
ACR: Automatic Checkpoint/Restart for Soft and Hard
Error Protection

Xiang Ni, Esteban Meneses, Nikhil Jain, Laxmikant V. Kalé
Department of Computer Science, University of Illinois at Urbana-Champaign

{xiangni2, emenese2, nikhil, kale}@illinois.edu

ABSTRACT

As machines increase in scale, many researchers have pre-
dicted that failure rates will correspondingly increase. Soft
errors do not inhibit execution, but may silently generate
incorrect results. Recent trends have shown that soft er-
ror rates are increasing, and hence they must be detected
and handled to maintain correctness. We present a holis-
tic methodology for automatically detecting and recovering
from soft or hard faults with minimal application interven-
tion. This is demonstrated by ACR: an automatic check-
point/restart framework that performs application replica-
tion and automatically adapts the checkpoint period using
online information about the current failure rate. ACR per-
forms an application- and user-oblivious recovery. We em-
pirically test ACR by injecting failures that follow different
distributions for five applications and show low overhead
when scaled to 131,072 cores. We also analyze the interac-
tion between soft and hard errors and propose three recovery
schemes that explore the trade-off between performance and
reliability requirements.

Keywords

Fault-tolerance, silent data corruption, checkpoint/restart,
redundancy

1. INTRODUCTION
In recent times, the HPC community has seen a stellar

growth in the capability of high-end systems. Machines
such as IBM Blue Gene/Q and Cray XK7 have a peak per-
formance that reaches to the tens of petaflops. Since the
frequency of CPUs has been limited in recent years, these
systems have increased processing power by increasing the
number of cores. However, the increase in the number of sys-
tem components required to build these machines has had a
negative impact on the reliability of the system as a whole.
If these trends persist, large systems in the near future may
experience hard failures very frequently [5, 18].

Soft errors are becoming more prevalent as feature sizes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13 November 17-21, 2013, Denver, Colorado, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503266

decrease along with supply voltages to chips [26]. As systems
become more energy-efficient, chips may approach near-
threshold operation to reduce the power required. Previous
studies have shown a strong correlation between the increase
in soft error rate and the decrease in device sizes and operat-
ing voltages [9]. This same study suggests that the soft error
rate may reach very high levels, to the point that an unde-
tected soft error may occur once per day in a single chip.
The most insidious form of soft error is silent data corrup-
tion (SDC) [26]. For mission-critical applications, having
a guarantee that the data was not silently corrupted may
be very important. Even today’s systems face a modest
amount of soft errors. For example, ASC Q at LANL expe-
rienced on average 26.1 radioactivity-induced CPU failures
per week [24].

The common approach currently is to tolerate intermit-
tent faults by periodically checkpointing the state of the ap-
plication to disk and restarting when needed. However, as
hard failure rates increase along with machine sizes, this ap-
proach may not be feasible due to high overheads. If the data
size is large, the expense of checkpointing to disk may be
prohibitive, and may incur severe forward-path overheads.
At the possible cost of memory overhead, recent libraries
for checkpointing have successfully explored alternative lo-
cal storage resources to store checkpoint data [2, 25, 31].

Although checkpoint/restart strategies may be effective
for hard faults, SDC can not be detected using them. De-
tection of SDC is a difficult problem and most traditional
fault tolerance approaches applied to HPC fail at addressing
this problem. One possible solution, which has been shown
to be effective in the past, is to use redundant computation
to detect SDC and correct them. This approach is beneficial
because it is universally applicable and is well-established as
a solid approach. However, due to its perceived high cost, it
is only recently been explored for HPC. Analytical studies
have shown that if the failure rate is sufficiently high, intro-
ducing redundancy to handle errors may actually increase
the overall efficiency in the HPC realm [8, 10]. Other work
has shown that redundancy is an effective methodology for
detecting SDC in HPC applications [11].

In order to better grasp the problem, we model the sys-
tem utilization and system vulnerability (the probability of
finishing execution with an incorrect result) as the num-
ber of sockets increase and SDC rate increases. Figure 1a
shows the results of varying these parameters without any
fault tolerance. Note that, as the socket count increases
from 4K to 16K, the utilization rapidly declines to almost 0.
With hard-error resilience (shown in Figure 1b) using check-
point/restart, the utilization increases substantially, but still

1

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2503210.2503266

4K 16K 64K 256K 1M
1

100

10000
 0

 0.2

 0.4

 0.6

 0.8

 1

U
ti
liz

at
io

n

Number of Sockets SD
C Rate

per So
cket (F

IT)

U
ti
liz

at
io

n

0 1

Vulnerability

(a) No fault-tolerance protection

4K 16K 64K 256K 1M
1

100

10000
 0

 0.2

 0.4

 0.6

 0.8

 1

U
ti
liz

at
io

n

Number of Sockets SD
C Rate

per So
cket (F

IT)

U
ti
liz

at
io

n

(b) Hard-error checkpoint-based protection

4K 16K 64K 256K 1M
1

100

10000
 0

 0.2

 0.4

 0.6

 0.8

 1

U
ti
liz

at
io

n

Number of Sockets
SD

C Rate

per So
cket (F

IT)

U
ti
liz

at
io

n

(c) ACR with protection to SDC and hard
error

Figure 1: Overall system utilization and vulnerability to SDC with different fault tolerance alternatives (for a job running
120 hours). ACR offers holistic protection using scalable mechanisms against SDC and hard errors.

drops after 64K sockets. However, since checkpoint/restart
cannot detect SDC, the vulnerability remains very high. To
mitigate both these problems, we present ACR: a scalable,
automatic checkpoint/restart framework that can detect and
correct both SDC and hard errors. As shown in Figure 1c,
by using our framework the system vulnerability disappears
and the utilization remains almost constant; the utilization
penalty, which seems significant at small scale, is compara-
ble to other cases at scale.

We believe, to reach the exascale computing realm effec-
tively, we must develop holistic solutions that cover all the
types of failures that may occur in the system. Although
hard failures may be detectable by external system com-
ponents, soft errors remain elusive. Hence, software solu-
tions that address both problems in an integrated fashion
are needed. ACR does exactly this, and also utilizes a novel
mechanism to interact with applications for checkpointing
based on observed failure rates.

By developing this framework and empirically evaluating
it under various failure scenarios, we make the following con-
tributions:

• We present a novel design for an automatic check-
point/restart mechanism that tolerates both SDC and
hard errors, and can adaptively adjust the checkpointing
period (§2, §3, §4).

• We present a distributed algorithm for determining check-
point consensus asynchronously, and show empirically
that it causes minimal application interference (§2).

• We present three distinct recovery schemes in ACR that
explore the tradeoff between performance and reliability.
Using a model we have developed, we analytically study
for these schemes the interaction between hard-error re-
covery and soft-error vulnerability at large scales (§2, §5).

• We demonstrate use of topology-aware mapping to op-
timize communication, and empirically show that this
results in significant speedup during checkpointing and
restart (§4, §6).

• We evaluate ACR by showing for five mini-applications,
written in two programming models, on 131,072 cores that
the framework is highly scalable and adapts to dynamic
behavior (§6).

