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Abstract. In explanation-based learning, a specific problem's solution is generalized into a form that can be 

later used to solve conceptually similar problems. Most research in explanation-based learning involves relaxing 
constraints on the variables in the explanation of a specific example, rather than generalizing the graphical struc- 

ture of the explanation itself. However, this precludes the acquisition of concepts where an iterative or recursive 

process is implicitly represented in the explanation by a fixed number of applications. This paper presents an 

algorithm that generalizes explanation structures and reports empirical results that demonstrate the value of ac- 

quiring recursive and iterative concepts. The BAGGER2 algorithm learns recursive and iterative concepts, integrates 

results from multiple examples, and extracts useful subconcepts during generalization. On problems where learn- 

ing a recursive rule is not appropriate, the system produces the same result as standard explanation-based methods. 

Applying the learned recursive rules only requires a minor extension to a Pl~Oeor-like problem solver, namely, 

the ability to explicitly call a specific rule. Empirical studies demonstrate that generalizing the structure of explan- 

ations helps avoid the recently reported negative effects of learning. 

Keywords. Explanation-based generalization, generalizing explanation structures, generalizing to N, generaliz- 

ing number, utility of learning, operationality versus generality. 

1. Introduct ion 

Many real-world concepts involve an  indefinite n u m b e r  of components ,  and many real- 

world plans involve an u n b o u n d ed  n u m b e r  of operations.  For  example, physical laws such 

as m o m e n t u m  and energy conservat ion apply to arbi t rary  numbers  of objects, construct ing 

towers of blocks requires an arbi trary n u m b e r  of repeated stacking actions, and setting a 

table involves places for differing number s  of  guests. However, any specific example of 

such concepts wil l  only  conta in  a fixed n u m b e r  of act ions or components .  Systems that 

learn from examples must  be  able  to detect and correct ly general ize repeated port ions of 

their t raining instances.  In  some cases, the n u m b e r  of repeti t ions itself should be the sub- 

ject  of  general izat ion;  in  others it is inappropria te  to alter the n u m b e r  of  repetitions. 

Explanat ion-based  learning (EBL) [DeJong & Mooney,  1986; Mitchell ,  Keller, & Kedar-  

Cabell i ,  1986] provides an approach to this issue. In this type of learning,  abstracting the 

solution to a specific problem produces a general solution applicable to conceptually similar 

problems. The generalization process is driven by the explanation of why the specific solution 

works. Knowledge  about  the domain  lets a learner  develop and then general ize this ex- 

planat ion.  The explanat ion of repeated por t ions  of a solut ion dictates when  it is valid and 

proper  to general ize  the n u m b e r  of t imes they occur. 
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This paper addresses the important issue in EBL of genera l i z ing  to N [Cheng & Car- 

bonell, 1986; Cohen, 1988; Prieditis, 1986; Riddle, 1989; Shavlik, in press; Shavlik & 

DeJong, 1985, 1987; Shell & Carbonell, 1989]. This involves generalizing such things as 

the number of entities involved in a concept or the number of times some action is per- 

formed. Previous research on explanation-based learning has largely ignored the generaliza- 

tion of number. Instead, it has focused on changing constants into variables and determin- 

ing the general constraints on those variables without significantly altering the underlying 

graphical structure of the explanation. However, this precludes acquisition of concepts in 

which a general iterative or recursive process is implicitly represented by a fixed number 

of applications in the specific problem's explanation. A system that possesses the ability 

to generalize the graphical structure of explanations, adding additional applications of in- 

ference rules where appropriate, can learn recursive and iterative concepts from a specific 

example. This article presents such a system. 

To see the need for generalizing explanation structures, consider the LEAP system [Mit- 

chell, Mahadevan, & Steinberg, 1985], an early application of explanation-based learning. 

The system observes an example of using NOR gates to compute the Boolean AND of two 

OR'S, and it discovers that the technique generalizes to computing the Boolean AND of any 

two inverted Boolean functions. However, LEAP cannot generalize this technique to let it 

construct the AND of an arbitrary number of inverted Boolean functions using a multi-input 

OR gate. The system cannot do this even if its initial background knowledge includes the 

general version of DeMorgan's Law and the concept of multi-input nOR gates. Generaliz- 

ing the number of functions requires alteration of the original example's explanation. 

Ellman's [1985] system also illustrates the need for generalizing number in explanation- 

based learning. From an example of a four-bit circular shift registe~ his system constructs 

a generalized design for an arbitrary four-bit permutation register, but again, it cannot pro- 

duce a design for an N-bit circular shift register. As Ellman points out, such generaliza- 

tion, though desirable, cannot be done using the technique of changing constants to variables. 

Repetition of an action is not a sufficient condition for generalization to N to be appropriate. 

For instance, generalizing to N is necessary if one observes a previously unknown method 

of moving an obstructed block, but not when one sees a toy wagon being built for the first 

time. The initial states of these two problems appear in Figure 1. Suppose a learning system 

observes an expert achieving the desired states, and consider what general concept should 

be acquired in each case. In the first example, the expert wishes to use a robot manipulator 

to move a block that has four other blocks stacked in a tower on top of it. The manipulator 
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Figure 1. Initial states for two sample problems. 
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can pick up only one block at a time. The expert's solution is to move each of the four 

blocks in turn to some other location. After the underlying block has been cleared, it is 

moved. In the second example, the expert wishes to construct a movable rectangular plat- 

form, one that is stable while supporting any load whose center of mass is over the plat- 

form. Given the platform, two axles, and four wheels, the expert's solution is to first attach 

each of the axles to the platform, then to select each of the four wheels in turn and mount 

it on an axle protrusion. 

This comparison illustrates an important problem in explanation-based learning. 

Generalizing the block-unstacking example should produce a plan for unstacking any number 

of obstructing blocks, not just four as observed. However, in the wagon-building example 

the number four should not be generalized. It makes no difference whether the system 

experiences a pile of five, six, or 100 wheels, because exactly four wheels are needed to 

fulfill the functional requirements of a stable wagon. 

Standard explanation-based learning algorithms [for example, Fikes, Hart, & Nilsson, 

1972; Hirsh, 1987; Kedar-Cabelli & McCarty, 1987; Mooney & Bennett, 1986] and similar 

algorithms for chunking [Laird, Rosenbloom, & Newell, 1986] cannot treat these cases 

differently. These methods, possibly after pruning the explanation to eliminate irrelevant 

parts, replace constants with constrained variables. They cannot significantly augment the 

explanation during generalization. Thus, the building-a-wagon type of concept will be cor- 

rectly acquired but the unstacking-to-move concept will be undergeneralized. Their ac- 

quired schema will have generalized the identity of the blocks so that the target block need 

not be occluded by the same four blocks as in the example. Thus, any four obstructing 

blocks can be unstacked, but there must be exactly four blocks. 1 Unstacking five or more 

blocks is beyond the scope of the acquired concept. ~, 

Of course, one could simply define the scope of EBL-type systems to exclude the 

unstacking-to-move concept and similar ones, but this would be a mistake for three reasons. 

First, the need for augmenting explanations is ubiquitous; many real-world domains manifest 

it in one form or another. Second, if  one simply defines the problem away, the resulting 

system could never guarantee that any of its concepts were as general as they should be. 

Even when such a system correctly constructed a concept like the building-a-wagon schema, 

it could not know that it had generalized properly. The system could not tell which con- 

cepts fell within its scope and which did not. Third, there is recent psychological evidence 

[Ahn, Mooney, Brewer, & DeJong, 1987] that people can generalize number on the basis 

of one example. 

One may argue that the fault for not properly generalizing lies with the explanation module. 

If  the explainer used a vocabulary involving recursion, then it might not be necessary to 

alter the graphical structure of the explanation. However, such an approach places a much 

larger burden on the explanation module, as well as on the domain theory writer. Con- 

structing explanations is a demanding, often intractable, task [Mitchell et al., 1986]. 

Generalization is more focused and less computationally intensive; hence it makes sense 

to shift as much of the burden of learning onto this module. I f  they are to scale to larger 

problems, EBL systems must not expect the explanation module to do more than narrowly 

explain the solution to the specific problem at hand. It is the generalization module's respon- 

sibility to determine the breadth of a solution's applicability. 
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Observations of repeated rule or operator applications indicate that generalizing the 

number of rules in the explanation may be appropriate. However, such observations alone 

are insufficient. Number generalization is desirable only if there exists a certain recursive 

structural pattern, in which each application achieves preconditions for the next. In stack- 

ing blocks, for example, the same sort of repositioning of blocks occurs repeatedly, each 

building on the last. This article adopts the vocabulary of predicate calculus to investigate 

this notion of structural recursion. The desired form of recursion is manifested as repeated 

application of inference rules in such a manner that a portion of each consequent is used 

to satisfy some of the antecedents of the next application. This means that number generaliza- 

tion will not occur solely because some rule appears repeatedly in an explanation. Instead, 

the repetitions must be in a goal-subgoal relationship. 

Generalizing number, like more traditional generalization in explanation-based learn- 

ing, results in the acquisition of a new inference rule. Unlike traditional methods, it generates 

a rule that describes the situation after one has made an indefinite number of world changes 

or other inferences. Each such rule subsumes a potentially infinite class of rules that stan- 

dard explanation-based generalization techniques would acquire. Thus, number-generalized 

rules can dramatically improve storage efficiency, increase the expressive power of the 

system, and, as shown later, improve the system's performance efficiency. 

The following section presents the BAGGER2 algorithm for generalizing the structure of 

explanations, illustrating the method with an example and empirically comparing its behavior 

to a standard EBL algorithm. Section 3 describes some extensions to the basic algorithm 

that increase the efficiency of the rules it acquires and presents empirical studies involving 

a second domain. The final sections discuss related work and describe several open research 

problems. 

2. The basic BAGGER2 algorithm 

Unlike most earlier approaches to explanation-based learning, the BAGGER2 algorithm 

(Building Augmented Generalizations by Generating Extended Recurrences) is capable of 

generalizing explanation structures. This system is a successor to an earlier structure- 

generalizing EBL system [Shavlik, in press; Shavlik & DeJong, 1987] that learned iterative 

concepts (manifested as linear chains of rule applications). Unlike its predecessor, BAGGER2 

is capable of acquiring recursive concepts involving arbitrary tree-like applications of rules; 

in addition, it can produce multiple generalizations to N from a single example and can 

integrate the results of multiple examples. 

