
Acquisition of Object-Centred Domain Models from Planning Examples

S. N. Cresswell and T. L. McCluskey and M. M. West
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK
{s.n.cresswell,t.l.mccluskey,m.m.west}@hud.ac.uk

Abstract

The problem of formulating knowledge bases containing ac-
tion schema is a central concern in knowledge engineering for
AI Planning. This paper describes LOCM, a system which
carries out the automated induction of action schema from
sets of example plans. Each plan is assumed to be a sound
sequence of actions; each action in a plan is stated as a name
and a list of objects that the action refers to. LOCM exploits
the assumption that actions change the state of objects, and
require objects to be in a certain state before they can be ex-
ecuted. The novelty of LOCM is that it can induce action
schema without being provided with any information about
predicates or initial, goal or intermediate state descriptions
for the example action sequences. In this paper we describe
the implemented LOCM algorithm, and analyse its perfor-
mance by its application to the induction of domain models
for several domains. To evaluate the algorithm, we used ran-
dom action sequences from existing models of domains, as
well as solutions to past IPC problems.

Introduction

Formulating and maintaining knowledge bases containing
action specifications is considered a central challenge in
knowledge engineering for AI Planning. In particular, a
problem facing AI is to overcome the need to hard-code and
manually maintain action representations within deliberative
agents (a problem which limits their autonomy). There is a
need for many types of knowledge acquisition in planning:
depending on the application and available tools, the domain
model may be defined by a domain expert, by a planning
expert, or synthesised from existing formalisms, or assem-
bled from example plan traces. In this paper we describe
LOCM, an implemented algorithm that induces a planning
domain model from example plan traces. We analyse its per-
formance by its application to action sequences from several
domains.

Planning traces are input into LOCM as an ordered set of
action instances, where each action instance is identified by
name plus the object instances that are affected or are nec-
essarily present but not affected, by action execution. Each
plan is assumed to be a sound sequence of actions. This
means that all the preconditions of every action could be met

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at the point it is executed, either by earlier actions or some
initial state.

Working under the assumptions of Simpson et al’s object-
centric view of domain models (Simpson, Kitchin, and Mc-
Cluskey 2007), we assume that a planning domain consists
of sets (called sorts) of object instances, where each object
behaves in the same way as any other object in its sort. In
particular, sorts have a defined set of states that their ob-
jects can occupy, and an object’s state may change (called
a state transition) as a result of action instance execution.
LOCM works by assembling the transition behaviour of indi-
vidual sorts, the co-ordinations between transitions of differ-
ent sorts, and the relationships between objects of different
sorts. It does so by exploiting the idea that actions change
the state of objects, and that each time an action is executed,
the preconditions and effects on an object are the same. Un-
der these assumptions, LOCM can induce action schema
without the need for background information such as speci-
fications of initial/goal states, intermediate states, fluents or
other partial domain information. All other current systems
e.g. Opmaker2 (McCluskey et al. 2009), ARMS (Wu, Yang,
and Jiang 2005), and the SLAF approach (Shahaf and Amir
2006) require some of this background knowledge as essen-
tial to their operation.

The LOCM System

LOCM Inputs and Outputs

The inputs to LOCM are a set of sound sequences of action
instances. Using the well known tyre-world as an example,
the following is a sequence containing four action instances,
where an action is a name followed by a sequence of affected
objects:

open(c1); fetch jack(j,c1); fetch wrench(wr1,c1); close(c1);

These sequences may be supplied by a trainer, observed
from an operational planning system, or they could be gen-
erated from an existing solver and domain model (in part of
the empirical evaluation below we have used a random walk
generator to supply example sequences). The trainer is ex-
pected to include references to all objects that are needed for
each action to be carried out.

The output of LOCM (given sufficient examples) is a do-
main model consisting of sorts, object behaviour defined

338

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

by state machines, predicates defining associations between
sorts, and action schema in solver-ready form.

