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Iron (Fe) is a micronutrient that plays an important role in agriculture worldwide because

plants require a small amount of iron for its growth and development. All major functions

in a plant’s life from chlorophyll biosynthesis to energy transfer are performed by Fe

(Brumbarova et al., 2008; Gill and Tuteja, 2011). Iron also acts as a major constituent

of many plant proteins and enzymes. The acquisition of Fe in plants occurs through two

strategies, i.e., strategy I and strategy II (Marschner and Römheld, 1994). Under various

stress conditions, Nramp and the YSL gene families help in translocation of Fe, which

further acts as a mineral regulatory element and defends plants against stresses. Iron

plays an irreplaceable role in alleviating stress imposed by salinity, drought, and heavy

metal stress. This is because it activates plant enzymatic antioxidants like catalase (CAT),

peroxidase, and an isoform of superoxide dismutase (SOD) that act as a scavenger of

reactive oxygen species (ROS) (Hellin et al., 1995). In addition to this, their deficiency as

well as their excess amount can disturb the homeostasis of a plant’s cell and result in

declining of photosynthetic rate, respiration, and increased accumulation of Na+ andCa−

ions which culminate in an excessive formation of ROS. The short-range order hydrated

Fe oxides and organic functional groups show affinities for metal ions. Iron plaque

biofilm matrices could sequester a large amount of metals at the soil–root interface.

Hence, it has attracted the attention of plant physiologists and agricultural scientists

who are discovering more exciting and hidden applications of Fe and its potential in the

development of bio-factories. This review looks into the recent progress made in putting

forward the role of Fe in plant growth, development, and acclimation under major abiotic

stresses, i.e., salinity, drought, and heavy metals.
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INTRODUCTION

Abiotic stress is a result of several environmental disturbances
caused by the continuous encroachment of industrialization,
urbanization, and some human interference with the natural
ecosystem that influence the quality and quantity of agriculture
production per year (Mantri et al., 2012). Abiotic stresses include
heat, cold, freezing, drought, salinity, flooding agents, UV, and
heavy-metal stresses that have significant impacts on a plant
life cycle (Macedo, 2012; Mantri et al., 2012; Singh et al., 2015,
2017; Tripathi et al., 2016c). These stresses not only affect plant
biodiversity and productivity but also can interfere with the
food web and the ecosystem. Abiotic stresses are worldwide
problems as they decline the crop yield (Cramer et al., 2011).
Moreover, the presence of heavy metals in food crops causes
some severe diseases like cancer and asthma (Brigham et al.,
2015). Plants, being the most precious gift of the nature that
fulfill several basic requirements of human beings, are severely
affected by various abiotic stress factors. Abiotic stress causes
significant reduction in growth and yield of plants via inducing
oxidative stress through enhanced reactive oxygen species (ROS)
production and by lowering the antioxidant activities, level of
nutrients, and modification of anatomical structures (Nagajyoti
et al., 2010; Nazar et al., 2012; Vaculík et al., 2012; Singh
et al., 2015; Tripathi et al., 2016b, 2017a). Hoagland and Arnon
(1950) pioneered the most popular and commercial technique
for developing plants with their roots in solutions containing
mineral nutrients required for the growth of plants.

Various techniques are being used to protect plants from
the adverse effects of abiotic stresses, which include exogenous
supplementations of silicon, nitric oxide, growth-promoting
hormones, enzymes, and nutrient management (Nagajyoti et al.,
2010; Nazar et al., 2012; Tripathi et al., 2012, 2016a, 2017a,b,c,d;
Vaculík et al., 2012; Saxena and Shekhawat, 2013). Among the
remedies for abiotic stress, nutrient regulations or management
are considered as the cost effective and eco-friendly techniques
(Tripathi et al., 2015; Yadav et al., 2016). It has been reported that
plant nutrients (micro andmacro) play important roles in growth
and development (White and Brown, 2010; Waraich et al., 2011;
Tripathi et al., 2014, 2015). Therefore, an adequate and balanced
supply of nutrients at the correct time is required for the proper
growth and development of plants, maintenance of better soil
fertility, and preservation of an intensive cropping system to
maintain the global food production, particularly in developing
countries (Dordas, 2009; Hansch andMendel, 2009; Sarwar et al.,
2010; Moharana et al., 2012; Waraich et al., 2012). In addition,
studies also showed that an exogenous supply of nutrients plays
a crucial role in the enhancement of plant tolerance against
various abiotic stresses (Pankovic et al., 2000; Hassan et al., 2005;
Tlustos et al., 2006; Dheri et al., 2007; Sarwar et al., 2010). Some

Abbreviations: DMAS, deoxymugineic acid synthase; FRO, ferric-chelate

reductase oxidase; HA, H+-ATPase; IRT, iron-regulated transporter; MAs,

mugineic acid family phytosiderophores; NA, nicotianamine; NAAT,

nicotianamine aminotransferase; NAS, nicotianamine synthase; PEZ,

PHENOLICS EFFLUX ZERO; SAM, S-adenosyl-L-methionine; TOM1,

transporter of mugineic acid family phytosiderophores 1; YS1/YSL, YELLOW

STRIPE 1/YELLOW STRIPE 1–like.

nutrients such as calcium (Ca), magnesium (Mg), sulfur (S), zinc
(Zn), and iron (Fe) have shown significant results when they
are examined under salinity, drought, and heavy-metal stresses
(Sarwar et al., 2010; Singh et al., 2011; Nazar et al., 2012).
Currently, the application of Fe as a nutrient supplement and its
role in imparting tolerance to plants against abiotic stresses are
gaining attention as an area of research. Some studies suggested
that the application of Fe reflects significant and/or potential
impacts in alleviating the stress imposed by metal ions (Liu et al.,
2007; Yadav et al., 2007; Garnier et al., 2010; Emamverdian et al.,
2015).