This section describes the basic components of BAGGER2. The first subsection compares 

it to standard explanation-based generalization. The next presents algorithmic details and 

a correctness proof. Next, a circuit implementation task illustrates the algorithm. Follow- 

ing that appears a discussion of learning from multiple examples and a description of how 

learned rules are used during future problem solving. Finally, an empirical study 

demonstrates BAGGER2'S efficacy. 
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2.1. Comparison to standard explanation-based generalization 

BAGGER2 extends Mooney and Bennett's [1986] EGGS algorithm, a standard domain- 

independent method for explanation-based generalization. Both techniques assume that, 

in the course of solving a problem, the solver interconnects a collection of pieces of general 

knowledge (for example, inference rules, rewrite rules, or plan schemata), using unifica- 

tion to insure compatibility. The generalizers then produce an explanation structure [Mit- 

chell et al., 1986] from the specific problem's explanation. To build the explanation struc- 

ture, they first strip away the details of the specific problem and then replace each instan- 

tiated rule in the explanation with a copy of the original general rule. I f  the same general 

rule is used multiple times, its variables are renamed each time it appears in the explana- 

tion structure. This prevents spurious equalities among variables in the explanation structure. 

EGGS determines the most general unifier that lets the solver connect the explanation 

structure's general pieces of knowledge, and produces a new composite knowledge struc- 

ture which contains the unifications that must hold in order to combine the knowledge 

pieces in the given way. If  one assumes tree-structured explanations, then satisfaction of 

the leaf nodes implies that the root (goal) node will also be satisfied. There is no need 

to reason again about combining the pieces of knowledge to achieve the goal. The problem 

solver may have performed a substantial amount of work constructing the original solu- 

tion, following many unsuccessful paths and then backtracking. The new knowledge struc- 

ture can lead more rapidly to solutions in the future, because it avoids the unsuccessful 

paths and eliminates the need to rederive the intermediate conclusions. However, note that 

EGGS does not change the graphical structure of the explanation. If  some process is repeated 

three times in the specific problem's explanation, it will be repeated exactly three times 

in the rule EGGS acquires. 

In contrast, BAGGER2 generalizes explanation structures by looking for repeated, inter- 

dependent substructures in an explanation. Figure 2 schematically presents this process. 

Assume that in explaining how a goal is achieved, the same general subproblem (P) arises 
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Figure 2. Partitioning the structure of an explanation. 
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several times. The full explanation can be divided into several qualitatively different portions. 

First, there are the snbexplanations in which an instantiation of P is supported by the explan- 

ations of other instantiations of the general problem P. In the figure, these are the subexplana- 

tions marked 1 and 4. Second, there are the subexplanations in which an instantiation of 

P is explained without reference to another instantiation of itself. These are the subexplana- 

tions labeled 3, 5, and 6. Finally, there are the portions not involving P (subexplanation 2). 

The explanation in Figure 2 can be viewed as the trace of a recursive process. This is 

exactly what one must recognize in the explanation of a specific example in order to learn 

a recursive or  iterative concept. The generalizations of subexplanations 1 and 4 form the 

recursive portion of the concept, whereas the generalizations of subexplanations 3, 5, and 

6 produce the termination conditions. BA6CER2 partitions explanations into groups, as 

Figure 2 illustrates, from which it produces a new recursive concept. 

Roughly speaking, BAGGER2 produces the following two rules from Figure 2's explanation: 

goal ~ P A gen2. 

P ~ gen3 V gen5 V gen6 V recursive-gen~ V recursive-gen4.  

To achieve the goal, a problem solver must satisfy the recursive subgoal P and whatever 

general preconditions subexplanation 2 requires. The solver can satisfy P by satisfying the 

general preconditions of  any of the non-recursive or recursive subexplanations; the 

generalizations of the recursive subexplanations lead to recursive calls to subgoal P. 

2.2. Algori thmic details and correctness proo f  

Table 1 contains the ~6GE~ generalization algorithm. Although the algorithm appears here 

in a pseudo-code, the actual implementation is written in COMMON LISP. The remainder 

of this subsection elaborates the pseudo-code and presents a theorem about its correctness. 

The BAGGER2 approach assumes that explanations are derivation trees, which are struc- 

tures that could be produced by a Horn clause theorem prover such as eROLO6. The algorithm 

starts at the root of the explanation. If  the general consequent at the root appears elsewhere 

in the structure, then the method produces a recursive rule (called a recurrence) whose 

consequent is the root node. Otherwise, it collects the general version of  the root node's 

antecedents and produces a new rule. Since a recurrence can also arise within an explana- 

tion structure, this discussion will assume that the root node does not directly lead to a 

recurrence. 

As shown in Table 1, CollectGeneralAnteeedents produces sufficient requirements for 

the consequent of a rule to hold. Ignoring for a moment the possibility of  recurrences be- 

ing constructed, this entails traversing through the explanation structure and stopping at 

operational [Keller, 1988] nodes. Operational nodes are antecedents somehow judged to 

be easily satisfied, for example, because they are satisfied by a problem-specific fact. Along 

the way, the function collects all the unifications necessary to connect the rules in the ex- 

planation structure, thus eliminating the need to check these when the acquired rule is 

later applied. This portion of the algorithm is merely a rehash of ECCS. Hence, when 

BAGGER2 detects no potential generalizations to N, it produces the same result as E66S. 
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Table 1. The BAGGER2 generalization algorithm. 

Procedure BuildNewBAGGEP,2Rule(goal-node) /* Generalize the explanation headed by this node. */ 

Let consequent be the consequent of the goal node. 

If consequent is supported by a term that unifies with it, 

Then return ProduceRecurrence(goal-node), 

Else let antecedents be CollectGeneralAntecedents(goal-node) 

and return the rule consequent ~ antecedents. 

Procedure CollectGenemlAntecedents(node) l* Collect the generalized version of the antecedents of node. */ 

Let result be the empty set. 

For each direct antecedent of node, 

If it is operational or a call to a recurrence, 

Then conjunctively add it to result, 

Else if it is supported by a term that unifies with it, /* Found a potential recurrence. */ 

Then conjunctively add ProduceRecurrence(antecedent) to result, 

Else if it is directly supported by the consequent of a rule, 

Then: Let consequent be the rule's consequent. 

Conjunctively add to result the equalities that must hold to unify antecedent and consequent. 

Conjunctively add CollectGeneralAntecedents(consequent) to result. 

Else return false. /* Reached a non-operational leaf node. */ 

Return result. 

Procedure ProduceRecurreI~6e(node) /* Produce a BAGGER2 recurrence from the subexplanation headed by 

node. */ 

Let consequent he the root of node. 

Let antecedents be the empty set. 

For each terminal and recursive subproof supporting node: /* Look at alternative ways of satisfying 

node. */ 

Let subconsequent be the root of subproof. 

Let disjunct contain the equalities that must hold to unify subconsequent and node. 

Conjunctively add CollectGeneralAntecedents(subconsequenO to disjunct. 

Disjunctively add disjunct to antecedents. 

Construct the recurrence consequent ~- antecedents and return a call to it. 

M o r e  interesting events occur  when  BAGGER2 detects a potential  recurrence.  This  is done 

by seeing i f  a unif iable  vers ion  of  the general  antecedent  appears  in its own derivat ion (for 

example,  the P ' s  in F igure  2). I f  so, P r o d u c e R e c u r r e n c e  part i t ions the explanat ion struc- 

ture headed by the genera l  antecedent  into two types of  subexplanations:  t e rmina l  proofs ,  

where  a unif iable  vers ion  o f  the antecedent  does not  appear  in its proof,  and recurs ive  p ro -  

ofs, where  at least  one  does.  In the recurs ive  proofs, the funct ion replaces  the recurs ive  

subexplanat ions by a cal l  to the recur rence  being constructed.  These  calls contain the te rm 

that must  be unif ied with the consequent  of  the recurrence.  Hence ,  when  cutting out Figure  

2's subexplanat ion 1, the funct ion removes  subexplanat ions 3 and 4 and replaces them by 

a call  to the recur rence  whose  consequent  is P. Not ice  that the subexplanat ions are 

non-over lapping.  

Once  P r o d u c e R e c u r r e n c e  produces  the subexplanations,  i t  general izes  each by cal l ing 

BA6GEP,2. This  means  that another recurrence  may be found within a subexplanation, allow- 

ing mul t ip le  general iza t ions  to N in a single example.  W h e n  general iz ing the subexplana- 

tions, the funct ion col lects  the necessary  unif icat ions  be tween  the root  o f  the subexplana- 

t ion and the consequent  o f  the recur rence  under  construct ion.  Satisfying these unif icat ions 
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insures that the general solution in the subexplanation applies to the recurrence's conse- 

quent. The function disjunctively combines the generalizations of the subexplanations and 

produces a recurrence. 

Notice that, rather than only learning a single rule from an explanation, BAGGER2 also 

produces several useful subrules (the recurrences). The detection of recurrences provides 

a useful decomposition of  explanations. Because recurrences are separate entities from the 

rule produced for the full explanation, they support transfer of the results learned during 

one task to the performance of another, provided the two tasks involve common subtasks. 

This separation also supports learning from multiple examples. If  the system encounters 

a new method for satisfying the consequent of a recurrence, it can merge the new method 

with the previous disjuncts ? as discussed further in Section 2.4. 

Before BAGGER2 produces a new rule, it removes redundant antecedents and reorders the 

others to increase the efficiency of future retrievals. In recurrences, if an antecedent appears 

in every terminal disjunct, it can be removed from the recursive disjuncts, provided it is 

independent of the variables in the recurrence's consequent. Dropping them from the recur- 

sive disjuncts is valid because these antecedents will be checked when retrieval reaches 

a terminal disjunct. 

Assuming that explanations are logical proofs, the BAGGER2 algorithm can be proved cor- 

rect, as shown in the following theorem. 

THEOREM 1. The basic BAGGER2 algorithm is sound, in that the rules it learns will never 

derive anything that cannot be derived by the initial domain theory. 

Proof Consider the explanation in Figure 2. Basically, one must show that the algorithm prop- 

erly generalizes the subexplanations and that the method for combining subexplanations pre- 

serves soundness. Assume for the moment that there are no potential recurrences other than 

P within Figure 2's explanation. Since the E ~ S  algorithm has been proven sound [Mooney, 

in press], BA~ER2 will correctly generalize each of  the numbered subexplanations. The re- 

sult from subexplanation 2 is handled the same by BA~ER2 and EG~S; it will not be consid- 

ered further. Next, consider the recursive portion of the explanation. To derive the generalized 

goal, the uppermost P must be satisfied using the generalization of either a terminal or a 

recursive subproof. The soundness of a derivation using only a terminal proof follows directly 

from the proof for E66S and the fact that the algorithm maintains the unifications necessary 

to insure that the generalized consequent of a subexplanation matches P A derivation using 

a recursive proof must terminate by using the results of terminal proofs. Since these final 

derivation steps are sound, and soundness between steps is maintained by checking the 

necessary inter-step unifications, the soundness of recursive derivations follows inductively. 