2. AUTOMATIC CHECKPOINT RESTART
In this section, we describe the Automatic Check-

point/Restart (ACR) framework, a low-overhead framework

that aims to provide protection from both SDC and hard er-
rors to applications. To handle failures efficiently, ACR au-
tomatically checkpoints at an adaptive rate on the basis of
failure history. If failures occur, based on the type of error,
ACR enacts corrective measures and performs an automatic
restart.

2.1 Replication-enhanced Checkpointing
ACR uses checkpointing and replication to detect SDC

and enable fast recovery of applications from SDC and hard
errors. When a user submits a job using ACR, a few nodes
are marked as spare nodes and are not used by the applica-
tion, but only replaces failed nodes when hard errors occur.
The rest of the nodes are equally divided into two partitions
that execute the same program and checkpoint at the same
time. We refer to these two partitions as replica 1 and replica
2. Each node in replica 1 is paired with exactly one unique
node in replica 2; we refer to these pairs as buddies. Log-
ically, checkpointing is performed at two levels: local and
remote. When a checkpoint is instigated by the runtime,
each node generates a local checkpoint by invoking a seri-
alization framework to save its current state. Programmers
are required to write simple functions that enable ACR to
identify the necessary data to checkpoint. Local checkpoint
of a node in one replica serves as remote checkpoint of the
buddy node in another replica.

Node A Node BNode A Node B

Tasks

 Remote
Checkpoint

 Local
Checkpoint

Replica 1 Replica 2

buddy

Figure 2: Replication enhanced checkpointing. The buddy
of a node is the corresponding node in the other replica.

Hard Error Protection: We assume hard errors follow a
fail-stop model, i.e. a failed node does not perform any com-
munication. We call the replica containing the crashed node
the crashed replica and the other replica the healthy replica.
After a failure is detected, the buddy node (in the healthy
replica) of the crashed node sends its own local checkpoint to
the new node (from the spare pool) that replaces the crashed
node. Since the paired buddy nodes perform exactly the
same work during forward-path execution, the crashed node

2

can be restarted using the checkpoint of its buddy node on
the new node. Every other node in the crashed replica rolls
back using the checkpoint stored locally.

Detection and Correction of Silent Data Corruption:
In order to detect SDC, every node in the replica 1 sends
a copy of the local checkpoint to its buddy node in replica
2. Upon receiving the remote checkpoints from their buddy
nodes in replica 1, every node in replica 2 compares the re-
mote checkpoint with its local checkpoint using the same
serialization framework used to pack the checkpoint. If a
mismatch is found between the two checkpoints, ACR rolls
back both the replicas to the previous safely stored local
checkpoint, and then resumes the application. Note that
the remote checkpoint is sent to the replica 2 only for SDC
detection purposes, and hence ACR does not store the re-
mote checkpoint. Figure 2 shows the stable state of nodes
during application execution when using ACR.

2.2 Automatic Checkpoint Decision
An important feature of replication-enhanced checkpoint-

ing is its ability to reduce recovery overhead in the face
of hard errors, which is enabled by automatic checkpoint-
ing. When a hard failure occurs, if an immediate checkpoint
can be performed in the healthy replica to help the crashed
replica recover instead of using the previous checkpoint, the
crashed replica can quickly catch up with the progress of the
healthy one. Moreover, as online failure prediction [19] be-
comes more accurate, checkpointing right before a potential
failure occurs can help increase the mean time between fail-
ures visible to applications. ACR is capable of scheduling
dynamic checkpoints in both the scenarios described.

Upon reception of a checkpointing request, ACR can not
simply notify every task to store its state. This may lead
to a situation where an inconsistent checkpoint is stored,
causing the program to hang. For example, in an iterative
application, assume task a receives the checkpoint decision
at iteration i, and after restart it will wait to receive a mes-
sage from task b to enter iteration i + 1. However when
task b receives the checkpoint decision, it is already at i+1
and has already sent out message c. This in-flight message
c will not be stored in the checkpoint anywhere. Thus af-
ter restart, task b will be unaware that it needs to resend
the message to a and task a will hang at iteration i. This
scenario is possible when there is no global synchronization
at each iteration and each task progresses at different rates
during application execution. ACR ensures the consistency
of checkpointing with minimal interference to applications
using the following scheme [23]1.
Periodically, each task reports its progress to ACR

through a function call. In an iterative application, for ex-
ample, this function call can be made at end of each itera-
tion. In most cases, when there is no checkpointing sched-
uled, this call returns immediately. ACR records the maxi-
mum progress among all the tasks residing on the same node
as shown in Figure 3 (Phase 1). If checkpointing is required,
either due to a failure in one of the replicas or based on an
observation of the failure history, ACR proceeds to find a
safe checkpoint iteration.

Using the local progress information, ACR begins an asyn-
chronous reduction to find the maximum progress among

1Errata - Authors would like to add a reference to Automated
Load Balancing Invocation based on Application Character-
istics, Menon et.al, Cluster 2012, on which the presented
scheme in Charm++ is based on.

1

1

2

ACR: update

local maximum

progress

ACR: finding

checkpoint

iteration

checkpoint

scheduled ACR: Broadcast

checkpoint

iteration 3

checkpoint

iteration

decided ACR: ready to

checkpoint

2

pause 3

3

progress
has reached

local maximum

progress

reach

checkpoint

iteration

resume

execution

Task a

Task b

Phase 1 Phase 2 Phase 3 Phase 4

pause

pause

Figure 3: Initialization of automatic checkpointing.

all the tasks. In the mean time, tasks whose progress has
reached the local maximum are temporarily paused to pre-
vent tasks from going beyond the possible checkpoint iter-
ation (Figure 3, Phase 2). Once ACR finds the maximum
progress in the system, the checkpoint iteration is decided
accordingly. Each task compares its progress with the check-
point iteration; if its progress has reached the checkpoint it-
eration, the task is considered ready for the checkpoint and
transitions to the pause state if it was in the execution state
or remains in the pause state if it was already in the pause
state. Otherwise, the computation task will continue or re-
sume execution until it reaches the checkpoint iteration (Fig-
ure 3, Phase 3). Eventually, when all the tasks get ready for
the checkpoint, checkpointing is initiated (Figure 3, Phase
4). The more frequently the progress function is invoked,
the sooner ACR can schedule a dynamic checkpoint.

Adapting to Failures: It has been shown that a fixed
checkpoint interval is optimal if the failures follow a Poisson
process [7]. However, a study of a large number of failure
behaviors in HPC systems [29] has shown that a Weibull
distribution is a better fit to describe the actual distribu-
tion of failures. An important point to note in this study is
that the failure rate often decreases as execution progresses.
Dynamically scheduling checkpoints has shown benefits in
such scenarios in comparison to a fixed checkpoint inter-
val in an analytical study [4, 20]. Hence, it is important
to fit the actual observed failures during application execu-
tion to a certain distribution and dynamically schedule the
checkpoints based on the current trend of the distribution.
To support such adaptivity, ACR provides a mode in which
each checkpoint interval is decided based on the distribution
of the streaming failures. This is enabled by the automatic
checkpointing and automatic recovery in ACR.

