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Acquisition of epithelial-mesenchymal transition
phenotype in the tamoxifen-resistant breast cancer
cell: a new role for G protein-coupled estrogen
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through cancer-associated fibroblast-derived
fibronectin and β1-integrin signaling pathway in
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Abstract

Introduction: Acquired tamoxifen resistance remains the major obstacle to breast cancer endocrine therapy.

β1-integrin was identified as one of the target genes of G protein-coupled estrogen receptor (GPER), a novel

estrogen receptor recognized as an initiator of tamoxifen resistance. Here, we investigated the role of β1-integrin

in GPER-mediated tamoxifen resistance in breast cancer.

Methods: The expression of β1-integrin and biomarkers of epithelial-mesenchymal transition were evaluated

immunohistochemically in 53 specimens of metastases and paired primary tumors. The function of β1-integrin

was investigated in tamoxifen-resistant (MCF-7R) subclones, derived from parental MCF-7 cells, and MCF-7R

β1-integrin-silenced subclones in MTT and Transwell assays. Involved signaling pathways were identified

using specific inhibitors and Western blotting analysis.
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Results: GPER, β1-integrin and mesenchymal biomarkers (vimentin and fibronectin) expression in metastases

increased compared to the corresponding primary tumors; a close expression pattern of β1-integrin and GPER were

in metastases. Increased β1-integrin expression was also confirmed in MCF-7R cells compared with MCF-7 cells. This

upregulation of β1-integrin was induced by agonists of GPER and blocked by both antagonist and knockdown of it

in MCF-7R cells. Moreover, the epidermal growth factor receptor/extracellular regulated protein kinase (EGFR/ERK)

signaling pathway was involved in this transcriptional regulation since specific inhibitors of these kinases also reduced

the GPER-induced upregulation of β1-integrin. Interestingly, silencing of β1-integrin partially rescued the sensitivity of

MCF-7R cells to tamoxifen and the α5β1-integrin subunit is probably responsible for this phenomenon. Importantly,

the cell migration and epithelial-mesenchymal transition induced by cancer-associated fibroblasts, or the product of

cancer-associated fibroblasts, fibronectin, were reduced by knockdown of β1-integrin in MCF-7R cells. In addition, the

downstream kinases of β1-integrin including focal adhesion kinase, Src and AKT were activated in MCF-7R cells and

may be involved in the interaction between cancer cells and cancer-associated fibroblasts.

Conclusions: GPER/EGFR/ERK signaling upregulates β1-integrin expression and activates downstream kinases, which

contributes to cancer-associated fibroblast-induced cell migration and epithelial-mesenchymal transition, in MCF-7R

cells. GPER probably contributes to tamoxifen resistance via interaction with the tumor microenvironment in a

β1-integrin-dependent pattern. Thus, β1-integrin may be a potential target to improve anti-hormone therapy responses

in breast cancer patients.

Introduction

Tamoxifen, a selective estrogen receptor (ER) modulator,

is the most frequently used anti-hormonal drug for the

adjuvant treatment of women with ER-positive breast

cancer [1]. Acquired resistance is still the major clinical

challenge to the therapeutic efficacy of tamoxifen. A

growing amount of evidence has demonstrated that the

aberrant activated growth factor signaling pathways con-

tribute to tamoxifen resistance [2, 3]. However, most

studies [4, 5] have tested the hypothesis that tamoxifen

resistance results from genetic alterations and autocrine

or paracrine mechanisms in the epithelial tumor cells

themselves. Tumors are complex organs comprising a

variety of components such as tumor cells, fibroblasts,

immune cells, vessels, and extracellular matrix. The role

of the tumor microenvironment in tumor progression

and drug resistance is gradually being clarified [6, 7].

One of the crucial reasons for drug resistance is the

metastasis of cancer cells to secondary sites [8, 9].

Tumor cells achieve this by activating an epithelial-

mesenchymal transition (EMT) program to experience

phenotypic alterations, such as the loss of cell-cell inter-

actions and the gain of cell mobility to evade from the

primary lesion. Molecular hallmarks of EMT include the

loss of epithelial markers, such as E-cadherin, the

gain of the expression of mesenchymal markers, such

as N-cadherin, vimentin and fibronectin, the loss of

cell polarity, and reorganization of the actin cytoskel-

eton accompanied by the morphological change [10, 11].

For example, tamoxifen-resistant MCF-7 breast cancer

cells (MCF-7R) display enhanced motile and invasive be-

havior as well as accompanying EMT-like properties com-

pared to the parental MCF-7 cell line in vitro [12, 13].

Emerging evidence suggests a close association between

drug resistance and the induction of EMT in cancer

[10, 14]; however, the initiator and the specific mech-

anism of EMT during the development of tamoxifen

resistance remain to be determined.

G protein-coupled estrogen receptor (GPER), also

called G protein-coupled receptor 30 (GPR30), is a novel

ER that can be activated by tamoxifen and the pure anti-

estrogen fulvestrant. This receptor has been shown to be

important in the induction of tamoxifen resistance

through the GPER/epidermal growth factor receptor

(EGFR) signaling pathway [15, 16]. Moreover, it was

demonstrated GPER functions as an important initiator

in the development of tamoxifen resistance in hormone-

dependent breast cancer [17]. In order to further

disclose the potential role of GPER in the tamoxifen-

resistant ER+ breast cancer, we identified a set of target

genes in MCF-7R subclones using cDNA microarray

(data unpublished). One of these genes, β1-integrin, has

been demonstrated to play a key role in tumor progres-

sion and tumor survival [18, 19]. Furthermore, β1-

integrin, which coordinates much broader functional

processes such as inflammation, proliferation, adhesion,

and invasion, has recently been implicated in therapeutic

resistance in multiple solid cancer models [20, 21]. Im-

portantly, integrins mediate signal transduction between

the tumor cell and its microenvironment, which compli-

cates the identification of the mechanisms underlying

drug resistance. Few studies have reported the involve-

ment of β1-integrin in tamoxifen resistance. Pontiggia

and colleagues [22] demonstrated that soluble factors

or extracellular matrix components in the microenvir-

onment protect against tamoxifen-induced cell death
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through interaction with β1-integrin using tamoxifen-

sensitive breast cancer cells. However, this finding

does not clarify the role of β1-integrin in resistant cells due

to the diversity of the cell model.

In this study, we elucidated that the interaction of the

cancer-associated fibroblast (CAF)-derived tumor micro-

environment and β1-integrin locating on the cell

membrane of MCF-7R cells plays a key role in GPER-

mediated tamoxifen resistance. Increased β1-integrin

was detected in metastasis (MT) breast carcinoma speci-

mens compared with their matched primary tumors

(PTs). Knockdown of β1-integrin expression in MCF-7R

cells partly restored tamoxifen sensitivity and suppressed

the EMT phenotype facilitated by CAFs, or the product

of CAFs, fibronectin, in vitro. These findings suggest

that targeting β1-integrin may be a promising solution

to tamoxifen resistance in breast cancer.

Methods
Materials

The rabbit monoclonal (EP1041Y) antibody against β1-

integrin was obtained from Abcam (Cambridge, UK).

Antibodies against Src (pY418 and total), focal adhesion

kinase (FAK; pY397 and total), extracellular-signal regu-

lated kinase-1 and -2 (ERK1/2; pT202/Y204), E-cadherin,

vimentin and fibronectin were purchased from Bioworld

(Saint Louis Park, MN, USA). Antibodies against AKT

(pS473 and total) were from Cell Signaling Technology

(New England Biolabs, Herts, UK). β1-integrin antisense

oligonucleotides and GAPDH antisense oligonucleo-

tides were purchase from Invitrogen (New York,

USA). Fibronectin, 4-hydroxytamoxifen (TAM) and

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) were obtained from Sigma-Aldrich (Steinheim,

Germany). GPER agonist G1 and antagonist G15 were

purchased from Tocris (Missouri, USA). Function-

blocking integrin monoclonal antibodies specific for

α2β1-integrins (AK-7) and α5β1 integrin (P1D6) were

from EMD Biosciences (San Diego, CA, USA). All other

reagents were from Beyotime (Haimen, China).