The case for embedded recurrences also follows inductively. After partitioning an ex- 

planation there are no embedded P's in the subexplanations, since those at the leaves are 

converted to a recurrence call. Hence, each subdivision of the explanation reduces the 

number of potential recurrences. The deepest subexplanation contains only one recurrence, 

and BAGCER2 correctly generalizes it according to the argument in the previous paragraph. 

Encapsulating subexplanations are also correctly generalized, by induction. To see this, 

assume correctness for i levels of embedded recurrences. The argument in the previous 

paragraph can now be applied to demonstrate correctness for the level i+1. 
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2.3. A circuit implementation example 

As an example, consider the application of BAGGER2 in the domain of circuit implementa- 

tion. Examples in this simple domain, commonly used to illustrate EBL techniques, clearly 

show the weaknesses of standard EBL methods and demonstrate how BAGGER2 overcomes 

them. Replication of  structure is an important operation in the circuit domain. 

The rules in Table 2 determine how to implement a circuit depending on the types of  

gates available. PROLOG notation is used, except that leading question marks indicate 

variables. The term ImplementBy(?x, ?y) means that circuit ?y can be used to implement 

design ?x. Assuming one can use only AND and Nor gates, Figure 3 shows a circuit whose 

implementation requires repeated application of DeMorgan's Law. The rules in the table 

can be used to provide an explanation of how to accomplish this task. 

Table 2. Initial rules for the domain of circuit implementation. 

Rule 

ImplementBy(Not(Not(?x)),?y) 

ImplementBy(?x,?y). 

ImplementBy(Not(And(?x,?y)),Nand(?a,?b)) 

HaveNands A ImplementBy(?x,?a) A ImplementBy(?y,?b). 

ImplementBy(Not(?x), Nand(?y,1)) 

HaveNands A ImplementBy(?x,?y). 

ImplementBy(And(?x,?y), Nand(Nand(?a,?b),l)) 

HaveNands A ImplementBy(?x,?a) A ImplernentBy(?y,?b). 

ImplementBy(Not(?x),Not(?y)) 

HaveNots A ImplementBy(?x,?y). 

ImplementBy(Or(?x,?y),Or(?a,?b)) 

HaveOrs /x lmplementBy(?x,?a) A ImplementBy(?y,?b). 

ImplementBy(Or(?x,?y),Nand(?a,?b)) 

HaveNots A HaveNands A 

ImplementBy(Not(?x),?a) A ImplementBy(Not(?y),?b). 

ImplementBy(Not(Or(?x,?y)),And(?a,?b)) 
< . _  

HaveAnds A 

ImplementBy(Not(?x),?a) A ImplementBy(Not(?y),?b). 

ImplementBy(?wire,?wire) *- Wire(?wire). 

Description 

Can eliminate double negations. 

Can use nand's to implement 

negated ands. 

Can use nand's to implement 

?lOt'S. 

Can use nand's to implement 

and' s. 

Can use not's to implement if 

they are available. 

Can use or's to implement if 

they are available. 

A version of DeMorgan's Law. 

Alternative version of 

DeMorgan's Law. 

Wires are already implemented. 
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C>o-- 

Figure 3. A sample circuit design to be implemented using only AND gates. 

It is instructive to compare the behavior of EGGS and BAGGER2 on this problem. If  EGGS 

is applied to the resulIing explanation, the rule in Table 3 results. Notice that this rule 

not only requires a fixed number of inputs, but also a fixed topology, that of  Figure 3. 

Clearly the explanation structure needs to be generalized. The result produced by BAGGER2 

appears in Table 4. In this problem, the full explanation leads to a single recurrence, which 

involves four disjuncts. The first applies when only a single application of DeMorgan's 

Law is necessary, with AND gates being necessary if the resulting circuit is to be im- 

plemented. The remaining three disjuncts are recursive. The second and third disjuncts 

apply when one input is a wire, in which case the rule recurs on the other input. In the 

final disjunct, recursion is needed for both inputs. 

The notation in Tables 3 and 4 merits some discussion. For instance, the capitalized Or's, 

And's, and Not's refer to gates in the circuit domain; they are not part of the rule descrip- 

tion language. The matches operator unifies its two arguments. As an extension of PRO- 

LOG, direct calls to recurrences are permitted in order to satisfy a goal. Finally, BAGGER2 

renames the variables in recurrences; variables starting with V appear in the consequent, 

whereas those starting with E are local variables. 

Table 3. The rule acquired by ECrS for the circuit problem in Figure 3. 

ImplementedBy(Not(Or(Or(Or(Not(?G6), Not(?G9)), 

Or(Not(?G16), Or(Not(?G23), Not (?G26))))0 

Or(Or(Not(?G37), Not(?G40)), 

Not(?G43)))), 

And(And(And(?G6, ?G9), 

And(?G16, And( ?G23, ?G26))), 

And(And(?G37, ?G40) , 

?G43))) 

HaveAnds A Wire(?G43) A Wire(?G6) A Wire(?G9) A Wire(?G16) A 

Wire(?G37) A Wire(?G40) A Wire(?G23) A Wire(?G26). 
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Table 4. The recursive rule acquired by BAGGER2 for the circuit problem in Figure 3. 

To satisfy: ImplementBy(Not(Or(?vl, ?v2)),And(?v3, ?v4)) 
One of the following must hold: 

?vl matches Not(?v3) A ?v2 matches Not(?v4) A 

HaveAnds A Wire(?v3) A Wire(?v4). 
or 

?vl matches Or(?el, ?el2) A ?v2 matches Not(?v4) A 
?v3 matches And(?e3, ?e4) A Wire(?v4) A 
recursively satisfy ImplementBy(Not(Or(?el, ?e2)), And(?e3, ?e4)). 

o r  

?vl matches Not(?v3) A ?v2 matches Or(?el, ?e2) A 
?v4 matches And (?e3, ?e4) A Wire(?v3) A 
recursively satisfy ImplementBy(Not(Or(?el, ?e2)), And(?e3, ?e4)). 

or 
?vl matches Or(?el, ?e2) A ?v2 matches Or(?e3, ?e4) A 
?v3 matches And(?e5, ?e6) A ?v4 matches And(?e7, ?e8) A 

recursively satisfy ImplementBy(Not(Or(?el, ?e2)), And(?e5, ?e6)) A 
recursively satisfy ImplementBy(Not(Or(?e3, ?e4)), And(?e7, ?e8)). 

/* no more gates *t 

/* no gates on right */ 

/* no gates on left */ 

/* gates on both sides */ 

The rule BAGGER2 learns is a general version of  DeMorgan's  Law; it converts the nega- 

tion of an N-input OR gate  into an N-input AND gate. It applies to a much larger class of 

problems than does the rule learned by E ~ S .  Notice that the acquired recurrence does 

not refer to any of the initial rules. Thus, it is self-contained and is topologically similar 

to a recursive LISP function. The consequent specifies the parameters,  and the antecedents 

form something like a LISP conditional statement. This function is produced from a collec- 

tion of simple declarative PROLOC-like rules, which are called explicitly rather than deter- 

mining which rules in a large rule base unify with the current consequent. Hence, BAGGER2 

provides a way to transform a simple, but inefficient, logic program into another program 

stated in a more  efficient language. Shavlik and Maclin [1988] investigate the application 

of the approach to the problem of acquiring programs. Section 4 further discusses the rela- 

tionship between BAGGER2 and automatic programming. 

2.4 Learning  f r o m  mult iple examples 

As mentioned earlier, BAGGER2 is capable of learning from multiple examples. Recurrences 

are disjunctive subrules, and hence are prime candidates for enhancement during addi- 

tional learning. When generalization of a new explanation produces a basic recurrence that 

has the same consequent as a previous recurrence, the generalizer merges the disjuncts 

in the new recurrence with those of the existing one. As an illustration, assume that the 

training example in Figure 3 was simpler, and the second recursive case in Table 4 was 

not encountered. A future training example involving the missing case would be needed 

in order to completely learn Table 4's general version of DeMorgan's  Law. 

Commonly  in explanation-based learning, additional examples lead to disjuncts in ac- 

quired rules [for example, Cohen, 1988; Kedar-Cabell i ,  1986; Minton, 1989]. There are 

two important aspects of  BAGGER2'S approach to learning from multiple examples. One, the 

system need not learn disjuncts during the achievement of the same goal. For instance, 
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a technique learned during the building of an arch can improve what was previously learned 

about building towers. Two, BAGGER2 does not require the explanation from which the ex- 

isting recurrence arose, so there is no need to save old explanations. Hence, learning can 

proceed incrementally without requiring full memory of all past experiences. 

Learning from multiple examples produces much the same effect as initially learning 

from a more complicated example. Since BAGGER2 breaks up explanations and merges 

together similar generalizations (see Figure 2), in terms of generalization it does not mat- 

ter if the subexplanations come from one example or many. However, there is an advantage 

of learning from multiple examples in explanation-based learning. A complicated concept 

can be acquired by observing several simple versions of the concept. This can greatly reduce 

the load on the agent that produces the training examples and also simplifies the explana- 

tion process. Looking at this a different way, if a rule is initially incompletely learned because 

a training example is too simplistic, later experiences can refine the rule. 

2.5. Problem solving with acquired rules 

Later sections of this article empirically compare the performance of EGGS and BAGGER2 

in two sample domains. This section presents how they apply their learned rules to new 

problems. 

The basic problem solver is a COMMON LISP implementation of PROLOG, which satisfies 

goals using depth-first backward chaining. Besides returning variable bindings, it returns 

a proof tree that explains how it satisfied the goal. BAGGER2'S recurrences require a slight 

extension to PROLOG, namely the ability to explicitly call a specific rule. When it calls 

a particular rule to satisfy a given subgoal, the problem solver applies no other rules to 

that subgoal upon backtracking. To avoid wasted effort, when first calling a recurrence 

the solver checks those terms in the recurrence's terminal disjuncts that are independent 

of the variables in the recurrence's consequent. Such antecedents are unaffected by calls 

to the recurrence, and if they cannot be satisfied the problem solver does not call the 

recurrence. 

Mooney [1989] has empirically shown, for depth-first problem solvers, that allowing ar- 

bitrary chaining of learned rules can lead to worse performance than not learning at all. 

As a result, the problem solver never combines learned rules when trying to solve a prob- 

lem. To be successful, a learned rule must solve a problem completely by itself. 