2.3 Interaction of Hard Error Recovery and
Vulnerability to Silent Data Corruption

Detection and correction of SDC using replication enables
ACR to recover from hard failures in different ways. These
choices offer novel trade-offs that have not been encountered
in any framework for HPC. Three resilience schemes may be
used in ACR depending on the reliability and performance
requirements of an application.

1) Strong Resilience: In this scheme, the crashed replica
is rolled back to the previous checkpoint. The restarting pro-
cess (on the spare node) is the only process in the crashed
replica that receives the checkpoint from the other replica,
and hence minimal network traffic is generated. Every other
node in the crashed replica rolls back using its own local
checkpoint. Figure 4a shows the progress chart in which
replica 2 is recovered using strong resilience. When a hard

3

Time

P
ro
g
re
s
s

periodic

checkpointing

replica 2 crashes

Replica 1 Replica 2

replica 2

recovers using

the previous

checkpoint

(a) Strong resilience recovery scheme

Time

P
ro
g
re
s
s

periodic

 checkpointing

replica 2 crashes

replica 1 detects the crash

of replica 2 and checkpoints

Replica 1 Replica 2

replica 2 recovers

using the most

recent checkpoint

from replica 1

(b) Medium resilience recovery scheme

Time

P
ro
g
re
s
s

periodic

checkpointing

replica 2 crashes

Replica 1 Replica 2

replica 2 waits for

replica 1 to make the

next periodical

checkpoint and recover

(c) Weak resilience recovery scheme

Figure 4: Recovery in different resilience levels of ACR. Strong resilience rolls back immediately after a hard error. Medium
resilience forces an additional checkpoint and restarts from there. Weak resilience waits until the next checkpoint to restore.

error is encountered in replica 2, the crashed replica restarts
using the previous checkpoint. Having reaching the next
checkpoint period, replica 1 waits for replica 2 to resume
application execution.

The advantage of using this scheme is 100% protection from
SDC. The execution of applications in the two replicas is
always cross-checked. Additionally, restarting the crashed
replica is very fast because only one message is sent from
the healthy replica to the restarting process. However, the
amount of rework being done is large, and it may slow down
the application progress.

2) Medium Resilience: This scheme attempts to reduce
the amount of rework by forcing the healthy replica to im-
mediately schedule a new checkpoint when a hard error is
detected in the crashed replica as shown in Figure 4b. The
latest checkpoint is sent from every node of the healthy
replica to their buddy nodes in the crashed replica, which
may incur relatively higher overhead in comparison to the
strong resilience scheme. Moreover, any SDC that occurred
between the previous checkpoint and the latest checkpoint
will remain undetected. On the positive side, this scheme
avoids rework on the crashed replica and hence the two repli-
cas reach the next checkpoint period at similar times in most
cases. However, if a hard failure occurs in the healthy replica
before the recovery of crashed replica is complete, applica-
tion needs to rollback either to the previous checkpoint or
the beginning of execution. Since the healthy replica sched-
ules the next checkpoint in a very short period, the proba-
bility of such a rollback is very low.

3) Weak Resilience: In this scheme, the healthy replica
does not take any immediate action to restart the crashed
replica when a hard error is detected. Instead, it continues
execution until the next checkpoint and thereafter sends the
checkpoint to the crashed replica for recovery. This scheme
leads to a “zero-overhead” hard error recovery since in most
cases the healthy replica does not incur any extra checkpoint
overhead to help the crashed replica recover, and the crashed
replica does not spend any time in rework. The only excep-
tion is when hard failure occurs in the healthy replica before
it reaches the next checkpoint time. If the failure happens
on the buddy node of the crashed node (though the proba-
bility is very low [22, 10]) application needs to restart from
the beginning of the execution. Otherwise application needs
to restart from the previous checkpoint. Typically, the sys-
tem is left unprotected from SDC for the entire checkpoint
interval. Figure 4c shows the event chart for this resilience

scheme. Assuming a large rework time, Figure 4 suggests
that this scheme should be the fastest to finish application
execution.

2.4 Control Flow
Figure 5 presents a study of application execution using

ACR with different reliability requirements. In each sce-
nario, execution begins with the division of the allocated
nodes into two replicas each of which performs the same ap-
plication task.

Figure 5(a) presents the scenario in which an application
only requires support for handling hard errors. No periodic
checkpointing is needed in this scenario. When a node crash
is detected at T2, replica 2 schedules an immediate check-
point, and sends the checkpoint to replica 1. This allows
replica 1 to continue on the forward path without rollback.

Figures 5(b,c,d) present the general scenario in which both
silent data corruptions and hard errors may occur in the sys-
tem. In all these scenarios, periodic local checkpointing is
performed (e.g. at time T1, T3 etc.). When a hard failure
occurs at time T2, in the strong resilience scheme shown in
Figure 5(b), replica 2 sends its SDC-free local checkpoint
at T1 to the restarting process in replica 1 to help it re-
cover. The application is fully protected from SDC in this
scenario. However, in Figure 5(c) with medium resilience,
an immediate checkpoint is performed in replica 2 when a
failure occurs at time T2. Replica 1 is recovered using this
new checkpoint. As such, at time T3, only SDC that oc-
curred after T2 will be detected. In weak resilience scheme
of Figure 5(d), replica 2 continues execution until the next
scheduled checkpoint time T3, and then sends this check-
point to replica 1 for recovery. Although this scheme incurs
zero-overhead in the case of a hard failure, the application
is not protected from SDC from time T1 to T3.

3. DESIGN CHOICES
During the design process of ACR, we evaluated alterna-

tive methods for different components of the framework, and
selected the ones most suited to our needs. In this section,
we present those design choices and their trade-offs relative
to the alternatives.

1) Ensuring consistent states. To enable the recov-
ery of a crashed replica from a hard error using information
from the healthy replica, it is necessary that the processes in
the two replicas are interchangeable, i.e. for every process in
replica 1 there is a process in replica 2 that has the same ap-
plication state. ACR makes use of coordinated checkpoint-

4

replica 1 replica 2

hard

error

hard error detected

by replica 2

replica 2 sends the

immediate checkpoints

to replica 1 for recovery

Job

Starts

T1

T2

T3

TIME

application execution

with SDC protection
checkpoint

application execution

without SDC protection
restart

replica 1 replica 2

hard

error

hard error detected

by replica 2

replica 2 sends the

checkpoints at T1 to

replica 1 for recovery

Job

Starts

T1

T2

T3

transfer checkpoint for

SDC detection

SDC detected, both

replicas roll back

replica 1 replica 2

hard

error

hard error detected

by replica 2

replica 2 sends the

immediate checkpoints

to replica 1 for recovery

Job

Starts

T1

T2

T3

transfer checkpoint for

SDC detection

SDC detected, both

replicas roll back

replica 1 replica 2

hard

error

hard error detected

by replica 2

replica 2 sends the

checkpoints at T3 to

replica 1 for recovery

Job

Starts

T1

T2

T3

transfer checkpoint for

SDC detection

SDC cannot be

detected

(a) ACR with only hard error protection (b) ACR with strong resilience scheme (c) ACR with medium resilience scheme (d) ACR with weak resilience scheme

Figure 5: The control flow of ACR with different reliability requirements.

ing to ensure this consistency, and hence does not require
any communication or synchronization between replicas un-
less a hard error occurs.