Cell culture

Human MCF-7 breast carcinoma cells (MCF-7), pur-

chased from the Institute of Biochemistry and Cell

Biology, Chinese Academy of Sciences (IBCB, Shanghai,

China), were routinely grown in Dulbecco's modified

Eagle's medium (DMEM; Gibco, Rockville, MD, USA) con-

taining 5% fetal bovine serum (FBS; Gibco), 10 μg/ml insu-

lin, 100 IU/ml penicillin and 100 μg/ml streptomycin. The

tamoxifen-resistant sublines (MCF-7R) [23] were derived

from MCF-7 by continuous exposure to TAM diluted in

0.1% ethanol. MCF-7R cells were cultured continuously in

medium containing 5% FBS supplemented with 100 nM

TAM. Before all experiments, cells were switched to

phenol-free DMEM containing 0.5% charcoal-dextran-

stripped FBS for 2 days, except where noted.

MDA-MB-468, MDA-MB-231, and SKBR3 cells were

kindly provided by Dr Gang Tu, and the culture condi-

tions were as described previously [24].

CAFs, a gift from Dr Manran Liu, were isolated and

cultured as described previously [25].

No consent was needed from any patients or Institute

Ethics Board, because only commercially available cell

lines were used in this study.

Specimens

The 77 paired archival paraffin-embedded breast cancer

specimens were obtained from the Clinical Diagnostic

Pathology Center, Chongqing Medical University

(Chongqing, China). All patient details and exclusion

criteria have been described previously [17]. All patients

received tamoxifen only after surgery. All patients in-

volved in this study consented to participate in the study

and publication of its results. The experiments were ap-

proved by the Ethics Committee of the First Affiliated

Hospital of Chongqing Medical University and were con-

ducted in accordance with the Helsinki Declaration.

Immunohistochemistry

Sections of formalin-fixed and paraffin-embedded breast

cancer specimens or corresponding recurrent lesions

were mounted on SuperFrost Plus glass slides (ZsBio,

Beijing, China) and dried overnight. The immunohisto-

chemical protocols are described elsewhere [17]. The

slides were incubated with affinity-purified rabbit anti-

β1-integrin (1:100), anti-GPER (1:250), anti-E-cadherin

(1:200), anti-vimentin (1:200) and anti-fibronectin (1:200)

for 2 hours at 37 °C.

Evaluation of β1-integrin and G protein-coupled estrogen

receptor staining

The β1-integrin expression in samples was scored based

on intensity (0 to 3) and extent (0 = <10%, 1 = 10 to

25%, 2 = 26 to 50%, 3 = >50%) ato ccording previously

described criteria [26]. The individual categories were

multiplied to give a total immunohistochemical score

ranging between 0 and 9. Samples that scored ≥3 were

defined as positive immunohistochemical results.

GPER expression was classified as described previously

[17] and scores were assigned as follows: the percentage

of positive cells was categorized as 0 (negative staining

in all cells), 1 (<1% cells stained), 2 (1 to 10% of cells

stained), 3 (11 to 40% cells stained), 4 (41 to 70% cells

stained) or 5 (71 to 100% cells stained), and staining

intensity was categorized as 0 (negative), 1 (weak), 2

(moderate) or 3 (strong). Percentage and intensity

scores were added to give total immunohistochemical

scores, ranging from 0 to 8. Specimens that scored ≥2 were
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defined as GPER+. In our previous work, 53 recurrent

breast cancer specimens were identified as GPER-positive

and the rest were GPER-negative in a total of 77 recurrent

samples.

Evaluation of epithelial-mesenchymal transition marker

protein expression

Expression of EMT marker proteins (E-cadherin, vimen-

tin, fibronectin) were also detected immunohistochemi-

cally in PTs of breast cancer and paired MTs. Expression

of membranous E-cadherin, cytoplasmic vimentin and

fibronectin was scored using the following system [27]:

0 (no staining); 1 (1 to 25% staining); 2 (26 to 50%

staining); 3 (>50% staining).

Construction of GV115-sh/β1-integrin and siRNA

transfection

Four short hairpin RNA (shRNA) sequences targeting

the β1-integrin gene and one negative control sequence

were designed, and inserted into the lentivirus vector

GV115 containing a green fluorescent protein (GFP)

reporter. Recombinant lentivirus and control were ex-

tracted after transfection of 293 T cells with the recom-

binant vector and helper vectors. The lentivirus with the

best interfering effect as determined by real-time PCR

was selected to infect MCF-7R cells. The selected β1-

integrin shRNA vector sequence (No. 1756–1) was as

follows: forward, 5′-CCGGGAGGAAATGGTGTTTG

CAAGTTTCAAGAGAACTTGCAAACACCATTTCCT

CTTTTTG-3′; and reverse, 3′-CTCCTTTACCACAA

ACGTTCAAAGTTCT CTTGAACGTTTGTGGTAAA

GGAGAAAAACTTAA-5′. Reagents and technical sup-

port were from GeneChem (Shanghai, China). The other

β1-integrin shRNA vector sequences and negative con-

trol vector sequence are listed in Additional file 1:

Table S1. The MCF-7R subclones expressing downreg-

ulated β1-integrin were established through infecting

the MCF-7R cells with β1-integrin shRNA lentivirus.

The same method was used to transduce the negative

control virus into cells to control for the impact of the

lentivirus vector with the same methods. After infec-

tion for 8 hours, the culture medium was refreshed.

The cells were transfected with lentivirus vectors for

72 hours and used in subsequent studies. A second

shRNA (No. 1755–1) was utilized for data (Additional

file 2: Figure S1).

GPER-specific small interfering RNA (siRNA) and the

control siRNA sequence (gifts from Dr Gang Tu) were

transiently transferred into MCF-7R or SKBR3 cells. The

target sequences for GPER siRNA were 5′-GCUGUA

CAUUGAGCAGAAATT-3′ (A) and 5′-UUUCUG CUC

AAUGUACAGCTT-3′ (B). The control siRNA sequence

that did not match any known human cDNA was 5′-AAG

GTGTCAGAAACTGACGAT-3′. Expression of GPER

protein levels was analyzed by Western blotting after

transfection.

Measurement of cell growth

Cells were seeded in 96-well plates at 5 × 103 cells/well.

After 24 hours, the cells were treated with different con-

centrations of TAM for the time indicated, and the

medium was renewed on day 3. The vehicle (0.1%

ethanol) was used as a control. At the end of the treat-

ment, 20 μl 5 mg/ml MTT was added into the medium

and incubated for 4 hours at 37°C. After removing

medium, 150 μl MTT solvent (DMSO) was added to

each well for 15 minutes and optical density (OD) values

were read in a digital spectrophotometer (λ = 490 nm).

Each experiment was repeated three times. All the OD

values, divided by the average of their controls, were

converted to a percentage of the control.

Wound healing assay and Transwell assays

For wound healing assays, MCF-7R cells were infected

with lentivirus vectors targeting β1-integrin or negative

control. GFP expression in breast cancer cells at least 2

days after infection was observed by immunofluores-

cence microscopy. For co-culture preparation, 1 × 105

CAFs were grown to confluence in six-well dishes in

complete DMEM for 3 days. Breast cancer cells growing

in log-phase were digested with trypsin, and 2 × 105 cells

were plated onto the confluent CAFs. At 90% confluence, a

pipette tip was used to make a single scratch in the mono-

layer. Floating cells and debris were removed and cells were

incubated with minimum serum medium (DMEM + 0.5%

FBS + 100 IU/ml penicillin and 100 mg/ml streptomycin)

for 24 hours to allow cell growth and wound closure.

Images of the wound were obtained before and after the

24-hour period, then measured using Image J software

(National Institutes of Health, Bethesda, MD, USA).

