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ACQUISITION OF CHANNEL STATE INFORMATION IN
HETEROGENEOUS CLOUD RADIO ACCESS

NETWORKS: CHALLENGES AND
RESEARCH DIRECTIONS

INTRODUCTION
The past four decades have witnessed a rapid
proliferation of wireless networks and transmis-
sion technologies. Cellular networks have
evolved from the first generation (1G) analog
system in the 1980s to the second generation
(2G) digital system in the 1990s to the third gen-
eration (3G) code-division multiple access
(CDMA) system in the 2000s, and then to the
fourth generation (4G) orthogonal frequency-
division multiplexing (OFDM) plus multiple-
input multiple-output (MIMO) system in the
current decade.

The popularity of smart mobile phones and
the appearance of high-definition applications
such as high-quality video streaming continue to
impose an increasing demand for high data rate
wireless access and services on the existing cellu-

lar networks. It is estimated that mobile data
traffic will grow 24 times between 2010 and
2015, and more than 200 times between 2010
and 2020 [1].

Heterogeneous networks (HetNets) have
been proposed and are recognized as an effec-
tive architecture to meet the explosive growth of
mobile data traffic [2]. A HetNet mainly consists
of two types of nodes: low-power nodes (LPNs)
and high-power nodes (HPNs). The LPN
includes small cell base stations (BSs), femto
BSs, and pico BSs, while the HPN contains
macro and micro BSs. In a HetNet, LPNs and
HPNs cooperate to provide high data services
and ubiquitous coverage for user terminals
(UTs), which is often referred to as coordinated
multipoint (CoMP) transmission. Although
CoMP can provide large cooperative gains and
improve data rates of cell edge users, it still has
some disadvantages in terms of spectral efficien-
cy (SE) and energy efficiency (EE) due to the
backhaul constraints, overhead channel delay,
channel estimation accuracy, and high require-
ments on synchronization.

To further improve SE and EE of CoMP, a
new system architecture named the heteroge-
neous cloud radio access network (H-CRAN)
was proposed in [3] that benefits from cloud
computing and converging network units. In an
H-CRAN, the HPNs are installed with massive
antennas, and the LPNs are connected via high-
speed optical fibers to a cloud often referred to
as a baseband unit (BBU) pool. In addition, the
LPNs only deal with RF band signal processing,
while the cloud covers baseband signal process-
ing for all LPNs. This centralized or autocracy-
like position of the cloud can provide better
cooperation between BSs and lower the total
energy consumption.

It is worth noting that the architecture of the
H-CRAN is similar to that of cloud radio access
networks (C-RANs) [4]. The main differences
between H-CRANs and C-RANs are the incor-
poration of HPNs in the H-CRAN and an evolu-

ABSTRACT
As an emerging system architecture, heteroge-

neous cloud radio access networks (H-CRANs)
can improve system capacity, enlarge coverage,
and enhance energy/spectral efficiency. Mean-
while, this newborn architecture also brings many
open problems for traditional topics, including
synchronization, channel estimation, and data
detection. In this article, we present a compre-
hensive analysis on obtaining CSI in H-CRANs.
Specifically, we recognize seven challenges in
channel estimation that are caused by a large
number of channel parameters, heterogeneity of
access nodes in H-CRANs, and the time delays
among different nodes. Several research direc-
tions for handling these challenges are also pro-
posed, for example, array signal processing and
channel compression can eliminate the number
of channel estimates, while channel prediction
and modification for high-speed railway commu-
nications and adaptive downlink array from
uplink measurements excel in overcoming the
non-reciprocity in channel parameters.
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tion from C-RAN to H-CRAN. On one hand,
HPNs in an H-CRAN connect to the cloud via
the new data interface S1 and the control inter-
face X2 that a C-RAN does not have. On the
other hand, HPNs transmit all control signaling
and system broadcasting messages to UTs, which
can reduce the time delay constraints between
the cloud and UTs.

