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Vol. 139, No. 4 The American Naturalist April 1992 
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Abstract.-We investigate a genetic model in which two traits result from the acquisition and 
allocation of a single resource. Phenotypic values for the two traits are written as a product of 
the total amount of the resource acquired and the proportion allotted to each of them. Although 
multiplicative gene action determines the traits, the epistasis at the gene level is mainly ex- 
pressed in the additive genetic variance and covariance at the level of the measured traits. 
Phenotypic and additive genetic covariances between the two traits can be positive or negative; 
a negative additive genetic covariance can be accompanied by a positive phenotypic covariance. 
An acquisition-allocation model is the only model of multiplicative gene action that allows 
simultaneous selection on two traits to be written in matrix form. We use the model of resource 
acquisition and allocation to find the life-history consequences of acquisition of a resource and 
allocation to two traits. Two alternative allocation strategies-priority allocation to viability or 
to fecundity-lead to different evolutionarily stable strategies (ESSs) in life-history components. 
Primary allocation to fecundity has allocation fractions of zero or one as its stable state. Primary 
allocation to viability leads to an ESS allocation fraction that depends on resource availability, 
population growth rate, and the age structure of the population. In a poor environment and 
for inherently long-lived animals, the ESS allocation fraction tends in the direction of higher 
viability. 

In life-history studies as well as in quantitative genetics, organisms are nearly 
always represented by a list of separate traits. Whereas the study of individual 
traits may be based on a physiological model of the ontogeny of the trait, the 
relations between traits are mostly studied as either phenotypic or genetic correla- 
tions without any consideration of the underlying physiology. Although the rela- 
tions between life-history traits are usually thought to represent the result of 
alternative allocation of resources, explicit mechanistic models of this allocation 
process are rare. In quantitative genetics, correlated traits are assumed to result 
from pleiotropic gene action without any specification of how such pleiotropy 
comes about in the developmental pathways resulting in the traits. 

Very often, the considerations are limited to the allocation of resources to 
competing goals without considering any variation in the acquisition of these 
resources. Allocation would lead one to expect a negative correlation between 
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750 THE AMERICAN NATURALIST 

the measurements of the competing traits, as Berenbaum et al. (1986) found be- 
tween the amounts of two furanocoumarin derivates. Negative phenotypic corre- 
lations are not always found between life-history traits such as viability and fecun- 
dity (Smith 1981) or fecundity and longevity (M0ller et al. 1989) that are a priori 
considered to form a trade-off. Occasionally, even a positive correlation has been 
found where a negative correlation had been expected (van Balen et al. 1987). 
As acquisition of a resource influences fitness components, we have in an earlier 
model (van Noordwijk and de Jong 1986) represented two traits as the product 
of the amount of a critical resource acquired and the fraction of this resource 
allocated to each trait. Depending on the relative variation in acquisition and in 
the allocation fraction, one obtains positive or negative phenotypic correlations 
between the traits. Here we elaborate on that model by considering the genetics 
of a two-level system, with one locus affecting the acquisition of the resource 
and a second locus affecting its allocation; that is, we present a version of the 
previous model with explicit genetic and environmental variation. We will con- 
sider not only the phenotypic variances and covariances of two traits determined 
by two such loci, but also the effect of selection pressure on those traits. The 
results of the two-locus model can be extrapolated to polygenic models. 

An acquisition-allocation model is a translation of the idea of a trade-off in 
physiological terms. We give a direct genetic and quantitative genetic description, 
and we show the implications in terms of those fields. Trade-offs underlying 
life-history traits are real, whether they are formulated in very general terms, 
such as reproductive effort (Schaffer 1974a), in precise biochemical terms, such 
as the furanocoumarin skeleton as a precursor for several substances defending 
wild parsnip against the parsnip webworm (Berenbaum et al. 1986), or at any 
level in between, such as energy budgets in insects (de Ruiter and Ernsting 1987). 
Selection pressure on life-history strategies is a possible interpretation of the 
selection in the two-locus model. The translation from a formal selection model 
to a model of selection in life-history strategies can be done in more than one 
way. Two translations are found in the literature, but one is much more prevalent 
than the other. Our model shows this to be a consequence of differential prefer- 
ence by modelers. An acquisition-allocation model can be used to show the vari- 
ety in the structure of life histories that is possible. 

In this model the units of the two traits are the amounts of resource each trait 
receives, that is, the product of the total amount of resource acquired and the 
fraction allocated to each trait. It is usual to use a logarithmic transformation for 
quantitative traits that might arise from multiplicative processes in the estimation 
of heritabilities and genetic covariances. Here we chose not to transform, for 
four reasons. First, the traits as used represent amounts of resource: it seems 
biologically more accurate to work with amounts of resource throughout than 
with the sum of the logarithm of the total resource acquired and the logarithm of 
the fraction of the resource allocated to a trait. The units of the traits seem more 
consistent. Second, it is informative to know how multiplicative genetic models 
actually behave in quantitative genetics. Third, one does not always know 
whether a trait is additively or multiplicatively composed. Fourth, writing models 
of selection pressure on the traits while using the genetic variance of the log- 
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F Y-model S 
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amount R 

FIG. 1.-Diagram of the simplest Y model. An amount of resource acquired goes through 
the stem of the Y and is divided between the branches, leading to allocation of the resource 
acquired to the traits F and S. 

transformed variables introduces the assumption that selection works on the log 
transformation of the traits. We chose to develop a model of selection pressure 
on the amounts of resource devoted to two traits related by a trade-off. 

THE BASIC MODEL 

The basic model consists of two traits F and S, arising from the allocation of 
a single resource (fig. 1). The traits F and S are measured in the units of the 
resource. Without any variation, a fraction, C(0 < C < 1), of the amount of 
resource, R(R > 1), will be actively allocated to F, and the remaining fraction, 
1 - C, will by default be allocated to S (see Appendix A for notation, which 
is kept consistent with Falconer 1981). Trait values for F and for S are found 
multiplicatively: the trait value F for trait F would be RC and the trait value S 
for trait S would be R(1 - C). The diagram in figure 1 makes it clear why it is 
easy to speak of a Y model. 

