. Doctoral dissertation, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

Bauer, M. (1979). Programming by examples. Artificial Intelligence, 12, 1-21.

Biermann, A.W. (1978) The inference of regular LISP programs from examples. IEEE Transactions on Systems,

Man, and Cybernetics, 8, 585-600.

Cheng, P., & Carbonell, J.G. (1986). The FERMI system: Inducing iterative macro-operators from experience.

Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 490-495). Philadelphia, PA: Morgan

Kaufmann.

Chien, S.A. (1989). Using and refining simplifications: Explanation-based learning of plans in intractable domains.

Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp. 590-595). Detroit,

MI: Morgan Kaufmann.

Clocksin, W.E, & Mellish, C.S. (1984). Programming in PeOLOG. Berlin: Springer Verlag.

Cohen, W.W. (1987). A technique for generalizing number in explanation-based learning. Proceedings of the Fifth

International Conference on Machine Learning (pp. 256-269). Ann Arbor, MI: Morgan Kaufmann.

Cohen, W.W. (1989). Solution path caching mechanisms which provably improve performance (Technical Report

DCS-TR-254). New Brunswick, NJ: Rutgers University, Department of Computer Science.

DeJong, G.E, & Mooney, RJ. (1986). Explanation-based learning: An alternative view. Machine Learning, I,

145 -176.

Dietterich, T.G., & Michalski, R. S. (1984). Discovering patterns in sequences of objects. Artificial Intelligence,

25, 25%294.

Ellman, T. (1985). Generalizing logic circuit designs by analyzing proofs of correctness. Proceedings of the Ninth

International Joint Conference on Artificial Intelligence (pp. 643-646). Los Angeles, CA: Morgan Kaufmann.

Fikes, R.E., Hart, RE., & Nilsson, N.J. (1972). Learning and executing generalized robot plans. Artificial Intel-

ligence, 3, 251-288.

Green, C.C. (1969). Application of theorem proving to problem solving. Proceedings of the First International

Joint Conference on Artificial Intelligence (pp, 219-239). Washington, D.C. : Morgan Kaufmann.

Hirsh, H. (1987). Explanation-based generalization in a logic-programming environment. Proceedings of the Tenth

International Joint Conference on Artificial Intelligence (pp. 221-227). Milan, Italy: Morgan Kaufmann.

Jacobson, N. (1951). Lectures in abstract algebra (Vol. 1). Princeton, NJ: Von Nostrand.

Kedar-Cabelli, S.T. (1986). Purpose-directed analogy: A summary of current research. In T. M. Mitchell, J. G.

Carbonell, & R.S. Michalski (Eds.), Machine learning: A guide to current research. Hingham, MA: Kluwer.

Kedar-Cabelli, S.T., & McCarty, L.T. (1987). Explanation-based generalization as resolution theorem proving.

Proceedings of the Fourth International Workshop on Machine Learning (pp. 383-389). Irvine, CA: Morgan

Kaufmann.

Keller, R.M. (1987). Defining operationality for explanation-based learning. Proceedings of the National Con-

ference on Artificial Intelligence (pp. 482-487). Seattle, WA: Morgan Kaufmann.

Kodratoff, Y. (1979). A class of functions synthesized from a finite number of examples and a LIsP program scheme.

International Journal of Computer and Informatiuon Sciences, 8, 489-521.

Korf, R.E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27,

97-109.

Laird, J.E., Rosenbloom, RS., & Newell, A. (1986). Chunking in SOAk: The anatomy of a general learning

mechanism. Machine Learning, 1, 11-46.

Manna, Z. (1974). Mathematical theory of computation. New York: McGraw-Hill.

McCarthy, J. (1963). Situations, actions, and causal laws (Memorandum). Stanford, CA: Stanford University,

Department of Computer Science. (Reprinted in M. Minsky, (Ed.). Semantic information processing, 1968,

Cambridge, MA: MIT Press.)

70 J.W. SHAVLIK

Minton, S.N. (1988). Quantitative results concerning the utility of explanation-based learning. Proceedings o]

the Seventh National Conference on Artificial Intelligence (pp. 564-569). St. Paul, MN: Morgan Kaufmann.

Minton, S.N. (1989). Learning effective search control knowledge: An explanation-based approach. Hingham,

MA: Kluwer.

Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S. (1986). Explanation-based generalization: A unifying view.

Machine Learning, I, 47-80.

Mitchell, T.M., Mahadevan, S., & Steinberg, L.I. (1985). LEAP: A learning apprentice for VLSI design. Pro-

ceedings of the Ninth International Joint Conference on Artificial Intelligence (pp. 573-580). Los Angeles, CA:

Morgan Kaufmann.

Mooney, R.J. (1988). Generalizing the order of operators in macro-operators. Proceedings of the Fifth Interna-

tional Conference on Machine Learning (pp. 270-283). Ann Arbor, MI: Morgan Kaufmann.

Mooney, R.J. (1989). The effect of rule use on the utility of explanation-based learning. Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence (pp. 725-730). Detroit, MI: Morgan Kaufmann.

Mooney, R.J. (in press). A general explanation-based learning mechanism and its application to narrative under-

standing. London: Pitman.

Mooney, R.J., & Bennett, S.W. (1986). A domain independent explanation-based generalizer. Proceedings of the

Fifth National Conference on Artificial Intelligence (pp. 551-555). Philadelphia, PA: Morgan Kaufmann.

Prieditis, A.E. (1986). Discovery of algorithms from weak methods. Proceedings of the International Meeting

on Advances in Learning (pp. 37-52). Les Arcs, Switzerland.

Rajamoney, S., & DeJong, G.E (1987). The classification, detection, and handling of imperfect theory problems.

Proceedings of the Tenth International Joint Conference on Artificial Intelligence (pp. 205-207). Milan, Italy:

Morgan Kaufmann.

Riddle, P.J. (1989). Automating shifts ofproblem representation. Doctoral dissertation, Department of Computer

Science, Rutgers University, New Brunswick, NJ.

Sammut, C.B. (1986). Learning concepts by asking questions. In R.S. Michalski, J.G. Carbonell, & T.M. Mit-

chell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2). San Mateo, CA: Morgan Kaufmann.

Segre, A.M. (1987). On the operationality/generality trade-off in explanation-based learning. Proceedings of the

Tenth International Joint Conference on Artificial Intelligence (pp. 242-248). Milan, Italy: Morgan Kaufmann.

Shavlik, J.W. (in press). Extending explanation-based learning by generalizing the structure of explanations. London:

Pitman.

Shavlik, J.W., & DeJong, G.E (1985). Building a computer model of learning classical mechanics. Proceedings

of the Seventh Annual Conference of the Cognitive Science Society (pp. 351-355). Irvine, CA: Morgan Kaufmann.

Shavlik, J.W., & DeJong, G.E (1987). BAGGER: An EBL system that extends and generalizes explanations. Pro-

ceedings of the Sixth National Conference on Artificial Language (pp. 516-520). Seattle, WA: Morgan Kaufmann.

Shavlik, J.W., & DeJong, G.E (in press). Learning in mathematically-based domains: Understanding and generalizing

obstacle cancellations. Artificial Intelligence.

Shavlik, J.W., DeJong, G.E, & Ross, B.H. (1987). Acquiring special case schemata in explanation-based learn-

ing. Proceedings of the Ninth Annual Conference of the Cognitive Science Society (pp. 351-355). Irvine, CA:

Morgan Kaufmann.

Shavlik, J.W., & Maclin, R. (1988). An approach to acquiring algorithms by observing expert behavior. Pro-

ceedings of the AAA1-88 Workshop on Automating Software Design (pp. 172-181). St. Paul, MN.

Shell, P., & Carbonell, J.G. (1989). Towards a general framework for composing disjunctive and iterative macro-

operators. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp. 596-602).

Detroit, MI: Morgan Kaufmann.

Smith, D.E., & Genesereth, M.R. (1985). Ordering conjunctive queries. Artificial Intelligence, 26, 171-215.

Smith, D.R. (1984). The synthesis of Lisp programs from examples: A survey. In A. Biermann, G. Guiho, and

Y. Kodratoff, (Eds.), Automatic program construction techniques. New York: MacMillan.

Summers, P.D. (1977). A methodology for Lisp program construction from examples. Journal of the Association

for Computing Machinery, 24, 161-175.

Weld, D.S. (1986). The use of aggregation in casual simulation. Artificial Intelligence, 30, 1-34.