An alternative approach to maintain the consistent state
between replicas is by cloning messages. Libraries such as
rMPI [10] and P2P-MPI [13], which provide replication-
based reliability to MPI applications, provide reliability sup-
port by ensuring that if an MPI rank dies, its corresponding
MPI rank in the other replica performs the communication
operations in its place. This approach requires the progress
of every rank in one replica to be completely synchronized
with the corresponding rank in the other replica before and
after the hard error. Such a fine-grained synchronization ap-
proach may hurt application performance, especially if a dy-
namic application performs a large number of receives from
unknown sources. In fact, in such scenarios the progress of
corresponding ranks in the two replicas must be serialized to
maintain consistency. For a message-driven execution model
in which the execution order is mostly non-deterministic,
this approach is certainly not optimal.

2) Who detects silent data corruption? In ACR,
the runtime is responsible for transparently creating check-
points and their comparison to detect SDC. Algorithmic
fault tolerance is an alternative method based on redesign-
ing algorithms using domain knowledge to detect and correct
SDC [3]. Use of containment domains [6] is a programming-
construct methodology that enables applications to express
resilience needs, and to interact with the system to tune
error detection, state preservation, and state restoration.
While both these approaches have been shown to be scal-
able, they are specific to their applications. One may need
to have in-depth knowledge of the application domain and
make significant modifications to the code in order to use
them. In contrast, a runtime-based method is universal and
works transparently with minimal changes to the applica-
tion. Hence, we use this strategy in ACR.

3) Methods to detect silent data corruption. Similar
to ensuring consistent states, an alternative method to de-
tect SDC is to compare messages from the replicas [11]. If a
message is immediately sent out using the corrupted memory
region, early detection of SDC is possible using this scheme.
However, a major shortcoming of message-based error detec-

tion is the uncertainty of error detection – if the data effected
by SDC remains local, it will not be detected. Moreover,
even when corruption has been detected, it may be difficult
to correct the corrupted data on the source process if the
corruption was not transient or was used in the computa-
tion. Checkpoint-based SDC detection does not suffer from
any of these issues; given the synergy with the hard-error
recovery method, it is the appropriate choice for ACR.

4) Redundancy model. Based on dual redundancy, ACR

requires re-executing the work from the last checkpoint if one
SDC is detected. Alternatively, triple modular redundancy
(TMR) is a popular method to provide resilience for appli-
cations that have real-time constrains. In TMR, the results
processed by the three redundant modules are passed by a
voting system to produce a single output and maintain con-
sistency. The trade off to consider between dual redundancy
and TMR is between re-executing the work or spending an-
other 33% of system resources on redundancy. We have
chosen the former option assuming good scalability for most
applications and relatively small number of SDCs. Dual re-
dundancy, as a fault tolerance alternative, requires to invest
at least 50% of the system’s utilization. This is a consid-
erable price to pay upfront to recover from SDCs, but it is
a general-purpose solution. Additionally, it has been shown
that replication outperforms traditional checkpoint/restart
for scenarios with high failure rates [10].

5) Checkpointing level. Checkpointing can be performed
either at the kernel or user level. Kernel-level checkpointing
like BLCR [14] dumps all the system state and application
data during checkpointing. As a result it can quickly react
to a failure prediction. In contrast, user-level checkpoint-
ing such as SCR [25] is triggered by the application at a
certain interval. Compared to kernel-level checkpointing, it
can reduce the checkpoint size since the process state and
buffered messages are not stored. ACR performs user-level
checkpointing but with the simplicity and flexibility advan-
tages of the kernel-level scheme. The checkpointing in ACR

is equivalent to the combination of LOCAL and PARTNER
levels in SCR. Each checkpoint is invoked by the runtime
at a safe point specified by the user in order to store the
minimal state needed. But we allow the interval between
checkpoints to be dynamically adjusted to the observed fail-
ure rate without user involvement.

5

4. ADAPTATION AND OPTIMIZATIONS
An adaptation of ACR to Charm++ has been performed

to validate it on real systems executing applications of var-
ious types. In order to support ACR, we have made use of
some existing features in Charm++ and added new ones.
Important optimizations to boost performance and reduce
overheads have been performed.

4.1 Implementation Details

Replication. To support replication, we have augmented
Charm++ with support for transparent partitioning of allo-
cated resources. On a job launch, ACR first reserves a set of
spare nodes (§ 2) to be used in event of failure. The remain-
ing nodes are divided into two sets that constitute the two
replicas. The application running in each replica is unaware
of the division and executes independently in each replica.
In addition to support for regular intra-replica application
communication, we have added an API for inter-replica com-
munication that is used by ACR for various purposes.

Checkpointing. Charm++ supports checkpointing to ei-
ther memory or file system using simple user specified pup
functions. The pup functions use the Pack and UnPack
(PUP) framework to serialize/deserialize the state of the
application to/from the chosen medium using special PU-
Per(s).

Handling SDC. We have augmented the PUP framework
to support a new PUPer called the checker. This PUPer
compares the local checkpoint of a node with the remote
checkpoint sent to the node by its buddy, and reports if silent
data corruption has occurred. PUPer::checker also enables
a user to customize the comparison function based on their
application knowledge. For example, since the floating point
math may result in round-off errors, a programmer can set
the relative error a program can tolerate. One may also
guide the PUP framework to ignore comparing data that
may vary between different replicas, but are not critical to
the result.

4.2 Optimizations
Simultaneous transmitting checkpoints for comparison or

during restart using the weak/medium resilience scheme
may saturate the network and result in congestion. We have
implemented the following two techniques to reduce network
congestion, and hence improve the performance of ACR.

Checksum. A simple but effective solution to network con-
gestion problem is use of a checksum to compare the check-
points. ACR uses the position-dependent Fletcher’s check-
sum algorithm [12] to calculate the checksum of a check-
point, which is then transmitted to the buddy for compar-
ison. While the use of checksums reduces the load on the
network, it increases the computation cost. Instead of a sin-
gle instruction required to copy the checkpoint data to a
buffer if the full checkpoint is sent, 4 extra instructions are
needed to calculate the checksum. Assuming a system that
has the communication cost per byte of β and computation
cost of γ per byte, the difference in cost of the two schemes
is (β − 4γ) × n. Hence, using the checksum shows benefits

only when γ < β

4
.

Topology-aware mapping. ACR implements topology-
aware task mapping to reduce network congestion during
restart and checkpoint comparison (if checksum is not used).
Consider the default mapping of replicas onto 512 nodes of
Blue Gene/P running in shared-memory mode (Figure 6(a)).