Genetic variation is assumed in both the amount acquired and in the fraction 
allocated to F. One locus, R, affects the acquisition of the resource. This locus 
has two alleles, RI and R2, with frequencies p and q = 1 - p; the genotypic 
values for the three genotypes are RI, = R + rll, R12, and R22 = R + r22; we 
are not yet supposing additive gene action within the locus. Note that a common 
level of gene action, R, is explicitly introduced for the three genotypes. A second 
locus, C, affects the allocation, the fraction that goes to trait F, while the fraction 
that goes to trait S passively follows. Locus C has two alleles, C1 and C2, with 
frequencies u and v =1 - u; the genotypic values are C1l = C + c1i, C12 = C 
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+ c12, and C22 = C + c22, in a notation analogous to the one for locus R. The 
recombination fraction between the two loci is (. Linkage disequilibrium will be 
considered in Appendix B. 

The values for the two traits F and S for a certain genotype RiRjCkCl can be 
written as products of the genotypic values at R and C: 

F1jkl =RijCkl = (R + rij)(C + Ckl) (la) 

and 

Sijkl = Rij(l - Ckl) = (R + rij)(1 - C - Ckl), (lb) 

where rij is defined by the expansion of the genotypic value Ri1 = R + rij and Ckl 
is the expansion of the genotypic value Ckl = C + Ckl. 

The population means of the genotypic values per locus are written as C and 
R. At linkage equilibrium, F = RC and S = R(1 - C). 

The average effect, p, of a gene substitution at locus R for the amount of 
resource acquired is given by 1/2 aR/ap = prlI + (q - p)r12 - qr22, while the 
average effect of a gene substitution at locus R for trait F is given by 1/2 aRC/3p 
= pC and for trait S by 1/2 aR(1 - C)lap = p(l - C) (Kojima 1959). These 
formulations are compatible with the average effects of a gene substitution as 
found by summation (Kempthorne 1957). The dominance effect, d, at locus R for 
the amount of resource acquired is given by d = - 1/2 ap/lp = - 1/4 a2R/lp2 = 
r12 - 1/2(r11 + r22) (Kojima 1959), while the dominance effect at locus R for trait 
F is given by - 1/2 apCb3p = - 1/4 a2RZC/ap2 = dC and for trait S by - 1/2 ap(1 - 
C)/ap = - 1/4 a2R(1 - C)/ap2 = d(I - C). The average effect, y, of a gene 
substitution at locus C for allocation is given by y = 1/2 aC/au; for trait F, the 
average effect of a gene substitution at locus C is given by 1/2 aRC/au = yR, but 
for trait S it is given by 1/2 aR(1 - C)lau = - yR; similarly, the dominance effect, 
e, at locus C for allocation is given by e = C12 - 1/2(CII + C22) and by eR for trait 
F, but by - eR for trait S. For trait F, the additive by additive interaction is 
related to a2k Clap au (Kojima 1959); the additive (locus R) by dominance (locus 
C) interaction is related to 3RC/ap au2, the dominance (locus R) by additive 
(locus C) interaction is related to &3RC/ap2au, and the dominance by dominance 
interaction is related to a4RC/ap2au2. 

The within-locus additive genetic variance at locus R equals 2pqp2, the domi- 
nance variance (2pqd)2; the within-locus additive genetic variance at locus C 
equals 2uvy2, the dominance variance (2uve)2. 

Apart from the influence of the loci, there is an environmental error indepen- 
dently on acquisition (ER) and on allocation. The environmental error on alloca- 
tion adds EC to the allocation to trait F and subtracts the same amount, EC, from 
the allocation to trait S. These environmental errors are seen as noise and have 
a mean of zero. The variance of the environmental error on acquisition is aJR; the 
variance of the environmental error on allocation is a2. The covariance between 
trait F and trait S in the environmental errors is cR2 at the acquisition level and 
-c(2 at the allocation level. The total variance at the acquisition level is 2pqp2 
+ (2pqd)2 + UR; the total variance at the allocation level is 2uvy2 + (2uve)2 + 
cy2, both for trait F and for trait S. The covariance between trait F and trait S is C, 
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TABLE 1 

Two-Locus Y MODEL: PHENOTYPIC VARIANCE AND COVARIANCE FOR THE 
TRAITS F AND S 

(Co)Variance Formula 

var(F) C2[2pqp2 + (2pqd)2 + R] 

+ R2[2UVy2 + (2uve)2 + o2] 

+ [2PqP2 + (2Pqd)2 + ok][2uv0y2 + (2UVe)2 + o2] 

var(S) (1 - C)2 [2pqp2 + (2pqd)2 + ok] 

+ R2[2UVy2 + (2uve)2 + c2] 
+ [2pqP2 + (2pqd)2 + U2][2UVy2 + (2uve)2 + a ] 

cov(F,S) (1 - C)2- C[2pqp2 + (2pqd)2 + ok] 
- R2[2UVY2 + (2uve)2 + .2] 
+ [2pqP2 + (2pqd)2 + o2][- 2UVy2 - (2uve)2 

_ c4] 

2pq p2 + (2pqd )2 + 42 at the acquisition level and - 2uvy2 - (2uve)2 - 2 at 
the allocation level. 

VARIANCE AND COVARIANCE 

We want the phenotypic variances of the traits F and S and the decomposition 
of the phenotypic variances into additive genetic variance and other variance 
components. One can derive the phenotypic variances of the traits F and S from 
the variances of acquisition and allocation through the general expression for the 
variance of products of independent variables. The variance of a product xy, 
where x and y are independently distributed variables with means -x and y- and 
variances ax and cr, respectively, is (Goodman 1980, 1982) 

var(xy) = x2. 2c + y-2 . c?2 + a 2 .a2 (2a) 

and the covariance of xy and x(1 - y) is 

CoV(Xy X (I _Y)) = Y . C2 -vrx =y(- -. 2 _ -2 . t2 _ 2 . a2 2 

(Riska 1986; van Noordwijk and de Jong 1986; Brown 1988). 
Applying these general forms to the phenotypic variance of the traits F and S 

and their covariance yields the quantities in table 1. The phenotypic covariance 
between F and S is not necessarily negative, despite the fact that the traits F and 
S originate in a trade-off. Whether due to genetic causes or environmental noise, 
a large variance at the acquisition level easily leads to a positive covariance 
between the trade-off traits (van Noordwijk and de Jong 1986). 