Generally speaking, the H-CRAN, as a fresh
thing, can bring better system performance such
as enlarged capacity, enhanced coverage, and
improved SE and EE, and at the same time
introduce many challenges and open problems.
For example, channel modeling and capacity
analysis for H-CRANs remain unknown, and
interference analysis in H-CRANs is a recog-
nized challenge [3].

To the best of our knowledge, most existing
works about HetNets, C-RANs, and H-CRANs
assume perfect channel state information (CSI),
and only a few works address the challenges in
channel estimation, which motivate our current
work. In this article, we present a comprehensive
survey on technological problems in obtaining
CSI in H-CRANs and also provide possible
research directions. It is shown that the numer-
ous channels, heterogeneity, and transmission
delays are the three main factors that lead to dif-
ficulty in obtaining CSI.

The remainder of this article is organized as
follows. We present the architecture of H-
CRANs and describe the charateristics of chan-
nel parameters in H-CRANs. A brief summary
of current channel estimators and their applica-
tions in H-CRANs is introduced. The challenges
in channel estimation are analyzed, and corre-

sponding research directions are also suggested
before drawing the conclusion.

H-CRAN AND ITS CHANNEL PARAMETERS

H-CRAN ARCHITECTURE

Figure 1 illustrates the system structure of a typi-
cal H-CRAN where UTs can access the H-
CRAN and Internet via remote radio heads
(RRHs) or HPNs; HPNs are cellular BSs with
massive linear, rectangular, cylindrical, or spheri-
cal antennas; RRHs can be simplified 3G or 4G
BSs, or access points for wireless local area net-
works (WLANs) with IEEE 802.11 protocols, or
BSs operating at millimeter-wave such as IEEE
802.16. Note that RRHs only deal with the RF
band signal processing in the physical layer, and
leave all other jobs to the cloud (BBU pool),
including baseband estimation and detection in
the physical layer, functionalities of the medium
access control (MAC) layer, and procedures in
the network layer.

The signals between UTs and nodes (LPNs or
HPNs) in an H-CRAN can be categorized into
three types: control signaling, voice messages, and
data packages. All control signaling and system
broadcasting messages will be transmitted by
HPNs to UTs. The voice messages and low-rate
data messages will also be administrated by HPNs.
High data rate packages will be mainly served by
RRHs. When some UTs require very high data
rate service at the edge of a cell, it is possible that
both HPNs and LPNs in the cell, together with
LPNs in the neighbor cell, will cooperate to meet
the large traffic demand of UTs.

Figure 1. System architecture of H-CRANs.
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CHANNEL PARAMETERS IN H-CRANS
Figure 2 depicts one typical scenario in which a
UT communicates with potential access nodes in
an H-CRAN. The wired and wireless channels
between the UT and the nodes are shown as
solid and dashed lines, respectively. The links
between a BBU pool and RRHs can be wireless
or wired, so RRHs can play the role of relays or
remote RF transceivers. When an RRH acts as a
relay node, the concatenated channel includes
two parts: wireless channel h1 between the UT
and the RRH, and wireless channel h2 between
the RRH and the BBU pool. In this case, esti-
mators for cooperative networks can be applied
to obtain convoluted CSI [7]. When the RRH
connects the BBU pool with a wired link such as
optical fiber or twist pairs, the time delays t1 and
t2 between the RRH and the BBU pool are
important channel parameters that do not exist
in traditional point-to-point or cooperative com-
munication systems. Besides, one UT can also
access the network through not only HPNs, but
also IEEE 802.11 access points and IEEE 802.16
BSs. Clearly, these available wireless channels
for the UT are plentiful and heterogeneous.

Therefore, due to the increasing number of
antennas, the heterogeneity of access nodes [3],
as well as the time delays of transmitting pack-
ages between BBU pool and RRHs, channel
estimation is a more challenging issue for H-
CRANs.

EXISTING CHANNEL ESTIMATORS AND
THEIR APPLICATIONS IN H-CRANS

Depending on carrier frequency, transmitted
symbol rates, velocities of mobile users, system
bandwidth, and surrounding environments, wire-
less channels can be classified into four kinds:
flat-fading time-invariant, frequency-selective
time-invariant, flat-fading time-varying, and dou-
bly selective channels. For most wireless commu-
nication systems, channel estimates are required
by wireless nodes to perform essential tasks such

as precoding, beamforming, and data detection.
To obtain the estimates of the channel parame-
ters, different training sequences are transmitted
in various communication systems.