The LOCM Method

Phase 1: Extraction of state machines In our approach,
an object of any given sort occupies one of a fixed set of
parameterised states. In Phase 1, we assume an object’s
state can be defined without parameters (parameters spec-
ify associations with other objects). LOCM starts by first
collecting the set of all transitions occurring in the exam-
ple sequences. A transition is defined by a combination of
action name and action argument position. For example,
an action fetch wrench(wr1,cntnr) gives rise to two transi-
tions: fetch wrench.1, and fetch wrench.2. Each transition
describes the state change of objects of a single sort in iso-
lation. For every transition occurring in the example data, a
separate start and end state are generated. The trajectory of
each object is then tracked through each training sequence.
For each consecutive pair of transitions T1, T2, experienced
by an object Ob, we assume that T1.end = T2.start.

Using a training set from the tyre world, suppose some
object c1 goes through a sequence of transitions given in the
example introduced above:

open(c1); fetch jack(j,c1); fetch wrench(wr1,c1); close(c1);

Let us assign names S1 to S8 to the states of c1 as it is af-
fected by each transition:

S1 =⇒ open.1 =⇒ S2

S3 =⇒ close.1 =⇒ S4

S5 =⇒ fetch jack.2 =⇒ S6

S7 =⇒ fetch wrench.2 =⇒ S8

Using the example action sequence, and the constraint on
consecutive pairs of transitions, we can then deduce that
S2 = S5, S6 = S7, S8 = S3. Suppose our example set
contains another action sequence:

open(c2); fetch wrench(wr1,c2); fetch jack(j,c2); close(c2);

We deduce that S2 = S7, S8 = S5, S6 = S3, and hence
S2, S3, S5, S6, S7, S8 all refer to the same state. If addition-
ally we have the sequence:

close(c3); open(c3);

then S4 = S1 can be deduced, and hence we have tied
together individual states to partially construct a state
machine for containers (Fig. 1). A more formal description

containerstate0 containerstate1
open.1
close.1

fetchwrench.2
fetchjack.2

Figure 1: An incomplete state machine for containers in
tyre-world

of the algorithm follows 1:

procedure LOCM I (Input action sequence Seq)
For each combination of action name A and

argument pos P for actions occurring in Seq
Create transition A.P , comprising

new state identifiers A.P.start and A.P.end
Add A.P to the transition set TS

Collect the set of objects Obs in Seq
For each object Ob occurring in Obs

For each pair of transitions T1, T2

consecutive for Ob in Seq
Equate states T1.end and T2.start

end
end
Return TS, transition set

OS, set of object states remaining distinct

At the end of phase 1, LOCM has derived a set of state ma-
chines, each of which can be identified with a sort.

Phase 2: Identification of state parameters Each state
machine describes the behaviour of a single object in isola-
tion, without consideration of its association with other ob-
jects e.g. it can distinguish a state of a wrench corresponding
to being in some container, but does not make provision to
describe which container it is in.

In the object-centred representation, the dynamic asso-
ciations between objects are recorded by state parameters
embedded in each state. Phase 2 of the algorithm iden-
tifies parameters of each state by analysing patterns of
object references in the original action steps correspond-
ing to the transitions. For example, consider the state
wrench state0 for the wrench sort (Fig. 2). Consider-
ing the actions for putaway wrench(wrench,container), and
fetch wrench(wrench,container). For a given wrench, con-
secutive transitions putaway wrench, fetch wrench, in any
example action sequence, always have the same value as
their container parameter. From this observation, we can
induce that the state wrench state0 has a state variable repre-
senting container. The same observation does not hold true
for wrench state1. We can observe instances in the training
data where the wrench is fetched from one container, and
put away in a different container.

wrenchstate0
container

wrenchstate1
fetchwrench.1

putawaywrench.1

doup.3
undo.3

tighten.3
loosen.3

Figure 2: Parameterised states of wrench.

1Whereas our system is designed to use multiple training se-
quences. To simplify, the presentation here uses only a single se-
quence.