Situation calculus planning is used in a second sample domain (described later). One 

potential problem with situation calculus in a depth-first problem solver is the possibility 

of infinite regression. The solver can hypothesize an unbounded number of potential in- 

termediate states when trying to achieve a goal. To avoid this, it places an upper bound 

on the number of actions that can appear in the situation calculus plans it produces. 

Specifically, in the blocks world domain the depth-first problem solver limits its search 

to plans involving no more actions than there are blocks in the current scene. 

The EGGS and BAGGER2 systems index rules acquired during training according to the goal 

each rule achieves. When multiple rules achieve the same goal, the order they are applied 

during problem solving depends on the learner. EGGS organizes situation calculus rules 

according to the number of actions they specify. When facing a new problem, it first tries 

to apply the rules that involve one action; if this fails, it tries rules involving two actions, 
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and so forth. Shavlik [in press] demonstrates the efficiency of this strategy, which is similar 

to iterative deepening [Korf, 1985]; it works well because the effort required to produce 

a plan can depend exponentially on the number of actions involved. For rules involving 

the same number of actions or not expressed in situation calculus, EGGS tries rules in the 

order it learned them, while BAGGER2 tries the most recently learned rules first. Shavlik 

[in press] demonstrates these strategies are preferable for each system when problems are 

randomly generated, for the following reasons. Probabilistically, earlier rules result from 

more typical examples, while later rules result from examples that are less likely to occur 

again soon. For EGGS, it is best to first try the rules that result from the most probable 

situations. However, BAGGER2 often learns more from the more complicated, though less 

likely, later examples and the acquired rule usually covers the simpler, previous examples. 

2.6. Empirical studies of  the basic algorithm 

One may question the desirability of generalizing explanation structures. Such learning leads 

to more general rules, but because the resulting rules are more complicated, applying them 

entails more work. This question involves the relationship between the operationality and 

generality of acquired rules [DeJong & Mooney, 1986; Keller, 1988; Mitchell et al., 1986; 

Segre, 1987; Shavlik, DeJong, & Ross, 1987]. Experiments reported in this section investigate 

whether it is better to learn a more general recursive rule or better to individually learn 

the subsumed rules as they are needed. A secondary question focuses on whether 

explanation-based learning is worthwhile at all. As more is learned, the process might slow 

down a problem solver that uses the learned concepts [Fikes et al., 1972; Minton, 1988]. 

Using the circuit implementation rules, this study compares three systems: BAGGER2, 

EGGS, and NO-LEARN--a system that does not learn any new rules. All three systems use 

the backward-chaining problem solver described in the previous section. 

The experimental hypothesis of the first experiment is that BAGGER2 requires less train- 

ing than EGGS to acquire a concept; for a given amount of training, it will be more likely 

to solve a new problem. The independent variables in this study are the generalization 

algorithm used and the amount of training, while the dependent variable is the percentage 

of novel examples solved using only a learned rule. In this study, problems consisted of 

randomly generated designs of eight-input OR gates using binary OR'S. The final output 

was negated; Figure 3 contains a sample design. As described in Section 2.1, the task was 

to implement this gate using only NOr and binary AND gates. The first step in an experimental 

run was to produce and save ten randomly-generated test problems. Next, 250 randomly- 

generated circuit designs were produced, and the two learners implemented them. If  they 

used more than one rule to do so, they generalized the resulting explanation and saved 

the result. Periodically, their performance was measured on the ten test problems, during 

which learning was turned off. There were ten experimental runs, each with a different 

initial random number; hence each point in this study reflects the mean of 100 measurements. 

Figure 4 presents the percentage of test problems solved using only each system's ac- 

quired rules. Clearly, BAGGER2 needs significantly fewer training examples to learn the con- 

cept than does EGGS. The reason is that BAGGER2 learns a rule that encodes a general 

strategy for repeatedly applying DeMorgan's Law to implement any network of binary OR 

gates, while EGGS learns separate rules for each possible layout. EGGS can only apply its 
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Figure 4. New circuit problems solved with acquired rules as a function of amount of training. 

learned rules to new problems that have the same topology as a previously seen one. This 

illustrates one of  the strengths of a system that restructures explanations; since it recognizes 

repeated portions of explanations and generalizes the number of repetitions, it can require 

less training to acquire a concept. 

Being able to apply learned rules to solve new problems is of little use if doing so re- 

quires a substantial amount of effort. The second study investigates the speedup achieved 

by using the explanation-based systems. This study's independent variables are the identity 

of  the system and the size of the space of possible problems. The dependent variable is 

the average problem-solving time following learning. The primary hypothesis is that per- 

forming explanation-based learning is better than solving all problems by only resorting 

to the initial domain rules. The secondary hypothesis is that BAGGER2'S learned rules pro- 

duce solutions faster than EGG'S rules. It is possible that the added complexity of recursive 

rules leads to longer solution times. Although EGGS must learn more rules than BAGGER2. 

to cover a concept involving recursion, a problem solver may be able to more efficiently 

search through these non-recursive rules for a solution. 

To examine the hypothesis, each learning system was trained on OR circuit problems of var- 

ious sizes (from five to ten inputs).3 For each problem size, 1000 random circuits constituted 

the training set. Following training, all three systems attempted to solve the same ten test 

problems, with learning turned off. This was repeated ten times, each time with different test 

problems, so again the plotted points represent the means of 100 measurements. EGGS organ- 

ized its rules according to the number of inputs involved (that is, in six groups) and only 

checked possibly relevant rules during problem solving. For EGGS, only the time spent on 

problems solved by a learned rule was recorded. Both this and the assumption about rule 

organization favor EGGS over BAGGER2. Figure 5 contains the mean solution time on the 

test problems. Learning recursive rules is always better than not learning at all. However, 

there are several places where EGGS' performance curve crosses another system's curve. 

When there are a small number of possible problems, EGGS does better than BAGGER, but 

it soon becomes worthwhile to learn recursive rules. Note that after awhile, it would be 

better to not learn at all than to use EGGS. The locations in Figure 5 where curves cross 

merit discussion. 
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Figure 5. M e a n  so lu t ion  t ime  for  c i rcui t  imp lemen ta t i on  as a func t ion  o f  p r o b l e m  size. 

Explanation-based generalizers produce composite rules that capture useful combinations 

of other rules. Using the resulting generalization, a problem solver can solve many prob- 

lems more quickly than without it; the solver need not spend time rediscovering the suc- 

cessful combination. However, as a system acquires more new rules, its problem-solving 

time can increase, because it may spend substantial time trying to apply learned rules that 

appear promising, but ultimately fail [Minton, 1988]. This explains why EGGS performs 

worse than NO-LEARN when the space of possible circuit designs i~ large; the solver must 

try too many promising but unfruitful rules before succeeding. Because BA~CER2 can cap- 

ture a concept in a single rule, a solver need not waste time searching through a collection 

of closely related rules looking for an appropriate one; for this reason BAOOE~ helps avoid 

the negative effects of  learning recently reported by Minton. 

The results in Figure 5 can be better understood by considering the difference between 

the rules EGGS learns and those BAGGER2 learns. One can view the rules EGGS learns as 

fixed-sized templates, each of  which contains a fixed number of variables to bind. Prob- 

lem solving with these rules involves matching their preconditions to the current task; if 

the problem is similar to a previous one, the solver can apply the generalized version of 

the previous solution. It does not produce new solutions, but only determines if it can reuse 

an old one. Conversely, BAC, CER2 learns a technique for generating new solutions, in which 

an arbitrary number of variables can be bound. By analyzing an explanation, it extracts 

an algorithm reflected in a specific problem's solution. This generative capability means 

it can express an unbounded number of templates, while still maintaining the efficiencies 

obtained by performing explanation-based learning. 

In summary, these studies demonstrate that a structure-generalizing EBL algorithm such 

as BAGGER2 can learn rules that are both more general and more efficient than the corres- 

ponding ones EGGS learns. The ability to scale to larger problems is an important property 

of any learning system; as the space of possible problems grows, BAOOE~'S edge over EGOS 

increases. 
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3. Improving the efficiency of the rules BAGGER2 learns 

The basic BAGGER2 algorithm produces valid generalizations of specific solutions, but the re- 

suits produced can be often made more efficient without any loss of generality. This section 

presents three techniques for improving the efficiency of rules learned by the basic approach. 

These extensions to the basic method are particularly useful for generalizing actions in 

plans. Often portions of plans are iterative; a set of actions is repeated until a subgoal is 

achieved. The presented techniques can improve the efficiency of inherently iterative tasks; 

the blocks-world task of building towers of various heights illustrates them. An appropriate 

plan is to stack clear blocks until reaching the desired height. Unlike the circuit implemen- 

tation solution, this is inherently an iterative strategy, in the sense that an action (or set 

of actions) is repeated until achieving some target. In addition, the circuit domain primarily 

involves repeated components, while building towers primarily involves repeated actions. 

After describing the representation used for the tower-building task, this section uses 

tower building to illustrate the extensions. A second empirical study evaluates the exten- 

sions and compares BAGGER2, EGGS, and NO-LEARN in the blocks world. 

3.1. A tower-building task 

The situation calculus [McCarthy, 1963] is used in this section's example to reason about 

actions, in the style of Green [1969]. In this formalism, predicates and functions whose 

values may change over time possess an extra argument that indicates the situation in which 

they are being evaluated. For example, rather than using the predicate On(x,y) to indicate 

that x is on y, the predicate On(x,y,s) is used to indicate that x is on y in situation s. In 

this framework, operators are represented as functions that map from one situation to another 

situation. For instance, the term Do(Transfer(A,B,sO)) represents the situation that results 

from the initial situation upon transferring block A to block B. Problem solving involves 

transforming situations until a path from the initial situation to the goal situation is found. 

As an example, consider the following situation calculus rule: 

On(?x, ?y, Do(Transfer(?x, ?y), ?s)) ~- AchievableState(Do(Transfer(?x, ?y), ?s)). 

This rule formalizes one effect of a transfer. It says that if one can legally achieve the 

situation represented by the term Do( Transfer( ?x, ?y), ?s)), then in this situation ?x is on 

?y. A separate rule defines legal transfers. Tables 5 and 6 contain the rules for the tower- 

building domain. 

Two tyes of inference rules are used: intersituational rules, which specify attributes that 

a new situation will have after application of a particular operator, and intrasituational 
rules, which embellish a problem solver's knowledge of a situation by specifying addi- 

tional conclusions that can be drawn within that situation. Reasoning within a situation 

is assumed to be operational, while reasoning between situations is not, because hypothesiz- 

ing intermediary states can proceed without bound. The learning task is to produce new 

rules whose preconditions can be checked by reasoning only about the initial situation, 

ignoring the details of all the intermediate situations traversed on the way to the goal situa- 

tion. Because intrasituational reasoning is considered operational, subproofs that only in- 

volve intrasituational rules are ignored during generalization. 
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Table 5. Some initial rules for the blocks domain. 