Iron—the fourth most abundant and essential microelement
on the earth’s crust—is unavailable to higher plants, largely
due to neutral and alkaline soils because of its existence in
an insoluble form (Shao et al., 2007). In the plant system,
Fe is regarded as an essential element in regulating life-
sustaining processes like respiration, photosynthesis, chloroplast
development, and chlorophyll biosynthesis where it takes part in
electron transportation (Kim and Guerinot, 2007). Inadequate Fe
supply in plants causes iron-deficiency, which results in decline
in crop yields, interveinal chlorosis in plant leaves, etc. (Kim and
Guerinot, 2007; Lan et al., 2011). In addition, excess levels of Fe
can be fatal for plant health and productivity (Anjum et al., 2015).
Therefore, an appropriate supply of Fe is needed for sustaining
plant productivity under stress as well as non-stress conditions.
It has been reported that out of the total cultivated areas of the
world, one-third has Fe deficiency (Kim and Guerinot, 2007),
which is causing significant decline in yield of crops every year.
Iron is a chief component of the cell redox systems and also acts
as a cofactor of various antioxidant enzymes like catalase (CAT),
peroxidase (POD), and ascorbate peroxidase (APX) (Marschner,
1995; Sharma et al., 2004; Kumar et al., 2010). Therefore, Fe
homeostasis plays a crucial role in the life cycle of plants under
stressed conditions (Figure 1) (Gratao et al., 2005; Meda et al.,
2007; Sarwar et al., 2010). In addition to overviewing major
Fe acquisition strategies in plants, this review briefly appraises
the literatures available on the role of Fe in plants exposed to
major abiotic stresses like salinity, drought, and heavy metals.
Less discussed topics in the current context have also been
highlighted.

IRON ACQUISITION STRATEGIES IN
PLANTS

Despite being categorized as the fourth most abundant element
of the earth’s crust, the availability of Fe to plants is highly
heterogeneous as it has low solubility under aerobic conditions,
particularly at high pH and in calcareous soil. Plants firmly
regulate the homeostasis of Fe and respond to the shortage as
well as the surplus level of Fe (Morrissey and Guerinot, 2009).
Therefore, in order to maintain proper ion homeostasis, plants
stabilize the uptake, transport, and storage (Grotz and Guerinot,
2006). Hence, for the significant acquisition and agglomeration
of Fe, plants have developed two different strategies (strategy I
and II) under varied soil conditions (Römheld and Marschner,
1986) (Figure 1). Almost all higher plants except the members
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FIGURE 1 | Different Strategies adopted by higher plant for Iron Acquisition. Strategy I occurs in the members of non-graminaceous plants (Left) and Strategy II

occurs in the members of graminaceous plants (Right). Ovals corresponds the transporters and enzymes involved that play significant roles in both the strategies.

The expression of these genes shown in the present figure occurs in response to Fe deficiency (Modified from; Kobayashi and Nishizawa, 2012).

of family Gramineae follow Strategy I for Fe uptake (Kobayashi
and Nishizawa, 2012) (Figure 1). The uptake and accumulation
of Fe is frequently enhanced by three reactions: firstly, the
secretion of protons through the plasmalemma P-type ATPase
in order to acidify the surrounding solution for augmenting
the solubility of Fe3+; secondly, by reducing Fe3+ to the more
soluble Fe2+ form through Fe3+ chelate reductase; and thirdly,
by plasmalemma transport of Fe2+ through Fe transporters
(Figure 1). The dominant gene essential for these processes was
first cloned from Arabidopsis thaliana and peas such as FRO2,
allelic to the frd1 mutation distressing Fe3+-chelate reductase
activity (Robinson et al., 1999), and FRO1, respectively (Waters
et al., 2002). Furthermore, reduced form of iron in the plants
transported from the root via IRT1 (divalent cation transporter)
(Eide et al., 1996; Eckhardt et al., 2001), which is a member
of the ZIP family (Guerinot, 2000). In addition, IRT1 is also
reported as an essential gene because, in the case of excess
supplementation of exogenous iron, it reduces the lethality
of seedlings and suppresses the chlorosis in irt 1 mutants
(Henriques et al., 2002; Varotto et al., 2002; Vert et al., 2002).
Moreover, Vert et al. (2002) and Dinneny et al. (2008) observed
that the acquisition of Fe starts from the epidermal layers of the
root, which is proven by the expression pattern of IRT1 and