Only the mapping for the front plane (Y = 0) is shown for
ease of understanding. Replica 1 is allocated the block of
nodes that constitute the left half of the allocations, whereas
replica 2 is allocated the right half. During checkpointing,
node i of replica 1 sends a message to node i of replica 2.
Using the default mapping, the nodes are laid out such that
the path taken by checkpoints sent by nodes in each col-
umn overlaps with the path traversed by checkpoints sent
by nodes in their row in every other column. In Figure 6(a),
this overlap is represented by tagging each link with the
number of messages that pass through them during check-
pointing. Even if the torus links are considered, the overlap
on links exist albeit in lower volume. In effect, the links at
the bisection of replica 1 and replica 2 become the bottleneck
links; the loads on these bottleneck links are determined by
the number of columns. On BG/P, the default mapping is
TXY Z in which ranks increase slowest along Z dimension;
hence the two replicas are divided along the Z dimension and
the load on bottleneck links is proportional to the length of
Z dimension.

43

4

4

4

4

4

4

43

3

3

3

3

3

3

2

2

2

2

2

2

2

21

1

1

1

1

1

1

1 1

1

1

1

1

1

1

Replica 2 nodes

2

2

2

2

2

2

2

23

3

3

3

3

3

3

3

(a) Default-mapping

1

1

1

1

1

1

1

1

(b) column-mapping

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 1 0 1 0 1 012

2

2

2

2

2

2

21

1

1

1

1

1

1

1 1

1

1

1

1

1

1

12

2

2

2

2

2

2

2

(c) Mixed-mapping

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Replica 1 nodes

1

inter-replica messages[0-4]

Figure 6: Mapping schemes and their impact on inter-replica
communication: the number on the links is the number of
checkpoint messages that will traverse through those links.

The excess load on the bottleneck link can be reduced by
using an intelligent mapping that places the communicat-
ing nodes from the two replicas close to each other. Con-
sider the column-mapping of the two replicas in Figure 6(b)
that alternatively assigns the columns (and the correspond-
ing Z planes that are not shown) to replica 1 and replica
2. This kind of mapping eliminates the overlap of paths
used by inter-replica messages, and is best in terms of net-
work congestion. However, providing disjoint mapping for
a replica may interfere with application communication and
result in slow progress for communication-intensive applica-
tions. Additionally, placing the buddy nodes close to each
other increases the chances of simultaneous failures if the
failure propagation is spatially correlated. In such scenar-
ios, one may use mixed-mapping in which chunks of columns
(and the corresponding planes) are alternatively assigned to
the replicas as shown in Figure 6(c).

Another way to reduce network congestion is to use asyn-
chronous checkpointing [27] that overlaps the checkpoint
transmission with application execution. We leave imple-
mentation and analysis of this aspect for future work.

5. MODELING PERFORMANCE AND RE-

LIABILITY
A fundamental question when using checkpoint/restart is

how often to checkpoint. Frequent checkpoints will imply
less work to be recovered in case of a failure, but it will in-
cur high overhead because of the more time spent on check-

6

points. This section presents a model to help understand
the performance and reliability difference for the three re-
silience schemes in ACR. The presented model represents
a system with a number of parameters and defines several
equations to compute relevant values: optimum checkpoint
period, total execution time and probability of undetected
silent data corruptions. Additionally, the model allows us
to understand how ACR will scale and perform in different
scenarios.

The model extends the theoretical framework presented
in the literature [7] by incorporating SDC in the equations,
and three different levels of resilience recovery schemes. We
assume failures follow the Poisson process. Parameters used
in the model are listed in Table 1. These parameters include
application-dependent parameters (W , δ,RH ,RS), system-
dependent parameters (MH , MS , S), and the output of the
model (τ , T , TS , TM , TW).

Description Description

W Total computation time τ Optimum checkpoint pe-
riod

δ Checkpoint time S Total number of sockets
RH Hard error restart time T Total execution time
RS Restart time on SDC TS T strong resilience
MH Hard error MTBF TM T medium resilience
MS SDC MTBF TW T weak resilience

Table 1: Parameters of the performance model.

Since total execution time is the main variable of inter-
est which we are trying to minimize, we use the following
equation to describe the different components:

T = TSolve + TCheckpoint + TRestart + TRework

where TSolve is the useful computation time, TCheckpoint is
the time spent exclusively on checkpointing, TRestart is the
time spent in restarting applications for execution after de-
tecting any type of error, and TRework stands for the time
spent in re-executing the work after both SDC and hard er-
rors. The total checkpointing time is simply the product
of the individual checkpoint time and the number of check-
points:

∆ = TCheckpoint =

(

W

τ
− 1

)

δ

The total restart time is similarily the product of individual
restart time and the number of restarts:

R = TRestart =
T

MH

RH +
T

MS

RS

In order to represent the three different levels of resilience
defined in Section 2, we define an equation for each level.
The total execution time for strong resilience level (TS) uses
the fact that a hard error will require the system to roll-
back immediately to a previous checkpoint. The medium
resilience level (whose total execution time is TM) will check-
point right after the hard error, so on average, half that
checkpoint interval the system is unprotected against SDC.
Finally, the weak resilience level (TW represents the total
execution time) will leave the whole checkpoint period un-
protected against SDC. The equations for these variables
are presented below. As discussed in Section 2.3, the ap-
plication may need to rollback to the previous checkpoint
when a hard failure occurs in the healthy replica using the

weak resilience scheme. P is the probability for more than
one failure in a checkpoint period. Note that this is a loose
upper bound on the probability to rollback; we assume that
atleast one of the multiple failures happens in the healthy
replica.

P = 1− exp(−
τ + δ

MH

)(1 +
τ + δ

MH

)

TS = W +∆+R+
TS

MH

(

τ + δ

2

)

+
TS

MS

(τ + δ)

TM = W +∆+R+
TM

MH

δ +
TM

MS

(τ + δ)

TW = W +∆+R+
TS

MH

(

τ + δ

2

)

P +
TW

MS

(τ + δ)

Using these formulae, we calculate the optimal checkpoint
interval for the three resilience schemes and use the best to-
tal execution time for further analysis.

Performance and Protection: We define the utilization
of the system as the portion of the time that is devoted
to do useful work: W

T
. The complement of the utilization

is the overhead of the fault tolerance approach. This over-
head includes the checkpoint time, restart time, rework time
and the utilization loss due to replication. Figure 7a shows
the utilization of different schemes with different checkpoint
time from 1K sockets to 256K sockets per replica. The check-
point time projected for exascale machine ranges from sec-
onds to minutes [18]. Thus, we choose δ to be 180s and 15s
to represent large and small checkpoints respectively (since
one of the dominant factors in δ is the checkpoint size [§ 6]).
We assume a mean time between hard errors MH of 50 years
(equivalent to the MTBF of Jaguar system [30]) and SDC
rate of 100 FIT [1]. For δ of 15s, the efficiency for all the
three resilience schemes is above 45% even on 256K sockets.
When δ is increased to 180s, the efficiency of the strong re-
silience scheme decreases to 37% while that of the weak and
medium resilience schemes is above 43% using 256K sockets.
Note that in weak and medium resilience schemes, the sys-
tem is left without any SDC protection for some period of
time. Hence, based on the application, one may have to sac-
rifice different amount of utilization to gain 100% protection
from SDC.