For traditional point-to-point wireless systems
with time-invariant channels, the most popular
estimators are the maximum likelihood (ML)
method and minimum mean square error
(MMSE) approach. Assuming that the noise is
Gaussian-distributed, the ML method can be
simplified to a least squares (LS) estimator,
while with a Gaussian assumption for both noise
and channels, the MMSE estimator will find its
close-form solution, often called linear MMSE
(LMMSE) estimates.

For traditional point-to-point wireless systems
with time-varying channels, only CSI at a limited
set of time instances can be estimated because
the data symbols are transmitted at other time
instances. To solve this problem, time-varying
channels are represented by the Gauss-Markov
model (GMM) [6], which tracks channel varia-
tion through symbol-by-symbol updating, and by
the basis expansion model (BEM) [5], which
decomposes the channel into the superposition
of the time-varying basis functions weighted by
time-invariant coefficients.

For cooperative networks with amplify-and-
forward (AF) mode, the channel estimators are
different from those in traditional point-to-point
systems [7] due to channel concatenation. Fur-
thermore, it has been pointed out in [9] that
channel estimators for one-way relay networks
(OWRNs) and two-way relay networks
(TWRNs) vary considerably due to self-cancella-
tion at both source terminals in TWRNs.

The existing typical channel estimation
approaches for traditional point-to-point net-
works and cooperative networks, as well as their
possible applications in H-CRANs, are briefly
summarized in Table 1, which indicates that
there are many open problems about channel
estimation in H-CRANs.

CHALLENGES ON
CHANNEL ESTIMATION IN H-CRANS

In this section, we analyze the challenges on
obtaining the channel parameters in H-CRANs. 

WHAT AND HOW MANY CHANNEL PARAMETERS
ARE TO BE ESTIMATED

The first step in obtaining CSI in H-CRANs is
to decide which and how many parameters are
to be estimated. Channel parameters include
channel statistics such as means and variances,
and instantaneous CSI. The time delays of pack-
age transmissions between RRHs and the BBU
pool can also be key channel parameters that
influence bit error rate (BER) performance and
system capacity.

For one UT with a single antenna, there may
be many wireless channels between the UT
antenna and RRHs’ antennas around the UT.
HPNs are often equipped with massive anten-
nas; hence, there are also abundant channels
between the UT and nearby HPNs. Acquisition
of all these instantaneous channel parameters is

Figure 2. Channels in an H-CRAN.
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resource-consuming and complexity-increasing
for the BBU pool, and is almost impossible in a
practical situation, especially when the channel
coherence time is short. Clearly, selecting some
channel parameters for estimation is necessary
for H-CRANs; thus, problems arise:
• How is the channel subset chosen from many

existing channels with instantaneous values
unknown to the BBU pool?

• How large should the subset be to satisfy the
data rate requirements and transmit power
limits as well as the minimal interference con-
straints?

To our best knowledge, only a few studies have
investigated the above two problems in C-RANs
[14], and the exact solutions for H-CRANs have
yet to be developed.

MASSIVE MIMO AND PILOT CONTAMINATION
HPNs are often equipped with massive receiving
antennas, which can enable high-throughput
delivery between HPNs and UTs [12]. The large
number of antennas in HPNs can construct
ample wireless channels for one UT; this also
brings about the well-known problems of chan-
nel estimation and pilot contamination. As
shown in Fig. 3, HPN0 in the central cell receives
both pilots indicated by the blue line from UT0,
and pilots depicted in red dashed lines from UTi
(1 £ i £ K) in the K neighbor cells. The latter K
pilots “contaminate” the first pilot sequence dur-
ing the channel estimation process and reduce
the estimation accuracy achieved by HPN0.

