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Archaebacterial halophiles (Haloarchaea) are oxygen-respiring
heterotrophs that derive from methanogens—strictly anaerobic,
hydrogen-dependent autotrophs. Haloarchaeal genomes are known
to have acquired, via lateral gene transfer (LGT), several genes
from eubacteria, but it is yet unknown how many genes the Hal-
oarchaea acquired in total and, more importantly, whether inde-
pendent haloarchaeal lineages acquired their genes in parallel, or
as a single acquisition at the origin of the group. Here we have
studied 10 haloarchaeal and 1,143 reference genomes and have
identified 1,089 haloarchaeal gene families that were acquired by
a methanogenic recipient from eubacteria. The data suggest that
these genes were acquired in the haloarchaeal common ancestor,
not in parallel in independent haloarchaeal lineages, nor in the
common ancestor of haloarchaeans and methanosarcinales. The
1,089 acquisitions include genes for catabolic carbon metabolism,
membrane transporters, menaquinone biosynthesis, and com-
plexes I-IV of the eubacterial respiratory chain that functions in
the haloarchaeal membrane consisting of diphytanyl isoprene
ether lipids. LGT on a massive scale transformed a strictly anaero-
bic, chemolithoautotrophic methanogen into the heterotrophic,
oxygen-respiring, and bacteriorhodopsin-photosynthetic haloarch-
aeal common ancestor.

alophilic archaebacteria (Haloarchaea) require concen-
trated salt solutions for survival and can inhabit saturated
brine environments such as salt lakes, the Dead Sea, and salterns
(1). In rRNA and phylogenomic analyses of informational genes,
Haloarchaea always branch well within the methanogens (2-4).
Haloarchaea can thus be seen as deriving from methanogen
ancestors, but the physiology of methanogens and halophiles
could hardly be more different. Methanogens are strict anae-
robes, most species are lithoautotrophs that use electrons from
H, to reduce CO, to methane (obligate hydrogenotrophic metha-
nogens), thereby generating a chemiosmotic ion gradient for
ATP synthesis in their energy metabolism, although some species
can generate methane from reduced C; compounds, or acetate
in the case of aceticlastic forms (5-7). Their carbon metabolism
involves the Wood-Ljungdahl (acetyl-CoA) pathway of CO,
fixation (5-7). In contrast, Haloarchaea are obligate heterotrophs
that typically use O, as the terminal acceptor of their electron
transport chain, although many can also use alternative electron
acceptors such as nitrate in addition to light harnessing via a bac-
teriorhodopsin-based proton pumping system (8). The evolutionary
nature of that radical physiological transformation from anaerobic
chemolithoautotroph to aerobic heterotroph is of interest.
Many individual reports document that lateral gene transfer
(LGT) from eubacteria was involved in the origin of at least
some components of haloarchaeal metabolism. These include
the operon for gas vesicle formation, which allows Haloarchaea
to remain in surface waters (9), the newly identified methylaspartate
cycle of acetyl-CoA oxidation (10), various components of the
haloarchaeal aerobic respiratory chain (11-18), and proteins
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involved in the assembly of FeS clusters (19). The sequencing of
the first haloarchaeal genome over a decade ago identified some
eubacterial genes that possibly could have been acquired by lat-
eral gene transfer (11, 20), and whereas substantial data that
would illuminate the origin of haloarchaeal physiology have ac-
cumulated since then, those data have not been subjected to
comparative evolutionary analysis. Investigating the role of the
environment in haloarchaeal genome evolution, Rhodes et al.
(21) recently showed that Haloarchaea are indeed far more likely
to acquire genes from other halophiles, but they did not address
the issues at the focus of our present investigation, namely: How
many eubacterial acquisitions are present in haloarchaeal genomes?
How was the physiological transformation of methanogens to
Haloarchaea affected by LGT? Do those acquisitions trace to the
haloarchaeal common ancestor as a single acquisition or not?

To discern whether the eubacterial genes in haloarchaeal
genomes are the result of multiple independent transfers in
individual lineages or the result of a single ancient mass ac-
quisition, here we have analyzed 10 sequenced haloarchaeal
genomes—Haloarcula marismortui (22), Halobacterium salina-
rum (23), Halobacterium sp. (20), Halomicrobium mukohataei
(24), Haloquadratum walsbyi (25), Halorhabdus utahensis (26),
Halorubrum lacusprofundi (27), Natrialba magadii (28), Natro-
nomonas pharaonis (29), and Haloterrigena turkmmenica (30)—
in the context of 65 other archaebacterial and >1,000 eubac-
terial reference genomes.