Figure 7b presents the probability of occurrence of SDC
during the period in which the framework does not provide
any protection to silent data corruptions using medium and
weak resilience schemes for a job run of 24 hours. The re-
sults suggest that for low socket count (up to 16K sockets),
the probability of an undetected error is very low for the
two types of applications we considered. It is also worth
noting that even on 64K sockets, the probability of an un-
detected SDC for the medium resilience scheme is less than
1% (using δ = 15s). These scenarios may be sufficient to
meet the resilience requirements of some users with minimal
performance loss. However, the probability of an undetected
SDC is high on 256K sockets, and users will have to choose
the strong resilience scheme with some performance loss to
execute a fully protected experiment. For both the cases,
the medium resilience scheme decreases the probability of
undetected SDC by half with negligible performance loss.

6. EVALUATION

7

 0.3

 0.35

 0.4

 0.45

 0.5

1K 2K 4K 8K 16K 32K 64K 128K 256K

U
ti
liz

at
io

n

Number of Sockets per Replica

Weak δ = 15s
Medium δ = 15s

Strong δ = 15s
Weak δ = 180s

Medium δ = 180s
Strong δ = 180s

(a) Utilization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1K 2K 4K 8K 16K 32K 64K 128K 256K

P
ro

b
ab

ili
ty

 o
f
U

n
d
et

ec
te

d
 S

D
C

Number of Sockets per Replica

Weak δ = 180s
Medium δ = 180s

Weak δ = 15s
Medium δ = 15s

(b) Probability of undetected SDC

Figure 7: The utilization and vulnerability of the different recovery schemes for different checkpoint size. Strong resilience
scheme detects all the SDCs but results in a loss of 65% utilization. Weak resilience scheme has the best utilization but is
more likely to have undetected SDC for a large δ. Medium resilience scheme reduces the likelihood of undetected SDC with
little performance loss.

6.1 Setup
We have used various mini-applications including a

stencil-based state propagation simulation, a molecular dy-
namic simulation, a hydrodynamics simulation using an un-
structured mesh, and a conjugate gradient solver to evaluate
ACR.

Jacobi3D is a simple but commonly-used kernel that per-
forms a 7-point stencil-based computation on a three dimen-
sional structured mesh. We evaluate our framework using
a Charm++ based and an MPI-based implementation of
Jacobi3D. HPCCG is distributed as part of the MPI-based
Mantevo benchmark suite [15] by Sandia National Labora-
tories. It mimics the performance of unstructured implicit
finite element methods and can scale to large number of
nodes. LULESH is the Livermore Unstructured Lagrange
Explicit Shock Hydrodynamics mini-app [21]. It is a mesh-
based physics code on an unstructured hexahedral mesh with
element centering and nodal centering. LeanMD [17], writ-
ten in Charm++, simulates the behavior of atoms based
on short-range non-bonded force calculation in NAMD [28].
miniMD is part of the Mantevo benchmark suite [15] written
in MPI. It mimics the operations performed in LAMMPS. In
contrast to the first four benchmarks, the molecular dynamic
mini-apps have low memory footprint. Moreover, owing to
their implementations, checkpoint data in these programs
may be scattered in the memory resulting in extra overheads
during operations that require traversal of application data.

Benchmark Configuration (per core) Memory
Pressure

Jacobi3D 64*64*128 grid points high
HPCCG 40*40*40 grid points high
LULESH 32*32*64 mesh elements high
LeanMD 4000 atoms low
miniMD 1000 atoms low

Table 2: Mini-application configuration.

In our experiments, the MPI based programs were exe-
cuted using AMPI [16], which is Charm++’s interface for
MPI programs. The experiments were performed on In-
trepid at ANL. Intrepid is an IBM Blue Gene/P with a
3D-torus based high speed interconnect. The configuration

of our experiments can be seen in Table 2. The Charm++
and MPI implementation of Jacobi3D used the same config-
uration in our experiments.

To produce an SDC, our fault injector injects a fault by
flipping a randomly selected bit in the user data that will be
checkpointed. On most existing systems, when a hard error
such as a processor failure occurs, the job scheduler kills
the entire job. To avoid a total shutdown, we implement
a no-response scheme to mimic a ‘fail-stop’ error. When a
hard fault is injected to a node, the process on that node
stops responding to any communication. Thereafter, when
the buddy node of the this node does not receive heartbeat
for a certain period of time, the node is diagnosed as dead.

6.2 Forward Path
In this section, we analyze the overheads ACR incurred in

a failure-free case. These overheads include the time spent in
local checkpointing, transferring the checkpoints, and com-
paring the checkpoints. For these experiments, the system
size is varied from 2K cores to 128K cores, i.e. there are 1K
to 64K cores assigned for each replica.

Figures 8 presents a comparison of the overheads using
the default method and with the proposed optimizations for
all the mini-apps described. To easily view the change in
overheads we graph four of the mini-apps which have higher
memory usage on the left and two of the molecular dynamic
simulation on the right.

Using the default mapping method, we observe a four-fold
increase in the overheads (e.g., from 0.6s to 2s in the case
of Jacobi3D) as the system size is increased from 1K cores
to 64K cores per replica. By analyzing the time decompo-
sition, we find that the time for inter-replica transfer of the
checkpoints keeps increasing while the time spent on local
checkpointing and comparison of checkpoints remains con-
stant. An interesting observation is the linear increase of
the overheads from 1K to 4K cores and its constancy be-
yond 4K cores. This unusual increase and steadiness is a
result of the change in the length of the Z dimension in
the allocated system which determines the load on the bi-
section links between replica 1 and replica 2 (Section 4.2).
As the system size is increased from 1K to 4K cores per
replica, the Z dimension increases from 8 to 32, after which
it becomes stagnant. Beyond 4K cores, only the X and Y
dimensions change but they do not have any impact on the

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(a) Jacobi3D Charm++

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(b) LULESH

 0

 0.01

 0.02

 0.03

 0.04

 0.05

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(c) LeanMD

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(d) Jacobi3D AMPI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(e) HPCCG

 0

 0.2

 0.4

 0.6

 0.8

 1

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(f) miniMD

Figure 8: Single checkpointing overhead. Our framework incurs minimal overheads and provides scalable error detection.

 0

 0.5

 1

 1.5

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
 p

er
 R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(a) Jacobi3D Charm++

 0

 0.05

 0.1

 0.15

 0.2

 0.25

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
 p

er
 R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(b) LeanMD

Figure 9: ACR Forward Path Overhead.

performance. We make use of the mapping schemes pro-
posed in Section 4.2 to eliminate the dependence of over-
heads of the default method on the length of Z dimension.
Figure 8 shows that column and mixed mappings help reduce
the inter-replica communication time significantly, enabling
the full checkpoint-based error detection method to incur
a constant overhead. Moreover, no significant performance
difference was found for applications using column or mixed
mappings when compared to the default mapping.

In contrast, the overheads incurred using checksum based
error detection method remain constant irrespective of the
mapping used. Most of the time is spent in computing the

checksum with trivial amount of time being spent in check-
sum transfer and comparison as expected since the check-
sum data size is only 32 bytes. Note that, due to extra
computation cost one has to pay for computing checksum,
overheads for it are even larger than the column-mapping for
high memory pressure applications. Compared to the other
three memory consuming mini-apps, LULESH takes longer
time in local checkpointing since it contains more compli-
cated data structures for serialization.

