
ACSI – Artifact-Centric Service Interoperation

D2.2.2

Model Checking Tool for Artifact Interoperations (MOCAI) –

Iteration II

Project Acronym ACSI
Project Title Artifact-Centric Service Interoperation
Project Number 257593
Workpackage 2 Formal-based techniques and tools
Lead Beneficiary Imperial College of Science, Technology and Medicine
Editors Pavel Gonzalez Imperial

Andreas Griesmayer Imperial
Contributors Francesco Belardinelli Imperial

Alessio Lomuscio Imperial
Fabio Patrizi UoR

Reviewers Dirk Fahland TU/e
Giuseppe De Giacomo UoR
Marco Montali Bolzano

Dissemination Level Public
Contractual Delivery Date 01/06/2012
Actual Delivery Date
Version 2.0

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement no. 257593

Ref. Ares(2012)669931 - 06/06/2012

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement no. 257593

Abstract

This report contains documentation for the Deliverable 2.2.2: Model Checking Tool for Artifact
Interoperations (MOCAI) of Work Package 2 after 24 months in the ACSI project. We present
the requirements that serve as a guide for selecting the necessary features of the toolkit. We
outline a methodology to model check declarative models of artifact-centric systems by translating
GSM-based artifact-centric systems into a symbolic transition system used for symbolic model
checking. A notable feature of our approach is that it is completely automatic. We implement
the methodology in the GSMC model checker. The toolkit takes files directly from the web-based
GSM engine Barcelona as input. We also provide preliminary results on the verification of
artifact-centric systems using GSMC and demonstrate the applicability on an example from a
real-world application.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 3 of 47

Document History

Version Date Comments
V0.1 01-04-2011 Document created
V0.9 15-05-2011 Internal review version (Iteration I)
V1.0 30-05-2011 Final version (Iteration I)
V1.1 20-04-2012 Initial draft (Iteration II)
V1.9 15-05-2012 Internal review version (Iteration II)
V2.0 30-05-2012 Final version (Iteration II)

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 4 of 47

Table of Contents

Abstract . 3
Document History . 4
List of Tables . 6
List of Figures . 7
Acronyms . 8
1 Introduction . 9
2 Requirements . 11

2.1 Use Case: FRIS . 11
2.2 Requirements Listing . 14

3 State of the Art . 17
3.1 Model Checkers . 17

3.1.1 NuSMV 2 . 17
3.1.2 SPIN . 17
3.1.3 MCMAS . 18
3.1.4 UPPAAL . 19
3.1.5 POEM . 19
3.1.6 Roméo . 20

3.2 Discussion . 20
4 Methodology . 23

4.1 Business Artifacts with GSM Lifecycles 23
4.2 Encoding . 26
4.3 Transition Relation . 27

4.3.1 Execution of an Event . 27
4.3.2 Execution of the PAC Rules . 27
4.3.3 Creating a new B-Step . 28

4.4 Agent Behaviour . 29
4.5 Verification . 29

5 GSMC: System Specification . 31
5.1 Barcelona GSM Models . 32
5.2 Input Language for Requirement Specification 34
5.3 Data . 36
5.4 PAC Rules . 36
5.5 Quick Reference Guide . 39

6 Experimental Results . 40
6.1 Fixed Price Scenario . 40
6.2 Verification . 41
6.3 Toolkit Evaluation . 43

7 Conclusions . 45

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 5 of 47

List of Tables

1 Overview of the Negotiating stage. 14
2 Summary of model checkers. 21
3 PAC rule templates. 24
4 Performance results. 44

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 6 of 47

List of Figures

1 Overview of the FRIS ecosystem. 11
2 GSM model for Research Proposal Evaluation artifact type. 13
3 Incremental computation of GSM B-step. 24
4 Partial polarized dependency graph of Research Proposal Evaluation. 25
5 B-steps and micro steps of GSM. 26
6 Architecture of GSMC. 31
7 Excerpt of a Barcelona model . 33
8 Property formulas for GSMC . 34
9 Overview of the Fixed Price scenario. 40
10 Structure of ‘Evaluating’ and ‘Tracking Of Evaluations’ stages. 42
11 Structure of the ‘Preparing FPR’ stage. 42

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 7 of 47

Acronyms

Acronym Explanation
ATL Alternating-time Temporal Logic
CEGAR Counterexample Guided Abstraction Refinement
CSP Communicating Sequential Processes
CTL Computation Tree Logic
DBM Difference Bound Matrix
ECA Event-Condition-Action
FD First Draft
FRIS Flanders Research Information Space Program
FSM Finite-state Machine
GSM Guard-Stage-Milestones
GUI Graphical User Interface
ISPL Interpreted Systems Programming Language
LFS Local First Search
LTL Linear Temporal Logic
MCK Model Checking Knowledge
MCMAS Model Checker for Multi-Agent Systems
MCTK Model Checking Time and Knowledge
OBDD Ordered Binary Decision Diagram
PAC Prerequisite-Antecedent-Consequent
POEM Partial Order Environment of Marseille
PROMELA Process Meta Language
SMV Symbolic Model Verifier
SPIN Simple Promela Interpreter