For transwell assays, 2 × 104 breast cancer cells, sus-

pended in 200 μl serum-free medium, were seeded into

the upper well of a Boyden chamber with 8-μm pore size

filters (Millipore, Darmstadt, Germany). CAFs at ap-

proximately 80% confluence were washed and cultured

in fresh serum-free DMEM medium for 48 hours. The

medium was then collected and filtered for use mixed at

a 9:1 ratio with fresh DMEM with 10% FBS as condi-

tioned medium (CM). Normal medium (1% FBS) or CM

was added into the lower chamber with or without add-

ing TAM (1 μM) into the upper chamber according to

the experimental design. After incubation for 24 hours,

cells adhering to the upper surface of the filter were re-

moved using a cotton applicator. After staining with

0.5% crystal violet, the cells that had migrated to the

opposite side of the filter were counted. The data rep-

resent at least three experiments performed in triplicate

(mean ± standard error).
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Reverse transcription and real-time PCR

Total RNA was extracted from MCF-7 and MCF-7R

cells using RNAiso reagent (TaKaRa, Dalian, China) ac-

cording to the manufacturer’s protocol. Total cDNA was

synthesized from RNA via a PrimeScript RT reagent Kit

(TaKaRa). The expression of β1-integrin was quantified

by quantitative real-time PCR performed with the Bio-

Rad Miniopticom Real-time PCR system using SYBR®

Premix EX Taq™II Kit (TaKaRa). The following primer

sequences were used: 5′-CCTACTTCTGCACGATGT

GATG-3′ (β1-integrin forward), 5′-CCTTTGCTACGG

TTGGTTACATT-3′ (β1-integrin reverse), 5′-TGACTT

CAACAGCGACACCCA-3′ (GAPDH forward) and 5′-

CACCCTGTTGCTGTAGCCAAA-3′ (GAPDH reverse).

All the samples were amplified by real-time PCR twice

and expression was normalized to GAPDH.

Western blotting

Cells were treated as described in the figure legends for

various times indicated in the results. Protein cell lysates

and Western blotting procedures were performed as

described previously [17]. Subcellular protein frac-

tions were extracted using a Cell Membrane Protein

Extraction Kit (Beyotime) following the manufacturer’s

instructions. Cellular proteins (50 μg) were boiled in

SDS-PAGE sample loading buffer and separated by 10%

SDS-PAGE, and the specific primary antibody which was

targeting each protein was incubated with the mem-

branes at 4°C overnight. Later, the membranes were

incubated with appropriate horseradish peroxidase-

conjugated secondary antibody and visualized using the

chemical luminescence imaging system. OD was analyzed

using Image J Software, and results normalized to β-actin

were expressed as fold change relative to the control.

Each experiment was performed at least three times with

representative gels shown.

Immunofluorescence

Cells were grown on sterile glass coverslips in 24-well

plates treated as described in the figure legends.

After 24 hours, cells were washed with cold PBS,

fixed in 4% paraformaldehyde, permeabilized with

0.2% Triton X-100, and blocked with 5% goat serum.

Cells were then incubated with the primary antibody

overnight at 4°C, and then with secondary antibody

conjugated with FITC or TRITC (1:200; ZsBio). DAPI

(Invitrogen) was used to visualize nuclei. The images

were viewed using a Nikon Eclipse 80i microscope

(Nikon, Tokyo, Japan).

Statistical analysis

Statistical analysis was performed using SPSS standard ver-

sion 19.0 software (Chicago, USA). Results are expressed

as means ± standard deviation from at least three

independent determinations. The Student’s t-test was used

for single comparisons between two groups, and analysis

of variance followed by the Student–Newman–Keuls mul-

tiple comparisons test was used for comparison between

multiple groups. Values of P < 0.05 were considered statis-

tically significant.

Results

Consistency in changes in G protein-coupled estrogen

receptor, β1-integrin and epithelial-mesenchymal transition

marker protein expression in tumors that recurred during

treatment with tamoxifen

A total of 77 breast cancer tissues were eligible for ana-

lysis according to our previous inclusion criteria [17]; of

these, 53 recurrent breast cancer specimens (33 local

and 20 distant metastases) were identified as GPER+.

Among the 53 GPER+ specimens, GPER expression was

increased in 73.58% (39/53), decreased in 5.66% (3/53)

and unchanged in 20.76% (11/53) compared with the

matched PTs. All these GPER+ MTs and the paired PTs

were also used to determine β1-integrin expression. β1-

integrin was shown to be expressed predominantly on

the plasma membrane and GPER in the cell cytoplasm

(Fig. 1a).

Our previous report showed that the mean immuno-

histochemical score for GPER in MTs (6.23 ± 0.91)

was significantly increased compared with that in

PTs (3.46 ± 1.07; P = 0.001). To investigate the po-

tential relationship among GPER, β1-integrin and

tamoxifen resistance, β1-integrin expression was scored

in PTs and the paired MTs. β1-integrin expression was

increased in 79.2% (42/53), decreased in 5.66% (3/53) and

unchanged in 15.1% (8/53) of these 53 GPER+ tumors

that relapsed during tamoxifen treatment (Fig. 1b).

The mean immunohistochemical score for β1-integrin

was 4.60 ± 1.96 in PTs and 7.42 ± 1.69 in MTs (Fig. 1c,

P = 0.001). Among the 53 MTs (GPER+), β1-integrin

expression was positively correlated with GPER ex-

pression (Fig. 1d, R2 = 0.5330, P = 0.000).

To determine if the epithelial characteristics of breast

cancer cells exhibited transitions during clinical treat-

ment with tamoxifen, the expression of EMT marker

proteins (E-cadherin, vimentin and fibronectin) was

investigated in these 53 GPER+ MTs and paired PTs.

Representative weak staining and strong staining are

shown in Fig. 1a. Significant increases in cytoplasmic

vimentin (P = 0.001) and fibronectin (P = 0.011) ex-

pression scores were observed (mean immunohisto-

chemical scores: vimentin, 0.66 ± 0.586 in PTs and

1.38 ± 0.790 in MTs; fibronectin, 0.60 ± 0.631 in PTs

and 1.30 ± 0.822 in MTs). However, the mean immu-

nohistochemical score for E-cadherin in this group of

patients was 2.40 ± 0.716 in PTs and 2.25 ± 0.875 in

the recurrent lesions (P = 0.059).
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Fig. 1 Immunohistochemical staining of β1-integrin, G protein-coupled estrogen receptor (GPER) and epithelial-mesenchymal transition (EMT)

marker proteins in breast cancer tissues. The predominant staining pattern of GPER, vimentin and fibronectin was cytoplasmic in carcinoma tissues,

whereas β1-integrin and E-cadherin were expressed mainly on the plasma membrane (A). (a-d) β1-integrin immunostaining showing representative

negative (a), weak (b), moderate (c) or strong positive plasma membrane staining (d). (e-h) GPER staining showing representative negative (e),

weak (f), moderate (g) or strong positive staining (h). (i-n) EMT marker proteins staining showing representative weak staining ((i) E-cadherin (k)

vimentin (m) fibronectin) and strong staining ((j) E-cadherin (l) vimentin (n) fibronectin). (o,p) Example of weak β1-integrin staining in primary

tumor (PT) (o) and strong β1-integrin expression in the corresponding metastasis (MT) (p) under tamoxifen treatment. Original magnification ×400.

Matched change (B) and quantitative (C) comparison of β1-integrin expression in PTs and their corresponding MTs. The correlation of β1-integrin and

GPER expression in MTs revealed through pair-wise scatter plots (D)
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G protein-coupled estrogen receptor may mediate increased

β1-integrin expression in tamoxifen-resistant breast

cancer cells

It has been reported that GPER plays an important role

in tamoxifen resistance in breast cancer [15, 17]. To

explore the underlying mechanisms, we previously

screened the target genes of GPER via microarray ana-

lysis in breast cancer cells, and sixty target genes were

identified according to a rigorous screening criteria (data

unpublished; Additional file 3: Table S2). One of these

genes, β1-integrin, has been implicated in therapeutic

resistance in multiple solid cancer models [20, 21]. To

determine the role of β1-integrin in tamoxifen resist-

ance of breast cancer cells, we first evaluated its ex-

pression in tamoxifen-sensitive MCF-7 cells (MCF-7)

and tamoxifen-resistant MCF-7 cells (MCF-7R). The

increased β1-integrin expression in MCF-7R cells

compared to that in MCF-7 cells was confirmed by

quantitative RT-PCR, immunofluorescence and Western

blotting analyses (Fig. 2). Moreover, the β1-integrin protein

was upregulated by the GPER agonist G1 and TAM,

while the GPER-specific antagonist G15 and GPER-

specific siRNA abolished the agonistic action of TAM

in MCF-7R cells (Fig. 2d,e), indicating that β1-

integrin expression induced by TAM is mediated by

GPER. Interestingly, we saw a similar finding in an-

other GPER-positive cell line SKBR3 (Additional file 2:

Figure S2). It should be noted that G15 and GPER-

specific siRNA alone had no significant impact on β1-

integrin expression (data not shown).