As can be seen in table 1, the phenotypic variance of the traits F and S has 
both genetic and environmental causes. A comparison with variance components 
as they appear in quantitative genetics is possible. In quantitative genetics, the 
standard way of formally decomposing a trait is as P = G + E: the phenotype 
is made up of a genotypic and an environmental contribution that work additively. 
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754 THE AMERICAN NATURALIST 

The genotypic contribution can be split into the breeding value or additive genetic 
part, A, a dominance deviation, D, and a genetic interaction, I: G = A + D + I. 
The interaction can again be split, into additive by additive, additive by dominant, 
dominant by additive, and dominant by dominant interactions: I = AA + AD + 
DA + DD. Environmental by genetic interaction terms might also be introduced: 
AE, DE, and EE. The phenotypic variance (Vp) and the phenotypic covariance 
(COVp) between two traits can therefore be subdivided into independent compo- 
nents due to a certain type of gene action and to the environment: 

VP = VA + VD + VAA + VAD + VDA + VDD + VE + VAE + VDE + VEE (3a) 

and 

COVP = COVA + COVD + COVAA + COVAD + COVDA + COVDD (3b) 

+ COVE + COVAE + COVDE + COVEE- 

The additive genetic variance and dominance variance in the traits are found 
directly from the definitions of the average effect of a gene substitution and the 
dominance effect (Kempthorne 1957; Kojima 1959). The additive by additive 
interaction variance is found by the method given by Kojima (1959), and the 
additive by dominance, dominance by additive, and dominance by dominance 
variances are found by an extension of that method (see Basic Model). The 
variance and covariance components in table 2 are therefore found independently 
from, but show a clear relationship to, the phenotypic (co)variance in table 1. At 
the genetic level, the genotypic values for the traits are found by multiplication of 
the per locus genotypic values, but this contributes not so much to the interaction 
variance as to the additive genetic variance. In the additive genetic variance of a 
trait, the additive genetic variance at one locus is multiplied by the square of the 
mean genotypic value at the other locus. Epistasis at the genetic level therefore 
contributes strongly to the additive genetic variance. Similarly, epistasis at the 
genetic level contributes to the dominance variance. The additive by additive 
interaction variance of a trait is the product of the within-locus additive genetic 
variances and is small relative to the additive genetic variance of the trait, as can 
be seen from VA/VAA and from order-of-magnitude arguments. The same would 
hold for the individual terms of the additive by additive interaction covariance 
versus the terms of the additive genetic covariance and for the other interaction 
components that can be compared to a main-effect variance component. 

In the components of the phenotypic covariance between the traits F and S, 
all interaction components are necessarily negative, because the trade-off in allo- 
cation combines + y with - y, or + e with - e, in these covariance components 
(table 2). The additive genetic covariance, the dominance covariance, and the 
environmental covariance might be positive or negative (table 2), because the 
additive genetic, dominance, and environmental variances in acquisition contrib- 
ute much to these covariance components. It is possible to find many combina- 
tions in sign: a positive additive genetic covariance together with a negative 
environmental covariance, or a positive additive genetic covariance and a pheno- 
typic covariance that is negative owing to the interaction covariances. The signs 
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TABLE 3 

Two-Locus Y MODEL: COVARIANCES BETWEEN RELATIVES 

Case Covariance 

Parent-offspring covariance '/2 COVA + '/4 COVAA 
Half-sib covariance 1/4 COVA + COVAA[1/16 + 1/4(i/2 - ()2] 

of the additive genetic covariance and the phenotypic covariance are virtually 
independent in this Y model containing both genetic and environmental sources 
of variation in acquisition and allocation. 

In table 3, some covariances and cross-covariances between relatives are given 
for additive gene effects within a locus. In the parent-offspring covariance the 
coefficient of relationship appears, as set out in Falconer (1981, pp. 141-142). In 
the covariance among half-sibs the recombination probability appears even in 
linkage equilibrium (Cockerham 1956; Falconer 1981, p. 143). Multiplying the 
parent-offspring covariance by two or the covariance among half-sibs by four 
does not lead to an estimate of the additive genetic variance. For the case of 
additive gene action with linkage disequilibrium, the population variance, the 
covariance between parent and offspring, and the covariance among half sibs are 
given in Appendix B. The cross-covariances FIS and SIF between parents and 
offspring are no longer identical in this case. 

SELECTION 

Epistasis at the genetic level contributes strongly to the additive genetic vari- 
ance: multiplicative gene action mimics the additive model. In classical quantita- 
tive genetics, the prediction of the selection response Az for selection pressure 
on a trait z is the product of the heritability, h2 = VA/VP, and the selection 
differential, s: /z = h2s (Falconer 1981). For simultaneous selection pressure on 
a number of traits, the prediction for the vector of selection responses, AZ, from 
the genetic variance-covariance matrix, G, the phenotypic variance-covariance 
matrix, P, and the vector of selection differentials, s, is as Az = GP-1s (Lande 
1979); an alternative expression, Az = (1 /iw) GVTw, involves the vector Viw of the 
selection gradients and the partial derivatives, aiw/azi, of mean fitness, w, toward 
the trait means, zi. These predictions are exact for an additive model in two 
cases: the first case involves multivariate normal distributed traits and any fitness 
function, and the second case involves distributions of traits derived from multilo- 
cus genetics and fitness that is a linear function of the phenotype. 

The Y model introduces a specific type of multiplicative gene action. What 
does that mean for selection? A major question is whether the predictions of the 
selection response of one trait by h2s and the prediction of the vector of selection 
responses, Az, by GP-1s = (1/1w)GVTw are valid, exactly or approximately, for 
multiplicative gene action in general or for the special case of the Y model. 

Selection in a two-locus model for a quantitative trait can be dealt with by 
straightforwardly writing down the equations for two-locus selection on the one 
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hand and writing down the differences in the phenotypic means of the two traits 
between two generations on the other hand. This is done in Appendix C for a 
general multiplicative two-locus model and a fitness function that is linear in F 
and S and in the product FS. The conclusion in Appendix C is that selection 
pressure on one trait can be described by an expression analogous to /z = h2s 
for general multiplicative gene action if the population is in linkage equilibrium 
and if the fitness function is linear in the trait considered; the predicted response 
to selection would be near to, but not be exactly equal to, twice the parent- 
offspring regression times the selection differential. Simultaneous selection pres- 
sure on two traits cannot be described by an expression analogous to Az = (1/ 
W)GViw for a general model of multiplicative gene action, even though most 
of the variation from multiplicative gene action converts to additive genetic vari- 
ance (App.C); only in the Y model is a description of simultaneous selection pres- 
sure on the two traits F and S possible by an analogue of the classical Az = 
(1/iw)GVIw, if the population is in linkage equilibrium and fitness is linear in 
both traits. 