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 8 of 47

1 Introduction
One of the objectives of the ACSI project is the development of a verification toolkit that will
implement the model checking techniques for artifact-centric systems defined in Task 2.1 (T2.1)
of Work Package 2 (WP2). This document focuses on the specification for the toolkit.

System verification consists in proving that a design solution satisfies a set of requirement
specifications. In particular, model checking [CGP99] is a verification technique where the system
is represented by a mathematical model, and the requirement specifications are formulated in
some (typically modal) logic. This reduces the verification task to checking whether the model
satisfies particular logical formulae. A positive outcome guarantees that the system behaves
as intended before it is deployed. Model checking has many advantages over other approaches,
such as testing or theorem proving: it is fast, handles partial specifications, and in some cases
produces counterexamples. It has been shown to be a suitable technique for the verification of
reactive systems, distributed systems, and multi-agent systems [LQS08].

ACSI Interoperation Hubs are, potentially, huge IT environments supporting large number
of services and involving many stakeholder organisations and independent users. It is therefore
desirable to have a mechanism in place to ensure the validity of their designs, and model checking
seems to be a promising technique to carry out this task.

Although model checking provides a powerful and efficient means of verification, it is generally
limited to finite-state systems usually modelled as finite-state machines. However, many real
systems, e.g., databases, do not belong to this class. In particular, artifact-centric systems
rely heavily on their underlying databases and are specified by means of rich formalisms such
as Guard-Stage-Milestones1 (GSM) [HDF+11, HDM+11], a novel declarative formalism for
describing lifecycles and processes. These two facts present a major obstacle for the verification
of artifact-centric systems in that they give rise to infinite-state, non-trivial system behaviours.
In order to overcome such obstacles, the model checking toolkit should fulfil the following key
requirements. It should:

• be able to deal with suitable subclasses of infinite-state systems, possibly through approxi-
mations to finite models;

• implement a procedure for the transformation of declarative specifications of system
lifecycles into state machines, i.e., the structures model checkers usually take as input;

• provide a formalism for requirement specification to be able to express relationships among
data;

• accept inputs specified in suitable fragments of modal and/or first-order logics;

• ideally also provide a mechanism to model and verify time-related properties.

Building a new model checker is a very difficult task, and in addition, the points above pose a
serious challenge themselves. We investigated whether it was necessary to start completely from
the beginning since many model checkers already exist. And although none of them can be readily
used for artifact-centric systems, we considered if some may serve as a suitable baseline for the
development of our verification toolkit. However, the specific issues of GSM-based artifact-centric
systems are so different from the technology currently used that it was preferable to implement
a new model checker rather than extend an existing one.

1This formalism is being developed by ACSI in collaboration with IBM T.J. Watson laboratories and will be
used for the implementation of ACSI Interoperation Hub in the following year.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 9 of 47

The development of the toolkit has a close relationship with other results of the ACSI
project. Above all with T2.1 (WP2), that will serve as a theoretical basis for the model checker.
The toolkit will implement the verification techniques developed in T2.1, which in turn will
be grounded on the ACSI Artifact Abstract Model (A3M) defined in WP1. In particular, the
toolkit will work with the GSM instantiation of A3M . Lastly, both evaluation and testing of
the toolkit will be carried out on the use cases identified in WP5. For this reason, the running
example outlined in this document is the Flanders Research Information Space Program (FRIS)
use case described in T5.1 (WP5).

The rest of the document is organized as follows: Section 2 presents the requirements
placed on the toolkit for the verification of artifact-centric systems, along with a motivating
example based on the use case from T5.1 (WP5). Section 3 reviews the state-of-the-art model
checkers and discusses our decision to build a new model checker instead of using a baseline tool.
Section 4 presents a methodology for encoding of GSM, generation of the transition relation,
and the verification. Section 5 describes the input language, the system architecture, and the
implementation details of the toolkit, which we call GSMC. Section 6 reports results on the
verification of GSM-based artifact-centric systems using GSMC. Finally, section 7 concludes the
document.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 10 of 47

2 Requirements
In this section we describe the requirements placed on the tool for the verification and synthesis
of artifact-centric systems. These requirements are derived from the work description for T2.2
(WP2) and are illustrated by a motivating use case from T5.1 (WP5). We begin by presenting
the use case.