The EGFR/ERK signaling pathway is directly responsible

for increased β1-integrin expression in MCF-7R cells

EGFR is involved in the induction of tamoxifen resist-

ance and is known to activate the MAPK/ERK and

PI3K/AKT pathways in breast cancer cells [28, 29]. It

was found that EGFR was highly expressed in MCF-7R

cells compared with MCF-7 cells (Fig. 3a). Moreover, it

has been previously demonstrated that TAM activates

the MAPK/ERK and PI3K/AKT pathways through the

GPER/EGFR signaling pathway in MCF-7R cells [15, 17].

To investigate whether these pathways are implicated in

inducing β1-integrin expression, MCF-7R cells were

treated with TAM alone or with the addition of the sig-

naling pathway inhibitors. The specific EGFR inhibitor

AG1478 (6 μM; Sigma-Aldrich) and the MAPK/ERK in-

hibitor U0126 (10 μM; Beyotime) abolished the agonistic

effect of TAM (1 μM) on the expression of β1-integrin,

while the PI3K inhibitor Wortmannin (1 μM; Sigma-

Aldrich) did not (Fig. 3b,c). None of the inhibitors had

any effect on β1-integrin expression when used alone

(data not shown). Our results suggest that TAM stimu-

lates β1-integrin expression in MCF-7R cells via the

GPER/EGFR/ERK signaling pathway.

Blockage of β1-integrin partially rescues the sensitivity of

MCF-7R cells to tamoxifen

The effects of β1-integrin silencing in MCF-7R cells

were investigated to determine the role of β1-integrin in

tolerance to TAM. The expression of β1-integrin protein

was silenced with a lentivirus-mediated shRNA vector

(Fig. 4a). MCF-7R subclones with silenced β1-integrin

(MCF-7R-sh/ITGB1) were also established. Cell growth

following treatment with TAM (0 to 100 μM) for 108

hours was determined using MTT assays. As expected,

low TAM concentrations (0 to 1 μM) inhibited MCF-7

cell growth and stimulated MCF-7R cell growth. When

the concentration of TAM was elevated to 100 μM,

there was no obvious difference in cell survival, suggest-

ing off-target effects of TAM at high concentrations.

Excitingly, inhibition of β1-integrin expression in

MCF-7R restored the TAM inhibitory effect (Fig. 4b).

Additionally, investigation of the effect of therapeutic

concentrations of TAM (1 μM) on cell growth over

time showed that the inhibitory effects of TAM were

first apparent at 72 hours and were more significant

at 108 hours (Fig. 4c,d). Taken together, these obser-

vations demonstrate that β1-integrin plays an import-

ant role in acquired tamoxifen resistance.

In some instances, GPER enhances α5β1-integrin-

mediated fibronectin matrix assembly [30] that promotes

cellular adhesion, haptotaxis, and survival. Therefore, we

examined whether α5β1-integrin was involved in tam-

oxifen sensitivity. Pretreatment of MCF-7R cells with the

function-blocking antibody specific for α5β1-integrin

(P1D6), but not α2β1-integrin (AK-7), partially rescued

the sensitivity of MCF-7R cells to tamoxifen (Fig. 4e).

The effect of cancer-associated fibroblasts on cancer cell

migration is abolished by inhibition of β1-integrin

It has been reported that breast cancer cells display en-

hanced mobility following the acquisition of tamoxifen re-

sistance [12, 13]. The effects of β1-integrin inhibition on

cell migration were investigated using in vitro Transwell

assays. Unexpectedly, inhibition of β1-integrin expression

in MCF-7R cells had no significant effect on cell migration

regardless of the presence or absence of TAM (Fig. 5a).

Integrins function as a critical link between tumor cells

and the surrounding microenvironment [31]; therefore, we

investigated whether CAFs promoted breast cancer cell

migration and investigated the effects of β1-integrin inhib-

ition on this process. Interestingly, CAF-CM significantly

increased the Transwell migration of MCF-7R cells com-

pared with MCF-7 cells. Furthermore, the function of CM

was notably reversed by β1-integrin silence and the α5β1-

integrin-inhibitory antibody P1D6 (Fig. 5a,b). Additionally,

CM enhanced the cell migration of MDA-MB-231 cells,

but not MDA-MB-468 cells, through β1-integrin signaling

(Additional file 2: Figure S3).
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Fig. 2 Tamoxifen-induced β1-integrin expression is mediated by G protein-coupled estrogen receptor in MCF-7R cells. MCF-7 cells and MCF-7R

cells were analyzed for the presence of β1-integrin by (a) RT-PCR, (b) Western blotting and (c) immunofluorescence. The relative fold-change was

compared with MCF-7 cells (*P < 0.05, Student’s t-test). (d) β1-integrin was detected through Western blotting. MCF-7R cells were treated with

ethanol (control), G1 (10 nM) and TAM (1 μM) alone or in combination with the G protein-coupled estrogen receptor (GPER) antagonist G15 (1 μM) for

24 hours. (e) Western blotting analysis was used to test the effect of GPER-specific siRNA on GPER (left panel) and β1-integrin (right panel) levels in

MCF-7R cells. Each experiment was repeated at least three times. Results are shown as fold-changes in optical density compared with the control, and

normalized to β-actin. *P < 0.05. Ctrl, control; ITGB1, β1-integrin; TAM, 4-hydroxytamoxifen
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Fig. 3 Tamoxifen induces β1-integrin expression through a mechanism that involves the EGFR and MAPK/ERK signaling pathways. (a) Levels of

EGFR were detected by Western blotting using specific antibodies in cells. MCF-7R cells were treated with ethanol (control), TAM (1 μM) alone or

with the addition of the specific signaling pathway inhibitor targeting to EGFR (AG1478; 6 μM; AG), MAPK/ERK (U0126; 10 μM) or PI3K (Wortmannin;

10 μM; WM). β1-integrin expression was detected by (b) Western blotting and (c) immunofluorescence analyses. Each experiment was repeated at least

three times. Western blotting results are shown as fold-changes in optical density compared with the control, and normalized to β-actin. *P < 0.05. Ctrl,

control; ITGB1, β1-integrin; TAM, 4-hydroxytamoxifen
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To further confirm the effects of CAF-stimulation

on the tumor cell migration, a wound healing assay

was performed under direct co-culture conditions.

The size of the scratched area narrowed and almost

closed within 24 hours when breast cancer cells were

co-cultured with CAFs, observed by phase-contrast

microscopy. However, fluorescent photomicrographs

showed that the breast cancer cells expressing GFP

migrated into the scratched area. Our study found

that, although CAFs nearly closed the wound area in

the two groups, the MCF-7R cells with silenced β1-

integrin (MCF-7R-sh/ITGB1) showed relatively weak

migratory capacity compared with the control group

(MCF-7R-sh/Vec) (Fig. 5c).

