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Abstract— Methods for acquisition and maintenance of an
environment model are central to a broad class of mobility
and navigation problems. Towards this end, various metric,
topological or hybrid models have been proposed. Due to recent
advances in sensing and recognition, acquisition of semantic
models of the environments have gained increased interest in
the community. In this work, we will demonstrate a capability
of using weak semantic models of the environment to induce
different topological models, capturing the spatial semantics
of the environment at different levels. In the first stage of the
model acquisition, we propose to compute semantic layout of the
street scenes imagery by recognizing and segmenting buildings,
roads, sky, cars and trees. Given such semantic layout, we
propose an informative feature characterizing the layout and
train a classifier to recognize street intersections in challenging
urban inner city scenes. We also show how the evidence
of different semantic concepts can induce useful topological
representation of the environment, which can aid navigation
and localization tasks. To demonstrate the approach, we carry
out experiments on a challenging dataset of omnidirectional
inner city street views and report the performance of both
semantic segmentation and intersection classification.

I. INTRODUCTION

The problem of robot localization and mapping constitutes

one of the basic capabilities of autonomous robotics systems

and has attracted a lot of attention in the community. There

have been a large variety of maps proposed ranging from

metric, topological and hybrid maps. Lot of progress has

been made in the Simultaneous Localization and Mapping

(SLAM) approach for acquisition of metric models with a

single reference frame. The topological models represent

environments as graphs and differ in how the nodes and

connections between them are defined [17], [4], [16]. An

example of an on-line topological model acquisition by

means of place recognition was tackled in [5] and was

instrumental in solving the loop detection problem.

Despite the progress in acquiring different types of rep-

resentations of the environment, the connections between

different types of models were explored in more limited set-

tings. Examples of hybrid metric and topological maps have

been introduced in indoors environments, where topology

was induced by Voronoi tessellation of the occupancy map

or polygonal model of the environment [1], [4]. Numerous

approaches to topological mapping although providing the

discrete representation of the environment, typically focus on

the representation which would maximize the performance

of loop detection [5] or place recognition tasks [18] without

considerations of how well the topology captures the spatial

layout of the environment.
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In earlier works, one of the reasons for endowing

models of environments with a topological map, was to

attain discrete representation of the continuous space,

typically represented as a graph and to enable efficient path

planning. The idea of different types of representations of

the environment related in a hierachical manner capturing

different types of spatial semantic hierarchy has been

introduced by Kuipers in [13]. While earlier proposals

were more of the conceptual nature, the later works

instantiated them in the context of indoors environments,

where several methods for building topological maps

from metric representations of space were explored [1].

More recent trends in mapping focus on endowing the

environments in addition to geometry and topology, with

additional semantics. The semantic labels have been either

associated with individual locations [24], such as kitchen,

corridor, printer room or individual image regions as in [20].

Outline. In the presented work, we address the problem of

semantic labeling of street scenes and explore different types

of topologies induced by the semantic layout. In the first

stage of our approach, we propose to compute the semantic

layout by recognizing and segmenting images into buildings,

roads, sky, cars and trees. We then propose an informative

feature characterizing the layout, which can be used for

clustering different locations based on their semantic layout

as well as training a classifier to recognize street intersections

in challenging inner city scenes. We will show how the

evidence of different semantic concepts and intersections can

induce useful topological representation of the environment,

which can aid navigation and localization tasks. The attained

semantic labels can be further used as priors for more refined

semantic labeling and object detection or more detailed

scene classification. To demonstrate the approach, we carry

out experiments on a large-scale dataset of omnidirectional

street views reporting the performance of both semantic

segmentation and intersection classification.