Rule Description 

AchievableState(S0). The initial state is always achievable. A state is 

achievable if legal application of some sequence of 
operators can lead to it. 

AchievableState(Do(Transfer(?x,?y),?s)) If  the top of an object is clear in some achievable state and 
'-- there is free space on another object, then the first object 

AchievableState(?s) A Liftable(?x,?s) A can be moved from its present location to the new loca- 

FreeSpace(?y,?s) A ?x ~ ?y. tion. However, an object cannot be moved onto itself. 

Tower(?topObj ,?yMin,?yMax,?xMin,?xMax,?s) 
4 - -  

AchievableState(?s) A Clear(?topObj,?s) A 

Xpos(?topObj ,?xPos,?s) A 

?xPos ----- ?xMin A ?xPos _ ?xMax A 

Ypos(?topObj ,?y Pos,?s) A 
?yPos _> ?yMin A ?yPos _< ?yMax. 

A tower exists if a clear block is located within this 

region in a valid state. 

On(?x,?y, Do(Transfer(?x,?y),?s)) After an object is moved, it is on the destination 

object. 
AchievableState(Do(Transfer(?x,?y),?s)). 

On(?a,?b,Do(Transfer(?x,?y),?s)) If  not moved, an object stays where it is (frame 

axiom). 

On(?a,?b,?s) A ?a ~ ?x. 

Clear(?x,Do(Transfer(?x,?y),?s)) After an object is moved, it is clear. 

AchievableState(Do(Transfer(?x,?y),?s)). 

Clear(?z,Do(Transfer(?x,?y),?s)) After an object is moved, the previously supporting ob- 

ject is clear, if it is a block and the moved object is 
On(?x,?z,?s) A Block(?z) A ?z ¢ ?y. not placed back on top of it. 

Clear(?a,Do(Transfer(?x,?y),?s)) If  nothing is placed on it, an object stays clear. 

Clear(?a,?s) A ?a ;~ ?y. 

Table 6 Remaining initial rules for the blocks domain. 

Rule Description 

Xpos(?x,?xpos,Do(Transfer(?x,?y),?s)) After a transfer, the object moved is centered (in the X- 

direction) on the object upon which it is placed. 
Xpos(?y,?xpos,?s). 

Ypos(?x,?ypos2,Do(Transfer(?x,?y),?s)) After a transfer, the Y-position of the object moved is 

*-- determined by adding its height to the Y-position of the 
Ypos(?y,?ypos,?s) A Height(?x,?hx) A object upon which it is placed. 

?x ~ ?y A ?ypos2 = (?hx + ?ypos). 

Xpos(?a,?xpos,Do(Transfer(?x,?y),?s)) All blocks, other than the one moved, remain in the same 
X-position after a transfer (frame axiom). 

Xpos(?z,?xpos,?s) A ?a ¢ ?x. 

Ypos(?a,?xpos,Do(Tmnsfer(?x,?y),?s)) All blocks, other than the one moved, remain in the same 
Y-position after a transfer (frame axiom). 

Ypos(?a,?xpos,?s) A ?a ~ ?x. 

FreeSpace(?x,?s) I f  an object is clear and has a fiat top, then space is 
'-- available. 

Clear(?x,?s) /', FlatTop(?x). 

Liftable(?x,?s) ,-- Clear(?x,?s) A Block(?x). A block is liftable if it is clear. 

FlatTop(?x) *-- Box(?x). Boxes have flat tops. 

FlatTop(?x) ,-- Table(?x). Tables have flat tops. 
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Situation calculus is appealing because it expresses planning in a deductive framework. 

All problem-solving knowledge is explicit and inspectable by the learner. For example, 

in Green's formulation frame axioms are explicit rules, unlike in a STRIPS planner. Because 

situation calculus is deductive, the circuit domain's problem solver can be used. 

In the blocks world, an initial situation is created by randomly generating N blocks on 

a table. All possible configurations, from all N stacked to all N directly on the table, are 

possible. Once it places the blocks, the problem generator selects a goal height, centered 

above a second table. The goal height randomly ranges from one to N block heights, and 

the goal is to produce a plan such that a block is at this location. The goal is expressed 

by the following conjunctive rule: 

Tower(?topObj, ?yMin, ?yMax, ?xMin, 

AchievableState(?s) A Clear(?topObj, 

Xpos(?topObj, ?xPos, ?s) A ?xPos >_ 

Ypos(?topObj, ?yPos, ?s) /x ?yPos _ 

?xMax, ?s) 

?s) A 

?xMin A ?xPos -< ?xMax A 

?yMin A ?yPos -< ?yMax. 

This rule says that one has a tower at a given location in some state, provided there is 

a clear block in this region and the state can be legally reached. As previously mentioned, 

the problem solver limits plans to at most N actions to prevent unbounded back chaining. 

Using the rules appearing in Tables 5 and 6, the solver can produce a plan for satisfying 

the goal, starting from the specific situation in Figure 6. This plan stacks the three blocks 

that are clear in the initial situation (Blocks B, C, and E) to build the desired tower. 

,'-- - -7  
I ( 

I ] 

L . . . .  

B E 

A C D 

l tablel ] I table2 ] 

Figure 6. The initial state for a sample tower-building task. 

By generalizing the resulting explanation, the basic BAGGER2 algorithm produces the rule 

in Table 7. Notice that, unlike the rule that EGGS would produce, it is not limited to cases 

in which three blocks need be moved. Also notice that the recurrences only test predicates 

that are either situation-independent or that refer to the initial situation, sO. The main rule 

says that to build a tower, one should first find an achievable situation, then see if the final 

block moved is at the goal location. This generate-and-test approach leads to wasted work, 

as demonstrated later; it would be better if the problem solver started the tower at an ac- 

ceptable horizontal position and checked the tower's height while producing a valid final 

state. The next section describes how one can produce a rule that embodies this strategy. 



ACQUIRING RECURSIVE AND ITERATIVE CONCEPTS 57 

Table 7. Rules learned by the basic BAGGER2 algorithm in the blocks world. 

Rule Tower-2: /* Build a tower of arbitrary height. */ 

Tower(?vl, ?v2, ?v3, ?v4, ?v5, Do(Transfer(?vl, ?v6), ?v7)) 

call recurrence AchievableState-1 to satisfy AchievableState(Do(Transfer(?vl, ?v6), ?v7)) A 

call recurrence Xpos-1 to satisfy Xpos(?vl, ?v8, Do(Transfer(?vl, ?v6), ?v7)) A 

?v8 ___ ?v4 A ?v8 < ?v5 A 

call recurrence Ypos-1 to satisfy Ypos(?vl, ?v9, Do(Transfer(?vl, ?v6), ?v7)) A 

?v9 _> ?v2 A ?v9 < ?v3. 

Recurrence AchievableState-l: /* Reach legal states by moving clear blocks. */ 

To satisfy: AchievableState(Do(Transfer(?vl, ?v2, ?v3)) 

One of the following must hold: 

?v3 matches sO A Liftable(?vl, sO) A FreeSpace(?v2, sO) A ?vl ~ ?v2. 

?v3 matches Do(Transfer(?v2, ?el), ?e2) A recursively satisfy AchievableState(?v3) A 

call recurrence Clear-1 to satisfy Clear(?vl, ?v3) A Block(?vl) A FlatTop(?v2) A ?vl ~ ?v2. 

Recurrence Xpos-l: /* Determine the x-position of the last block moved by finding the first supporting object. */ 

To satisfy: Xpos(?vl, ?v2, Do(Transfer(?vl, ?v3), ?v4)) 

One of the following must hold: 

?v4 matches sO A Xpos(?v3, ?v2, sO). 

or 

?v4 matches Do(Transfer(?v3, ?el,), ?e2) A recursively satisfy Xpos(?v3, ?v2, ?v4). 

Recurrence Ypos-l: /* Determine the y-position of a block by summing heights. */ 

To satisfy: Ypos(?vl, ?v2, Do(Transfer(?vl, ?v3), ?v4)) 

One of the following must hold: 

?v4 matches sO A Ypos(?v3, ?e2, sO) A Height(?vl, ?el) A ?vl ;~ ?v3 A ?v2 = ?el + ?e2. 

or 

?v4 matches Do(Transfer(?v3, ?el), ?e2) A recursively satisfy Ypos(?v3, ?e4, ?v4) A 

Height(?vl, ?e3) A ?vl ~ ?v3 A ?v2 = ?e3 + ?e4. 

Recurrence Clear-l: /* See if a block is clear due to nothing being placed on it. */ 

To satisfy: Clear(?vl, Do(Transfer(?v2, ?v3), ?v4)) 

One of the following must hoM: 

?v4 matches sO A Clear(?vl, sO) A ?vl ~ ?v3. 

or 

?v4 matches Do(Transfer(?el, ?e2), ?e3) A recursively satisfy Clear(?vl, ?v4) A ?vl ~ ?v3. 

3.2. Three  e x t e n s i o n s  to the  bas ic  a l g o r i t h m  

T h e  e x t e n d e d  BAGGZP,2 a l g o r i t h m  ca r r i e s  ou t  t h r e e  add i t iona l  p r o c e s s i n g  s teps ;  each  o f  t h e s e  

c a n  i m p r o v e  t h e  e f f i c i e n c y  o f  t he  a c q u i r e d  ru le ,  as  S e c t i o n  3.3 d e m o n s t r a t e s .  Table  8 c o n -  

ra ins  t h e  r e su l t s  o f  a p p l y i n g  t h e  e x t e n s i o n s  o f  B A ~ E ~  to t he  ru l e s  in Table  7. T h i s  s e c t i o n  

d e s c r i b e s  t h e  t h r e e  e x t e n s i o n s  a n d  e x p l a i n s  h o w  they  p r o d u c e  the  r e su l t s  in  Table  8. 

T h e  f i r s t  e x t e n s i o n  a p p l i e s  w h e n  m u l t i p l e  ca l l s  to r e c u r r e n c e s  a p p e a r  in  t h e  a n t e c e d e n t s  

o f  a r u l e  (as  in t he  f i r s t  r u l e  o f  Table  7).  I f  t h e s e  r e c u r r e n c e s  c a n  b e  a s c e r t a i n e d  to o c c u r  

t o g e t h e r  in a c o m p a t i b l e  way, they  c a n  b e  m e r g e d ,  a n d  t h e  g e n e r a l i z e r  c a n  r e p l a c e  t h e  
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Table 8. Rules learned by the extended BAGGER2 algorithm in the blocks world. 