FRO2. The transporter gene IRT1, which is responsible for Fe
transport, has been cloned from Arabidopsis (Eide et al., 1996;
Dubeaux et al., 2015) and its ortholog RIT1 has been cloned
from pea and tomato as well (Cohen et al., 1998; Eckhardt
et al., 2001). Fe3+-chelate reductases are integral membrane-
bound proteins and they belong to the family of proteins that are
responsible for the transport of electrons from cytosolic NADPH
to FAD and, consequently, through heme groups to electron
acceptors located on the outer side of the plasma membrane
(Figure 1). In response to Fe deficiency, the up-regulation of
the FRO gene has been noted in roots (Robinson et al., 1999;
Waters et al., 2002). On the basis of the recent studies, IRT1
has been marked as the major transporter gene responsible for
the uptake of Fe from soil solutions (Figure 1). Besides this,
IRT1 also plays significant role in the transport of Zn, Mn,
Co, and Cd (Rogers et al., 2000). Similarly, PEZ1 is a novel
effluxer responsible for the xylem loading of phenolics as well
as the remobilization of precipitated apoplasmic Fe in the plant
cell. This is due to the fact that FRD3, FRDL1, and PEZ1 are
efflux Fe-chelating molecules in their Fe liberated forms and Fe
efflux occurs in the xylem sap by more than one transporters
(Ishimaru et al., 2011). Morrissey et al. (2009) described the
role of ferroportin 1/iron regulated 1 (AtFPN1/AtIREG1) metal
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FIGURE 2 | Hypothetical respesentation of exogenous application of Fe and its accumulation from root to shoot, which ultimately decreases the over production of

oxidative stress level in plants caused by abiotic stresses.

efflux protein function in Fe homeostasis in Arabidopsis plants,
which is similar to the iron efflux transporter in mammals
and are responsible for Fe absorption in the intestines and
Fe recycling in macrophages. While the active role of AtFPN1
localized on the plasma membrane has not yet been reported,
its promoter activity is prominently seen in the stele region
of plants. In addition, its mutant species showed the loss of
chlorophyll content in both Fe-sufficient and Fe-deficient media,
which signify its indispensable role in acquisition of Fe to shoots
(Morrissey et al., 2009) as well as mitochondrial Fe metabolism
and trafficking progress via the mitochondrial Fe storage protein
(mitochondrial ferritin) and transport (mitoferrin-1 and -2)
(Richardson et al., 2010).

Strategy II is exclusively specific to the Gramineae family
and is based on the biosynthesis and secretion of mugineic
acids (MAs) (Figure 1). The roots of graminaceous plant release
phytosiderophores (PSs), which are responsible for the chelation
of Fe3+ in the rhizosphere. Specific transporter proteins located
on the plasma membrane transport Fe3+ PS complexes in the
cytosol (Römheld and Marschner, 1986). In response to Fe
deficiency, both processes are enhanced through up-regulation
of the underlying genes (Figure 1). Until now, nine different
kinds of MAs have been recognized, which have been produced
via a conserved pathway from S-adenosyl-L-methionine (Bashir
et al., 2006; Ueno et al., 2007; Kobayashi and Nishizawa,
2012). Through sequential enzymatic reaction mediated by the
precursors of MAs such as NAS, NAAT, DMAS, and DMA,
strategy II enhanced acquisition of Fe in graminaceous plant
(Figure 1). Normally, the transportation of Fe in plants may be

seen in the anatomical structures of roots when observed under
the Phase-contrast microscopy. It can be well observed that the
deposition percentage of Fe in root cells is increased by the
increased level of Fe concentration.

After the acquisition of Fe inside the root, its translocation
occurs across the plasma membrane through several different
members of transporter families that are responsible for the
transportations of intra- and intercellular ions (Figure 2). Such
transporters include Nramp and YSL families (Grotz and
Guerinot, 2006). The Nramp family leads the translocation of
divalent cations, whereas the members of the YSL family are
probably only responsible for the translocation of metal chelates
(Conte and Walker, 2011). Members of the NRAMP family
are responsible for the transportation of an array of metals
across the plasma membranes including Mn2+, Zn2+, Cu2+,
Fe2+, Cd2+, Ni2+, and Co2+ in microorganisms, plants, and
animals (Nevo and Nelson, 2006). In plants, the expression
of Nramp transporters has been located in roots and shoots
and is responsible for the transportation of metal ions across
plasma membranes and the tonoplast (Krämer et al., 2007).
In A. thaliana, NRAMPs facilitate the transport of Fe and
Cd. NRAMP1 displays a significant role in the transport and
homeostasis of Fe. Besides this, members of the YSL family
mediate the acquisition of Fe through the translocation of Fe3+

phytosiderophore complexes (Curie et al., 2001). In addition,
CDF transporters have also been recognized recently that
lead to the transportation of metal ions (in divalent form)
in prokaryotes (Nies, 1992) and also in several eukaryotes
(Montanini et al., 2007). The apoplast sometime plays an
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important role in ion uptake into the cells and also performs
some important physiological roles in nutrient transport and
storage (Sattelmacher and Horst, 2007).

