

Edinburgh Research Explorer

ACSAR: Software Model Checking with Transfinite Refinement

Citation for published version:
Seghir, MN & Podelski, A 2007, ACSAR: Software Model Checking with Transfinite Refinement. in Model
Checking Software: 14th International SPIN Workshop, Berlin, Germany, July 1-3, 2007, Proceedings. vol.
4595, Springer Berlin Heidelberg, pp. 274-278. https://doi.org/10.1007/978-3-540-73370-6_19

Digital Object Identifier (DOI):
10.1007/978-3-540-73370-6_19

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Model Checking Software

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1007/978-3-540-73370-6_19
https://doi.org/10.1007/978-3-540-73370-6_19
https://www.research.ed.ac.uk/en/publications/03cd4eb8-f19d-454b-bd4e-2967583a2737

ACSAR: Software Model Checking with

Transfinite Refinement

Mohamed Nassim Seghir and Andreas Podelski

Universität Freiburg

1 Introduction

ACSAR (Automatic Checker of Safety properties based on Abstraction Refine-
ment) is a software model checker for C programs in the spirit of Blast [5],
F-Soft [6], Magic [4] and Slam [1]. It is based on the counterexample-guided
abstraction refinement (CEGAR) paradigm. Its specificity lies in the way it
overcomes a problem common to all tools based on this paradigm. The problem
arises from creating more and more spurious counterexamples by unfolding the
same (while- or for-) loop over and over again; this leads to an infinite or at
least too large sequence of refinement steps. The idea behind ACSAR is to ab-
stract not just states but also the state changes induced by structured program
statements, including for- and while-statements. The use of the new abstraction
allows one to shortcut such a “transfinite” sequence of refinement steps.

The divergence of the abstraction refinement loop is not just a theoretical
problem but one that hits us in our practical use of software model checker.
ACSAR is integrated in a higher order theorem prover, namely Isabelle [3]. It is
called, from within Isabelle, for discharging automatically generated verification
obligations. Thus, another specificity of ACSAR as a software model checker lies
in the way that it is used. We report on our experience of using ACSAR at the
end of the paper.

2 A motivating example

Let us illustrate the need of abstracting loops through the example in Figure 1(a).
This example is taken from the list of benchmarks that were used by McMillan
and Jhala [7]. It represents the concatenation of two strings. The key word
assume does not exist in the C language but it is used for the model checker to
express additional assumptions.

A classical refinement generates predicates i ≥ 200, j < 100, i + 1 ≥ 200, j +
1 < 100, i + 2 ≥ 200, j + 2 < 100 . . . i + 99 ≥ 200, j + 99 < 100. The loop
is unrolled as many times as the number of loop iterations in a real execution.
Moreover, if we want to perform a generic verification for arbitrary string length,
by substituting size for 100 in line 12 and 21, and size ∗ 2 for 200 in line 25, the
refinement process completely diverges. The problem is inherent to the CEGAR
scheme in its present form (based on state abstraction) where the loop (15, 16, 17,
18, 19, 15) is unfolded over and over again. In this case, neither the interpolation
approach nor the split prover method seem to help [7].

1 main(){
2
3 char x[101], y [101], z [201];
4 int i , j ,k;
5
6 i = 0;
7 while(x[i] != 0){
8 z[i] = x[i];
9 i++;

10 }
11 /∗ length of x is less than 100 ∗/
12 assume(i < 100);
13
14 j = 0;
15 while(y[j] != 0){
16 z[i] = y[j];
17 i++;
18 j++;
19 }
20 /∗ length of y is less than 100 ∗/
21 assume(j < 100);
22
23 z[j] = 0;
24 /∗ prove we don’t overflow z ∗/
25 if (i >= 200)
26 {ERROR: goto ERROR;}
27 }

1 main(){
2
3 char x[101], y [101], z [201];
4 int i , j ,k;
5
6 i = 0;
7 while(x[i] != 0){
8 z[i] = x[i];
9 i++;

10 }
11 /∗ length of x is less than 100 ∗/
12 assume(i < 100);
13
14 j = 0;
15 if (∗){
16 assume((j next − j)==(i next − i));
17 i = i next;
18 j = j next;
19 }
20 /∗ length of y is less than 100 ∗/
21 assume(j < 100);
22
23 z[j] = 0;
24 /∗ prove we don’t overflow z ∗/
25 if (i >= 200)
26 {ERROR: goto ERROR;}
27 }

(a) (b)

Fig. 1. Example in C code before and after the abstraction

3 Loop abstraction approach

As alternative to the iterative unfolding of loops, ACSAR approximates state
changes induced by the execution of the loop. The idea of abstracting transi-
tions was previously used to prove the termination of programs [2]. Our use of
transition abstraction is in the context of checking safety properties.