Figure 8c and 8f present the checkpointing overheads for
the molecular dynamic mini-apps. While the general trend
of results for these mini-apps is similar to the high-memory-
pressure mini-apps, the effect of small size of checkpoints
and scattered data in memory results in some differences.
First, gains in eliminating the overhead due to use of op-
timal mappings are lower in comparison to the high mem-
ory pressure mini-apps. Secondly, only 20% of the time is
spent in remote checkpoint transfer with optimal mapping
while for the first four mini-apps checkpoint transfer costs
around 50% of the time. Thirdly, the checksum method out-
performs other schemes though the absolute time is now in
100− 200ms range.

Figure 9 shows the checkpoint overhead of ACR for Ja-
cobi3D and LeanMD when checkpointing at the optimal
checkpoint interval according to the model in Section 5. The
MTBF for hard error used in the model is 50 years per socket
while the SDC rate per socket is estimated as 10, 000 FIT.
The low checkpoint overhead enables us to checkpoint more
often to reduce the rework overhead. The optimal check-
point interval for Jacobi3d and LeanMD is 133s and 24s
on 16K cores with default mapping. Use of either check-
sum or topology mapping optimization can bring further
down the low checkpointing overhead (1.5%) of default map-
ping by 50%. Overhead of using strong resilience scheme is
slightly higher than overhead of weak and medium resilience
schemes; this is because applications using strong resilience
scheme need to checkpoint more frequently to balance the
extra rework overhead on hard failures. As the failure rate

9

 0

 0.5

 1

 1.5

 2

 2.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(a) Jacobi3D Charm++

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(b) LULESH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(c) LeanMD

 0

 0.5

 1

 1.5

 2

 2.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(d) Jacobi3D AMPI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(e) HPCCG

 0

 0.2

 0.4

 0.6

 0.8

 1

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(f) miniMD

Figure 10: Single restart overhead. Strong resilience scheme benefits because of the smaller amount of checkpoint data
transmitted.

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
 p

er
 R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(a) Jacobi3D Charm++

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
 p

er
 R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(b) LeanMD

Figure 11: ACR Overall Overhead.

increases with the number of sockets in the system, forward
path overhead also increases.

6.3 Restart from Errors
Figure 10 presents the restart overhead of strong and

medium resilience schemes with different mappings. The
restart overhead for hard errors includes the time spent on
getting the checkpoints from the replica and the time to re-
construct the state from the checkpoint. After an SDC is
detected, every node rolls back using local checkpoint with-

out checkpoint transfer, so the restart overhead for SDC is
equivalent to the reconstruction part of restarting from hard
errors. The only difference between medium and weak re-
silience is whether an immediate checkpoint is needed (we
found the overhead of scheduling an immediate checkpoint-
ing to be negligible). Thus the restart overhead is the same
for both cases, hence the restart overhead for only medium
resilience scheme is presented.

Figure 10 shows that the strong resilience scheme incurs
the least restart overhead for all the mini-apps. Two fac-
tors help strong resilience scheme outperform the other two
schemes- i) the checkpoint that needs to be sent to the
crashed replica already exists, and ii) only the buddy of the
crashed node has to send the checkpoint to the spare node.
Since there is only one inter replica message needed to trans-
fer checkpoints in the strong resilience scheme, we found that
mapping does not affect its performance. In comparison, for
the medium and the weak resilience schemes, every node in
the healthy replica has to send the checkpoint to its buddy
in the crashed replica. The simultaneous communication
from all the nodes results in network congestion similar to
what we saw during checkpointing phase (§ 6.2): the time
increase comes from the checkpoint transfer stage as shown
in Figure 10. We make use of topology aware mapping to
address the congestion problem and bring down the recov-
ery overhead from 2s to 0.41s in the case of Jacobi3D for
the medium resilience schemes. Similar results were found
for the other benchmarks with relatively large checkpoints.

For LeanMD, which has a small checkpoint, the overheads
are presented in Figure 10c. Note that unlike checkpoint-
ing, the restart of a crashed replica is an unexpected event.
Hence it requires several barriers and broadcasts that are
key contributors to the restart time when dealing with ap-
plications such as LeanMD whose typical restart time is in
tens of milliseconds. Figure 10c shows these effects with a
small increase in reconstruction time as the core count is

10

Figure 12: Adaptivity of ACR to changing failure rate. Black lines show when failures are injected. White lines indicate
when checkpoints are performed. ACR schedules more checkpoints when there are more failures at the beginning and fewer
checkpoints towards the end.

increased. Further inspection confirms that the extra over-
heads can be attributed to the synchronization costs.

Figure 11 shows the overall overhead of ACR which in-
cludes the restart and checkpointing overhead for Jacobi3D
and LeanMD at their optimal checkpoint interval. It fol-
lows similar trend as shown in Figure 9; the overall over-
head is larger than checkpointing overhead alone because of
the time spent in recovering from hard failure and SDC. Al-
though restarting is faster using strong resilience as shown in
Figure 10, the extra checkpointing overhead and extra time
spent re-executing the work lost due to hard failures makes
it worse compared to weak and medium resilience no mat-
ter which optimization techniques are used. Regardless, the
overhead of strong resilience is less than 3% for Jacobi3D
and around 0.45% for LeanMD. Using optimizations, the
overall overhead is further reduced to 1.4% and 0.2%. As
such, ACR performs well in comparison to other libraries
such as SCR with overhead of 5% [25].

6.4 Adaptivity
As discussed in section 2.2, ACR can dynamically sched-

ule checkpoint based on the failure behaviour. In order to
test ACR’s capability to adapting to the change of failure
rate, we performed a 30 minutes run of Jacobi3D benchmark
on 512 cores of BGP with 19 failures injected during the run.
The failures are injected according to Weibull process with
a decreasing failure rate (shape parameter is 0.6). Figure 12
shows the timeline profile for this run. The red part is the
useful work done by application. Black lines mean a fail-
ure is injected at that time and white lines indicate that
a checkpoint is performed. As can be seen in the figure,
more failures are injected at the beginning and the failure
rate keeps decreasing as time progresses. ACR changes the
checkpoint interval based on the current observed mean time
between failures. Accordingly, it schedules more checkpoints
in the beginning (checkpoint interval is 6s) and fewer at the
end (checkpoint interval increases to 17s).

7. CONCLUSIONS
This paper introduced ACR, an automatic check-

point/restart framework to make parallel computing sys-
tems robust against both silent data corruptions and hard
errors. ACR uses 50% of a machine’s resources for redun-
dant computation. Such investment is justified in mak-
ing ACR a general purpose solution for silent data cor-

ruptions and in having a resilient solution that outperforms
traditional checkpoint/restart in high failure-rate scenarios.
ACR aims to automatically recover applications from fail-
ures and automatically adjust the checkpoint interval based
on the environment. ACR supports three recovery schemes
with different levels of resilience. We built a performance
model to understand the interaction of SDC and hard errors
and explore the trade-off between performance and reliabil-
ity in the three schemes.

We described the design and implementation of ACR in
an established runtime system for parallel computing. We
showed the utility of topology aware mapping implemented
in ACR, and its impact on the scalability. ACR was tested
on a leading supercomputing installation by injecting fail-
ures during application execution according to different dis-
tributions. We used five mini-apps written in two different
programming models and demonstrated that ACR can be
used effectively. Our results suggest that ACR can scale to
131, 072 cores with low overhead.