Rule Tower-3: /* Build a tower of arbitrary height. */ 

Tower(?vl, ?v2, ?v3, ?v4, ?v5, Do(Transfer(?vl, ?v6), ?v7)) 
4--- 

call recurrence AchievableState-Xpos-Ypos-1 to satisfy 

AND(AchievableState(Do(Transfer(?vl, ?v6), ?v7)), 

Xpos(?vl, ?gl, Do(Transfer(?vl, ?v6), ?v7)), 

Ypos(?vl, ?v9, Do(Transfer(?vl, ?v6), ?v7)), 

?gl _> ?v4, ?gl _< ?v5) A 

?v9 _> ?v2 A ?v9 < ?v3. 

Forward Recurrence AchievableState-Xpos-Ypos-l: /* Legally stack blocks and keep track of their positions. */ 

To satisfy: AND (AchievableState(Do(Transfer(?vl, ?v3), ?v4)), 

Xpos(?vl, ?gl, Do(Transfer(?vl, ?v3), ?v4)), 

Ypos(?vl, ?v2, Do(Transfer(?vl, ?v3), ?v4)), 

)gl __. ?g2, ?gl < ?g3) 

One of  the following must hold: 

?v4 matches sO A Liftable(?vl, sO) A Height(?vl, ?el) A FreeSpace(?v3, sO) A ?vl ;e ?v3 A 

Xpos(?v3, ?gl, sO) A ?gl _> ?g2 A ?gl --< ?g3 A Ypos(?v3, ?e2, sO) A ?v2 = ?el + ?e2. 

or 

?v4 matches Do(Transfer(?v3, ?el), ?e2) A 

recursively satsify AND (AchievableState(Do(Transfer(?v3, ?31), ?e2)), 

Xpos(?vl, ?gl, Do(Transfer(?v3, ?el), ?e2)), 

Ypos(?vl, ?e4, Do(Transfer(?v3, ?el), ?e2)), 

?gl -> ?g2, ?gl _< ?g3) A 

call recurrence Clear-1 to satisfy Clear(?vl, ?v4) A 

Block(?vl) A FlatTop(?v3) A ?vl ;~ ?v3 A Height(?vl, ?e3) A ?v2 = ?e3 + ?e4. 

Forward Recurrence Clear-l: /* See if a block is clear due to nothing being placed on it. */ 

To satisfy: Clear(?gl, Do(Transfer(?v2, ?v3), ?v4)) 

One of  the following must hold: 

?v4 matches sO A Clear(?gl, sO) /x ?gl ¢ ?v3. 

o r  

?v4 matches Do(Transfer(?el, ?e2), ?e3) A recursively satisfy Clear(?gl, ?v4) A ? v l ¢  ?v3. 

multiple calls by a single call to the merged recurrence. One class of compatible recurrences 

contains those that traverse through the same sequence of situations; each individual recur- 

rence places constraints on an acceptable traversal. Rather than satisfying these constraints 

successively for each recurrence, the problem solver can satisfy them simultaneously. When 

this extension merges several recurrences together, it names the new recurrence by concaten- 

ating the names of the individual recurrences, and basically produces the union of the indi- 

vidual recurrences. In a sense, this extension further restructures an explanation; it merges 

independent portions of an explanation structure. A specific solution may involve several 

independent recursive tasks, while the acquired rule may address these tasks concurrently. 

In Table 7's acquired rule for tower-building, the calls to AchievableState-1, Xpos-1, and 

Ypos-1 all involve the same final state. Since in situation calculus the final state is defined 

in terms of  a path starting at the initial state, all three recurrences must traverse the same 

sequence of states and, hence, they can be merged together. Merging requires making copies 

of the recurrences involved, using the fact that all of the recurrences traverse the same 

sequence of situations to properly rename variables, and then producing all possible 
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combinations of  recursive disjuncts and terminating disjuncts. In the table, the recurrences 

involved each only have one recursive and one terminating disjunct, so there is only one 

way to combine them, but in general combination can be explosive. For example, if two 

recurrences each have three terminating disjuncts, the combined recurrence will have up 

to nine distinct terminating disjuncts. 

The second step determines unchanging variables; its value primarily arises in combination 

with the third step, as will be seen momentarily. Determining the variables that remain 

unchanged is easy; a variable in a recurrence's consequent is unchanged if, in all possible 

recursive calls, it appears in the same position. For readability, variables that remain un- 

changed are renamed to start with g, indicating they are global variables. 

The final step determines i fa  linear recurrence should be satisfied forward or backward. 

If  a recurrence only involves a linear chain of recursive calls, it may be more efficient 

to satisfy the recurrence by starting at the initial state and working forward until reaching 

the desired final state. BAGGER2 heuristically chooses the direction to satisfy recurrences. 

It selects working forward from the initial state only when any unchanging variables are 

present, since these variables specify constraints on the initial action to be performed. 

When the problem solver is to satisfy a recurrence from the initial state forward, some 

terms in the conjunct that calls the recurrence may be pushed down into the recurrence's 

terminating disjuncts, as these extra terms further constrain the initial action. The terms 

pushed down are those that only involve variables that are unchanging or  independent of 

the recurrence. This is done for the inequalities involving ?v8 in Table 7's tower-building 

rule. It is preferable to satisfy these constraints early, rather than after the recurrence pro- 

duces a candidate tower. The x-location of the first block moved determines the x-location 

of the tower, so the inequalities eliminate time wasted investigating improperly placed towers. 

Here an extension also restructures an explanation; it moves preconditions from the end 

of  a linear chain of rule applications down to the first step in the sequence. 

The result in Table 8 is essentially an iterative plan. It is a notational variant on the result 

produced by the original BAGGER [Shavlik, in press]. Blocks are stacked until a tower of 

the desired height is produced; at each step in the iteration the problem solver must choose 

a block to move. The plan does not require the use of  any other intersituational rule in 

the rule base. There may be many ways to build towers or to verify that a block is clear, 

but the solver expends no resources trying out these portions of the search space. Atten- 

tion during problem solving is tightly focused; any testing done outside of the acquired 

plan only involves checking properties of the initial state. 

For a further illustration of  learning from multiple examples, consider again the rule 

in Table 8. This rule only supports stacking blocks that are clear in the initial state, which 

is reasonable given that it is produced from a solution which stacks three initially clear 

blocks upon one another. One can also move some initially obstructed block x if the block 

on top of  it has been moved and no other blocks have been placed on block x. If, after 

learning the hale in Table 8, BA66ER2 observes a solution where Figure 6's blocks are moved 

in reverse alphabetical order, it replaces the call to Clear-1 with the following disjunction: 

call recurrence Clear-1 to satisfy Clear(?vl, ?v4). 

o r  

call recurrence On-1 to satisfy On(?v3, ?vl, ?e2) A ?vl ~ ?el. 



60 J.W. SHAVLIK 

This disjunction specifies constraints on the next block (?vl) to be stacked, which must 

either be originally clear or must have originally supported the block moved in the previous 

step (?v3), provided ?v3 was not placed on ?vl. A call to the appropriate recurrence in- 

sures that the relevant relationship in the initial state still holds, given the plan constructed 

so far. 4 

There are two technical points concerning the interaction of learning from multiple ex- 

amples and the three extensions to the basic BA6CER2 method. First, the extensions can alter 

the consequent of the recurrence, which complicates determining that a new recurrence's 

disjuncts support the same conclusion as that of an old one. Second, the addition of a dis- 

junct can invalidate the applicability of an extension. For these reasons, modified recur- 

rences maintain records of the basic recurrences from which they were produced. The 

generalizer only adds new disjuncts to pre-existing basic recurrences; it then reconstructs 

all of the modified recurrences that depend on the basic recurrences. 

3.3. Empirical studies of the extended algorithm 

This section empirically ascertains the value of the three extensions to the basic algorithm, 

and compares BA66ER2, EGGS, and NO-LEARN in a second domain. Considering a second 

domain partially investigates whether or not the results in the first domain are anomalous. 

The first study investigates the hypothesis that the extensions improve BAC6ER2'S perfor- 

mance. Using the blocks-world domain, it compares the basic and extended algorithms, 

as well as the three partial extensions that result from dropping one technique. These par- 

tial extensions provide information of  the individual contributions of the three refinements. 

Each configuration generalized the solution where the blocks in F~igure 6 are stacked in 

reverse alphabetical order on the second table. The problem generator then produced 100 

random configurations of  five blocks on one table, and the goal was to build a five-block 

tower on a second table. Finally, each configuration solved the 100 test problems, and its 

mean solution time was recorded. Table 9 contains the results, which demonstrate the value 

of the three extensions. 

Table 9. Evaluat ion o f  the extensions to the bas ic  BAGGER2 algor i thm.  

System M e a n  Solution Time 

Basic BAGGER2 

Extended BAGGER2 

without  me rg ing  related recur rences  

without  ma rk ing  unchang ing  var iables  

without  selecting problem-so lv ing  direct ion 

53.7  sec. 

3.8 sec. 

7 .9  sec. 

5 .9  sec. 

14.8 sec. 

In this experiment, the three extensions provide a speedup of  more than ten over the 

basic approach. The bottom rows in Table 9 indicate the individual contributions of  the 

three extensions. Deciding that the problem solver should satisfy recurrences from the 

initial state forward provides the largest contribution. Tower-building is a task for which 

planning naturally proceeds from the first action forward: select the starting position, then 

choose movable blocks and stack them. When it starts by choosing the last block to stack, 
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the problem solver may perform substantial work before realizing that, given the bound 

on the number of actions, no plan exists where this block is moved last. Conversely, some 

plans more naturally proceed from the last action backward. The task of clearing a block 

is one example: move the block on top after first clearing it. 

The second largest contribution to efficiency is produced by merging recurrences that 

traverse through the same situations; while producing legal states, it is worthwhile to also 

record the positions of the blocks moved. Finally, marking variables that remain constant 

throughout a recurrence produces additional speedup. In the stacking problem, this allows 

BAGGER2 to move the requirements on the starting x-position into the recurrence. This in- 

sures that the problem solver only considers properly located bases for the tower. Although 

the relative contributions of the three extensions heavily depend on the task of tower-building, 

this study indicates the value of reorganizing a collection of basic recurrences. 