3.1 How does ACSAR abstract loops ?

ACSAR extracts the list of transition constraints corresponding to the program.
Bellow is the transition constraints corresponding to the loop (15, 16, 17, 18, 19,
15) from the example in Figure 1(a).

pc = 15 ∧ y[j] 6= 0 ∧ z′[i] = y[j] ∧ i′ = i + 1 ∧ j′ = j + 1 ∧ pc′ = 15 (1)
pc = 15 ∧ y[j] = 0 ∧ pc′ = 21 (2)

A transition constraint is a conjunction of atomic formulas, it expresses a binary
relation between a starting state and an arrival state of the program. In atomic
formulas, variables marked with primes are evaluated in the arrival state of the
transition, otherwise they are evaluated in the starting state. The special variable
pc represents the program counter. When an atomic formula does not contain
any variable marked with a prime it is called a guard. An atomic formula that
contains variables with primes is called an update. If a variable does not appear
marked with a prime in any atomic formula, then it means implicitly that its
value does not change when the transition is performed.

The next step is the abstraction phase. In this phase non relevant guards
are removed and constraints expressing relations between old and new values of
the variables are extracted. For example: the expression (i′ − i) = (j′ − j) is
automatically extracted by ACSAR as both variables i and j increase by the
same constant number within the loop. Transition constraints (1) and (2) are
replaced by their abstractions (1’) resp. (2’). To the difference of transition (1)
its abstraction (1’) does not loop but it approximates the effect of the loop over
the program variables. With this abstraction ACSAR succeeds to prove that the
program is safe.

pc = 15 ∧ i′ − i = j′ − j ∧ pc′ = 21 (1’)
pc = 15 ∧ pc′ = 21 (2’)

Question: How can one express the above abstraction of a loop in terms of a
source-to-source transformation on the C program? The problem is that a tran-
sition constraint expresses a constraint on the after-value of a transition, but a
program statement defines the after-value by the value of an expression. As of-
ten, the solution is very simple. We write the transition constraint as a program
expression (using an uninitialized auxiliary variable x next for the primed ver-
sion of the variable x) and use the program expression in an assume statement
and then add assignment statements of the form x = x next. See Figure 1(b).
The loop (15, 16, 17, 18, 19, 15) is replaced by a nondeterministic ’if’ block (the
‘nondeterministic’ expression is denoted *).

What do we gain with loop abstraction? The benefit is two folds:

– We obtain better performance in terms of time and space. Table 1 illustrates
a comparison between the loop abstraction approach and a simple approach
based on the weakest precondition for refinement. We apply both approaches
on different instances of the example of figure 1(a). Column size contains
different values of the size of input array variables x and y. Implicitly, the
size of z is 2 ∗ size. Using the simple approach, we clearly notice a nonlinear
increase of the verification time in function of instance size. With the loop
abstraction approach, the execution time is the same and relatively small for
all the instances.

– Using the loop abstraction approach, we can verify a generic version (sec-
tion 2) of the previous example. The abstract transition represents a param-

eterization of all paths corresponding to loop unfolding of different instances
of the example program.

instance size time number of states
simple loop abstraction simple loop abstraction

1 10 1.19 0.29 12 5

2 20 2.77 / 22 /

3 50 33.59 / 52 /

4 75 127.72 / 77 /

5 100 336.56 / 102 /

Table 1. Performance comparison between the loop abstraction approach and the
simple approach

4 ACSAR in short

ACSAR has the usual ingredients of a software model checker. It receives as input
a C file consisting of functions and data structures. Location labels are used to
specify a monitor for the property that we want to check. A global control-flow
graph is obtained by inlining function bodies into the corresponding call sites.
ACSAR translates the program into a set of transition constraints, its canonical
representation. The main kernel of ACSAR is composed of two parts: the search
engine that explores the state space (building the abstraction on the fly) and
the counter example analyzer which increases the precision of the search engine
when the abstraction is too coarse. For building the abstraction and, respectively,
for checking consistency of transitions, both parts interact with a parameterized
constraint solver such as Simplify. ACSAR builds the abstraction of loops on
demand, namely when the counter example analyzer has detected that a loop has
been unfolded twice. The threshold for the number of unfoldings is a parameter
which, for now, is set to two.