FREQUENCY-DIVISION DUPLEXING
Existing studies assume that H-CRANs operate
in a time-division duplexing (TDD) mode. This
assumption will result in the same CSI for both
forward and reverse channels. Thus, the training
sequence transmitted by one UT and received at
HPNs and RRHs can be utilized to estimate
uplink CSI due to reciprocity. However, for H-
CRANs with frequency-division duplexing
(FDD) mode, this method does not work
because the uplink and downlink channels have
different wavelengths and thus various respons-
es. Moreover, the common method of acquiring
CSI — transmitting downlink pilots over differ-
ent time slots by HPNs or RRHs in a predefined
order so that UTs can receive and estimate the
channel parameters — is not practical in H-

CRANs due to the large number of wireless
channels and limited channel coherence time.
Therefore, how to obtain downlink CSI is an
interesting and difficult task for FDD H-CRANs. 

TIME-VARYING CHANNELS
The UTs may be mobile smartphones (MSPs),
and the mobility of MSPs can introduce Doppler
shift in frequency, which can result in time-vary-
ing wireless channels between the MSP and
RRHs/HPNs. The higher velocities of MSPs can
produce variances in the these channel parame-
ters, thus introducing difficulty in obtaining
accurate CSI. Such cases often take place for
UTs on highways or high-speed railways (HSRs).

TIME DELAYS AND OUTDATED CSI
Due to the transmission delay of pilot and data
transmission from RRHs to a BBU pool (e. g.,
t1 and t2 in Fig. 2), the CSI obtained at the
BBU pool is outdated at the moment of decid-
ing which UT should be chosen for transmission
and also at the following moment of UT data
transmission. Currently, few studies provide
modeling of time delays in mathematical expres-
sions. How to evaluate and overcome the influ-

Figure 3. Pilot contamination for HPN0 in an H-CRAN.

HPN1

M121

...

...

...

HPN3

M321

UT3

UT1

UT2

UT0

UTK

HPN2

M21 2

...
HPNK

MK1 2

...
HPN0

M01 2

Table 1. List of channel types and corresponding estimators.

Channel types and expressions Point-to-point networks Cooperative networks Applicable in H-CRANs

Flat-fading time-invariant channel
y(n) = hx(n) + w(n)

ML
MMSE

OWRN [7], TWRN [9],
multihop [10] Applicable in a few cases [8]

Frequency-selective time-invariant channel
y(n) = Sl=0

L–1 hls(n – l) + w(n)
LS

LMMSE OFDM Adaptable in some cases

Flat-fading time-varying channel
y(n) = h(n)x(n) + w(n)

BEM [5]
GMM [6] TWRN [11] To be exploited 

Doubly selective channel
y(n, l) = Sl=0

L–1 hl(n)s(n – l) + w(n)
BEM + LMMSE 

BEM + GMM + Kalman filter EM + zero padding Not studied yet
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ence of outdated CSI in H-CRANs remains
unknown and deserves further investigation.

CHANNEL ESTIMATION ERRORS AND
TRAINING SEQUENCE DESIGN

Due to the existence of noise and interference,
channel estimation errors are inevitable in the
estimates of channel parameters. Since the chan-
nel matrices between UTs and HPNs/RRHs are
large, the influence of the channel estimation
error is non-negligible, and the corresponding
robust beamforming schemes are nontrivial
problems.

One choice to reduce channel estimation
errors is transmitting more pilot symbols.
Although transmitting more training sequences
can increase accuracy in channel estimation, it
introduces more pilot contamination in H-
CRANs. Therefore, how many trainings are
needed for RRHs and HPNs is another interest-
ing problem. In addition, the training sequence
design for H-CRANs, such as power allocation,
pilot position, and transmission intervals, differs
from that in point-to-point or cooperative net-
works and contains a series of optimization
problems. The objective functions for the train-
ing sequence design in traditional cellular net-
works are often assumed as minimizing the
estimation mean square error (MSE) or maxi-
mizing the capacity/throughput or the lower
bounds. However, for H-CRANs, maximizing
the area spectral efficiency (bits per second per
Hertz per square meter) may be a good choice
for the objective function in the training
sequence design [2]. 