The remaining two studies compare BAGGER2, EGGS, and NO-LEARN. The methodology 

for these experiments was basically the same as that used in the circuit implementation 

experiment. However, when the learners could not solve a training problem using their 

acquired rules, they were provided a solution to the problem (consisting of a sequence 

of transfers), which they then explained and generalized. Having the learners solve large 

problems using only the initial domain theory rules was intractable, as the performance 

o f  N O - L E A R N  s h o w s .  , "  

The second study re-addresses the hypothesis that BAGGER2 requires less training than 

EGGS does, this time using the blocks world. As in the circuit domain, the amount of train- 

ing and the learning algorithm are the independent variables, while the study measures 

the percentage of novel problems solved using a learned rule. It followed the same 

methodology as the first circuit implementation study; again there were 250 randomly- 

generated training problems in each of the ten experimental runs. During each run, the 

two learners periodically attempted to solve the same ten test problems, during which learn- 

ing was turned off; hence each point is the mean of 100 measurements. A given run used 

the same ten test problems throughout, but each run had its own test set. For all problems, 

five blocks were randomly dropped over a table (see Figure 6), and the goal height was 

randomly chosen to be from one to five blocks. 

1 0 0 %  

80% 

Test Problems 

Solved by 6 0 %  

Acquired 4 0 %  

Rules 

2 0 %  

EGGS o - - - - - o  

BAGGER2 : : 

i i t I i 

10 25 50 100 150 200 

Number of Training P r o b l e m s  

Figure 7. Percentage of  new tower  problems solved as a funct ion of  amount  o f  training. 

250 
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Figure 7 presents the results of this study. As in the circuit implementation experiment, 

BAGGER2 requires less training than does EGGS to acquire completely the ability to build 

towers. EGGS learns templates that describe situations in which it can build a tower of fixed 

height: plans for stacking three clear blocks, inverting a five-block stack at one position 

on to another, using the top two blocks of two existing towers to build a four-block stack, 

etc. As in the circuit domain, it must receive many training examples before it encounters 

enough inherently different configurations to capture the concept. (On average, EGGS learns 

14.6 rules per run.) BAGGE~ instead learns a strategy for building towers: stack clear blocks 

until the goal is met. It needs to learn it can move a block initially clear or one made clear 

by previously moving the block it supports. Once it observes solutions involving these sub- 

tasks, it can build towers of any height. (Usually BAGGER2 learns one tower-building rule 

per run; occasionally the first training example does not support generalization to N and 

several rules are learned.) 

The third study in this section re-addresses the hypotheses that explanation-based learning 

speeds up a problem solver and that BA60~R2 outperforms EGGS. As before, the independent 

variables are the identity of the system used and the size of the space of possible problems, while 

the dependent variable is the average problem-solving time following learning. Incrementing 

the upper limit on possible tower heights increases the number of possible problems; at each 

point the system solved problems requiring stacking from one to Nblocks, for some fixed N, 

in a scene containing Nblocks. In this experiment, 500 training examples were presented at 

each point to insure that both learning systems sufficiently learned how to build towers. The 

results were averaged over five experimental runs, and in each run performance was measured 

on 20 different random problems, producing a total of 100 measurements per point. For a 

given problem size, all systems received the same training examples and solved the same test 

problems. When N was above five, after training EGGS occasionally could not solve a problem 

using its acquired rules; however, only the time spent on problems solved was recorded. 

Figure 8 presents the performance of the two learning systems, along with that of the 

system that does not learn, on the tower-building task as a function of the range of possible 

tower heights. Notice that times are plotted on a logarithmic scale, where exponentially 
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Figure 8. Mean solution time for tower building as a function of problem complexity. 
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increasing functions produce straight lines. As with circuit implementation, as the prob- 

lem complexity increases, BAGGE~ begins to outperform ECGS. For both learning systems, 

one can clearly see the advantage over not learning at all. 

In this study the relative performance of EGGS and BA66E~ is qualitatively the same as 

in the circuit implementation study; for small range s of possible problems, collecting and 

matching fixed-sized templates is effective, but it is better to learn a general solution strategy 

when there are many possible configurations. Unlike the circuit domain, Figure 8 pro- 

vides no indication that explanation-based learning is detrimental in this domain. The 

negative effects of learning depend on the relationship between the basic problem-solving 

complexity of a set of domain rules and the number of qualitatively different composite 

rules required in that domain. Explanation-based learning may prove particularly beneficial 

in domains where the number of composite rules a problem solver needs is small com- 

pared to the number of possible combinations of the basic domain rules. Analytical studies 

of explanation-based learning may provide important insight on this issue [Cohen, 1989]. 

4. Related work 

In addition to BAGGER2 and its predecessor BA~ER [Shavlik, in press; Shavlik & DeJong, 

1987], which only learns iterative concepts, several other explanation-based approaches 

to generalizing number have been proposed. This section briefly presents these other ap- 

proaches and compares them to BAGCEP,2. Also, some related projects involving similarity- 

based learning and automatic programming are discussed. 

For instance, Cohen's [1988] ADEPT system generalizes number by constructing a finite- 

state control mechanism that deterministically directs the construction of proofs similar 

to the one used to justify the specific example. His approach can acquire recursive and 

disjunctive concepts, as well as learn from multiple examples. However, in order to eliminate 

backtracking when applying the learned rule, his system assumes that operational terms 

can be matched by no more than one fact in the database. By disallowing backtracking, 

ADEZr improves efficiency at the cost of some expressiveness. This means that, unlike 

BACGEm, it cannot learn how to build towers in a situation where Blocks A, C, and E are 

initially clear and then apply its learned strategy in a situation where Blocks B, D, and 

F are initially clear. Another difference from BACCE~ is that, to learn from multiple ex- 

amples, ADEPT requires the previous examples be present in their entirety. Cohen's method 

also differs from other explanation-based algorithms in that it does not eliminate internal 

nodes of the explanation during generalization. In other approaches, only the leaves of 

the operationalized explanation appear in the acquired rule's antecedents. In Cohen's ap- 

proach, every inference rule used in the original explanation is explicitly incorporated into 

the final result. Each rule may again be applied when satisfying the acquired rule. Finally, 

unlike BA~CER2, Cohen's system does not separately extract subconcepts from portions of 

an explanation. 

On another front, Prieditis [1986] developed a system which learns macro-operators that 

represent linear sequences of repeated sT~Ps-like operators. His approach analyzes the 

constraints imposed by the unbounded connection of the precondition, add, and delete lists 

of the operators deemed to be of interest. This produces an iterative macro-operator that 
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accommodates an indefinite number of repeated operator inter-connections. Although his 

approach produces iterative rules, it can learn neither recursive nor disjunctive rules. Also, 

unlike Prieditis' approach, BAG6ER2 allows arbitrary inference rules to intervene between 

applications of the predicate whose number of appearances is being generalized. 

A third system, Cheng and Carbonell's FERMI [1986], recognizes cyclic patterns using 

empirical methods, and generalizes the detected repeated pattern using explanation-based 

learning techniques. A major strength of the system is the incorporation of conditionals 

within the learned macro-operator. However, unlike the techniques implemented in 

BA6CER2, the rules acquired by FERMI are not fully based on an explanation-based analysis 

of an example, and so are not guaranteed to always work. For example, the system learns 

a strategy for solving a set of linear algebraic equations, but none of the preconditions 

of the strategy check that the equations are linearly independent. Thus, the learned strategy 

will appear applicable to the problem of determining x and y from the equations 3x + 

y = 5 and 6x + 2y = 10, and after a significant amount of work, it will terminate unsuc- 

cessfully. Shell and Carbonell [1989] present improvements that increase the efficiency of 

the macro-operators FERMI learns. 

Shavlik and DeJong [1985, in press] developed the first explanation-based learning system 

that generalized number. Their PHYSICS 101 system acquires the knowledge that momentum 

is conserved for any N~objects from an example involving the collision of a fixed number 

of balls. It differs from the above approaches, including t3A66ER2, in that the need for 

generalizing number is motivated by an analytic justification of an example's solution and 

general domain knowledge. In the momentum problem, information about number, localized 

in a single physics formula, leads to a global restructuring of a specific solution's explana- 

tion. However, PHYSICS 101 is designed to reason about the use of mathematical formulae, 

and its generalization algorithm takes great advantage of the properties of algebraic cancella- 

tion (for example, x - x = 0). To constitute a broad solution of the generalization to N 

problem, an approach must also handle non-mathematical domains. 

A related task is generalizing the organization of the nodes in the explanation, rather 

than generalizing their number. Mooney [1988] presents an approach along these lines. 

His method, which is limited to domains expressed in the STRIPS formalism, determines 

the minimal set of constraints on the order of a plan's actions. Without this knowledge, 

the actions in the generalized plan must occur in the same order as in the training example. 

Strictly speaking, his approach does not alter the explanation structure. Rather, it produces 

the most general partial ordering of the plan's actions that maintains all connections be- 

tween preconditions and effects in the original example. Though his technique cannot han- 

dle it, Mooney discusses an example where the generalization of operator order requires 

alteration of the explanation. 

The problem of generalizing to N has also been addressed within the paradigm of em- 

pirical or similarity-based learning [for example, Andreae, 1984; Dietterich & Michalski, 

1984, Sammut & Banerji, 1986]. Like BAGGER2, the MARVIN system of Sammut and Banerji 

[1986] uses Horn clauses to represent concepts. The recursive concept column, which is 

a stack of objects, is one of the objects it learns to recognize. It learns by inductively 

generalizing training instances; these generalizations are corroborated by generating new 

examples and asking its teacher if they are a member of the concept being taught. A major 

difference between MARVIN'S and BAGGER2'S approaches is that due to the former's inductive 
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nature, it can incorrectly learn a concept. BAGGER2'S explanation-based concepts are im- 

mediately deductively supported by the domain theory; hence confirmation and revision 

are unnecessary. Also, MARVIN strives to learn abstract recognition rules, while BAGGER2'S 

goal is to acquire efficiently applicable (operational) ones--it  already possesses a general 

description of a tower. 

As previously discussed, BAGGER2 recurrences are essentially recursive programs. Unlike 

the simple template-matching rules EGGS learns, BAGGER'S rules can produce solutions of 

various sizes. Some research in automatic programming shares many characteristics with 

this approach, namely that involving program synthesis from examples [for example, Bauer, 

1979; Biermann, 1978; Kodratoff, 1979; Summers, 1977]. In these approaches, sequences 

of input/output pairs for recursive functions provide information on the control structure 

of the algorithm being specified. A major problem with input/output pairs is that for com- 

plex operations the amount of search needed to find the proper algorithm is prohibitive. 

Automatic programming systems that use examples must search for a consistent hypothesis 

because, unlike an explanation-based system, they do not have the information that specifies 

the dependencies between successive recursive calls. In this sense, they are similar to 

similarity-based learning algorithms; both must make unjustified generalizations, unlike 

those an explanation-based system makes. 