Results and Discussion

We first clustered the 172,531 proteins encoded in the chromo-
somes of 75 archaebacterial genomes into families using the
standard Markov cluster (MCL) procedure (31) yielding 16,061
protein families. Comparison with 1,078 completely sequenced
eubacterial genomes delivered 1,479 protein families that are
present in at least two Haloarchaea and contain archaebacterial
and eubacterial homologs (Fig. 14). Gene trees for the protein
families were reconstructed using maximum likelihood inference
(Methods).

Of 1,479 trees, 1,089 (73%) uncovered Haloarchaea as mono-
phyletic and rooting within (or branching next to) eubacterial
rather than archaebacterial homologs (Fig. 1B). For 414 of these
trees, no homologs at all were detected in nonhalophilic
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Fig. 1.

Eubacterial acquisitions in haloarchaeal genomes [trees]

(A) Number of shared genes between 1,078 bacterial genomes and 75 archaebacterial genomes. (B) Types of phylogenetic trees obtained with respect

to the relationship of Haloarchaea, nonhalophilic archaea, and eubacterial genes. (C) Types of phylogenetic trees detailed by the number of haloarchaeal taxa.

archaebacteria. An additional 538 families had only very dis-
tant homologs (E values >107'” or amino acid identity <30%) in
some nonhalophilic archaebacteria, together we designate these
952 cases as “acquisitions.” An additional 137 genes yielded trees
in which Haloarchaea branch within eubacteria to the exclusion
of readily detectable archaebacterial homologs, we designate
these genes as “replacements”; acquisitions and replacements
we designate collectively as “imports” (Fig. 1B). The 390 cases of
Haloarchaea nonmonophyly included 76 trees in which one
haloarchaeon branched deviantly and 105 trees in which the Hal-
oarchaea were split into two groups of two or more species. Because
LGT is common in prokaryotes (32, 33), among haloarchaeans in
particular (21), these 181 gene trees could well depict secondary
transfers into or from the Haloarchaea.

Single Ancestral Acquisition. Are the 1,089 eubacterial imports in
haloarchaeal genomes the result of a single ancestral acquisition
or multiple parallel acquisitions? Monophyly alone does not
completely decide the issue, because it is possible that a bacterial
gene could be acquired recently in one haloarchaeal lineage and
then passed around to other Haloarchaea by LGT. Such a pro-
cess could, in principle, also generate monophyly for imported
genes in a phylogenetic tree. However, in that case, individual
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gene trees for imported genes would be very different from one
another as opposed to the case of single acquisition, where trees
for imports should be the same due to vertical inheritance from
the haloarchaeal common ancestor. Moreover, trees for ances-
trally acquired eubacterial imports should not only be similar to
each other, they should also be similar to trees for endogenous
haloarchaeal genes that are shared only with other arch-
aebacteria, which we call recipient genes. There are 364 hal-
oarchaeal recipient genes that are present as single copies in all
10 Haloarchaea sampled and 109 haloarchaeal imports that are
present as single copies in all 10 Haloarchaea (Fig. 24),
providing comparable tree sets. To avoid oversampling, the
H. salinarum and the Halobacterium sp. genomes were condensed
to one genome, because they share almost exactly the same genes
and would have skewed the test by enhancing the congruence of
the two sets.

Comparing the distributions of phylogenetic splits observed in
the 364 recipient trees and the 109 imported trees containing all
10 (condensed to 9) Haloarchaea shows that the two sets exhibit
a very similar phylogenetic signal (Fig. 2B). The six most com-
mon splits in the two sets of trees are identical and comprise 51%
and 46% of the splits in the two sets, respectively. Moreover,
these six splits exactly define the haloarchaeal phylogeny
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names and corresponding frequency distributions for functional categories are given in Table S3.