In addition to this, Deiana et al. (1992) studied homeostasis,
kinetics, and the consequences of mechanisms of Fe uptake
in plants. Römheld and Marschner (1983) reported that when
Fe was found in very high concentrations, caffeic acid plays a
very active role in Fe mobilization at the interface of the soil-
root. Caffeic acid is the phenolic compound produced from
plants (Whitehead et al., 1981, 1983; Olsen et al., 1982; Wei
Jin et al., 2008) that functions in the reduction of Fe3+ and
takes part in redox reactions near rhizosphere and free spaces
(Brown and Ambler, 1973; Olsen et al., 1981; Deiana et al., 1992).
Deiana et al. (1992) reported that the concentration of Fe3+

is directly proportional to the yield of Fe2+, i.e., on increasing
the Fe3+ concentration. The yield of Fe2+ also increased the
value higher than 9 for Fe(III)/CAF molar ratios. Deiana et al.
(1992) also found that onemolecule of the phenolic plant product
(CAF) is capable of reducing the nine electrons of the Fe3+

ion to the Fe2+ ion, and they also demonstrated that the whole
reactionmechanism involves two steps. The first one includes the
formation of the Fe3+ ion from organic molecules. This reaction
is faster and involves the transfer of five electrons, whereas
the second one includes the transfer of four electrons with a
comparatively slower reaction (Deiana et al., 1992).

IRON AND ABIOTIC STRESS TOLERANCE
IN PLANTS

Iron and Salinity Stress
Salinity is one of the most challenging issues of the present time
that poses great constraint to agricultural productivity worldwide
(Ashraf, 1994; Khan and Gulzar, 2003; Asraf and Harri, 2004;
Parihar et al., 2015). Salinity effects are more pronounced in
arid and semiarid regions of the world (Bradbury and Ahmad,
1990). It has been estimated that approximately 20% of the total
cultivated land is affected by salt stress annually. Likewise, nearly
half of the world’s irrigated land is being affected by salinity and
water-logging conditions (FAO, 2008; Munns and Tester, 2008;
Talei et al., 2012). Furthermore, agricultural practices without
appropriate water management are another problem that is
responsible for extensive salinization in crop lands (Taiz and
Zeiger, 2006).

Plant exposure to high salinity induces several detrimental
effects on plants as it triggers a wide range of changes at
physiological, biochemical, and molecular levels (Tester and
Davenport, 2003; Khan et al., 2009). Ion toxicity, nutrient
deficiency, and oxidative and osmotic stresses are among the
major physiological changes that are primarily being affected by
the salt stress in plants (Flowers et al., 1977). Nonetheless, growth
stages of plants also get badly hampered by salinity stress (Sairam
and Tyagi, 2004; Jithesh et al., 2006). Furthermore, elevated salt
concentration in the soil also reduces the osmotic potential that
results in disturbed water availability to the root cell. Therefore,
it becomes difficult for the plant to acquire both minerals as well
as water from the soil (Talei et al., 2011). Rapid alterations in

growth, productivity, and the metabolic processes of plants are
being observed because of the hormonal signals produced inside
root cells (Munns, 2002; Asraf and Harri, 2004).

In addition, salinity reduces the photosynthetic rate, growth,
and development of plants, and is also associated with ionic or
nutrient imbalance in plant cells (Nazar et al., 2011). Salinity-
induced reductions in photosynthesis might involve the excessive
accumulation of leaf Na+ and Cl− ions, the stomatal and
non-stomatal limitations, and the hindrance of biochemical
processes and oxidative damage due to the formation of ROS
(Steduto et al., 2000) (Figure 2). Excess accumulation of ROS
in plants produces several deleterious effects such as membrane
lipid peroxidation, DNA damage, protein oxidation, chloroplast
damage, and inhibited biochemical processes (Gunes et al., 2007;
Sharma et al., 2012) (Figure 2). Moreover, extreme salinity leads
to the ultimate death of the plant cell (Zhu et al., 1997; Xiong
and Zhu, 2002). However, a plant’s defense mechanisms against
salinity comprise osmotic changes, salt separation functions in
the cell, and other morphological modifications.

Data analyses based on previous findings showed that salinity
also reduces the acquisition of nutrients inside the plant and
affects their partitioning (Rabhi et al., 2007; Heidari et al., 2013).
Chlorosis might be the unfortunate consequence of the limited Fe
supply in plants under salinity (Yousfi et al., 2007). Several studies
showed adverse effects of salinity on Fe acquisition in plants.

Hassan et al. (1970), Dahiya and Singh (1976) and Okcu et al.
(2005) showed the adverse effect of salinity on the accumulation
of Fe content in the shoots of barley, corn, and pea. Furthermore,
Heidari and Sarani (2012) reported adverse effects of salinity in
the chamomile plant, including stunted growth and a reduction
in biochemical components and ion content. Yousfi et al. (2007)
have also reported deleterious effect of salt on the physiological
processes of barley due to the disturbance in Fe acquisition in
plants caused by reducing the flow of phytosiderophore. Now, it
is well documented that salinity and Fe interaction in plants result
in reduction of salt toxicity.

In the last few decades, extensive studies have been carried
out that showed a significant ameliorative effect of Fe against
salinity. In reducing the salt stress, Fe plays a unique role by
producing antioxidative enzymes (Sharma et al., 2012; Ghasemia
et al., 2014). These antioxidative enzymes include catalase (CAT),
peroxidases (PODs), and one isoform of superoxide dismutase
(SOD) that act as major scavengers of ROS, thereby enhancing
cell defense mechanisms against salinity (Scandalios, 1990).
However, Manthey et al. (1996) reported decreased activity of
both CAT and SOD enzymes under Fe-deficient conditions in
onion, which was associated with increased susceptibility against
stress. Ghasemia et al. (2014) suggested defending the role of
Fe2+ amino acid chelates in tomato plants against salinity. Hence,
from the above studies, it can be concluded that Fe plays a
significant role in alleviating the adverse effects of salinity.