To show this, let us consider simultaneous directional selection pressure on 
the traits F and S from the Y model, according to a fitness function for genotype 
RiRjCkCI that is linear in the genotypic values for both traits: 

Wijkl = ko + klFijkl + k2Sijkl. (4a) 

The marginal fitnesses for locus R are 

Vi5 = ko + k1R1iC + k2Rij(1-C). (4b) 

The marginal fitnesses for locus C are 

Wkl = ko + klRCkl + k2R(1- Ckl). (4c) 

The mean fitness is 

w =ko + kRC + k2R(1- C), (4d) 

which indicates that k, is the selection gradient advw/aF and k2 is the selection 
gradient aw=1S/S. 

Substituting the marginal fitnesses (eqq. [4b], [4c]) into the classical per locus 
selection formulas (see, e.g., Falconer 1981) yields for the case of linkage equi- 
librium 

Ap = (1/ W)pqp[k1 C - k2(1 - C)] (5a) 

and 

Au = (1/ W) uvyR [kl - k2] (Sb) 

Since in the Y model the differences between the mean values of traits F and S 
in two successive generations are, in linkage equilibrium, 

/F= 2pC /p + 2-yR /u + 2p -p 2y -/u (6a) 
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and 

S= 2p(l - C) /p- 2yR /u- 2y /Xu 2p / (6b) 

(the third term is due to the multiplication of per locus genotypic values in the 
trait genotypic value), substitution of the changes in gene frequencies (eqq. [5a], 
[5b]) yields the expression for the simultaneous selection response for both traits, 
as 

[ J = (/ W) GP[kJ (7) 

This has the same form as Az = (1/w)GVw (Lande 1979), although the matrix 
G' is not the additive genetic variance-covariance matrix, but a genetic variance- 
covariance matrix involving the additive by additive interaction too. If we define 
Was 

W-(kjF + k2S)/w = (k,F + k2S)I(ko + kjF + k2S), (8) 

a genetic variance-covariance matrix of the following form appears: 

[VA(F) + VAA(F) W COVA(F, S) + COVAA(F, S) W] (9) 
LCOVA(F, S) + COVAA(F, S) * W VA(S) + VAA(S) W ( 

How much influence does the additive by additive interaction variance exert on 
the selection response? We have to remember that VAA is small relative to VA, 
while COVAA might be small relative to COVA. We also have to evaluate W 
(k,F + k2S)/0. For very weak selection, ko > k1, k2, and the factor W will 
approach zero; the matrix G' becomes the additive genetic variance-covariance 
matrix itself. For very strong selection, k, or k2 will be large compared to ko, and 
the factor W will approach 1; the influence of the interaction variance on selection 
will be maximal. But because 

(CO)VA < (CO)VA + (CO)VAA * W< (CO)VA + (CO)VAA (10) 

while twice the parent-offspring covariance estimates (CO) VA + 1/2 (CO) VAA 
(table 3), the usual estimates of additive genetic variance and covariance from a 
parent-offspring regression might perform quite satisfactorily in practice (while 
using four times the half-sib covariance would not; see table 3). 

The result of selection is always fixation: at the highest or lowest genotypic 
value for the acquisition locus R, depending on the value of k1 C + k2(1 - C), 
and at the highest or lowest genotypic value of the allocation locus C, depending 
on the sign of k1 - k2 (eqq. [5a], [Sb]). 

The selection expression (eq. [7]) is applicable to any acquisition-allocation 
schedule, independently of the number of loci at the acquisition level or the 
number of loci at the allocation level (fig. 2). 

EVOLUTIONARILY STABLE STRATEGY (ESS) AND POLYMORPHISM IN ALLOCATION 

In the preceding section, fitness was a linear function of both traits, and the 
result was a description of directional selection. Selectively maintained polymor- 
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F s F S 

Resource acquired 

6 loci Rk 

4 loci Ri 

FIG. 2.-Polygenic Y models. a, Each acquisition locus is matched to an allocation locus; 
b, different number of acquisition loci. 

phism is possible in the Y model if the fitness function includes the product of 
the two traits, FS. Selection pressure on the product implies that an intermediate 
fraction of allocation to F and S is selected for. Let Wijkl be defined by 

Wkljk- = ko + klFijkl + k2Sijkl + k3FijklSijkl (11) 

Selection formulas are found in Appendix C; no matrix formulation is possible. 
Polymorphism is unlikely for acquisition as it requires that Rip < 1/2, which seems 
a biologically unlikely condition for an amount of resource and its variation. For 
positive selection gradients, k, it is more likely that locus R will be fixed at the 
highest genotypic value. A polymorphism in allocation can be maintained more 
easily. Locus C might be polymorphic, at an equilibrium frequency, ui, such that 

U = 1/2 + R(k1 - k2)/[2y(R2 + oR)k3] + [(1 - C) - C]/2y. (12) 

The range of values for which polymorphism is possible is fairly restricted; in 
figure 3, the shaded area gives the combinations of C and -y for which polymor- 
phism might exist for the case k, = k2. The conditions for polymorphism to be 
maintained correspond to those of Rose (1982) if k1 = k2. 

The ESS value for C is found at the value of C that maximizes w in the absence 
of genetic variation; it is expected to evolve if there is a continuous supply of 
mutants with a small effect on allocation. From aw/aC = 0 it follows that the 
ESS value for C is 

CESS = (k3R + k, - k2)/(2k3R) = 1/2 + (k1 - k2)/(2k3R). (13) 

Neither the presence of a selectively maintained polymorphism at locus C nor 
the ESS value of the allocation fraction C constrains the covariance between the 
two traits F and S to be negative. In the case of a polymorphism in the allocation 
fraction that is maintained by selection pressure on the value of the product FS, 
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1/3 
x~~~~ 
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FIG. 3.-Area (shaded) of combinations of values of common allocation fraction, C, and 
average effect of a gene substitution, y, that allow polymorphism at locus C, if k1 = k2. 