5. Some open research issues 

Although the BAGGER2 system has taken important steps towards the solution to the 

generalization to N problem, the research is still incomplete. From the vantage point of 

the current results, several avenues of future research are apparent. 

A major weakness of the rules learned by BAGGER2 is that a problem solver can expend 

much useless effort when they fail. For example, assume the task at hand is to find enough 

heavy rocks in a storehouse to serve as ballast for a ship. An acquired rule may first add 

the weights in some order, find that the total weight of all the rocks in the room is insuffi- 

cient, and then try another ordering for adding the weights. The system should be capable 

of realizing that the actions in an acquired rule produce the same result regardless of their 

order. This could be accomplished by reasoning about the semantics of the system's predicate 

calculus functions and predicates. Properties such as symmetry, transitivity, and reflexivi- 

ty may help determine constraints on order independence. Programmers use PROLOG'S CUt 

operator [Clocksin & Mellish, 1984] to indicate where backtracking will be a waste of 

time, and it may prove fruitful to have a learning system decide where to place cuts in 

the rules it acquires. 

A related area of future research involves determining the most efficient ordering of con- 

junctive goals [Smith & Genesereth, 1985] in recursive rules. Consider an acquired iterative 

rule that builds towers of a desired height, subject to the constraint that no block can be 

placed upon a narrower block. The goal of building such towers is conjunctive: the correct 

height must be achieved and the width of the stacked blocks must be monotonically non- 

increasing. The optimal ordering can be found by selecting the blocks subject only to the 

height requirements and then sorting them by size to determine their position in the tower. 

This strategy works because it guarantees a non-increasing ordering of widths on any set 
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of blocks, so that no additional block-selection constraints are imposed by this conjunct. 

The system should ultimately detect and exploit this kind of decomposability to improve 

the efficiency of the new rules. 

BAtGEI~ uses a relatively simple technique for parsing explanations (c.f., Figure 2). The 

class of recursive concepts this technique recognizes needs to be characterized, and 

~66Ert2 should be extended to cover a wider range of recursive rule applications. Tech- 

niques for detecting recursive patterns developed in automatic programming research may 

be applicable to this task [Smith, 1984]. However, such approaches can introduce backtrack- 

ing search into the generalization process, thereby leading to problems of intractability. 

Also, if they allow multiple parses of an explanation, techniques for choosing the best parse 

may be required. 

Often an explanation will not be a tree, as has been assumed in this article, and some 

portions of the explanations will be shared. These shared portions can arise when one ac- 

tion satisfies preconditions for several subsequent actions. The BAGGER2 algorithm can han- 

dle shared subexplanations by replicating them. Although this will lead to a more general 

concept, the efficiency of sharing is lost. The problem with shared nodes in a system that 

generalizes explanation structures involves synchronization. In one recurrence the shared 

node can be encountered on the i-th cycle, while in another it may be the j-th cycle. This 

complicates the identification of variables that should be equated. One solution involves 

having recurrences check for shared nodes during problem solving. If a node is marked, 

then there is no need to continue the recurrence. Instead, the current term can be unified 

with the term that did the marking. 

Another extension would simplify loops during learning. Often a repeated process has 

a closed form solution. For example, summing the first N integer produces N(N+I)/2, and 

there is no need to compute the intermediate partial summations. A recurrence relation 

is a recursive method for computing a sequence of numbers. Many recurrences can be 

solved to produce efficient ways to determine the n-th result in a sequence. It is this prop- 

erty that motivates the requirement that BAGGER2'S preconditions be expressed solely in 

terms of the initial state. The system would be more efficient if it could produce, whenever 

possible, number-generalized rules in closed form. For instance, if BAt~ER2 observes the 

summation of four numbers it will not produce the efficient result mentioned above; in- 

stead it will produce a rule that performs the intermediate summations. One possible ex- 

tension is to create a library of templates for soluble recurrences, then match them against 

explanations [Shell & Carbonell, 1989]. However, a more direct approach, such as Weld's 

[1986] aggregation technique, may be more fruitful; aggregation creates a description of 

a continuous process from a series of discrete events. 

A major weakness of current EBL algorithms that generalize explanation structures is that 

they do not generalize the structure of the goal. The examples studied do not require this type 

of generalization. For example, the goal of having a block at a given height should not be gen- 

eralized to having N blocks at M heights. Instead, the number of blocks stacked should be 

generalized so that a given block can be placed at any height. However, if the specific plan 

involved finding the average of five numbers in an array, the general plan acquired should 

support the determination of the average of any size array. One approach to this issue is 

to develop methods for determining general versions of specific goals, then construct the 

explanation for the general goal, using the specific problem's explanation for guidance. 
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Another area of future research is to investigate how BAGGER2 and related systems might 

acquire accessory inter-situational rules, such as frame axioms, to complement their acquired 

rules. Currently, each of the learned inference rules specifies how to achieve a goal that 

involves some arbitrary aggregation of objects by applying some number of operators. These 

rules are useful in directly achieving goals that match the consequent, but they do not effec- 

tively improve BAGGER2'S backward-chaining problem-solving ability. This is because the 

current system does not construct new frame axioms for the rules it learns? There are several 

methods of acquiring such accessory rules. One technique would construct them directly by 

combining the accessory rules of operators that make up the acquired rule. However, the 

number of accessory rules for initial operators may be so large as to make this intractable. 

Another, potentially more attractive approach, is to treat the domain theory as intractable. 

Since new accessory rules can be derived from existing knowledge of initial operators, 

the approach taken by Chien [1989] might be used to acquire the unstated but derivable 

accessory rules when they are needed. Chien's system makes simplifying assumptions during 

plan understanding in order to keep the task tractable. Failure in later applying a learned 

plan leads to in-depth investigation of the assumptions and then refinement of the plan. 

There is also a need for research on the generalization to N problem in the context of 

imperfect domain models [Mitchell, Keller, & Kedar-Cabelli, 1986; Rajamoney & DeJong, 

1987]. In any real-world domain, a computer system's model can only approximate reality. 

Furthermore, the complexity of problem solving prohibits any semblance of completeness. 

Thus far, BAGGER2 has relied on a correct domain model. Also, it has not addressed issues 

of intractability, other than using an outside agent to provide sample solutions when the 

internal construction of solutions is intractable. One relevant form of theory imperfection 

occurs when the effects of an operator are not precisely specified. In this case, small errors 

may accumulate when repeatedly applying the operator. An approach to this problem is to 

monitor the actions in recursive plans, seeing how well their effects match the system's 

expectations. When the system detects significant divergence, it can limit the recursive plan 

to some maximum length or correct the plan to accommodate the uncertainty in the operators. 

A final area of research concerns termination. One weakness of systems that generalize 

explanation structures is that they fall into infinite loops. Although the halting problem is 

undecidable in general, one can prove termination in restricted circumstances [Manna, 1974]. 

Systems that generalize number need to incorporate techniques for proving termination. 

BAGGER2 contains a partial solution to this problem. If  a recurrence involves unchanging 
variables, before calling the recurrence the problem solver checks those terms which involve 

these variables and which also appear in all the recurrence's terminating disjuncts. If  it 

cannot satisfy these terms, the problem solver does not call the recurrence. These checks 

reduce the chance of unbounded recursive calls, but they do not guarantee termination. 

A less appealing, but safe, solution is to place resource bounds on the algorithms that apply 

number-generalized rules, potentially excluding successful applications. 

6. Conclusion 

Explanation-based learning systems must generalize number if they are to fully extract 

general concepts inherent in the solutions to specific examples. This article has presented 

and proven correct a general approach for generalizing to N. The BAG~EPa algorithm learns 
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recursive and iterative concepts, integrates results from multiple examples, and extracts 

useful subconcepts during generalization. On problems for which learning a recursive rule 

is not appropriate,  the system produces the same result as Mooney's  EGGS algorithm, a 

standard EBL technique. Applying the learned recursive rules only requires a minor  ex- 

tension to a PROLOG-like system, namely, the abili ty to explicitly call a specific rule. This 

lets the problem solver focus its attention on a small subset of a large rule base. 

The empirical studies reported in Sections 2 and 3 demonstrate that generalizing the struc- 

ture of explanations helps avoid the negative effects of learning [Fikes et al . ,  1972; Minton, 

1988]. These experiments tentatively indicate that BAGGER2 produces substantial perfor- 

mance improvements over standard explanation-based methods and problem solvers that 

do not learn. In two sample domains,  it learns rules that are both more general and more 

efficient that those learned by a standard EBL system, and its advantage grows as the com- 

plexity of the task increases. Its strength arises from its ability to extract a general algorithm 

from the solution to a specific problem. In one sample domain it learns a general version 

of  a DeMorgan's  Law upon observing the repeated application of a two-gate version. In 

a second domain it learns how to build towers by observing three blocks being stacked. 

The standard explanation-based system learns rules that state how to apply DeMorgan's  

Law exactly seven times or how to stack three blocks. Because it does not generalize the 

number of repetitions, such a system must learn many separate rules. Searching through 

this large collection of rules greatly reduces the gains learning can produce; in the circuit 

domain experiments,  the standard EBL system performs worse than not learning at all. 

BA6GE~'S rules encapsulate focused traversals through the basic domain rules and in the 

experiments never lead to performance worse than achieved by only using the basic rules. 

Generalizing to Nis  an important property that is currently lacking in most explanation-based 

systems. This research contributes to the theory and practice of explanation-based learning by 

developing and testing methods for extending the structure of  explanations during generaliza- 

tion. As such, it brings the field of machine learning closer to its goal of being able to 

acquire all of  the knowledge inherent in the solution to a specific problem. 
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Notes 

1. The SOAR system [Laird et al, 1986] would seem to acquire a number of concepts that together are slightly 
more general. In addition to a new operator for moving four blocks, the system would acquire new operators 
for moving three blocks, two blocks, and one block, but not for five or more. Anderson's [1986] knowledge- 
compilation process would acquire a similar set of rules. 

2. This may lead to poor performance if too many disjuncts are learned. The user can decide when a concept 
is sufficiently learned and tell the system to freeze all of its recurrences. After that, new recurrences will be 
constructed even if they have the same consequent as an existing one. 

3. The number of different ways to implement an N-input OR gate with binary gates is (2N-2)!/N! (N-l)! [Jacob- 
son, 1951, p. 18]. 

4. The recurrence On-1 is analogous to Clear-1 and, hence, is not shown. 
5. This problem is not specific to systems that generalize explanation structures. Standard EBL algorithms must 

also face it when dealing with situation calculus. 
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