A. Related work

There is a large body of related work which differs

in the choice of the representation, sensing modality used

for model acquisition and experimental evaluation. Since

in our case we deal with visual sensing, we mention few

representative works in metric and topological modeling

and semantic understanding. In many instances, it has been

demonstrated that visual sensing is a feasible alternative to

previous approaches based on laser range data. Existing mod-

els acquired by means of visual sensing consider different

features, such as sparse set of point features [11] or line
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segments [28], [3] acquired by monocular [6] or binocular

systems [23]. While maps comprised of dense or sparse

cloud of points are often suitable for accurate localization,

they are often insufficient for more advanced planning and

reasoning tasks. Alternative topological maps often acquired

topology in an ad-hoc manner, either grouping neighboring

places with similar appearance into a node [12], [26] or

considered each location/frame as a node in the graph [5].

In the semantic maps, labels have been either associated

with individual locations [24], such as kitchen, corridor,

printer room or individual image regions as in [20]. Similar

supervised learning strategies to classify the notion of a

place/location have been made by [21], along with extensive

experiments in how these representations generalize across

different environments. In majority of the approaches the

features used to infer different semantic categories were

derived from both 3D range data and photometric cues. In

outdoors settings, the final semantic labeling problem has

been formulated as MAP assignment of labels to image

regions in the Markov Random field framework [30], where

the example labels include road, building, pedestrians, sky,

and trees. Prior works in semantic segmentation differ in the

choice of primitives they try to label (images, 3D clouds

of points), number of semantic categories and the approach.

More recent scalable approaches to semantic labeling include

works of [27], [10], [14]. The image based approaches

typically differ in the choice of the regions, choice of

features/statistics computed over these regions and methods

for learning the likelihoods of individual semantic labels

given the observations as well as pairwise region coherency

terms. While the final labeling is often formulated as a MAP

problem in random field, the graph structure also differs. The

approach of classifying regions of an image into semantic

concepts and then using this information for image retrieval

tasks has been explored by [29].

B. Semantic Segmentation

In the first stage of our approach, we propose to compute

the semantic layout by recognizing and segmenting images

into buildings, roads, sky, cars and trees. For the street

scene imagery, we use StreetViewTM panoramas acquired by

a 360o field of view LadyBug multi-camera system. Our

sequence consists of 12,000 panoramas acquired from a run

in an urban environment. A single panorama is obtained by

warping the radially undistorted perspective images onto the

sphere assuming one virtual optical center. The sphere is

back-projected into a quadrangular prism to get a piecewise

perspective panoramic image, see Fig. 1. Our panorama is

composed of four perspective images covering 360o horizon-

tally and 127o vertically. The system includes a top camera

as well, but it is discarded as it does not provide much

information. The panorama is represented by 4 views (front,

left, back and right) each covering 90o horizontal FOV as

seen in Fig. 1. We discard the bottom part of all views,

containing parts of the car acquiring the panoramas.

The semantic labels we consider are ground, sky, building,

car, tree and our semantic segmentation approach is most

Fig. 1. A panoramic piecewise perspective image used in our experiments;
four parts (front, back, left and right side) are merged.

closely related to [9] and [27]. As an elementary region

which we will try to classify, we choose the superpixels

obtained by color based over segmentation scheme proposed

in [8]. This segmentation algorithm typically generates large

irregular regions of different sizes see Fig. 2.

(a) (b)

Fig. 2. (a) Example of the color-based over segmentation using method
of [8]. Superpixel boundaries are marked by red color; (b) Semantic labelling
result for the given over segmentation. Note that due to the crude initial
segmentation, a few image regions are misclassified. The color code is the
following: building: yellow, car:pink, ground: green, sky: red, tree: brown
and void: black.

Since we are interested in learning the coarse semantic lay-

out of the urban environment, we use both geometric as well

as appearance features to capture the statistics of individual

regions. The choice of features has been adopted from [9]

where each superpixel is characterized by location and shape

(position of the centroid, relative position, number of pixels

and area in the image), color (color histograms of rgb and hsv

values and saturation value), texture (mean absolute response

of the filter bank of 15 filters and histogram of maximum

responses) and perspective cues computed from long linear

segments and lines aligned with different vanishing points.