while locus R is fixed, the phenotypic covariance between the traits F and S 
becomes COV(F,S) = (1 - C) C C2 - [R2 + j2 ][2uv-y2 + o-2 ], and, while 
it seems likely that this is negative, it does not seem to be necessary. Antagonistic 
pleiotropy need not lead to a negative phenotypic covariance between two traits 
(cf. Charlesworth 1990). The additive genetic covariance (table 2) is, however, 
necessarily negative if there is no genetic variation at locus R, but only the poly- 
morphism at locus C. At the ESS allocation fraction, genetic variation is absent 
at both loci, but the variation in acquisition and allocation due to environmental 
noise is still present. The covariance between the traits F and S becomes 
COV(F, S) = (1 - C) * C A2 - (R2 + CF2 )uC2, and this might be either positive 
or negative (van Noordwijk and de Jong 1986). 
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SELECTION AND LIFE HISTORIES 

The two traits F and S in this genetic acquisition-allocation model might easily 
stand for life-history traits; life-history traits are very widely considered to result 
from physiological trade-offs (Sibly and Calow 1986). What is special for life- 
history traits is that they are directly involved in the determination of fitness. The 
implication is that acquisition of a resource and allocation of it to two competing 
life-history traits have a direct influence on fitness. 

Genotypic fitness can be modeled in two ways: in a formal way in order to 
investigate the mathematical consequences of specific shapes of genotypic fitness, 
as we have been doing in expressions (4a) and (11), and in fitness components in 
order to investigate the influence of the life history on fitness and to link genotypic 
fitness to demography. Life-history representations for genotypic fitness can be 
found (see, e.g., de Jong 1990); if weak selection at stable age distribution and a 
constant growth rate of the population are assumed, genotypic fitness is numeri- 
cally equal to 

x = xc 

w1ij XZx+1llxijbx, j (14) 
X= 1 

where X is the population growth rate at a stable age distribution, lx is survival 
from birth to age x, and bx is reproduction at age x. Survival, Ix, is found by 
multiplying the probabilities of survival, Pk- 1, for survival from age k - 1 to age 
k, over all age intervals up to age x: 

k=x- 1 

Ix ij 1 Pk, ij (15) 
k= 1 

Ages are assumed to be genetically independent, no locus affecting more than 
one age class. Genotypes will be supposed to differ in only one probability of 
survival and one age-specific fecundity, at age y. These are supposed to derive 
from an allocation of resources acquired within one period between reproductive 
events. This means that we will consider two forms for genotypic fitness, one in 
which the trade-off underlies py -1 and b, and one in which the trade-off underlies 
by and py. 

Let us first consider the trade-off between py_ and by. An organism acquires 
energy between the (y - I)th time it reproduces, age x = y - 1, and the next 
time it reproduces, age x = y. Part of this energy is spent immediately on metabo- 
lism and defense against parasites or herbivores; the remainder is saved or stored 
for the next future reproduction at age x = y. Energy is allocated to survival 
(py- ), and the remainder is used for reproduction (by). The probability py -I plays 
the role of the trait F: it is the trait to which energy is actively allocated, the 
determining trait. Reproduction, by, plays the role of trait S, the trait that gets 
what is left. 

Both traits appear in demographic fitness in lybyA -Y+l; moreover, trait F ap- 
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pears in b -x?llxb. Selection is on the product of the traits, FS, at age y 
and involves trait F at all later ages. Trait S appears only at age y, in the product 
FS. Therefore, if allocation is first to viability while only the remainder or surplus 
energy goes to reproduction, a formal fitness model like expression (11) is appro- 
priate. The coefficients (ko, kl, k2, k3) in expression (11) stand partly for life- 
history components and partly for scaling factors that were not further consid- 
ered. The determination of the coefficients is by age: at the trade-off age, before 
the trade-off, and after the trade-off. The coefficient ko represents the age classes 
before the trade-off, ko = ExY-71 \-x+llxbx. The coefficient k, of trait F repre- 
sents the influence of the later age classes, as the viability py -I influences survival 
to all later ages: k, = (I/pyi1) Ex='+, x-x+llxbx. Reproduction at age x = y 
appears only in the product FS in genotypic fitness, and this precludes a separate 
selection gradient on S(by) from appearing; that is, k2 = 0. The coefficient k3, 
described by k3 = 1Y_1X-Y+1, of the product FS (equal to py-lby) represents 
selection at age y. 

The ESS allocation fraction to viability, py-1, becomes (see eq. [13]) 

CESS = (k3R + kl)/(2k3R) = 1/2 + 1/2 . (kllk3) . (1/R). (16a) 

The ESS allocation fraction CESS involves k1/k3 = (XY/ly) >xXy X-Xlb - 

(p,i/X) * Vy+I (where Vy+ stands for the reproductive value at age y + 1): 

CESS = 1/2 + 1/2 * (1/R) * (py1 /x) V + . (16b) 

This implies that the allocation to viability at any age is at least half the energy 
acquired. Acquisition of resources, and fitness components after the age of trade- 
off and at the trade-off, plays different roles in determining the ESS allocation 
fraction. Fitness components before the trade-off do not influence CESS. A trade- 
off at age y is demographically independent of the previous ages, if it is genetically 
independent, as is supposed here. 

If the species is iteroparous, the amount of resource actually acquired between 
two reproductive events has an influence on the evolutionarily stable life-history 
strategy for allocation. Since R is an amount of energy or some other resource, 
R > 1 seems reasonable. The ESS allocation fraction to viability increases from 
1/2 to 1/2 (1 + kIlk3) if the amount acquired, R, decreases from infinity to one. In 
a poor environment, allocation of energy to viability will therefore be favored 
over allocation to reproduction. The ESS allocation to viability will counteract 
the direct influence of an environment that decreases viability and promotes sur- 
vival at the expense of reproduction. 

The ESS allocation fraction depends on the age considered, as at least k, de- 
pends on the age class. In a poor environment the potential age structure of an 
iteroparous species has a pronounced effect on the ESS allocation fraction, as a 
higher expectation of survival and reproduction at later ages increases the coeffi- 
cient kl. For potential high survival to high age the ESS allocation to survival at 
the age considered for the trade-off receives an additional boost. Survival feeds 
back on itself. Another implication is that the ESS allocation to viability at differ- 
ent ages will decrease with age; if we compare a trade-off between Pi and b2 with 
a trade-off between P8 and b9, for instance, the ESS allocation fraction to viability 

This content downloaded from 194.171.8.39 on Wed, 6 Nov 2013 09:46:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SELECTION AND LIFE HISTORIES IN Y MODEL 763 

will be higher for the earlier age. Reproduction might increase with age but never 
cost more than half the energy available. 