5 Experimental Evaluation

ACSAR is used in the Verisoft project1 as a back-end for the higher order in-
teractive theorem prover Isabelle [3]. Isabelle has a Hoare logic module for the
specification and verification of programs [9]. For a Hoare triple P c Q Isabelle
performs the proof of the postcondition Q in three steps: the proof that Q holds,
the proof that the program c terminates and the proof that no run time errors
occur during the execution of c under the precondition P . For this last step
Isabelle generates proof obligations expressing necessary conditions for a safe
execution of any command in the program c. For example, given the integer
variable x and the command x = x + 1, Isabelle generates the proof obligation
MAXint ≤ x ≤ MINint. The task of verifying such a proof obligation is au-
tomatically delegated to ACSAR. The overall goal is to minimize the ‘manual’

1 http://www.verisoft.de

interaction between the verification engineer and Isabelle. In the (ongoing) in-
teractive verification effort for the Vamos micro-kernel (which is being developed
within the Verisoft project), ACSAR automatically discharges about 75% of the
(automatically generated) verification obligations (the remaining 25% concern
properties that require variable quantification).

Outlook: We are planning to carry over methods for the generation of linear
invariants [8] to our approach for abstracting loops. We want also to handle
simple array assertions that involve quantifiers; e.g., ∀i (0 ≤ i < n) ⇒ a[i] = 0.

References

1. Thomas Ball and Sriram K. Rajamani. The Slam project: debugging system software
via static analysis. In POPL, pages 1–3, 2002.

2. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement
for termination. In SAS, pages 87–101, 2005.

3. Matthias Daum, Stefan Maus, Norbert Schirmer, and M. Nassim Seghir. Integration
of a software model checker into Isabelle. In LPAR, pages 381–395, 2005.

4. Sagar Chaki et al. Modular verification of software components in C. In ICSE,
pages 385–395, 2003.

5. Thomas A. Henzinger et al. Software verification with BLAST. In SPIN, pages
235–239, 2003.

6. Franjo Ivancic, Ilya Shlyakhter, Aarti Gupta, and Malay K. Ganai. Model checking
c programs using F-soft. In ICCD, pages 297–308, 2005.

7. Ranjit Jhala and Kenneth L. McMillan. A practical and complete approach to
predicate refinement. In TACAS, pages 459–473, 2006.

8. Michael Karr. Affine relationships among variables of a program. Acta Inf., 6:133–
151, 1976.

9. Norbert Schirmer. A verification environment for sequential imperative programs
in Isabelle/HOL. In LPAR, pages 398–414, 2004.

APPENDIX

A ACSAR the tool

A.1 Environment

ACSAR is written in Gnu C++ under the Linux operating system. It was tested
with success under the following versions of Linux: Debian, Suse and Gentoo.

A.2 Availability

A package containing the binary of ACSAR can be downloaded from the follow-
ing address: http://www.mpi-inf.mpg.de/∼seghir/ACSAR/ACSAR-web-page.html.

A.3 Application

ACSAR is used in the Verisoft project as a back-end for the higher order in-
teractive theorem prover Isabelle. Its role is to discharge runtime error guards,
mainly for: overflows and underflows, array out of bounds and NULL pointer
dereferences. Among the applications that we verified: the Vamos micro-kernel.
We are actually verifying a string library and the C0 compiler(C0 is a subset of
the C language). 25% of the functions constituting the C0 compiler were already
verified. Figure 2 shows program representation within the Isabelle proof envi-
ronment. Guards are given between ’{’ ’}’. The result of the verification after
calling ACSAR is shown in Figure 3. Figure 4 shows the case when a guard does
not hold, in this situation a counter example is generated.

B Demo

In this section we describe our demonstration plan. First, we consider example
of Figure 5 to show how to specify a property and verify whether it holds using
ACSAR. This example represents a routine from Linux-2.4.0 CD-ROM interface
device driver. For readability concerns, portions of the code that are not relevant
to the property that we want to check are omitted.