Iron and Drought Stress
Due to the scarcity of water resources, drought is recognized
as one of the single most critical threats to world food security
(Abolhasani and Saeidi, 2004; Lambers et al., 2008; Farooq
et al., 2009, 2012; Moghadam et al., 2011; Monjezi et al., 2013;
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Pourgholam et al., 2013). It harms plant growth and development
and reduces the growth rates of crop and biomass accumulation.
Generally, in crop plants, drought severely affects cell division
and expansion, elongation of root, leaf size, proliferation of
root, and inhibition of shoot growth (Sharp and Davies, 1989;
Spollen et al., 1993; Sharp et al., 2004; Yamaguchi et al.,
2010). Furthermore, it hampers all kinds of physiological and
biochemical traits such as mineral elements, carbohydrates, ions,
hormones, lipids, and nucleic acids (HongBo et al., 2005; Yasar
et al., 2006; Moghadam et al., 2011; Pourgholam et al., 2013).
The transportation of nutrients from root to shoot are severely
affected by drought as the rate of transpiration is reduced. It
consequently hampers the active transport of ions and damages
the membrane permeability of cells (Viets, 1972; Alam, 1999;
Yasar et al., 2006). Simultaneously, due to decrease in soil
moisture, a problem occurs with the low distribution of absorbed
nutrients in the root of plants in the soil (Alam, 1999; Yasar et al.,
2006). More importantly, ROS are generated more frequently
due to drought as a result of alterations in electron transport
systems (Smirnoff, 1993; Asada, 2006; Waraich et al., 2011).
Drought diminishes photosynthetic carbon fixation primarily
through restricting the entrance of CO2 into the leaf or by
reducing the metabolism (Smirnoff, 1993; Loggini et al., 1999;
Apel and Hirt, 2004; Waraich et al., 2011) (Table 1). In addition,
stomatal content oscillations and water use efficiency are affected
(Farooq et al., 2009, 2012; Li et al., 2009). Stomatal density
also deteriorate under severe drought conditions (Xu and Zhou,
2008; De Micco and Aronne, 2012). Photosynthetic pigments
and, consequently, photosynthesis are also severely affected
by drought (Iturbe-Ormaetxe et al., 1998; Gong et al., 2005).
Drought stress reduces chlorophyll a and chlorophyll b contents
in marigold (Asrar and Elhindi, 2011; Farooq et al., 2012). It
leads to disturbances in water uptake during the imbibition phase
of germination, decreases energy supply, and affects enzyme
activities, which diminishes the process of germination (Taiz
and Zeiger, 2010; Farooq et al., 2012). Drought stress causes
generation of numerous signals such as the production of abscisic
acid (ABA) in root tissues (Wang et al., 1999; Aroca and
Ruiz-Lozano, 2012) or some hydraulic signals passed through
the root axis (Aroca and Ruiz-Lozano, 2012; Ionenko et al.,
2012).

To survive under drought condition, the nutrient status of
plants plays a significant role in increasing plant tolerance to
drought stress (Table 1) (Payne et al., 1992; Marschner, 1995;
Rizhsky et al., 2004; Samarah et al., 2004; Yasar et al., 2006; Rotaru
and Sinclair, 2009; Rotaru, 2011; Waraich et al., 2011). A study
showed that sunflower develops drought resistance with the help
of application of micronutrients (Rahimizadeh et al., 2007). It has
been demonstrated that the application of Fe nutrition to plants
under drought condition can enhance tolerance as it leads to
production of assimilates (Sultana et al., 2001; Khan et al., 2003;
Rotaru, 2011; Pourgholam et al., 2013) (Table 1). It has also been
reported that legumes have positive responses to Fe nutrition
(Slatni et al., 2008; Rotaru, 2011). Furthermore, Mahmood et al.
(1990) demonstrated that the application of Fe increased the
yield of wheat plants. Elanz et al. (2011) recommended Fe foliar
application on sunflower under drought stress, which showed

that Fe foliar application under normal and stressed conditions
plays important roles in seed and oil production (Table 1). Fe
foliar application improved soybean yield and also leads to
the intensification of seed set in the wheat crop (Arif et al.,
2006; Kobraee et al., 2011; Afshar et al., 2013). Akbari et al.
(2013) suggested that Fe foliar application with Zn diminishes
oxidative stress by reducing H2O2 content and lessening lipid
peroxidation by enhancing antioxidant enzymes (CAT, GPX, and
SOD) under drought stress (Table 1). It was also proposed that
over-expression of Fe-SOD helps in the reduction of secondary
injury symptoms and leads to enhancement in drought tolerance
(McKersie et al., 1999, 2000; Alscher et al., 2002; Samis et al.,
2002). Pirzad and Shokrani (2012) applied Fe with Zn to improve
the leaf characters (weight, area, and numbers) of Calendula
officinalis under drought stress. Reductions in terms of either
vegetative growth or oil contents in sunflower due to drought
conditions were found to be alleviated by the foliar applications
of Fe (Ebrahimian and Bybordi, 2011). Mostafa et al. (2011)
examined the effect of Fe application with surface water stress
conditions on growth, yield, and nutrient uptake of Sesamum
indicum L. plants (Table 1). Iron spraying plays a significant role
in improving the protein quality and resistance under drought
stress (Parhamfar, 2006; Afshar et al., 2012). It is important to
mention that Fe is applicable in controlling drought effects on
root growth (Snyder and Schmidt, 1974; Glinski et al., 1992).
Under drought stress and Fe-deficient conditions, the application
of Fe over turf grasses leads to color enrichment and growth
improvement (Deal and Engel, 1965; Minner and Butler, 1984;
Glinski et al., 1992). Moreover, in Fe-sufficient condition, Fe has
been applied to give a darker green color for cool-season turf
grass (Snyder and Schmidt, 1974; Yust et al., 1984; Carrow et al.,
1988; Wehner and Haley, 1990; Glinski et al., 1992). There is still
much more investigative work required to understand the role of
Fe against drought stress (Table 1).