In a rich environment or at a high population growth rate, X, the ESS allocation 
fraction to viability will be lower, approaching half the energy acquired: reproduc- 
tion is favored when there is enough to survive. The influence of the remaining 
ages (kl) would be lower in a rich environment than in a poor environment, and 
the ESS allocation fraction will vary less between ages. 

The second possibility is a trade-off between by and py. This case has been 
dealt with in models of "reproductive effort" (Schaffer 1979). Of an acquired 
energy supply, part is allocated to reproduction, and the remainder is used toward 
survival to the next breeding age. Now it is reproduction, by, that plays the role 
of the trait F to which the resource is actively allocated, while survival until the 
next breeding age, py, plays the role of the default trait S. In the life-history 
expression for genotypic fitness, by and py appear in different terms. 

This means that a formal fitness model like expression (4a) is appropriate if 
allocation is first to fecundity while only the remainder of the energy goes to 
viability. The formal coefficients stand for the other life-history components: k, 
for X-Y+1 IY k2 for (/lpy) ExOC+ x-x+llxbx, and ko for lyIby-I. We have already 
seen that the ESS allocation fraction, CESS, is either zero or one in this model. 
Either reproduce all out, or not at all. Therefore, the time sequence of energy 
acquisition and allocation to fitness components has large consequences for the 
life-history strategy. 

DISCUSSION 

The Y models we describe provide a connection between quantitative genetics 
and life-history theory, population genetics and physiology. A Y model as pre- 
sented here is written in the biological properties of genes: the approach is by 
way of population genetics, but it is clear that the variances and covariances 
between traits are fully compatible with the quantitative genetic approach. The 
biological properties of the genes as assumed in the model are physiological, but 
the biological conclusions pertain to life-history theory. That is, we present Y 
models as a thinking substrate for connecting fields in a biological way. We claim 
that the model provides both new results and derivations of known results that 
are easier to interpret. 

In an earlier article we presented a simple nongenetic Y model of acquisition 
and allocation of resources to explain the occurrence of positive phenotypic cor- 
relations where negative phenotypic correlations were expected because of a 
trade-off (van Noordwijk and de Jong 1986). A developmental version of a Y 
model was given by Riska (1986). Compatible but mathematically more compli- 
cated and less mechanistic models of constraints due to trade-offs in quantitative 
genetics and their consequences on genetic covariances are given by Pease and 
Bull (1988) and Charlesworth (1990). 

Epistasis and Selection 
The different uses of "epistasis" become visible. Epistasis at the gene level is 

modeled as the multiplication of the per locus genotypic effects. In the variance 
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components of quantitative genetics, the existence of the interaction variances is 
due to this multiplication, but the numerically largest effect of epistasis at the 
gene level is in the additive genetic variance. 

Locus R influences the acquisition of the resource and would be both a "bio- 
chemical gene" and a "quantitative gene." Locus C allocates and converts a 
resource to trait F: it is both a biochemical gene and a quantitative gene with 
regard to trait F. Trait S gets the amount of resource, 1 - C, that is left after the 
allocation to trait F; therefore, locus C is the quantitative gene for trait S, but it 
might be quite another locus that actually converts the resource to trait S. This 
other locus might even show biochemical genetic variation that is not expressed 
as quantitative variation. Biochemical and quantitative genetic variation in a trait 
need not be related at all. 

A prediction of the selection responses in the two traits deriving from the 
trade-off can be found for directional selection. The prediction involves a matrix 
G' containing the additive by additive interaction variances and covariances as 
well as the additive genetic (co)variances. The prediction is analogous to the 
classical prediction of the vector of selection responses Az from the product of 
the genetic variance-covariance matrix, G, and the vector of logarithmic selection 
gradients, V ln W. A prediction of the selection responses based on the parent- 
offspring covariances will be near the exact selection response; a prediction based 
on the additive genetic (co)variances themselves will be very near the exact 
selection response for weak selection. This shows that the actual developmental 
composition of the traits has little influence on phenotypic changes under weak 
selection. 

There is no basis for the convergence of the additive genetic correlation and the 
phenotypic correlation in an additive model. In the Y model, such convergence is 
at least possible. If all interaction components in the phenotypic variance (table 
2, "Interactions") are very small, and if the environmental and genetic variances 
at a level are of the same order of magnitude, the genetic correlation and the 
phenotypic correlation might approximate each other in the Y model. Cheverud 
(1988) showed that most existing data sets provide evidence that additive genetic 
and phenotypic correlations rather than additive genetic and phenotypic covari- 
ances are quite similar. 

Life-History Strategies 
In life-history theory, many trade-off models exist, but they mostly involve 

supposing a direct trade-off between traits without considering underlying pro- 
cesses. An exception is the model of Sibly and Calow (1984); they related a 
difference for life-history strategies to the time sequence of paying the cost of 
reproduction. Reproduction paid for from energy collected before reproduction 
was termed "direct costing," corresponding to allocation first to viability, with 
the remainder to fecundity. Reproduction paid later was termed "absorption cost- 
ing," corresponding to allocation to fecundity first, with the remainder to subse- 
quent viability. Some of Sibly and Calow's conclusions correspond to the life- 
history conclusions here, such as that reproduction is lower with direct costing. 
But the main difference is that Sibly and Calow write the fitness function for 
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direct costing differently from that for absorption costing; direct costing skips the 
first reproduction compared with absorption costing. 

In the model by Schaffer (1974a, 1974b) on iteroparity and semelparity, survival 
is actually the survival following in time upon reproduction (Schaffer 1979). In 
the simple Y model, iteroparity is not an evolutionarily stable strategy if survival 
is the "remainder" trait: there is always either total investment in survival or total 
investment in reproduction. The difference is due to the nonlinear transformation 
between reproductive effort and survival or fecundity used by Schaffer (1974a, 
1974b); in the Y model only linear scaling is used. As in the model of Schaffer 
(1974a, 1974b; 1979), optimization is per age class-this because it is supposed 
that the acquisition and allocation of resources are genetically independent be- 
tween age classes, a different set of genes being responsible for acquisition and 
allocation at each age. If the same genes were responsible for acquisition and 
allocation at each age, one would have to do a simultaneous optimization over 
all ages (Caswell 1980). The difference between the models of Caswell (1980) and 
Schaffer (1974a, 1974b, 1979) can be seen as a difference of opinion about the 
genetic independence of allocation processes between age classes. Genetic inde- 
pendence between age classes leads to optimization per age class, as in Schaffer's 
model, and genetic identity leads to the much more restrictive simultaneous op- 
timization over all age classes, as in Caswell's model. Yodzis (1981) pointed 
out the difference in the optimization criterion used but did not suggest that im- 
plicit assumptions about genetic relationships between traits were in fact playing 
a role. 