339

This second phase of the algorithm performs inductive
learning such that the hypotheses can be refuted by the ex-
amples, but never definitely confirmed. This phase gener-
ally requires a larger amount of training data to converge
than Phase 1 above. Phase 2 is processed in three steps,
shown below in the algorithmic description. The first two
steps generate and test the hypothesised correlations in ac-
tion arguments, which indicate the need for state parameters.
The third step generates the set of induced state parameters.

procedure LOCM II (Input action sequence Seq,
Transition set TS, Object set Obs)
Object state set OS)

Form hypotheses from state machine
For each pair A1.P1 and A2.P2 in TS

such that A1.P1.end = S = A2.P2.start
For each pair A1.P

′

1 and A2.P
′

2 from TS and S in OS
with A1.P

′

1.sort = A2.P
′

2.sort
and P1 �= P ′

1, P2 �= P ′

2

(i.e. a pair of the other arguments
of actions A1 and A2 sharing a common sort)
Store in hypothesis set HS the hypothesis

that when any object ob undergoes sequentially
the transitions A1.P1 then A2.P2,
there is a single object ob′,

which goes through both of the corresponding

transitions A1.P
′

1 and A2.P
′

2

(This supports the proposition that state S
has a state parameter which can record
the association of ob with ob′)

end
end
Test hypotheses against example sequence
For each object Ob occurring in Obs

For each pair of transitions A1.P1 and A2.P2

consecutive for Ob in Seq
Remove from hypothesis set HS any hypothesis

which is inconsistent with example action pair
end

end
Generate and reduce set of state parameters
For every hypothesis remaining in HS

create the state parameter supported by the hypothesis
Merge state parameters on the basis that

a transition occurring in more than one transition pair
is associated with the same state parameter in each occurrence

end
return: state parameters and correlations with action arguments

Phase 3: Formation of action schema Extraction of an
action schema is performed by extracting the transitions cor-
responding to its parameters, similar to automated action
construction in the OLHE process in (Simpson, Kitchin, and
McCluskey 2007). One predicate is created to represent
each object state. The output of Phase 2 provides corre-
lations between the action parameters and state parameters
occurring in the start/end states of transitions. For example,
the generated putaway wrench action schema is:

(:action putaway_wrench

:parameters (?wrench1 - wrench ?container2 - container)

:precondition (and (wrench_state1 ?wrench1)

(container_state1 ?container2))

:effect (and (wrench_state0 ?wrench1 ?container2)

(not (wrench_state1 ?wrench1))))

The generated predicates wrench state0, wrench state1,
container state1 can be understood as in container,
have wrench and open respectively. The generated schema
can be used directly in a planner.

Evaluation of LOCM

LOCM has been implemented in Prolog incorporating the
algorithm detailed above. Here we attempt to analyse and
evaluate it by its application to the acquisition of existing
domain models. We have used example plans from two
sources: (1) Existing domains built using GIPO III. In this
case, we have created sets of example action sequences by
random walk. (2) Domains which were used in IPC planning
competitions. In this case, the example traces come from so-
lution plans in the publicly released competition solutions.

We have successfully used LOCM to create state ma-
chines, object associations and action schema for 3 domains.
Evaluation of these results is ongoing, but initial results
show that state machines can be deduced from a reason-
ably small number of plan examples, whereas inducing the
state parameters requires much larger training sets. The total
number of steps in sets of training sequences required for de-
riving state machines and parameters is summarised below
for three example domains.

Domain Examples # steps # steps
(state) (params)

Tyre-world Random 125 2327
Blocks Random 34 250
Driverlog Competition 205 3046

Tyre-world (GIPO version). A correct state machine is de-
rived, corresponding closely to the domain as constructed
in GIPO. The induced domain contains extra states for the
jack sort, but this model is valid (see fig. 3). After train-
ing to convergence there are 3 parameter flaws, leading to
some faults in action schema (see the end of this section
for a discussion of flaws).

Blocks (GIPO version). A correct state machine is derived.
After training to convergence there are 3 parameter flaws.
The low number of steps needed to derive the state ma-
chine is due to there being only 2 sorts in the domain,
both of which are involved in every action.

Driverlog (IPC strips version). State machines and param-
eters are correct for all sorts except trucks. For trucks,
the distinction of states with/without driver is lost, and an
extra state parameter (driver) is retained.

Randomly-generated example data can be different in
character from purposeful, goal-directed plans. In a sense,
random data is more informative, because the random plan is
likely to visit more permutations of action sequences which
a goal-directed sequence may not. However, if the useful,
goal-directed sequences lead to induction of a state machine
with more states, this could be seen as useful heuristic infor-
mation.