Details of the features and pointers to the code for their

computation can be found in [9]. In addition to the above

features, we endow each superpixel region with a histogram

of SIFT descriptors computed densely at each image location

and quantized into 100 clusters. The entire feature vector is

of 194 dimensions. In order to compute the label likelihood

for individual superpixels, we use boosting [22]. Within

the boosting framework, we use decision trees as the weak

learners since they automatically provide feature selection.

We learn separate classifiers for each of the five classes and

this is done in a one vs. all fashion. During testing, the

separate classifiers are run on the individual feature vectors

of the superpixels of an image and output confidence scores.

The class with the maximum confidence score is assigned to
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be the superpixel’s label. In our implementation, each strong

classifier has 15 decision trees and each of the decision trees

has 6 nodes. An example of the obtained semantic layout is

shown in Fig. 3.

(a) (b)

Fig. 3. (a) A side view (b) Semantic labeling obtained for the image using
the boosting classifier.

We have annotated a dataset of 320 side and 90 frontal

views where each pixel of an image is assigned one of

the five classes or void if it does not fall into any of

the categories. Two separate models are learned, one using

the dataset of side views and the other using the frontal

views. This is because while the classes may have similar

appearance across side or frontal views (e.g. trees are gen-

erally green in color), they may not necessarily share the

same geometric properties in the two different views. As

an example, in a frontal view the buildings are generally

observed on the sides with the ground/road in the middle

while that is not the case in the side views where they appear

in fronto-parallel views. To evaluate the performance of the

boosting classifier and compare it to state of the art systems,

we use the dataset of 320 side views. The classifier was

trained using a randomly selected half of the dataset similar

to [32] and the other half of the dataset is used for testing.

The results for the boosting classifier and its comparison

to the approach of supervised label transfer [32] and non-

parametric scene parsing [31] methods on this dataset can

be seen in the Table I and II. It is observed that the boosting

classifier outperforms the other state of the art systems on

this dataset and therefore, we use this classifier through all

our experiments for the semantic labeling of an image. While

we compare our approach to only two existing methods, these

have been shown to be superior to many other systems, such

as on the CamVid street scene dataset introduced in [2].

The best performing approach of [25] on CamVid dataset

considers more detailed labeling of a total of 11 object and

non-object categories. This includes training a more complex

likelihood and CRF model and leads to a computationally

more expensive inference stage due to the proposed higher

order MRF. The appeal of our approach is the simplicity and

efficiency of the method, making it applicable to large scale

datasets.

Some examples of the results of semantic segmentation

can be found in Figure 4.

TABLE I

CATEGORY WISE ACCURACY OF BOOSTING CLASSIFIER

System building car ground sky tree

[32] 89.1 56.4 89.6 97.1 69.7

[31] 95.3 40.5 96 92.5 41.4

Boosting 96.4 68.3 94.4 97.2 48.9

TABLE II

GLOBAL AND CATEGORY AVERAGE ACCURACY

System Global Average

[32] 88.4 80.4

[31] 93.2 73.1

Boosting 94.4 81

(a) (b) (c)

Fig. 4. Examples of semantic labeling of the images. The top row is of a
side view while the bottom row is that of a frontal view. From left to right,
(a) actual image (b) ground truth labeling (c) predicted labeling

C. Semantic Label Descriptor

To summarize the semantic information in the labeled

image, we introduce the semantic label descriptor. This

descriptor captures the basic underlying structure of the

image and can help divide images into sets of visually and

semantically similar images. For example, streets inside a

city have high rise buildings on the side while highways

generally have trees and plants besides the roadside.