Fig. 4 β1-integrin silencing restores the tamoxifen sensitivity in MCF-7R cells. (a) The effect of a lentivirus-mediated short hairpin RNA (shRNA)

vector targeting β1-integrin was measured by Western blotting in MCF-7R cells. Results are shown as fold-changes in optical density compared

with the control (sh/Vec), and normalized to β-actin. *P < 0.05, versus control. Cells were treated with (b) the indicated concentrations of TAM for

108 hours or (c) with therapeutic concentrations of TAM (1 μM) for the indicated time. The data represent means ± standard deviation from three

different experiments (aP < 0.05, MCF-7R cells versus MCF-7 cells; bP < 0.05, MCF-7R-sh/Vec versus MCF-7R-sh/ITGB1). (d) Cells were treated with

1 μM TAM and counted after 108 hours. (e) Cell numbers were measured in MCF-7R cells that were left untreated (UN) or pretreated with the

specific inhibitory antibody for α2β1-integrin (AK-7; 20 μg/ml) or α5β1-integrin (P1D6; 10 μg/ml) before TAM stimulation. Results are expressed as

means ± standard deviation of three independent experiments. *P < 0.05, versus each control. ITGB1, β1-integrin; MCF-7R-sh/ITGB1, MCF-7R

cells infected with lentivirus vector targeting β1-integrin; MCF-7R-sh/Vec, MCF-7R cells infected with negative control lentivirus (control);

TAM, 4-hydroxytamoxifen
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The β1-integrin downstream kinases FAK and Src are

activated on acquisition of tamoxifen resistance

The MCF-7R cell line was developed through long-term

exposure to TAM. Immunoblot analysis of the MCF-7R

revealed obvious elevation of phosphorylated (p)AKT

and ERK in MCF-7R compared with untreated parental

MCF-7 cells (Fig. 6a). In MCF-7R cells, the levels of the

β1-integrin downstream kinases pFAK (Y397) and pSrc

(Y418) were also increased significantly (Fig. 6a). Fur-

thermore, cells were treated with 1 μM TAM for 24

hours, and FAK and Src activity was then determined by

Western blotting. TAM promoted phosphorylation of

Fig. 5 β1-integrin mediates the effect of cancer-associated fibroblasts on breast cancer cell migration. Cell migratory capacity was assessed in

Transwell assays and wound healing assay. (a) In vitro Transwell assays were performed using cancer-associated fibroblast (CAF)-conditioned

medium (CM) or normal medium with or without the addition of TAM (1 μM). (b) The number of cells with indicated pretreatment that migrated

toward the lower wells of the transwell containing CM was counted. Each experiment was repeated at least three times. *P < 0.05. (c) The

capacity of cells to migrate to fill a scratched area devoid of cells was assessed in co-cultures of breast cancer cells and CAFs. Before co-culture,

breast cancer cells were infected with lentivirus carrying a green fluorescent protein reporter gene to distinguish CAFs under a fluorescence

microscope. Fluorescence photomicrographs revealed that MCF-7R-sh/Vec showed enhanced cell migration ability into the scratched area (arrows) when

compared with MCF-7R-sh/ITGB1. Ctrl, control; ITGB1, β1-integrin; MCF-7R-sh/ITGB1, MCF-7R cells infected with lentivirus vector targeting β1-integrin;

MCF-7R-sh/Vec, MCF-7R cells infected with negative control lentivirus (control); TAM, 4-hydroxytamoxifen
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Fig. 6 (See legend on next page.)
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FAK at Y397 and Src at Y418 in MCF-7R cells but not

in MCF-7 cells, while total FAK and Src were unaffected

(Fig. 6a), which was consistent with CM treatment (data

not shown).

The levels of pFAK and pSrc were decreased modestly

and no changes in total levels were detected in β1-

integrin-downregulated MCF-7R cells. Additionally, the

positive effect of TAM on FAK and Src activity was sup-

pressed by β1-integrin inhibition (Fig. 6b).

Activation of the AKT signaling pathway in response to

TAM is mediated by β1-integrin in tamoxifen-resistant

MCF-7 cells

Activation of AKT and MAPK is known to play a pivotal

role in tamoxifen resistance. Also, ERK1/2, part of a

major MAPK pathway cascade, mediates mitogenesis in

hormone-sensitive breast cancer cells. We tested the ef-

fect of TAM on phosphorylation of AKT and ERK in

MCF-7R cells and compared this to control cells. Al-

though there was no marked alteration in AKT and

EKR1/2 activity at 24 hours after TAM treatment

(Fig. 6a), TAM mediated their rapid phosphorylation

with peak increases at 10 minutes in MCF-7R cells

(Fig. 6c). However, the activation of AKT and EKR1/2 was

much later and weaker in MCF-7 cells (data not shown).

Moreover, our data showed that activation of the AKT

signaling pathway in response to TAM is mediated by β1-

integrin in MCF-7R cells (Fig. 6d). Interestingly, Huang

and colleagues found similar results in lapatinib-resistant

HER2+/ER+ and Her2+/ER− cell lines [21].

β1-integrin is involved in the cancer-associated

fibroblast-induced epithelial-mesenchymal transition

process in MCF-7R cells

Acquired chemotherapeutic resistance is accompanied

by an aggressive, invasive phenotype as a result of EMT

[8, 9]. In the current study, Western blotting analysis

showed increased expression of vimentin and fibronectin

in MCF-7R cells compared with that in MCF-7 cells.

However, there was no significant difference in the level

of E-cadherin expression (Fig. 7a). These results were

confirmed by immunofluorescence staining. Interest-

ingly, although E-cadherin expression was not decreased

in association with tamoxifen resistance, it was found to

be translocated from the cell membrane to the cyto-

plasm (Fig. 7b,c). Our data suggest that MCF-7R cells

display EMT-like properties compared to MCF-7 cells

in vitro.

The microenvironment of cancer cells, which contains

several distinct stromal cell types, participates in both

tumor progression and the response to treatment

[32, 33]. CAFs, which are one of the most crucial

components of the tumor microenvironment, possess

biological properties and functions that are distinct

from those of normal fibroblasts [34]. It has been re-

ported that CAFs promote cancer cell growth and migra-

tion through an involvement in angiogenesis and EMT

[35, 36]. To determine whether CAFs have the capacity

to regulate tumor progression, MCF-7 cells and MCF-7R

cells were cultured in the CM. The expression of fibro-

nectin and vimentin was significantly elevated in MCF-

7R cells cultured in CM compared to those cultured in

normal medium. However, CM exerted a marginal effect

on MCF-7 cells (Fig. 7d). Moreover, the assumptive

E-cadherin decrease was not observed in breast can-

cer cells cultured in CM. To determine if β1-integrin

modulates the CAF-induced EMT process, we tested

the effect of CM on MCF-7R cells with silenced β1-

integrin (MCF-7R-sh/ITGB1). The influence of CM

on the induction of EMT in MCF-7R was found to

be neutralized by β1-integrin inhibition (Fig. 7e). Fur-

thermore, PI3K inhibitor Wortmannin reversed the

stimulatory effect of CM (Fig. 7e,f ). To identify the

underlying EMT-inducing factor in CM, we investi-

gated whether the extracellular matrix (ECM) com-

ponent fibronectin, the main ligand of α5β1-integrin,

was involved in the process. Interestingly, fibronectin

had a similar impact on EMT induction in MCF-7R cells

(Additional file 2: Figure S4).

Discussion

The ability to overcome endocrine resistance is one of

the important aims for hormone-dependent breast can-

cer patients [37]. GPER, a novel membrane-bound estro-

gen receptor, has been demonstrated to contribute to

the development of tamoxifen resistance [15, 17]. How-

ever, the specific mechanism is less clearly elucidated. In

the present study, we found that tamoxifen resistance

(See figure on previous page.)

Fig. 6 Tamoxifen induces the activation of FAK, Src and AKT through β1-integrin in MCF-7R cells. (a) Cells were treated with or without TAM

(1 μM) for 24 hours prior to the analysis of protein expression by Western blotting. (b) The effects of TAM (1 μM for 24 hours) on pFAK and pSrc

were investigated by Western blotting in MCF-7R with silenced β1-integrin (sh/ITGB1) and control cells (sh/Vec). (c) MCF-7R cells were cultured

with TAM (1 μM) for the indicated time, then AKT and ERK1/2 activity was measured by Western blotting using specific antibodies. (d) MCF-7R

cells with silenced β1-integrin (sh/ITGB1) and control cells (sh/Vec) were treated with TAM (1 μM) for 10 minutes and then analyzed by Western

blotting. Each experiment was repeated at least three times. Results are shown as fold-changes in optical density compared with total levels, and

normalized to β-actin. *P < 0.05. Ctrl, control; ITGB1, β1-integrin; sh/ITGB1, MCF-7R cells infected with a lentivirus vector targeting β1-integrin;

sh/Vec, MCF-7R cells infected with negative control lentivirus; TAM, 4-hydroxytamoxifen
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initiated by GPER is associated with CAF-derived tumor

microenvironment/β1-integrin interaction and accom-

panied by EMT. More interestingly, tamoxifen-resistant

MCF-7 cells (MCF-7R) were shown to be more suscep-

tible to EMT than MCF-7 cells in the presence of

stromal CAFs, which are one of the predominant mem-

bers in the tumor microenvironment, in a β1-integrin-

dependent manner.