A trade-off between reproduction and subsequent survival recalls models of 
life-history predictions based on a trade-off between current reproduction and 
residual reproductive value (Pianka and Parker 1975; Pianka 1976). In Pianka 
(1976) and Schaffer (1979), maximizing fitness means maximizing reproductive 
value. However, here we have two ways to structure the physiological trade-off, 
and only one, in which the trade-off is between reproduction and subsequent 
survival, corresponds to the trade-off between life-history components as used 
by Pianka (1976) and Schaffer (1974a, 1974b; 1979). 

The other physiological trade-off, between survival and subsequent reproduc- 
tion, leads to another relation between fitness and reproductive value, as recog- 
nized by Schaffer (1979) and Caswell (1980). This trade-off translates into a fitness 
function that does not involve the sum of the traits, but one of the traits and their 
product. Maximizing fitness involves both p, itself and the product P l-I by, that 
is, the residual reproductive value at age y - 1, py l X -' V +, not the reproduc- 
tive value, V,, itself. The strict relation between maximizing fitness and maximiz- 
ing reproductive value depends on a particular life-history assumption. The same 
assumption that makes maximizing fitness equivalent to maximizing reproductive 
value in a model of life-history evolution causes the classical model of simultane- 
ous selection on two quantitative traits, A-z = GP-'s, to be (approximately) valid. 
The models of Lande (1982) and Schaffer (1979) belong together. Neither gives a 
general model of life-history evolution, because the evolution of fitness compo- 
nents that appear as a product in the demographic expression for fitness cannot 
be handled by either model. 
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APPENDIX A 

LIST OF SYMBOLS 

bx Reproduction at age x 
C Locus determining allocation 
C Basic fraction allocated by all genotypes to trait F 
C Mean genotypic value at locus C for allocation to trait F 
CESS Evolutionarily stable strategy value for C 
Ckl Genotypic value for allocation to trait F, genotype CkCl 
Ckl Ckl- C 

D Linkage disequilibrium, x11X22 - X12X21 
d Dominance deviation at locus R on acquisition 
Azi Selection response in trait z 
Ai Vector of selection responses for traits zi 
e Dominance deviation at locus C for allocation 
EC Individual value for environmental error at the allocation level, 7c = 0 
ER Individual value for environmental error at the acquisition level, R = 0 
F Name of trait receiving allocation fraction C 
F Value of trait F 
F Mean value of trait F 
G Additive genetic variance-covariance matrix 
G' Variance-covariance matrix involving additive genetic and additive by additive 

interaction variance components 
GP-'s Prediction of the vector of selection responses Ai 
'y_ Average effect of a gene substitution at locus C for allocation 
-yR Average effect of a gene substitution at locus C for trait F 
- yR Average effect of a gene substitution at locus C for trait S 
h2 Heritability of a trait, VA/VP 
h2s Prediction of the selection response 
ko Basic fitness value 
k, Selection gradient for trait F 
k2 Selection gradient for trait S 
k3 Selection gradient on the product of the trait values, FS 

Recombination fraction between loci R and C 
lx Survival probability from birth to age x 
X _ Population growth rate at stable age distribution 
1 - C Mean genotypic value at locus C for allocation to trait S 
P Phenotypic variance-covariance matrix 
p, q Gene frequencies at locus R, q = 1 - p 
Px-i Survival probability from age x - 1 to age x 
R Locus determining acquisition 
R Basic amount of resource acquired by all genotypes 
R Mean genotypic value at locus R 
Rij Genotypic value for acquisition, genotype RiRj 
rij Rii -R 
p Average effect of a gene substitution at locus R on acquisition 
pC Average effect of a gene substitution at locus R for both traits F and S 
S Name of trait receiving allocation fraction 1 - C 
S Value of trait S 
S Mean value of trait S 
s Selection differential, wVs = cov(z, w) 
s Vector of selection differentials for traits zi 
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(T2 Variance Of EC 
(T2 Variance of ER 

u, v Gene frequencies at locus C, v = 1 - u 
VA(F) Additive genetic variance of trait F 

Reproductive value at age y, 1 X- lxb 
var(F) Phenotypic variance of trait F 
W (kjF + k2S)/(ko + kjF + k2S) 
w Fitness 
w Mean fitness 
VW Vector of selection gradient aw/la 
x,y Age 
Xik Frequency of gamete RiCk 
z General designation of a trait 
Zi Mean value of trait i 

APPENDIX B 

INFLUENCE OF LINKAGE DISEQUILIBRIUM ON THE VARIANCES AND COVARIANCES OF F AND S 

When linkage disequilibrium exists, the genetic variance has additional components due 
to linkage disequilibrium. We will mention these only for two additive loci, not dominance. 
Linkage disequilibrium can be given as D = XIIX22 - X12X21, where Xik is the frequency 
of the gamete with RiCk. The expression (CO)VA(I,J), and so on, will be as in table 1. In 
the case of linkage disequilibrium, 

COVG(I,J) = COVA(I,J) + COVAA(I,J) + 2DpyR(CI + CJ) ? 2Dpy(R - R)(C - C) 
(I = F,S; J = F,S). In COVG(F,S) the sign of the last term is positive; in VG(F) and 
VG(S) the sign of the last term is negative. To obtain VG(F), C, = CJ = C; to obtain 
VG(S), CI = CJ = -(1 - C); to obtain COVG(F, S), C, = -C, CJ = (1 - C). 

In the parent-offspring covariances, P stands for parental value, and 0 for the offspring 
mean. Linkage disequilibrium causes the recombination frequency to appear. 