For a given image I , we divide I into a uniform nk × nk

grid. Within each grid cell, we compute the distribution for

each of the five classes using the number of individual pixels

in that grid cell which have been assigned that class. This

results in a five bin histogram for a single grid cell. The

class distribution values for each cell are normalized so that

they sum to one. The histograms for the n
2

k
grid cells are

concatenated together resulting in a feature vector of length

5×n
2

k
. A high value for nk will capture the details of the

layout more precisely but be prone to classification errors

while a low value for nk would be less sensitive to errors in

the labeling. In the experiments of this paper, we use nk =

4 resulting in a 80-dimensional semantic label descriptor.

1) Clustering Topology: We use the semantic label de-

scriptor to cluster the locations of the sequence. While

evaluating the performance of our boosting classifier (Table I

and II), we had used half of the 320 labelled images for
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training and second half for testing. When computing the

semantic layout of the entire sequence of 12,000 views the

classifier is trained using all 320 side views and run on the

left and right side views of each location. The classifier

trained using the 90 frontal views is run on the front and

back view of each location. Locations for which the ground

truth labels are available were excluded from the sequence

labeling exercise. The resulting semantic layouts for the four

views are then converted into the semantic label descriptor

as described above. They are then concatenated together to

form a location descriptor for each individual location. Since

each individual semantic layout results in a 80 dimensional

descriptor, the dimensionality of the location descriptor is

320 (using the four views).

The location descriptors are then used for clustering the

sequence. We perform k-means clustering and use cosine

distance between the descriptors instead of euclidean dis-

tance. Fig. 6 visualizes the average frontal view for a cluster

when k=6. It can be noted that the different clusters capture

distinct semantic structures. For example, the top row has

clusters for areas on highways or with buildings on only one

side of the road. In the bottom row, there is a difference in

the height of the buildings indicating that some areas have

taller buildings than others. A visualization of the results of

clustering using the location descriptor for the entire dataset

and its non-highway portion can be found in Figure 7 and 8

respectively.

We check the robustness of the clustering by analyzing

the cluster assignments of revisited locations. Each location

is provided with GPS coordinates specifying the latitude and

longitude of that location. Using the GPS coordinates, the

individual distance between all locations can be calculated.

Any location which has a past location within a threshold

distance of 10m is considered a revisited location. In order

to avoid considering immediately preceding locations as

revisits, we discard the previous 25 frames for a location

so that views taken within short time of each other are

not considered. Following this, we obtained a set of 3362

revisited locations. For each of these 3362 locations, we

obtain its nearest neighbor location from the past. The

cluster assignment for a revisited location and its closest

past location are checked against each other. The matching

rates for the set of revisited locations for different number

of clusters is provided in Fig. 5. As can be seen, the cluster

assignments maintain a matching rate of more than 75% for

a large number of clusters.

D. Intersection Classification

The semantic label descriptor introduced in the previous

section was instrumental in grouping different urban regions

together based on the presence and layout of different

semantic categories in the scene. In this section we show

how to infer additional semantic concepts from the attained

image representation. In urban environments which can be

described as networks of roads and intersections, it is useful

to be able to classify a particular view as an intersection or

not. The capability of detecting intersections often provides

Fig. 5. Match rate between revisited locations and their nearest past
neighbors based on cluster assignments

Fig. 6. Visualization of the average frontal view for each cluster(shown
for 6 clusters)

Fig. 7. Clustering visualization for the entire dataset(shown for 5 clusters).
Different colors distinguish the cluster assignments for individual locations

useful prior information of presence of additional semantic

concepts, such as pedestrian crossings, stop lights, traffic

lights etc. Intersections also correspond to locations where

navigations decisions can be made and hence are of interest

for automated driving systems. Previous works explored

scene classification using either global gist descriptor [19] or

spatial pyramid matching [15] and considered more general

scene categories like coast, mountain, forest, inside city and

highway. In our setting we consider subordinate categories
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Fig. 8. Clusters for non-highway section of the dataset(shown for 5
clusters). The highway section has been removed in this visualization. Notice
the black color assigned to the highway in Figure 7 is missing here except
for an area next to the riverfront which is similar to the highway and lacks
buildings on the sides

of intersection and non-intersection, which belong to urban

scenes but vary in finer spatial semantic layout. More closely

related to our approach is the work by [7], where they

compute informative features over a grid of patches and train

separate classifiers for 13 categories of semantic labels of

patches as well as 8 categories of semantic labels of entire

scenes, applicable to inner city street scene understanding.