Iron and Heavy Metal Stress
Rapid technical development in different sectors of agriculture,
industries, and anthropogenic activities have resulted in an
abundant release of heavy metals (Young et al., 2009; Oliveira,
2012; Kumar et al., 2013). Metals in the form of pollutants pose
serious threats to our environment. They exhibit toxicity in the
natural soil that harbors vegetation (Foy et al., 1978; Yizong
et al., 2009). The excessive use of phosphatic fertilizers, industrial
wastes, and sewage sludge applications release several toxic heavy
metals/metalloid such as Cd, Cr, Pb, and As into agricultural soil
(Bell et al., 2001; Schwartz et al., 2001; Passariello et al., 2002;
Yadav, 2010). Later, these heavy metals enter into the ecosystem
and food chain through absorption and accumulation processes
in plants and animals, affecting them severely (Yamagata and
Shigematsu, 1970; Cervantes et al., 2001; Vernay et al., 2007;
Yizong et al., 2009; Kumar et al., 2013). For example, the
havoc of “Itai-Itai disease” in Japan was due to presence of Cd
contamination in rice and soybean (Yamagata and Shigematsu,
1970; Yizong et al., 2009; Kumar et al., 2013; Tchounwou et al.,
2013).

Plants, undoubtedly, are being affected by heavy metal
contaminations as numerous morphological, physiological, and
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TABLE 1 | Iron nutrition and drought stress tolerance.

Mode of Fe application Plant species Plant attributes References

Foliar application of Iron Soybean Improvements in yield Kobraee et al., 2011; Afshar et al., 2013

Foliar application of Iron Wheat crop Increases in 1,000 seed weight Arif et al., 2006; Afshar et al., 2013

Foliar application of Iron

with Zinc

Cumin Diminishes oxidative stress by reducing H2O2 content and

lessening lipid peroxidation

Akbari et al., 2013

Iron with zinc Spray Calendula

officinalis

Improves the leaf characters (weight, area and numbers)

resulting into enhancement in the effects triggered by drought

stress

Pirzad and Shokrani, 2012

Iron application with sulfur Sesame Improves growth, nutrient, yield, and their components Mostafa et al., 2011

Nano-iron application Cowpea Improvement of protein quality being advantageous in

increasing resistance to drought stress

Parhamfar, 2006; Afshar et al., 2012

Fe spraying Creeping

Bentgrass

Modifies drought resistance through its effects on root growth Snyder and Schmidt, 1974; Glinski et al., 1992

Iron application Turf grasses Leads to color enrichment and growth improvement in

Fe-deficient conditions

Deal and Engel, 1965; Minner and Butler,

1984; Glinski et al., 1992

Iron application Turf grass Gives darker green color for cool-season in Fe-sufficient

condition

Snyder and Schmidt, 1974; Carrow et al.,

1988; Schmidt and Snyder, 1984; Yust et al.,

1984; Wehner and Haley, 1990; Glinski et al.,

1992

Iron application Legumes Positive responses to iron nutrition Slatni et al., 2008; Rotaru, 2011

Application of Iron with

Zinc

Rapeseed

(Brassica napus)

Influence on prolin, protein and nitrogen related metabolism of

leaf

Pourgholam et al., 2013

Iron Foliar Fertilization Sunflower Improves yield of oil and growth and development of seeds Elanz et al., 2011

biochemical changes have been noticed in metal toxicity-
challenged plants (Pandey et al., 2005; Oliveira, 2012; Kumar
et al., 2013; Singh et al., 2016). The major damaging effects of
heavy metal stress in plants are lipid peroxidation (which is
an indicator of biomembrane deterioration) and a variation in
enzymatic and transport activities (De Vos et al., 1989, 1991b;
De Vos and Schat, 1991a; Pandolfini et al., 1992; Somashekariah
et al., 1992; Sinha et al., 1997; Yadav, 2010). Several metals
such as Hg, Cd, and Cu affect the permeability of the plasma
membrane in the plant cell, which consequently results in a
loss of K ions (De Vos et al., 1989, 1991b; De Vos and Schat,
1991a; Pandolfini et al., 1992; Reddy and Prasad, 1992; Sinha
et al., 1997). Due to high affinity toward cellular sulfhydryl
groups, heavy metals also give rise to sulfhydryl reactions
(De Vos et al., 1989; Sinha et al., 1997). Nonetheless, heavy
metals in plants cause overproduction of ROS, which generate
oxidative stress (Wojtaszek, 1997; Mithofer et al., 2004; Yadav,
2010). Consequently, oxidative stress creates membrane damage
(Srivastava et al., 2004; Yadav, 2010) due to the unbalanced
antioxidant defense system in plants (Demiral and Turkan, 2005;
Yadav, 2010). Heavy metal stress in plants also deteriorates the
metabolism of essential elements and severely affects the electron
transport chain (Table 2) (Qadir et al., 2004; Dong et al., 2006;
Yadav, 2010; Singh et al., 2016).