generated by 56 universally distributed archaebacterial genes
(Fig. 14, Left). To test the statistical significance of this evidence
in favor of single acquisition, we used a goodness-of-fit test to
compare the distributions of topologies in the two tree sets. The
null hypothesis is that the two samples of trees are drawn from
the same distribution, whereas the alternative hypothesis is that
the two samples differ in their distribution (Methods). The test’s
P value was 0.543, meaning that the null hypothesis could not be
rejected (Fig. 2B, Inset). To complement this result, we examined
two additional sets of trees. One set consisted of 109 random
trees, and the second consisted of the observed 109 single copy
imported gene trees subject to one LGT rearrangement (one
random prune and graft operation) each. The latter case of one
LGT rearrangement represents the slightest possible LGT-in-
duced deviation from the null hypothesis of single acquisition in
the haloarchaeal common ancestor followed by vertical evolu-
tion. Both sets were tested against the recipient trees and found
to be significantly different (P values <<107'%; Fig. 2B, Inset),
strongly rejecting the one LGT rearrangement per gene case.
When we include the 53 multiple copy genes that are present
in all 10 genomes, the one LGT rearrangement per gene is also
excluded, although the significance (P values <107%, see SI Text)
drops. That drop is expected, however, because horizontal
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transfer, not duplication, drives the expansion of gene families
in prokaryotes (34), hence the inclusion of multicopy genes
preferentially includes genes for which LGT is more prevalent.
We note that the goodness-of-fit test does not exclude one LGT
for each gene, up to 34% of the 109 single-copy recipient trees
can accept a single random prune and graft operation without
the test rejecting the one LGT rearrangement case for the re-
cipient set as a whole. However, for the 162 genes that are
present in all 10 genomes, the possibility that the majority of
imported genes are monophyletic because of import into one of
the haloarchaeal lineages and subsequent passing around of the
same gene can be excluded.

For the imports present in eight or fewer haloarchaeal genomes,
excluding the (perhaps unlikely) possibility that monophyly is not
due to acquisition in the haloarchaeal common ancestor but to
lineage-specific acquisition and subsequent spread, is more diffi-
cult, mainly for reasons of sample size. The goodness-of-fit test
based on split distributions cannot be used because few compar-
isons yield identical leaf sets for import vs. recipient trees. For the
<8-species cases, we therefore developed a less direct test, com-
paring the sets of recipient and import trees via their phylogenetic
compatibility with the recipient trees for the 10 haloarchaeal
species (Methods). Here, too, the null hypothesis of common
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ancestry for import and recipient genes could not be rejected in
any of the <8-species cases, although the acquire-and-spread
scenario was also not rejected for the 4-, 5-, and 6-species single
and multiple copy cases (268 imports total; ST Text). Given that (i)
the conventional interpretation of monophyly is presence in the
common ancestor, that (ii) the 151 eight and seven species cases
reject the acquire-and-spread scenario (SI Text) as an alternative
explanation of monophyly, and that (iii ) the data that most directly
address the acquire-and-spread scenario—the 162 eubacterial
imports present in all 10 genomes—most strongly reject it (Fig.
2B), the simplest interpretation of monophyly for the 1,089
imports is that their origin traces to a single acquisition in the
haloarchaeal common ancestor followed mainly by vertical de-
scent and widespread differential loss, with some subsequent LGT
among haloarchaea (21, 32, 33), notably for multicopy genes (34),
not being excluded.

Methanogens Are Affine for Eubacterial Genes. As seen in Fig. 14,
not only the 10 Haloarchaea, but also the five Methanosarcinales
(Ms), the two Methanocellales (Mc), and the five Methano-
microbiales (Mm) sampled share many genes with eubacteria,
raising the question of when these imports entered these metha-
nogen lineages. Repeating our phylogenetic analyses for these
groups (Fig. 2C) reveals that merely four eubacterial imports
(three predicted membrane proteins and a glycosyl transferase)
can be traced to their common ancestor, and that these are
present in at most 6 of the 22 descendant genomes. Whereas 124
imports can be traced to the Ms/Mc/Mm common ancestor, these
imports are also sparsely distributed, with only two (COG1032, an
FeS-oxidoreductase and COG1387, histidinol phosphatase) being
present in all 12 descendant methanogens. This contrasts to the
1,089 haloarchaeal imports that are specific to the haloarchaeal
lineage, 162 of which (15%) have been retained in all 10 hal-
oarchaeans sampled. The Ms, Mc, and Mm lineages have—Ilike
the haloarchaea—independently acquired hundreds of eubacte-
rial genes, but the crucial observation is that they have remained
strict anaerobes, and they have furthermore remained obligatory
methanogenic (5-7). In stark contrast, the halophiles became
aerobic heterotrophs and lost methanogenesis altogether. Collec-
tively, the data point to a very different nature of the gene acqui-
sition process in the halophiles and methanogens sampled here.