GPER, whose action differs from the classical nuclear

estrogen receptors (ERα, ERβ), acts as an independent

ER in breast cancer cells and has been implicated in me-

diating both rapid and transcriptional events in response

to estrogen under certain circumstances [16, 24, 38]. Al-

though no increased basal expression of GPER in MCF-

7R cells is observed when compared to MCF-7 cells,

translocation of GPER from the cytoplasm to cell mem-

brane reinforces the crosstalk between GPER and EGFR

during long-term treatment with tamoxifen in breast

cancer cells [15, 17]. This crosstalk is followed by phos-

phorylation of MAPK and AKT, which subsequently

stimulates gene transcription and development of tam-

oxifen resistance [15].

β1-integrin is an important member of a family of

heterodimeric transmembrane adhesion proteins [6].

(See figure on previous page.)

Fig. 7 β1-integrin is implicated in the epithelial-mesenchymal transition process induced by cancer-associated fibroblasts in MCF-7R cells.

(a) Equal amounts of total cell protein were separated by SDS-PAGE and subsequently probed with antibodies against E-cadherin, fibronectin and

vimentin. (b) Localization and expression of E-cadherin and vimentin (red) in MCF-7, MCF-7R, and cancer-associated fibroblast (CAF) cell

lines were revealed by immunofluorescence staining. The nucleus was stained blue with DAPI. Original magnification: ×200. (c) Levels

of membrane E-cadherin were detected by Western blotting using specific antibodies. Na+/K+-ATPase was used for normalization. (d) Cells

were cultured in CAF-conditioned medium (CM) or normal medium for 48 hours, and the expression of E-cadherin, fibronectin and vimentin

was then determined by Western blotting. (e) β1-integrin expression in MCF-7R cells was blocked by lentivirus vector transfection (left panel).

Cells were left untreated (control; Ctrl) or treated with CM for 48 hours, or pretreated with the PI3K inhibitor Wortmannin (10 μM; WM) or the

MAPK/ERK inhibitor U0126 (10 μM) prior to CM treatment, and then cell lysates were probed with antibodies against fibronectin and vimentin

(right panel). (f) Cell migration of MCF-7R cells with indicated pretreatments was measured through Transwell assays. Each experiment was repeated at

least three times. Western blotting results are shown as fold-changes in optical density compared with the control, and normalized to β-actin.

*P < 0.05. ITGB1, β1-integrin; sh/ITGB1, MCF-7R cells infected with a lentivirus vector targeting β1-integrin; sh/Vec, MCF-7R cells infected with

negative control lentivirus

Fig. 8 Illustration depicting the role of G protein-coupled estrogen receptor and β1-integrin in the epithelial-mesenchymal transition process

induced by cancer-associated fibroblasts. Long-term exposure to tamoxifen promotes the translocation of G protein-coupled estrogen receptor

(GPER) to the cell membrane, which enhances the crosstalk between GPER and epidermal growth factor receptor (EGFR). The Ga subunit of GPER

is responsible for the increase in cAMP generation in breast cancer cells and cAMP attenuates ERK1/2 activity by suppressing protein kinase A

(PKA) on Raf, whereas cAMP production triggered by GPER is disorganized upon acquisition of tamoxifen resistance leading to the increased

activation of ERK1/2. Tamoxifen, as an agonist for GPER, stimulates the induction of β1-integrin expression through the GPER/EGFR/ERK signaling

pathway. Upregulation of β1-integrin is accompanied by the activation of the β1-integrin signaling pathway, which is measured by FAK and Src

activity. Conditioned medium (CM) produced by cancer-associated fibroblasts (CAFs) induces epithelial-mesenchymal transition (EMT) through the

activation of PI3K/AKT, with the involvement of β1-integrin. Targeted therapy with β1-integrin could reverse the stimulatory effect of CAFs in the

tumor microenvironment on cell motility. ECM, extracellular matrix; ITGB1, β1-integrin; MMP, matrix metalloproteinase
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Several recent studies have convincingly demonstrated

that β1-integrin is involved in therapeutic resistance in

various tumor types [20, 21, 39, 40]. Indeed, β1-integrin

was identified as one of the GPER target genes in MCF-

7R cells in our previous work (unpublished data). Here,

we found that enhanced β1-integrin expression in MCF-

7R cells was mediated via GPER/EGFR/ERK signaling;

the significantly increased β1-integrin in metastases com-

pared with the matched PTs was closely GPER-related.

This was supported by a proteomic analysis of acquired

tamoxifen resistance in MCF-7 cells [41]. Additionally, as

downstream kinases of β1-integrin, Src and FAK kinase

activity was significantly enhanced and involved in cellu-

lar invasion and motility in tamoxifen-resistant breast

cancer cells [42, 43]. These findings suggest that GPER-

mediated tamoxifen resistance is associated with the

enhanced β1-integrin and its downstream signaling acti-

vation in breast cancer cells.

In this study, MCF-7R cells displayed EMT-like prop-

erties compared to MCF-7 cells in vitro and clinical

tamoxifen-resistant breast tumor tissues. Although no

significant total E-cadherin expression was detected, de-

creased membrane E-cadherin was detected in MCF-7R

cells. It has been shown that E-cadherin internalization

is a key step in its dysfunction [12, 44], indicating EMT

is responsible for the adverse phenotype in MCF-7R

cells. β1-integrin is known to be implicated in the malig-

nant tumor characteristics, such as increased migration

and invasion, in a variety of tumor types [18, 20, 45, 46].

Interestingly, we observed that a potential ability for the

development of EMT was acquired after MCF-7R cells

were exposed to CAFs, CAF-derived CM, or fibronectin

treatment. Indeed, some of elements in ECM, such as col-

lagen I, collagen III and collagen IV were reported to pro-

tect tumor cells from chemotherapy attraction [32, 47, 48].

ECM acts as a substrate to which cells adhere and serves

as a reservoir for growth factors [49]. The ECM compo-

nent fibronectin is the crucial ligand of α5β1-integrin [30,

31]; the cross-talk between fibronectin and β1-integrin

could activate a downstream signaling pathway network in

EMT transition (our unpublished data). Several previous

reports demonstrated that EMT characteristics might

confer a chemo-drug resistant potential in tumor cells

[10, 14]. In the current study, we further disclosed that

CAF-derived fibronenctin conferred EMT phenotype to

MCF-7R cells through the α5β1-integrin/PI3K/AKT sig-

naling axis. These data have highlighted the significance

of the tumor microenvironment in tamoxifen resistance

and tumor progression. Our findings support the notion

that therapy regimens abrogating the complex interac-

tions of the carcinomas with the tumor microenvir-

onment could be a future alternative to overcome

tamoxifen resistance in breast cancer, and β1-integrin

may be a promising target.

Conclusions
In summary, our data provide a novel insight into un-

derstanding the role of the tumor microenvironment in

tamoxifen-resistant breast cancer. Long-term tamoxifen

treatment facilitates translocation of GPER to cell mem-

branes, resulting in aberrant activation of the EGFR/ERK

signaling pathway and upregulation of β1-integrin ex-

pression which is responsible for the enhanced com-

munications between tumor cells and the tumor

microenvironment (Fig. 8). Blockage of GPER/EGFR/

ERK/β1-integrin signaling may be a potential target

in enhancing their sensitivity for tamoxifen-resistant

breast cancer patients. However, it is undoubted that

further investigations, including in vivo experiments

and prospective clinical studies, are needed.