To recognize intersections, we compute an additional

normalized histogram of the five semantic labels over the

middle part of the image width for side views. This additional

histogram is concatenated with the side view’s semantic label

descriptor to yield a 85-dimensional descriptor and used

to train a boosting classifier to classify the side views as

intersections or non-intersections. This very simple approach

is effective partly due to the 360 degree field of view and

availability of the high quality of the semantic labels. The

choice of integrating the label statistics from the middle of

the side view is motivated by the distinguished appearance

of intersections in inner city environments and also the fact

that they typically appear at an angle from the main direction

of travel. To visualize this intuition, we have computed for

the side views (perpendicular to the direction of travel), for

each pixel, the probability of a label occurring at that pixel at

intersections and non-intersections in Fig. 9. Based on this

building ground sky

Fig. 9. Top: Probability maps for each label occurring at a pixel at non-
intersection side images. Bottom: Probability maps for each label occurring
at a pixel at intersection side images. Red indicates a high probability while
blue indicates a low probability.

observation, the extra histogram is computed over 70% of

the middle part of each side view.

The 320 side views dataset was annotated for the intersec-

tion classifier experiments. Each of the 320 images is man-

ually labelled as an intersection or a non-intersection. This

resulted in a set of 250 non-intersection and 70 intersection

views. The intersection descriptor is computed for all the 320

side views and another boosting classifier is trained using

the resultant 320 descriptors. This boosting classifier has 5

decision trees and each of the decision trees has 4 nodes.

This boosting classifier is now run on only the side views of

the entire dataset. Locations which contributed images to the

training of the intersection classifier were excluded from the

test stage. If both the left and right side views of a location

are classified as an intersection by the classifier, the location

is categorized as an intersection. Otherwise the location is

categorized as a non-intersection.

A visualization of this experiment can be seen in Fig. 10.

It can be observed that our intersection classifier successfully

predicts intersection at many of the major intersections. A

human annotator marked 79 unique areas of the sequence as

intersections in the city. The intersection classifier correctly

predicted an intersection for 63 of the 79 marked intersec-

tions for a recall rate of 79.7% indicating the effectiveness

of our approach. A successful detection implies that at least

two locations within 10m of an intersection were classified

as an intersection by the classifier.

E. Conclusions

We have demonstrated an approach for semantic parsing of

outdoor urban street scenes acquired by an omnidirectional

camera. We have shown how the attained coarse semantic

labels (building, sky, ground, trees, cars) and their spatial

layout can be used to further understanding of street scenes

and classifying them as intersections and non-intersections.

We have carried out the experiments on a dataset of 12,000

ominidirectional views of urban scenes. The accuracy of

semantic parsing has been evaluated on a dataset of 320

ground truth images (with a 50-50 split between training

and test sets) yielding a global accuracy of 94%. Intersection
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Fig. 10. Visualization of the intersection recognition experiment. Green
points mark the locations classified as intersections.

recognition has been tested, by correctly labeling 63 inter-

sections achieving a 79% recognition rate. The visualization

of the intersection detection demonstrates that the induced

topological model, where majority of nodes marked by inter-

sections are places where different navigation decisions can

be made. Recent efforts in world wide scale development of

technologies for automated mapping and road network graph

construction can benefit from methods of automated street

scene understanding. In the future work, we plan to explore

strategies for learning more refined semantic concepts as well

as an incorporation of stronger temporal constraints between

the locations. These advancements will aid understanding of

urban scenes for autonomous or semi-autonomous driving

applications.
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