DIFFERENT REQUIREMENTS ON
ESTIMATION ACCURACY

Another feature for channel estimation in H-
CRANs is that different links have various chan-
nel parameters and thus impose diverse
requirements on estimation accuracy. For exam-

ple, in Fig. 2 the wireless link h1 between the
BBU pool and the RRH is almost static while
the wireless channel h2 between the RRH and
the MSP can be both time-varying and frequen-
cy-selective due to the mobility of the MSP.
Therefore, to obtain estimates for channel h1
requires far fewer training symbols than for
channel h2. In such a case, joint training
sequence design for both fronthaul and access
links can be a good choice. 

RESEARCH DIRECTIONS

It is shown above that the challenges in the
acquisition of CSI in H-CRANs come from the
large number of channel parameters, the hetero-
geneity of system components, and the time
delays of package transmission. In this section,
five research directions are proposed for channel
estimation in H-CRANs. 

ARRAY SIGNAL PROCESSING
Since the massive antennas in HPNs are often
aligned regularly, the wireless signal transmitted
from one UT will arrive at the receiving anten-
nas in an ordered form. For one channel tap, the
difference in the channel gains between neigh-
bor receiving antennas can be simplified as only
phase change. More importantly, the phase dif-
ference can be mathematically described in most
cases when the antennas are located regularly.
This can be visualized through Fig. 4a, where
channels between one UT with a single antenna
and one HPN with M linear antennas are plotted
in the case of two channel taps. For the ith (i =
1, 2) tap, the M channels [h1i, h2i, …, hMi] from
the UT antenna to the HPN antennas can be
expressed as h1i [1, ej2pdcosqi/l, …, ej2p(M–1)dcos
qi/l], where l denotes the wavelength, d is the
distance length between two antennas of the
HPN, and q i represents the angle of arrival
(AoA) for the ith channel tap shown in Fig. 4a.
Therefore, utilizing techniques of array signal
processing, we can first obtain estimates of the
angle parameters q1 and q2 and reference fading

Figure 4. Wireless channels between one UT and one HPN: a) HPN with linear antennas; b) HPN with planar antennas; c) estima-
tion MSE and CRLB vs. SNR, where M denotes the number of pilots.
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coefficient h11 and hM2, and then recover all
channel parameters.

Similarly, as shown in Fig. 4b, for HPNs with
rectangular antenna array, the parameters to be
estimated in each tap are simplified to the refer-
ence fading coefficient, azimuth angle a, and
elevation angle b, which are much fewer than
the large number of channel parameters of this
tap between the UT and the HPN.

Figure 4c illustrates the MSE of the channel
estimates vs. signal-to-noise ratio (SNR) when uti-
lizing array signal processing to obtain CSI for one
HPN with linear antenna array. It can be seen that
the estimation MSEs approach the corresponding
Cramer Rao lower bounds (CRLBs), and the gap
between MSEs and CRLBs is due to pilot con-
tamination. Moreover, such gap can be further
reduced through robust transceiver design [13].
Clearly, array signal processing is an effective
method to reduce the number of channel esti-
mates with acceptable estimation performance.

SELECTION AND COMPRESSION
When both RRHs and HPNs, or many RRHs
cooperate to provide high data rate service for
one UT, the wireless channels are heteroge-
neous (i.e., different channels have different
propagation losses). In such a situation, one
interesting question arises: can we directly
choose some channels for estimation before
transmitting pilots? Reference [14] provided the
answer with an innovative CSI acquisition
scheme called compressive CSI acquisition. It
assumes that statistical CSI on all channels is
available at the BBU pool, sets a SNR threshold
to choose channels, and aims at minimizing total
transmission power. The channels can be chosen
through semi-definite programming (SDP) and
Gaussian randomization after certainty-equiva-
lent formulation. Next, the parameters of the
chosen channels will be estimated, based on
which the beamforming matrix can be designed.

PREDICTION AND MODIFICATION
FOR HSR COMMUNICATION

Different from personal UTs roaming around
the H-CRAN, the antennas on the train and
UTs in the train follow fixed tracks of the rail-
ways, and their arrival time at each place comply
with a strict preplanned schedule.