As verifier, one does not require to understand the functionality of the code
to be verified, however, one should know what to verify and how to specify it.
Fortunately, for our example of Figure 5, the developer documented his code by
adding the following comment:

Fig. 2. Program representation in Isabelle

Fig. 3. Result of Isabelle after calling ACSAR

Fig. 4. Case of counter example

The result register can be read 10 bytes at a time, a wait for

result to be asserted must be done between every 10 bytes

This constitutes for us an informal description of a behavioral property that
the implementation should fulfill. A formalization of this assertion is required
so that we can check it with ACSAR. For this, we use functions called by the
routine as stubs and exploit them to define a monitor for the property to be
checked. The function read result register is the one that reads the result
register and is result ready is the one that is called to wait for the result.
The specification can then be stated as follows: between every ten calls of func-
tion read result register we must call the function is result ready at least
once. We introduce the variable monitor, it is incremented each time the func-
tion read result register is called, this is illustrated in Figure 6. If monitor
becomes greater than ten then error label ERROR 1 is reachable, meaning that
the specification is violated. When is result ready is called, monitor is set to
zero.

We call acsar with the command:
acsar --reach --mainproc get result --file linux cd driver.c

Option ’reach’ specifies that we want to check reachability, ’mainproc’ spec-
ifies the root procedure and ’file’ refers to the source file of the program that
we want to verify. As result, ACSAR returns a counter example. See Figure 7.
Local variables are renamed by concatenating their names with the name of the
function in which they are declared. Numbers at the beginning of lines represent
pc internal values (not line numbers in the source file). The counter example says
that variable monitor becomes greater than ten after it is incremented once and
we jump to ERROR 1. How can this happen? In fact, this scenario is possible
as monitor was not initialized before the call to read result register at line
9 in Figure 5. Thus, after this call monitor can have any value. By initializing
monitor to zero before line 9, ACSAR answers that the program is safe.

B.1 Example for loop abstraction

Now we present a case where loop abstraction is required. We take the example
of Figure 1(a), previously presented in this paper. By calling ACSAR on that
example we notice that the verification process loops without terminating. Let
us now call ACSAR with the command:

acsar --reach --mainproc main --file string concat1.c --loopsumr

The ’loopsumr’ option tells ACSAR to abstract a loop if it is unfolded more
than twice during the verification. This time ACSAR is able to prove the safety
of the program. To see the transformation occurring to the program, we use
the option ’printloopsumr’ that displays transition constraints constituting the
loop and the abstraction of the loop as a single transition constraint. See Fig-
ure 8. pc 1 represents the value of pc after performing the transition. Like in
the C language ’&&’ expresses the logical AND. The conjunct appearing before

the occurrence of pc 1 represents the guard and the one appearing after the
occurrence of pc 1 represents the update. We notice in the abstraction that new
variables temp var 1 and temp var 2 are introduced. They correspond respec-
tively to the values of i and j after executing the loop. Transition constraints
constituting the original loop are disabled.

1 static void

2 get result (unsigned char ∗result buffer,
3 unsigned int ∗result size)
4 {
5 unsigned char a, b;
6 int i , res ;
7 unsigned int retry count;
8
9 b = read result register ();

10 if (ERROR == 1) goto ERROR 1;
11 if ((a & 0xf0) != 0x20)
12 {
13 if (b > 8)
14 {
15 for (i=0; i<8; i++)
16 {
17 ∗ result buffer = read result register ();
18 if (ERROR == 1) goto ERROR 1;
19 //
20 }
21 b = b − 8;
22 while (b > 10)
23 {
24 res = is result ready ();
25 while ((retry count > 0) && (!res))
26 {
27 res = is result ready ();
28 //
29 }
30 res = is result ready ();
31
32 //
33
34 for (i=0; i<10; i++)
35 {
36 ∗ result buffer = read result register ();
37 if (ERROR == 1) goto ERROR 1;
38 }
39 b = b − 10;
40 }
41 if (b > 0)
42 {
43 res = is result ready ();
44 //
45 }
46 }
47 while (b > 0)
48 {
49 ∗ result buffer = read result register ();
50 if (ERROR == 1) goto ERROR 1;
51 b−−;
52 }
53 }
54 goto end;
55 ERROR 1:;
56 end:;
57 }

Fig. 5. CD-ROM driver routine

1 int is result ready ()
2 {
3 monitor = 0;
4 if (ACSAR NONDET)
5 {
6 return 0;
7 }
8 else

9 {
10 return 1;
11 }
12 }
13
14 read result register ()
15 {
16 ++ monitor;
17 if (monitor > 10)
18 ERROR = 1;
19 else ERROR = 0;
20 }

Fig. 6. Monitor corresponding to the
CD-ROM driver

Fig. 7. Counter example generated by ACSAR

Fig. 8. Loop abstraction computed by ACSAR