Additional files

Additional file 1: Table S1. Sequences of shRNA vectors targeting

β1-integrin gene and one negative control.

Additional file 2: Figure S1. A second shRNA sequence applied to

MCF-7R cells confirms the important role of β1-integrin in tamoxifen

resistance of breast cancer. The effect of this shRNA on β1-integrin

expression (A), cell growth (B) and cell migration (C) was detected

with the same method as previously described. *P < 0.05. Figure S2. GPER

mediates the upregulation of β1-integrin induced by tamoxifen in SKBR3

cells. (A) The expression of GPER was knockdown by GPER-specific siRNA

transfection in SKBR3 cells. *P < 0.05, versus control. (B) Western blotting

analysis was used to test the effect of TAM on the level of β1-integrin

treated with or without GPER specific siRNA transfection in SKBR3 cells.

*P < 0.05. Figure S3. β1-integrin governs the effect of CAFs on

MDA-MB-231 cells migration. (A) β1-integrin expression was determined

in cells. (B) Expression of β1-integrin was silenced by lentivirus-mediated

shRNA in MDA-MB-231 cells. *P < 0.05, versus control. (C) In vitro Transwell

assays were performed using CAF-conditioned medium (CM) or normal

medium in MDA-MB-468, MDA-MB-231, MDA-MB-231 cells with silenced

β1-integrin (MDA-MB-231-sh/ITGB1) and control cells (MDA-MB-231-sh/Vec).

*P < 0.05. Figure S4. Fibronectin induces the EMT process through

α5β1-integrin and PI3K/AKT signaling in MCF-7R cells. MCF-7R cells

were treated with fibronectin (30 μg/ml; FN) for 48 hours, or pretreated

with or without α5β1-integrin inhibitory antibody P1D6 (10 μg/ml), the

PI3K inhibitor Wortmannin (10 μM; WM), and the MAPK/ERK inhibitor

U0126 (10 μM) prior to FN treatment, and then cell lysates were probed

with antibodies against fibronectin and vimentin. *P < 0.05.

Additional file 3: Table S2. List of 60 target genes of GPER. The target

genes were picked out through cDNA microarray analysis (unpublished

data) according to the rigorous screening criteria: at least two-fold

increase in MCF-7R cells compared with MCF-7 cells, at least 1.25-fold

induction by TAM, at least 1.5-fold induction by G1, and at least 50%

suppression of TAM effect by G15 in MCF-7R cells.

Abbreviations

CAF: cancer-associated fibroblast; CM: conditioned medium; DMEM: Dulbecco's

modified Eagle's medium; ECM: extracellular matrix; EGFR: epidermal growth

factor receptor; EMT: epithelial-mesenchymal transition; ER: estrogen receptor;

FBS: fetal bovine serum; GFP: green fluorescent protein; GPER: G protein-coupled

estrogen receptor; MT: metastasis; OD: optical density; PT: primary tumor;

shRNA: short hairpin RNA; siRNA: small interfering RNA.

Competing interests

The authors declare that they have no competing interests.

Yuan et al. Breast Cancer Research  (2015) 17:69 Page 16 of 18

http://breast-cancer-research.com/content/supplementary/s13058-015-0579-y-s1.pdf
http://breast-cancer-research.com/content/supplementary/s13058-015-0579-y-s2.pdf
http://breast-cancer-research.com/content/supplementary/s13058-015-0579-y-s3.xlsx


Authors’ contributions

All authors meet the authorship requirements. JY, ML and LY participated in

the design of the study and carried out the immunoassays and drafted the

manuscript. GT participated in study design and helped to draft the manuscript.

QZ and MC analyzed the data and performed the statistical analysis. HC and HL

performed the statistical analysis and participated in the sequence alignment.

WF and ZL carried out the immunoassays and participated in data analysis. GY

conceived and designed the study. All authors read and approved the final

manuscript.

Acknowledgements

This work was supported by the National Natural Science Foundation of

China (NSFC 81072149). The funding agencies have no role in study design,

collection, analysis, or interpretation of data, writing of the manuscript, or the

decision to submit the manuscript for publication.

Author details
1Department of Endocrine and Breast Surgery, the First Affiliated Hospital of

Chongqing Medical University, #1 You-Yi Rd, Yu-zhong District, Chongqing

400016, China. 2Key Laboratory of Laboratory Medical Diagnostics, Chinese

Ministry of Education, Chongqing Medical University, Chongqing 400016,

China.

Received: 3 January 2015 Accepted: 11 May 2015

References

1. Briest S, Stearns V. Tamoxifen metabolism and its effect on endocrine

treatment of breast cancer. Clin Adv Hematol Oncol. 2009;7:185–92.

2. Cui J, Germer K, Wu T, Wang J, Luo J, Wang SC, et al. Cross-talk between

HER2 and MED1 regulates tamoxifen resistance of human breast cancer

cells. Cancer Res. 2012;72:5625–34.

3. Fagan DH, Uselman RR, Sachdev D, Yee D. Acquired resistance to tamoxifen

is associated with loss of the type I insulin-like growth factor receptor:

implications for breast cancer treatment. Cancer Res. 2012;72:3372–80.

4. Yi EH, Lee CS, Lee JK, Lee YJ, Shin MK, Cho CH, et al. STAT3-RANTES

autocrine signaling is essential for tamoxifen resistance in human

breast cancer cells. Mol Cancer Res. 2013;11:31–42.

5. Shah N, Jin K, Cruz LA, Park S, Sadik H, Cho S, et al. HOXB13 mediates

tamoxifen resistance and invasiveness in human breast cancer by

suppressing ERalpha and inducing IL-6 expression. Cancer Res.

2013;73:5449–58.

6. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and

therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

7. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E,

et al. Biomechanical remodeling of the microenvironment by stromal

caveolin-1 favors tumor invasion and metastasis. Cell. 2011;146:148–63.

8. Zhang X, Liu G, Kang Y, Dong Z, Qian Q, Ma X. N-cadherin expression is

associated with acquisition of EMT phenotype and with enhanced invasion

in erlotinib-resistant lung cancer cell lines. PLoS One. 2013;8:e57692.

9. Neel DS, Bivona TG. Secrets of drug resistance in NSCLC exposed by new

molecular definition of EMT. Clin Cancer Res. 2013;19:3–5.

10. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal

transitions in development and disease. Cell. 2009;139:871–90.

11. Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M, et al. VEGF-

mediated angiogenesis links EMT-induced cancer stemness to tumor

initiation. Cancer Res. 2014;74:1566–75.

12. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, et al.

Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and

involves modulation of beta-catenin phosphorylation. Int J Cancer.

2006;118:290–301.

13. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, et al.

Re-expression of microRNA-375 reverses both tamoxifen resistance and

accompanying EMT-like properties in breast cancer. Oncogene.

2013;32:1173–82.

14. Oliveras-Ferraros C, Corominas-Faja B, Cufi S, Vazquez-Martin A, Martin-

Castillo B, Iglesias JM, et al. Epithelial-to-mesenchymal transition (EMT)

confers primary resistance to trastuzumab (Herceptin). Cell Cycle.

2012;11:4020–32.

15. Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T. Role of GPR30 in the

mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast

Cancer Res Treat. 2010;123:87–96.

16. Ignatov A, Ignatov T, Weissenborn C, Eggemann H, Bischoff J, Semczuk A,

et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance

in breast cancer. Breast Cancer Res Treat. 2011;128:457–66.

17. Mo Z, Liu M, Yang F, Luo H, Li Z, Tu G, et al. GPR30 as an initiator of

tamoxifen resistance in hormone-dependent breast cancer. Breast Cancer

Res. 2013;15:R114.

18. Chen HM, Lin YH, Cheng YM, Wing LY, Tsai SJ. Overexpression of integrin-

beta1 in leiomyoma promotes cell spreading and proliferation. J Clin

Endocrinol Metab. 2013;98:E837–46.