COV(P:I;O:J) = I/2 COVA(I, J) + 1/4 COVAA(I, J) 

+ Dp-y[RCI(1- ) + CIR + RCJ - RC,(1-)] 2D2p2y2('2 -,2 

(I = F,S; J = F,S). In COV(P:F;O:S) and COV(P:S;O:F) the sign of the last term is 
positive; in COV(P.F;O:F) and COV(P:S;O:S) the sign of the last term is negative. To 
obtain COV(P:F;O:F), C, = CJ = C; to obtain COV(P:S;O:S), C, = CJ = -(1 - C); 
to obtain COV(P:F;O:S), C, = - C and CJ = (1 - C); to obtain COV(P:S;O:F), C, = 
1 - C and CJ = - C. The two parent-offspring cross-covariances are equal only when 
there is linkage equilibrium. 

The cc variances between half-sibs can be written in similar forms: 

COV(H:I,J) = '/4COVA(I,J) + COVAA(I,J)['/16 + '1/4('/2 - )2] 

+ '/4Dpy(1-) [+RCI(1-) + RCI(1 + () + RCI(1 + ()-RCI(1 + ()] 

+ '/4Dpy(1 -) [+RCJ(1 -) + RCJ(1 + ) + RCJ(1 + ()-RCj(1 + ()] 

+ D2p2y2('i2 - 

(I = F,S; J = F,S). To obtain COV(H:F), C, = CJ = C; to obtain COV(H:S), C, = CJ 
- -(1 - C); to obtain COV(H:F,S), C, = -C and CJ = (1 - C). The covariances 
between half-sibs are not simply related to the population variance or to the covariances 
between parent and offspring. Four times the covariance between half-sibs cannot be used 
in the prediction of selection. 
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APPENDIX C 

SELECTION PRESSURE ON MULTIPLICATIVE TRAITS 

The problem is to see how far the quantitative genetic selection formulas for two traits 
are valid for traits that are formed additively within but multiplicatively between loci. 
Linkage disequilibrium is absent. 

Consider two traits, F and S, that are multiplicatively put together from gene effects at 
two loci. The effects within the loci are assumed to be additive. Genotype AjA1 at locus 
A contributes A + ai + aj to trait F and C + ci + cj to trait S. Genotype BkBl at locus 
B contributes B + bk + b, to trait F and D + dk + d, to trait S. The gene frequency of 
allele A1 equals p, and of allele A2, q, where q = 1 - p. The gene frequency of allele B1 
equals u, and of allele B2, v, where v = 1 - u. Genotype AjAjBkBl leads to a genotypic 
value for trait F of (A + ai + aj)(B + bk + bl) and of (C + ci + cj)(D + dk + dl) for trait 
S. The mean genotypic value for trait F is F = (AB) = AB because of the independence of 
the loci, and for trait S it is S = CD. The average effect of a gene substitution at locus A 
for trait F is ct = 1/2 = al - a2; the average effects 3, y, and 8 are analogously 
defined (Kojima 1959). 

The environment might contribute some noise. Let us suppose that there are four in- 
stances of random environmental effects: EA added to A, EB added to B, Ec added to C, 
and ED added to D. The environmental effects have a mean of zero and variances of o, 

2B J2c, and o-D. Environmental effects of different levels are independent, but those at the 
same level have a covariance: that is, cov(EA,EC) =# 0 and cov(EB,ED) =# 0. Effects A and 
C, and B and D, are not independent. Therefore, (AC) = A * C + 2pq * oty + cov(EA,EC) 
and (BD) = B *D + 2uv * P8 + cov(EB,ED). 

The fitness function most related to selection gradients is in its general shape (see 
expression [11]) w = ko + klF + k2S + k3FS = ko + klAB + k2CD + k3ABCD. The 
changes in gene frequency are, according to standard procedure, 

Ap = (pq1w=){klBot + k2Dy + k3(BD)[oC + yA + ory(p - q)]} 

and 

Au = (uv/w){k1A3 + k2C8 + k3(AC)[3D + 6B + r8(u - v)]}. 

The change in the mean value of trait F between any two generations 0 and 1 can be 
written as (with index indicating generation number) AF = F1 - Fo = AIR - AB0o = 
2otB * Ap + 2PA * Au + 44 * Ap * Au under the condition of linkage equilibrium. 
Substitution of Ap and Au shows that this cannot be written as an expression in genetic 
variances and covariances, even when k3 = 0. A simple prediction of AF and AS in an 
expression involving additive genetic variance and covariance, and additive by additive 
interaction variance and covariance, is not possible for linear selection pressure on two 
traits in a general model of multiplicative genetic effects. But when there is selection 
pressure on only one trait-for instance, F (k2 = 0, k3 = 0)-the change in mean pheno- 
typic value for trait F becomes (see expression [7]) AF = (1/i) . kl[VA(F) + VAA(F) - 

W]. For one trait, a prediction of the selection response is possible for multiplicative gene 
action; the expression involves not the parent-offspring covariance, VA(F) + 1/2 VAA(F), 
but VA(F) + VAA(F) . W (O < W < 1). This might be near enough numerically, as VAA(F) 
might be smaller than VA by an order of magnitude, but it shows that the parent-offspring 
regression line is no starting point for the prediction of the selection response in general. 

In the Y model, special relations hold. Let locus A stand for locus R and locus B stand 
for locus C. Then A = CR, B = 1 -D C, ai = ci ri bk= -dkCk, andA = 
C--R, B --C, D-1 - , Ot = z p, @ - 8 -- COV (EA,EC) R and cov(EB,ED) 

=2. Substitution leads to a change in the mean value for trait F between two generations 

This content downloaded from 194.171.8.39 on Wed, 6 Nov 2013 09:46:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SELECTION AND LIFE HISTORIES IN Y MODEL 769 

of 

AF = (/lw) {klVA(F) + k2COVA(F,S) 

+ 4pquvp2y2(111w)[kRkRC + k2R(1 - C)]kl 

- 4pquvp2y2(1/w)[kjRC + k2R(1 - C)]kj, 

and, when expression (8) is used, this leads to 

AF= (1/ w=) I[klVA(F) + k2COVA(F,S) + k,VAA(F) W+ k2COVAA(F,S) W]. 

Similarly, 

AS = (1/v) * [klCOVA(F,S) + k2VA(S) + klCOVAA(F,S)* W + k2VAA(S) W]. 

Therefore, simultaneous selection pressure on both traits leads to expressions (7) and (9). 
The result hinges on the fact that one of the two loci has the same effect on both traits, 
and the other locus an exactly opposite effect. 
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