Donor Lineages. The acquisition of >1,000 genes is reminiscent of
massive gene acquisitions surrounding the origin of mitochon-
dria (35, 36) or plastids (37, 38). From what donor were these
genes acquired? Because bacterial chromosomes undergo gene
influx and gene export over time, it is unlikely that any one
contemporary bacterial lineage would emerge as the donor of all
eubacterial genes in haloarchaeal chromosomes (36, 39). All of
the higher level taxa sampled appear as the sole sister group to the
haloarchaeal gene or appeared in a sister group of mixed phylo-
genetic composition, as one might expect due to frequent LGT
among bacteria (Figs. S1 and S24). The most frequent apparent
donor lineage was the actinobacteria with 131 occurrences as the
sole taxon in the sister group to Haloarchaea and 169 occurrences
in the mixed sister group cases, followed by a-proteobacteria (88
sole plus 97 mixed), y-proteobacteria (51 sole plus 111 mixed),
and §-proteobacteria (53 sole plus 100 mixed).

Function of Imported Genes. Trees generated from 56 recipient
genes present as a single copy in all archaebacteria place the
Haloarchaea branching from within the methanogens, but not
specifically as sisters to the Methanosarcinales (Fig. 1). Rather,
the Haloarchaea appear to have emerged from simpler and
more primitive methanogens, ones that lack both cytochromes
and methanophenazine (5). Methanogens that lack cytochromes
and methanophenazine are capable only of H,-dependent
methanogenesis, and have a single coupling site in their energy
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metabolism (5, 40). Haloarchaea have a respiratory chain with
several coupling sites (1). Methanogens are strict autotrophs
and strict anaerobes (5), whereas Haloarchaea are hetero-
trophs and can use O, as their terminal acceptor. Thus, the
essential metabolic functional units for transforming a metha-
nogen into the haloarchaeal common ancestor are (i) membrane
transporters for reduced carbon compounds; (i) a heterotro-
phic carbon metabolism that directs the oxidation of organic
substrates to support carbon and energy metabolism; (iii) a re-
spiratory chain for terminal oxidation and chemiosmotic ion
pumping; and (iv) genes for the synthesis of any additional
cofactors required, for example menaquinone, the quinone uni-
versally present in all halophiles (41). Those four essential func-
tional units are very clearly represented within the eubacterial
imports in haloarchaeal genomes.

Among the 1,089 haloarchaeal imports from eubacteria almost
half (482, 44%) of the imports are related to metabolism, with
amino acid transport and metabolism (114) and energy conver-
sion (95) being the most abundant classes, followed by inorganic
ion transport and metabolism (86) (Table S1; Fig. S2 B and C).
Whereas methanogens without cytochromes grow on gases,
which traverse membranes freely without transporters, Hal-
oarchaea abound in eubacterial transporters: 157 of the acquired
families are annotated as permease, importer, or transporter.
Although the true substrate spectrum of these transporters is yet
unknown, 49 trace to amino acid or carbohydrate metabolism
(Tables S1 and S2), and they operate in a membrane consisting
of typical archaebacterial lipids (1).

Methanogens cannot use exogenous carbohydrates for growth
(5, 42); their sugar synthetic pathways are anabolic, whereas carbon
metabolism in Haloarchaea runs in the catabolic direction. For
a methanogen to become heterotrophic, it needs to acquire the
enzymes underpinning the heterotrophic lifestyle from a hetero-
trophic donor (43). Among the eubacterial genes imported into
Haloarchaea are pyruvate kinase, glucose-6-phosphate isomerase,
phosphoglyceromutase, 6-phosphogluconate dehydrogenase, the
eubacterial type fructose 1,6-bisphosphatase, as well as genes for 2-
keto-3-deoxy-6-phosphogluconate aldolase of the Entner-Dou-
doroff pathway. Eubacterial enzymes of pyruvate breakdown were
also found, including two copies of pyruvate:ferredoxin oxidore-
ductase, and genes for pyruvate dehydrogenase complex E1 and
E2 subunits.

Earlier studies showed that five haloarchaeal respiratory chain
components are eubacterial acquisitions in two Haloarchaea
(15). Fig. 3 shows that most of the 11 subunits of NADH dehydro-
genase (complex I) are present in all 10 Haloarchaea. Complexes I-
IIT require quinones. Haloarchaea possess the naphthoquinone
menaquinone (41) and several of the imported genes are involved
in menaquinone biosynthesis, including menA. Finally, among
the imported genes, 26 are annotated as transcriptional regu-
lators and 8 are annotated as chaperones, including members of
the Dnal family.