Acknowledgment

This research was supported in part by the Blue Waters
project (which is supported by the NSF grant OCI 07-25070)
and by the US Department of Energy under grant DOE DE-
SC0001845. This work used machine resources from PARTS
project and Director’s discretionary allocation on Intrepid
at ANL for which authors thank the ALCF and ANL staff.
The authors appreciate the help from Jonathan Lifflander
for editing parts of the paper.

8. REFERENCES
[1] R. C. Baumann. Radiation-induced soft errors in

advanced semiconductor technologies. Device and
Materials Reliability, IEEE Transactions on,
5(3):305–316, 2005.

[2] L. Bautista-Gomez, D. Komatitsch, N. Maruyama,
S. Tsuboi, F. Cappello, and S. Matsuoka. FTI: High
performance fault tolerance interface for hybrid
systems. In Supercomputing, pages 1 –12, Nov. 2011.

[3] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou.
Algorithm-based fault tolerance applied to high
performance computing. JPDC, 69(4):410–416, 2009.

[4] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and
F. Vivien. Checkpointing strategies for parallel jobs.

11

In Supercomputing, SC ’11, pages 33:1–33:11, New
York, NY, USA, 2011. ACM.

[5] F. Cappello. Fault tolerance in petascale/ exascale
systems: Current knowledge, challenges and research
opportunities. IJHPCA, 23(3):212–226, 2009.

[6] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim,
D. H. Yoon, L. Kaplan, and M. Erez. Containment
domains: a scalable, efficient, and flexible resilience
scheme for exascale systems. In Supercomputing, SC
’12, pages 58:1–58:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[7] J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future
Generation Comp. Syst., 22(3):303–312, 2006.

[8] C. Engelmann, H. H. Ong, and S. L. Scott. The Case
for Modular Redundancy in Large-Scale High
Performance Computing Systems. In International
Conference on Parallel and Distributed Computing
and Networks (PDCN) 2009, pages 189–194. ACTA
Press, Calgary, AB, Canada, Feb. 2009.

[9] S. Feng, S. Gupta, A. Ansari, and S. Mahlke.
Shoestring: probabilistic soft error reliability on the
cheap. In Architectural support for programming
languages and operating systems, ASPLOS XV, pages
385–396, New York, NY, USA, 2010. ACM.

[10] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield,
K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges,
and D. Arnold. Evaluating the viability of process
replication reliability for exascale systems. In
Supercomputing, pages 44:1–44:12, New York, NY,
USA, 2011. ACM.

[11] D. Fiala, F. Mueller, C. Engelmann, R. Riesen,
K. Ferreira, and R. Brightwell. Detection and
correction of silent data corruption for large-scale
high-performance computing. In Supercomputing, SC
’12, pages 78:1–78:12, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[12] Fletcher checksum algorithm wiki page. .

[13] S. Genaud, C. Rattanapoka, and U. L. Strasbourg. A
peer-to-peer framework for robust execution of
message passing parallel programs. In In
EuroPVM/MPI 2005, volume 3666 of LNCS, pages
276–284. Springer-Verlag, 2005.

[14] P. H. Hargrove and J. C. Duell. Berkeley lab
checkpoint/restart (blcr) for linux clusters. In
SciDAC, 2006.

[15] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications.
Technical report, Sandia National Laboratories,
September 2009.

[16] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé.
Performance Evaluation of Adaptive MPI. In
Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming 2006,
March 2006.

[17] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain,
P. Jetley, J. Lifflander, P. Miller, Y. Sun,
R. Venkataraman, L. Wesolowski, and G. Zheng.
Charm++ for productivity and performance: A
submission to the 2011 HPC class II challenge.
Technical Report 11-49, Parallel Programming

Laboratory, November 2011.

[18] P. Kogge, K. Bergman, S. Borkar, D. Campbell,
W. Carlson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott,
A. Snavely, T. Sterling, R. S. Williams, and K. Yelick.
Exascale computing study: Technology challenges in
achieving exascale systems, 2008.

[19] Z. Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan.
A study of dynamic meta-learning for failure
prediction in large-scale systems. J. Parallel Distrib.
Comput., 70(6):630–643, June 2010.

[20] Y. Ling, J. Mi, and X. Lin. A variational calculus
approach to optimal checkpoint placement.
Computers, IEEE Transactions on, 50(7):699–708,
2001.

[21] Lulesh.
http://computation.llnl.gov/casc/ShockHydro/.

[22] E. Meneses, X. Ni, and L. V. Kale. A Message-Logging
Protocol for Multicore Systems. In Proceedings of the
2nd Workshop on Fault-Tolerance for HPC at Extreme
Scale (FTXS), Boston, USA, June 2012.

[23] H. Menon, N. Jain, G. Zheng, and L. V. Kalé.
Automated load balancing invocation based on
application characteristics. In IEEE Cluster 12,
Beijing, China, September 2012.

[24] S. Michalak, K. Harris, N. Hengartner, B. Takala, and
S. Wender. Predicting the number of fatal soft errors
in los alamos national laboratory’s asc q
supercomputer. Device and Materials Reliability,
IEEE Transactions on, 5(3):329 – 335, sept. 2005.

[25] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In SC,
pages 1–11, 2010.

[26] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The
soft error problem: An architectural perspective. In
High-Performance Computer Architecture, 2005.
HPCA-11. 11th International Symposium on, pages
243–247. IEEE, 2005.

[27] X. Ni, E. Meneses, and L. V. Kalé. Hiding checkpoint
overhead in hpc applications with a semi-blocking
algorithm. In IEEE Cluster 12, Beijing, China,
September 2012.

[28] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. Kalé, and K. Schulten. Scalable molecular dynamics
with NAMD. Journal of Computational Chemistry,
26(16):1781–1802, 2005.

[29] B. Schroeder and G. Gibson. A large scale study of
failures in high-performance-computing systems. In
International Symposium on Dependable Systems and
Networks (DSN), 2006.

[30] J. Vetter. Hpc landscape application accelerators:
Deus ex machina? Invited Talk at High Performance
Embedded Computing Workshop, Sep. 2009.

[31] G. Zheng, L. Shi, and L. V. Kalé. FTC-Charm++: An
In-Memory Checkpoint-Based Fault Tolerant Runtime
for Charm++ and MPI. In 2004 IEEE Cluster, pages
93–103, San Diego, CA, September 2004.

12

http://en.wikipedia.org/wiki/Fletcher's_checksum
http://computation.llnl.gov/casc/ShockHydro/

	Introduction
	Automatic Checkpoint Restart
	Replication-enhanced Checkpointing
	Automatic Checkpoint Decision
	Interaction of Hard Error Recovery and Vulnerability to Silent Data Corruption
	Control Flow

	Design Choices
	Adaptation and Optimizations
	Implementation Details
	Optimizations

	Modeling Performance and Reliability
	Evaluation
	Setup
	Forward Path
	Restart from Errors
	Adaptivity

	Conclusions
	References