To cope with heavymetal stress, plants adopt several strategies
at various levels (Table 2). Of these, the management of mineral
nutrients was found to be themost efficientmechanism (Cakmak,
2005). Among mineral nutrients, Fe is being recognized as the
most efficient and potentially essential micronutrient that plays
a pivotal role in mitigating metal stress (Table 2). Several reports
showed the efficacy of Fe in controlling the damaging effects of

metal stress (Emamverdian et al., 2015). Iron is considered as
a biologically important micronutrient as it serves as the major
constituent of the cell redox systems such as heme proteins,
including leg hemoglobin, catalase, cytochromes, peroxidase,
and Fe-S clusters such as aconitase, ferredoxin, and superoxide
dismutase (SOD) (Marschner, 1995; Emamverdian et al., 2015).

Moreover, the formation of aconitase plaque by ferrous
oxidation to ferric iron on the root surface of terrestrial and
aquatic plants helps in the sequestration of a large number
of metal through adsorption or co-precipitation and thereby
inhibits the uptake and accumulation of metal inside the plant
cell (Armstrong, 1964, 1967; Bacha and Hossner, 1977; Chen
et al., 1980; Mendelssohn and Postek, 1982; Davison and Seed,
1983; Taylor and Crowder, 1983; Taylor et al., 1984; Levan and
Riha, 1986; Greipsson and Crowder, 1992; Emerson et al., 1999;
Hansel et al., 2001; Weiss et al., 2003; Emamverdian et al.,
2015).

Garnier et al. (2010) described the role of Fe plaque in
a paddy field irrigated with ground water and suggested the
significant role of plaque formation in attenuating the uptake and
accumulation of As in rice plants (Table 2). Liu et al. (2007) also
presented evidence for the role of Fe plaque in Cd adsorption
on the root surface of the rice seedling (Table 2). Xin-Bin and
Wei-Ming (2007) demonstrated the effect of Fe plaque on Se
translocation and also showed its altered accumulation in the
aerial part of the plant. Rahmana et al. (2008) used Fe with
phosphate for the regulation of As toxicity in the water fern
(Table 2). Yizong et al. (2009) have demonstrated that Fe plaque
plays an important role in regulating Cd, Cu, and Pb toxicities in
rice plants. Yang et al. (2011) showed significance of Fe in Pilea
cadierei against phosphorus (P).
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TABLE 2 | Iron-mediated up-regulation of antioxidative enzymes (SOD, APX, and CAT) and heavy-metal stress tolerance.

Metals against

which iron used

Antioxidant defense

machinery and iron

assimilatory enzymes and iron

plaque

Plant

species

Responses References

Cd Iron plaque Rice Promotes enhancement in iron uptake by plant; reduces

the damaging effect of Cd; helps in their ultimate

sequestration on the root surface

Liu et al., 2007, 2008

Rice Fe-plaque formation altered significantly the

accumulation of Se in the aerial part of the plant

Xin-Bin and Wei-Ming, 2007

Rice Formation of plaque increases the sequestration of Pb

on root surface; thereby prevents their uptake and

accumulation of Se inside the plant

Liu et al., 2011

Iron fertilizer (EDTA·Na2Fe) and

FeSO4

Rice Soil/foliar application of Fe fertilizer (EDTA·Na2Fe) and

FeSO4 reduces the adverse effect of Cd on rice root,

shoot and rice grains

Shao et al., 2008

Fe-nutrition Rice Cd uptake and accumulation inside the plant could be

reduced by modifying the iron status of soil

Shao et al., 2007

As Fe plaque Rice Fe-plaque increases As (III and IV) adsorption and its

translocation to shoot; decreases the effect of root

anatomy characteristic, on As uptake inside the root

Deng et al., 2010

Spirodela

polyrhiza L.

Arsenate uptake occurred through the phosphate uptake

pathways in S. polyrhiza by physico-chemical adsorption

on Fe-plaques of plant surface as well

Rahmana et al., 2008

P Fe plaque Pilea

cadierei

Such plant in wetland condition removes the phosphorus

from Fe-rich soil, hence suitable for construction of

artificial wetland

Yang et al., 2011

CONSEQUENCES OF IRON TOXICITY AND
REDOX REGULATION IN PLANTS

Plants may undergo Fe toxicity in two conditions: either excessive
amount of Fe or Fe deficiency. Iron plays key roles in plant
metabolism like electron transport systems (redox reactions of
Fe-S proteins and cytochromes), respiration, photosynthesis,
and nitrogen fixation processes (Soyder and Schmidt, 1974;
Carrow et al., 1988; Taiz and Zeiger, 1991). Furthermore, the
deficiency of Fe can affect about one-third of the cultivated land.
Deficiency of Fe also causes the declination of photosynthetic
components, especially Fad (Fe-S protein ferredoxin) of the
chloroplast (Tognetti et al., 2007). Fe deficiency in plants causes
interveinal chlorosis (Bienfait andVan derMark, 1983), poor root
development, growth retardation, and the eventual death of the
plant (Kobayashi et al., 2003). In addition, Fe deficiency also leads
to the alteration in expression of chlorophyll-binding proteins
and the down-regulation of many photosynthetic pigment levels
(Thimm et al., 2001; Rout and Sahoo, 2015). In the agricultural
soils, Fe deficiency may also occur either at extremely high
pH or at extremely low pH levels. López Jiménez et al. (1985)
demonstrated that the increased levels of chlorosis in young
Avocado leaves was correlated with a decline in the level of Fe
in leaf parts, chloroplast numbers, and activity of catalase (Rout
and Sahoo, 2015). The Fe deficiency is also characterized by
interveinal chlorosis in young leaves rather than main veins, a
type of symptom known as “iron deficiency chlorosis” (Rout