Conclusion

Were these 1,000 genes accrued in the haloarchaeal ancestor one
by one or in a single mass acquisition? The former possibility is
unlikely, because in the absence of corresponding interaction
partners to form functional complexes, individual protein sub-
units of catabolic carbon metabolism, the respiratory chain, or
cofactor biosynthesis lack selectable function, which would allow
them to become fixed in a methanogenic recipient. This argues in
favor of mass transfer of genes for the entire pathways and
complexes over a short period of evolutionary time. The origin of
Haloarchaea was thus an evolutionary leap that transformed
a methanogenic host into an oxygen-respiring heterotroph—the
founder haloarchaeon. A possible context of that cellular asso-
ciation is anaerobic syntrophy (44, 45), that is, a Hp-producing
heterotrophic bacterial donor in association with a Hy-
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dependent methanogenic recipient. Anaerobic syntrophy is
common in nature and has been suggested as the selective force
at the origin of eukaryotes (43, 46). If similar processes underlie
the origin of haloarchaea and eukaryotes, why did Haloarchaea
remain prokaryotic, whereas eukaryotes became complex? The
main physiological difference between Haloarchaea and eukar-
yotes concerns the location of the bioenergetic membrane. In
Haloarchaea it is the archaebacterial plasma membrane (1). In
eukaryotes it is the mitochondrial inner membrane—the key to
eukaryote genome complexity (47). Mitochondria afforded an-
cient eukaryotes many orders of magnitude more energy per
gene than their prokaryotic ancestors. That boost surmounted
the energetic constraints imposed by reliance upon the cyto-
plasmic membrane as the source of chemiosmotic potential, thus
allowing eukaryotic genomes and proteomes to expand freely,
resulting in eukaryotic cell complexity (47). The Haloarchaea have
long figured into issues of early microbial evolution (48). From the
standpoint of genome chimaerism, they now appear to have un-
dergone the very same physiological transformation as the
eukaryotes, and the kind of gene transfer involved—from sym-
bionts to the host chromosomes—is still ongoing in eukaryotic
cells today (49). Haloarchaea remained prokaryotic because they
failed to preserve a genome-containing bioenergetic organelle.

Methods

Data. Completely sequenced genomes of 1,153 microbial species were
downloaded from the National Center for Bioinformatics Information (NCBI)
website (www.ncbi.nlm.nih.gov). This includes 75 archaebacterial genomes
(version April 2010) and 1,078 eubacterial genomes (version September
2010). Taxonomic classification of the species was downloaded from the
NCBI Taxonomy database (www.ncbi.nlm.nih.gov/Taxonomy/).

Clusters of Homologous Proteins. Clusters of homologous proteins were
reconstructed from a total of 172,531 proteins encoded within the archaeal
chromosomes. An all-against-all genomes BLAST (50) yielded 147,071 re-
ciprocal best BLAST hits (rBBH) (51) using E value <107'° and >30% amino
acid identity as a threshold. Protein pairs were globally aligned using the
Needleman-Wunsch algorithm with needle program (EMBOSS package)
(52). A total of 137,022 protein pairs having global amino acids identities
>30% were clustered into protein families using the MCL algorithm (31)
with default parameters. This yielded a total of 16,061 archaeal protein
families of >2 proteins. The remaining 35,509 proteins were classified as
singletons. Eubacterial homologs to archaeal proteins were found using an
rBBH analysis as described above, which yielded 8,451 archaeal protein
families having one or more eubacterial homologs. The functional classifi-
cation of protein families was based on the eukaryotic orthologous groups
database (KOG) database (53). Protein families that overlapped with KOG
clusters were annotated to the same function as the matching KOG. The
remaining protein families were manually classified by sequence similarity
to known KOGs using the KOGnitor tool (http://www.ncbi.nim.nih.gov/COG/
grace/kognitor.html). The haloarchaeal respiratory chain component genes
were identified from the Kyoto Encyclopedia of Genes and Genomes data-
base (http://www.genome.jp/kegg/).
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Fig. 3. Eubacterial respiratory chain components in
Haloarchaea. Green boxes indicate presence of the
gene in the corresponding Haloarchaea genome and
that the gene is more similar to eubacterial than to
archaebacterial homologs in the corresponding phy-
logenetic trees. Gray boxes indicate that homologs can
be detected in the corresponding genome by BLast
searches, but that the clustering procedure did not
included them within the 16,061 archaeal clusters.
White boxes indicate that no homolog was detected.
(A) Haloarchaeal nuoL sequences are monophyletic
but an additional paralogous copy is present in Hal-
orhabdus. (B) Salinibacter has acquired a copy of ndhF
from Haloarchaea, which are otherwise monophyletic.
(C) Haloarchaeal sdhA sequences are monophyletic
but additional paralogous copies of eubacterial origin
are present in several genomes (see also Table S4).
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Phylogenetic Trees. Protein families were aligned using MAFFT (multiple
alignment using fast Fourier transform) (54), and trees were reconstructed
using Phyml (55) with the best fitting model in individual trees as inferred by
ProtTest3 (56) using the AIC measure. An archaebacterial reference tree was
reconstructed from a weighted concatenated alignment of 56 archaebacterial
single copy universal genes using Phyml with the IG+I+G model, which was
the most frequent best fitting model, rooted using Nanoarchaeota and
Koarchaeota as an outgroup. Trees of recipient genes were reconstructed from
sequences of all 10 Haloarchaea and one nonhaloarchaeal sequence using the
same procedure. For polarizing the direction of gene transfers, the root of
Jain et al. (33) was used.