19. Kocaturk B, Van den Berg YW, Tieken C, Mieog JS, de Kruijf EM, Engels CC,

et al. Alternatively spliced tissue factor promotes breast cancer growth

in a beta1 integrin-dependent manner. Proc Natl Acad Sci U S A.

2013;110:11517–22.

20. Hassan H, Greve B, Pavao MS, Kiesel L, Ibrahim SA, Gotte M. Syndecan-1

modulates beta-integrin-dependent and interleukin-6-dependent functions

in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS

J. 2013;280:2216–27.

21. Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC, et al. beta1

integrin mediates an alternative survival pathway in breast cancer cells

resistant to lapatinib. Breast Cancer Res. 2011;13:R84.

22. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, et al. The tumor

microenvironment modulates tamoxifen resistance in breast cancer: a role

for soluble stromal factors and fibronectin through beta1 integrin. Breast

Cancer Res Treat. 2012;133:459–71.

23. Coser KR, Wittner BS, Rosenthal NF, Collins SC, Melas A, Smith SL, et al.

Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are

derived from a common monoclonal drug-resistant progenitor. Proc Natl

Acad Sci U S A. 2009;106:14536–41.

24. Yu T, Liu M, Luo H, Wu C, Tang X, Tang S, et al. GPER mediates enhanced

cell viability and motility via non-genomic signaling induced by 17beta-

estradiol in triple-negative breast cancer cells. J Steroid Biochem Mol Biol.

2014;143:392–403.

25. Peng Q, Zhao L, Hou Y, Sun Y, Wang L, Luo H, et al. Biological characteristics

and genetic heterogeneity between carcinoma-associated fibroblasts and their

paired normal fibroblasts in human breast cancer. PLoS One. 2013;8:e60321.

26. Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D, et al. Increased beta1

integrin is associated with decreased survival in invasive breast cancer.

Cancer Res. 2007;67:659–64.

27. Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, et al.

CD44s regulates the TGF-beta-mediated mesenchymal phenotype and

is associated with poor prognosis in patients with hepatocellular carcinoma.

Cancer Res. 2012;72:3414–23.

28. Sengupta S, Jordan VC. Selective estrogen modulators as an anticancer

tool: mechanisms of efficiency and resistance. Adv Exp Med Biol.

2008;630:206–19.

29. Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE,

et al. Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway

in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat. 2003;81:81–93.

30. Quinn JA, Graeber CT, Frackelton AJ, Kim M, Schwarzbauer JE, Filardo EJ.

Coordinate regulation of estrogen-mediated fibronectin matrix assembly

and epidermal growth factor receptor transactivation by the G protein-

coupled receptor, GPR30. Mol Endocrinol. 2009;23:1052–64.

31. Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol

Sci. 2012;33:405–12.

32. Bergamaschi A, Tagliabue E, Sorlie T, Naume B, Triulzi T, Orlandi R, et al.

Extracellular matrix signature identifies breast cancer subgroups with

different clinical outcome. J Pathol. 2008;214:357–67.

33. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al.

Stromal gene expression predicts clinical outcome in breast cancer. Nat

Med. 2008;14:518–27.

34. Lebret SC, Newgreen DF, Thompson EW, Ackland ML. Induction of epithelial

to mesenchymal transition in PMC42-LA human breast carcinoma cells by

carcinoma-associated fibroblast secreted factors. Breast Cancer Res.

2007;9:R19.

35. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R,

et al. Stromal fibroblasts present in invasive human breast carcinomas

promote tumor growth and angiogenesis through elevated SDF-1/

CXCL12 secretion. Cell. 2005;121:335–48.

Yuan et al. Breast Cancer Research  (2015) 17:69 Page 17 of 18



36. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, et al. Rac1b

and reactive oxygen species mediate MMP-3-induced EMT and genomic

instability. Nature. 2005;436:123–7.

37. Thewes V, Simon R, Schroeter P, Schlotter M, Anzeneder T, Buttner R, et al.

Reprogramming of the ERRalpha and ERalpha target gene landscape

triggers tamoxifen resistance in breast cancer. Cancer Res. 2015;75:720–31.

38. Prossnitz ER, Maggiolini M. Mechanisms of estrogen signaling and gene

expression via GPR30. Mol Cell Endocrinol. 2009;308:32–8.

39. Ahmed KM, Zhang H, Park CC. NF-kappaB regulates radioresistance

mediated by beta1-integrin in three-dimensional culture of breast

cancer cells. Cancer Res. 2013;73:3737–48.

40. Eke I, Deuse Y, Hehlgans S, Gurtner K, Krause M, Baumann M, et al.

beta(1)Integrin/FAK/cortactin signaling is essential for human head and

neck cancer resistance to radiotherapy. J Clin Invest. 2012;122:1529–40.

41. Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q, et al.

Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals

expression signatures associated with enhanced migration. Breast Cancer

Res. 2012;14:R45.

42. Hiscox S, Barnfather P, Hayes E, Bramble P, Christensen J, Nicholson RI, et al.

Inhibition of focal adhesion kinase suppresses the adverse phenotype of

endocrine-resistant breast cancer cells and improves endocrine response in

endocrine-sensitive cells. Breast Cancer Res Treat. 2011;125:659–69.

43. Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI. Elevated Src

activity promotes cellular invasion and motility in tamoxifen resistant breast

cancer cells. Breast Cancer Res Treat. 2006;97:263–74.

44. Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C. Lysosomal targeting of

E-cadherin: a unique mechanism for the down-regulation of cell-cell

adhesion during epithelial to mesenchymal transitions. Mol Cell Biol.

2005;25:389–402.

45. Kato H, Liao Z, Mitsios JV, Wang HY, Deryugina EI, Varner JA, et al. The

primacy of beta1 integrin activation in the metastatic cascade. PLoS One.

2012;7:e46576.

46. Nam JM, Ahmed KM, Costes S, Zhang H, Onodera Y, Olshen AB, et al. beta1-

Integrin via NF-kappaB signaling is essential for acquisition of invasiveness

in a model of radiation treated in situ breast cancer. Breast Cancer Res.

2013;15:R60.

47. Kakkad SM, Solaiyappan M, O’Rourke B, Stasinopoulos I, Ackerstaff E,

Raman V, et al. Hypoxic tumor microenvironments reduce collagen I

fiber density. Neoplasia. 2010;12:608–17.

48. Gao Y, Xiao Q, Ma H, Li L, Liu J, Feng Y, et al. LKB1 inhibits lung cancer

progression through lysyl oxidase and extracellular matrix remodeling.

Proc Natl Acad Sci U S A. 2010;107:18892–7.

49. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching

morphogenesis by the extracellular matrix and its remodeling enzymes.

Breast Cancer Res. 2004;6:1–11.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Yuan et al. Breast Cancer Research  (2015) 17:69 Page 18 of 18


	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Materials
	Cell culture
	Specimens
	Immunohistochemistry
	Evaluation of β1-integrin and G protein-coupled estrogen receptor staining
	Evaluation of epithelial-mesenchymal transition marker protein expression
	Construction of GV115-sh/β1-integrin and siRNA transfection
	Measurement of cell growth
	Wound healing assay and Transwell assays
	Reverse transcription and real-time PCR
	Western blotting
	Immunofluorescence
	Statistical analysis

	Results
	Consistency in changes in G protein-coupled estrogen receptor, β1-integrin and epithelial-mesenchymal transition marker protein expression in tumors that recurred during treatment with tamoxifen
	G protein-coupled estrogen receptor may mediate increased β1-integrin expression in tamoxifen-resistant breast cancer cells
	The EGFR/ERK signaling pathway is directly responsible for increased β1-integrin expression in MCF-7R cells
	Blockage of β1-integrin partially rescues the sensitivity of MCF-7R cells to tamoxifen
	The effect of cancer-associated fibroblasts on cancer cell migration is abolished by inhibition of β1-integrin
	The β1-integrin downstream kinases FAK and Src are activated on acquisition of tamoxifen resistance
	Activation of the AKT signaling pathway in response to TAM is mediated by β1-integrin in tamoxifen-resistant MCF-7 cells
	β1-integrin is involved in the cancer-associated fibroblast-induced epithelial-mesenchymal transition process in MCF-7R cells

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