A typical HSR propagation environment is
illustrated in Fig. 5a, where we can see that for a
certain BS-train separation distance, the received
multi-path components (MPCs) by UTs in the
train are mostly affected by the same obstacles
and suffer from similar attenuations. This leads
to cross-correlation between BS-train links on
both large- and small-scale fading domains.

In Fig. 5b, shadow fading components within
a narrow-strip-shaped region along an HSR
track are simulated based on the reported mea-
surements. It can be found that within the nar-
row-strip-shaped region along the HSR track,
the signals with different x indices usually atten-
uate at the same distance (e.g., y = 1, 1.5, and
2.5 km in Fig. 5b). This means that for the typi-
cal HSR environment, the radio channels of dif-
ferent links are correlated.

Therefore, the channel parameters for the
UTs on HSRs in an H-CRAN can be forecast
and modified, instead of estimated. Figure 5c
depicts a scenario where channel prediction and
modification can be utilized in an H-CRAN on
HSR. Since some RRHs are distributed along
the railways, the channels between the HPN and
the train antennas are correlated with those
between the HPN and the RRHs. The HPNs
and the BBU pool can thus obtain channel esti-
mates from the communication process of last
trains or nearby RRHs, predict the current chan-
nel parameters, and modify these predictions
according to the received symbols. In addition,
combining with technologies of big data or data
mining, channel prediction and modification can

Figure 5. a) Illustration of a typical HSR propagation environment, where green tracks represent the propagation of MPCs; b)
simulated shadow fading components along an HSR track, where the small-scale fading and distance-dependent path loss are
removed for clarity; c) an H-CRAN on HSR, where some RRHs are along the railway, and the channel parameters between
HPNs and train antennas are correlated with those between HPNs and RRHs close to the train.
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obtain good performance in both estimation
MSE and throughput due to avoiding the high
cost of estimating the abundant time-varying
parameters. 

Another way to reduce the number of chan-
nel estimates is to express the channel parame-
ters on an orthogonal basis with limited
coefficiencies. The number of coefficiencies
should be much less than that of channel param-
eters. The basic idea is the same with BEM sug-
gested in [5]. Apart from BEM, GMM can be an
alternative to approximate the numerous chan-
nels. In addition, GMM can also be a good
choice to model the channels in consecutive
symbol durations, and hence can be utilized to
evaluate the effects of the time delays described
earlier. Besides, superimposed pilots can be
transmitted together with data symbols, which
requires no extra bandwidth. Therefore, super-
imposed pilots can be utilized to track the time-
varying channel at the cost of reduced data
power.

ADAPTING DOWNLINK ARRAY FROM
UPLINK MEASUREMENTS

For H-CRAN with FDD mode, it is not practical
to estimate downlink channel parameters based
on uplink estimates due to non-reciprocity of the
unlink and downlink. On the other hand, send-
ing training sequences from HPNs and RRUs to
UTs can be one way to estimate downlink
parameters. However, a large number of training
sequences are required.

The novel idea suggesed in [15] may be a
good solution to this dilemma in an FDD H-
CRAN: obtaining a downlink beamforming
matrix directly from uplink measurements,
instead of estimating downlink channel param-
eters. Aimed at maximizing the SNR of the
desired UT, the beamforming vector can be
obtained by solving an eigenvector and eigen-
value problem with no requirement on infor-
mation about downlink channel parameters. It
is shown in [15] that this method can provide
improvements in downlink SNR even when
only one snapshot of uplink array response is
available.

CONCLUSIONS

In this article, we have summarized the charac-
teristics of H-CRAN channels, surveyed the
existing estimators as well as their applications
in H-CRANs, and investigated the current chal-
lenges to obtaining CSI in H-CRANs. It is shown
that these challenges result from different fac-
tors such as a large number of channel parame-
ters to be estimated, heterogeneity of access
nodes in H-CRANs, and packet transmission
delays. Accordingly, five possible research direc-
tions have also been suggested to overcome
these three difficulties.
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