Reconstruction of Lateral Gene Transfer Events. Eubacterial acquisitions within
halophilic archaeal genomes were identified by presence absence pattern
(PAP) analysis and BLAST protein sequence similarity searches. Of the total
8,451 bacterial-like protein families in archaebacteria 1,479 had >2 Hal-
oarchaea species. Of these, 952 do not possess other nonhaloarchaeal
homologs in the same families and correspond to unique acquisitions within
Haloarchaea from eubacterial species. Archaebacterial xenologous genes
that were replaced by a eubacterial acquisition are expected to be more
similar to their eubacterial ancestors than to their orthologs in other arch-
aebacterial species (57). Putative replaced halophilic proteins were identified
by comparing the E value of their BBHs within eubacterial and arch-
aebacterial genomes. Proteins having a eubacterial BBH of lower E value
than that of the archaebacterial BBH were classified as putative acquisitions
from eubacteria, corresponding to 527 protein families. All 1,479 protein
families were aligned with their eubacterial homologs including the three
best eubacterial hits per archaebacterial protein (but excluding redundant
eubacterial sequences), and phylogenies were reconstructed as described
above. The trees were classified into groups by the branching topology of
Haloarchaea and eubacteria using an in-house PERL script. A group is con-
sidered as monophyletic for Haloarchaea if there exists a bipartition (branch)
in the tree that splits between Haloarchaea and the rest. Single eubacterial
sequences branching with the haloarchaeal clade, and vice versa were tested
manually. In each tree, the branch connecting the monophyletic Haloarchaea
clade to the eubacteria serves to split the eubacteria clade into two groups, the
nearest neighbor of Haloarchaea was assigned as described in Thiergart et al. (36).

Comparison of Tree Sets. Two sets of trees were compared using a x°
goodness-of-fit test (58), operating on a 2xm contingency table. The m cells
were defined in an adaptive procedure as follows. The two samples were
pooled together into a single set of size n, and the n trees converted into
splits. Each split was ranked according to its frequency in the pooled split
sets. Each tree was labeled by its lowest ranking split, and the pooled tree
set was sorted by this label. Cells were defined as a collection of split ranks
by sequential addition of split ranks from the sorted list, and creation of a
new cell when the current cell included at least 1/n trees, resulting in m < v/n
cells. In the last step, trees from the two sets were added to a 2xm contin-
gency table based on their least ranked split. We have studied the adaptive
cell procedure and goodness-of-fit testing in a series of permutation analyses,
and the resulting y? test proved to be an unbiased a-level test (S/ Text, Table
S5, and Figs. S3 and S4).

Phylogenetic Compatibility with a Reference Set. Two sets of trees were

compared by their compatibility with a reference set of trees. Each n taxon
tree was decomposed into its (n-3) splits, and each split was scored by the
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fraction of splits in the reference set that are phylogenetically compatible with
it. The (n-3) split compatibility scores were averaged to produce a tree com-
patibility score. The distributions of the tree compatibility scores for the two
sets of trees was compared using the Kolmogorov-Smirnov test (58) (S/ Text).
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