and Sahoo, 2015). Similarly, excessive amounts of Fe also cause
toxicity in plants. Tanaka et al. (1966) demonstrated that upon
increasing the level of Fe, roots are affected more than leaves.
It shows that in the presence of an excess amount of Fe, plant
roots increase their capability and translocate the Fe in younger
leaves. High level of Fe disturb the basal level of magnesium and
potassium in plants and cause nutritional disturbances (Tanaka
et al., 1966).

Although high concentrations of Fe can lead to toxic
consequences in plants (Anjum et al., 2015). Excess free
Fe ions like Fe2+ and Fe3+ can cause ROS generation by
participating in the Fenton reaction (Fenton, 1894; Haber and
Weiss, 1934; Kehrer, 2000; Mai and Bauer, 2016) and leading
to oxidative stress (Mai and Bauer, 2016). Down regulated
detoxifying proteins in Fe-deprived conditions, viz. CAT2
(CATALASE 2; AT4G35090) proteins and PA2 (PEROXIDASE
2; AT5G06720) proteins, were reported in some plants (Donnini
et al., 2010; Rodríguez-Celma et al., 2011). These are enzymes
that help in the conversion of H2O2 (hydrogen peroxide)
to H2O (water) and oxygen. In addition, Fe deficiency in
the roots of M. truncatula (Rodríguez-Celma et al., 2011)
and P. dulcis × P. persica (Rodriguez-Celma et al., 2013)
was characterized by the superoxide dismutase, i.e., ATMSD1
(ARABIDOP-SIS MANGANESE SUPEROXIDE DISMUTASE
1; AT3G10920) (Mai and Bauer, 2016). Furthermore, non-
enzymatic ROS generation also occurs due to Fe deficiency. In
this process, two enzymes reported in the roots (Mai et al.,
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2015) and shoots (Zargar et al., 2013) of Arabidopsis thaliana
were GST1 (ARABIDOPSIS GLUTATHIONE S-TRANSFERASE
1; AT1G02930) and MDAR1 (MONODEHYDROASCORBATE
REDUCTASE 1; AT3G52880) (Rodríguez-Celma et al., 2011; Mai
et al., 2015). In the case of Fe deficiency, two heme-binding
proteins (CAT2 and PA2) were found to decrease the level of
peroxidases. Moreover, ATMSD1 is a ROS-eliminating enzyme
formed after the up-regulation of ROS-eliminating enzyme
and beneficial in compensation of deprivation of Fe-dependent
peroxidases and stimulated the ascorbate-glutathione cycle from
GPX3 (GLUTATHIONE PEROXIDASE3; AT2G43350) (Mai
et al., 2015). GST1 and MDAR1 were reported to detoxify
the ROS generated due to Fe deficiency (Apel and Hirt,
2004).

CONCLUSION AND FUTURE OUTLOOK

Increased anthropogenic activities and technologies have
rendered a polluted environment. Furthermore, the situation
is likely to be much worsened by an immense increase in
human population that is expected to reach about 9.1 billion by
2050 according to the report of the FAO (2008), which would
result in decreased areas of arable land for future agricultural
practices. It is well documented that approximately 50% of the
world’s agricultural land suffers from adverse effects of complex
environmental stress factors such as salinity, drought, and heavy
metal. Since plants are restricted in their movements, they
are inevitably exposed to such stressful conditions that would
cause reduction in their yields. To counteract inhibitory/adverse
effects of such stresses, plants employ several efficient and
sophisticated biochemical defense mechanisms at multiple
levels (morphological, anatomical, biochemical, and molecular).
Data analyses based on previous findings showed tremendous
progress at various levels against stress factors in plants. Of these

strategies, management of mineral nutrient status in plants was
found to be the most promising. Among mineral nutrients, Fe is
regarded as one of the most efficient and essential micronutrients
that acts significantly in a number of cellular processes such
as metal detoxification, metabolism of secondary metabolites,
and maintenance of the cell redox cycle. Previous findings
suggested that Fe regulates adverse effects of salinity, drought,
and heavy metal by controlling the redox status of the cell
and antioxidant defense system. In addition, the formation of
Fe plaque also facilitates the sequestration of a large number
of metals on the root surface. Although not much is known
about the relevancy of Fe nutrition in the mitigation of different
stresses, its exogenous application, however, definitely regulates
toxicity of several stresses. Despite major progress achieved in
the field of Fe nutrition-mediated alleviation of stress, there are
several questions still awaiting for the answers. In conclusion, it
may be stated that uptake, accumulation, and metabolism of Fe
inside the plant still deserve attention and may shed insight into
the process of modifying agricultural productivity in stressful
environments.
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