Where there is only one object of a particular sort (e.g.
gripper, wrench, container) all hypotheses about matching

340

jack4

jack3

fetchjack.1

jack2

jack0

undo.4

jackdown.2

hub0

hub1

removewheel.2

hub2

doup.2

putonwheel.2

undo.2 hub3
jackdown.1

jackup.1

tighten.2
loosen.2

doup.4
jack1

removewheel.3
putonwheel.3

putawayjack.1

jackup.2

nuts0
nuts1

doup.1

undo.1 nuts2
tighten.1

loosen.1

wheel0
wheel1

fetchwheel.1

putawaywheel.1

wheel2

putonwheel.1

removewheel.1

Figure 3: Other state machines induced from the tyre-world.

that sort always hold, and the sort tends to become an in-
ternal state parameter of everything. For this reason, it is
important to use training data in which more than one object
of each sort is used.

The induced models may contain detectable flaws: the ex-
istence of a state parameter has been induced, but there are
one or more transitions into the state which do not set the
state parameter. The flaws usually arise because state pa-
rameters are induced only by considering pairs of consec-
utive transitions, not longer paths. The inconsistency may
indicate that an object reference is carried in from another
state without being mentioned in an action’s argument. In
this case a repair to the model can be proposed, which in-
volves adding the “hidden” parameter to some states, but a
further cycle of testing against the example data would be
required to check that the repair is consistent. This will be
further developed in future work.

The most fundamental limitation is whether it is possible
to correctly represent the domain within the limitations of
the representation that we use for action schema.

• We assume that an action moves the objects in its argu-
ments between clearly-defined substates. Objects which
are passively involved in an action may make a transition
to the same state, but cannot be in a don’t care state.

• Static background information, such as the specific fixed
relationships between objects (e.g. which places are con-
nected), is not analysed by the system. In general, this can
lead to missing preconditions. The LOCM algorithm as-
sumes that all information about an object is represented
in its state and state parameters. In general, this form of

information may vary anyway between training examples.

Related Work

LOCM is distinct from other systems that learn action
schema from examples in that it requires only the action se-
quences as input; its success is based on the assumption that
the output domain model can be represented in an object-
centred representation. Other systems require richer input:
ARMS (Wu, Yang, and Jiang 2005) makes use of back-
ground knowledge as input, comprising types, relations and
initial and goal states, while SLAF (Shahaf and Amir 2006)
appears to efficiently build expressive actions schema, but
requires as input specifications of fluents, as well as par-
tial observations of intermediate states between action ex-
ecutions. The Opmaker2 algorithm detailed in (McCluskey
et al. 2009) relies on an object-centred approach similar to
LOCM but it too requires a partial domain model as input as
well as a training instance. The TIM domain analysis tool
(Fox and Long 1998) uses a similar intermediate representa-
tion to LOCM (i.e. state space for each sort), but in TIM, the
object state machines are extracted from a complete domain
definition and problem definition, and then used to derive
hierarchical sorts and state invariants.

Conclusion

In this paper, we have described the LOCM system and
its use in learning domain models (comprising object sorts,
state descriptions, and action schema), from example action
sequences containing no state information. Although it is
unrealistic to expect example sets of plans to be available for
all new domains, we expect the technique to be beneficial in
domains where automatic logging of some existing process
yields plentiful training data, e.g. games, online transac-
tions. The work is at an early stage, but we have already
obtained promising results on benchmark domains, and we
see many possibilities for further developing the technique.

References

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. J. Artif. Intell. Res. (JAIR) 9:367–
421.

McCluskey, T.; Cresswell, S.; Richardson, N.; and West,
M. M. 2009. Automated acquisition of action knowledge.
In International Conference on Agents and Artificial Intel-
ligence (ICAART), 93–100.

Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. In AAAI. AAAI Press.

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L.
2007. Planning Domain Definition Using GIPO. Journal
of Knowledge Engineering 1.

Wu, K.; Yang, Q.; and Jiang, Y. 2005. ARMS: Action-
relation modelling system for learning acquisition models.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.

341