2.1 Use Case: FRIS
To illustrate the scenarios in which the ACSI framework may be applied, we briefly present the
Flanders Research Information Space (FRIS) program of the Flemish government, which is one
of the two pilot projects from WP5.

The FRIS program is centred around three strategic goals: (i) to accelerate the innovation
chain by efficient and fast access to research information for all relevant stakeholders; (ii) to offer
improved customer services; and (iii) to increase efficiency and effectiveness of the R&D policy.
These goals are expected to be achieved through the change of the management process and
service development. These services and processes should support stakeholders in the innovation
ecosystem (see Figure 1) in facilitating their tasks. An important aspect of the FRIS program is
making the involved data public.

Figure 1 – Overview of the FRIS ecosystem.

The case study focuses primarily on the management of research programs. There are several
agencies that provide funding to various research projects. Research programs are classified as
either big, or small. Big projects are internationally oriented and usually count between fifty
and sixty research proposals, while small projects are nationally oriented and can be well over
one thousand research proposals. It is assumed that a funding agency has a permanent expert

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 11 of 47

panel for the review process. This panel is the only entity involved in the reviewing of small
research project proposals. For big projects, an external review board gets involved as well. The
following stakeholders play a role in the FRIS use case:

Funding Program Manager (PM). A PM is the manager of a research program. Her job
starts with a Call for Proposals and ends when all the proposals are processed.

External Reviewer (ER). An ER evaluates the research proposals that she is assigned to if
she accepts an invitation for the external review from the PM.

Principal Investigator (PI). A PI is the person responsible for a particular research proposal
and the execution of the research project, if the proposal is successful.

Project Officer (PO). A PO supervises research projects on behalf of the funding agency.

Legal Representative (LR). An LR represents the PI of a research proposal in a legal sense.

Panel Member. She is a member of the Expert Panel responsible for evaluating and monitoring
the research proposals she is assigned to.

Public. The general public should be able to access publicly available information regarding
current research projects.

The artifact-centric approach is well suited to this scenario as the stakeholders share a
common environment within the ecosystem. A preliminary version of the FRIS use case consists
of three key conceptual entities modelled as artifacts. This model allows for the creation and
the management of a research program, the submission and evaluation of research proposals
(submitted in response to a Call for Proposals related to the research program), and the execution
and supervision of a research project resulting from a successful proposal. The three artifact
types are:

Program Evaluation Cycle. This artifact type models research programs, including the
evaluation of proposals but excluding the execution of projects. An instance is created by
the PM and ends when all proposals have been evaluated.

Research Proposal Evaluation. This artifact type deals with the data and lifecycle of re-
search proposals. An instance of this type is created when a PI registers in response to a
Call for Proposals.

Research Project Execution. This artifact type models running research projects. The PO
supervises the execution of a research project, while the PI periodically submits a report.

In the rest of this section we focus on the Research Proposal Evaluation (RPE) artifact type.
The specification of the artifact is given in the GSM formalism [HDF+11, HDM+11].

The Information Model of RPE contains an integrated view of the relevant information
about an RPE instance. It is essentially a set of attributes such as name of the proposal, PI’s
contact information, requested budget, etc. The Lifecycle Model specifies the possible ways an
RPE instance might progress through stages in response to events. Figure 2, where � represents
guards, ◦ represents milestones, illustrates the stages of the RPE artifact type. The Negotiating
stage is detailed in Table 1. Guards are quantified Boolean formulas that control when a stage
becomes active. Milestones capture the objectives that can be achieved. The stakeholders are
responsible for closing the stage by achieving some of these objectives.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 12 of 47

Stakeholders

PIPM ER

Program Manager Principal Investigator External Reviewer

rejected

refused

approved

Evaluating
on evaluation

deadline / evaluated
submitted

Reviewer

Evaluating
reviewer evaluated

on reviewer

evaluation

Drafting
on submission

deadline / submitted

Uploading uploadedon upload

Deciding

evaluated on accept / accepted

on reject / rejected

Revisioning
on revision deadline /

revised

[this_artifact.typ == Big]

acecepted

Uploading uploadedon upload

Negotiating

on approve / approved

on refuse / refused

revised

PI

PI

ER

PM

Figure 2 – GSM model for Research Proposal Evaluation artifact type.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 13 of 47

Stage Name Negotiating
Description Final negotiations regarding the proposal take place in this stage.
Guards ProjectType=Big AND Deciding.Accepted=True AND

Revisioning.Revised=True
Milestones Negotiating.Approved \ onApprove

Negotiating.Refused \ onRefuse
Stakeholders PM , PO, PI, and LR

Table 1 – Overview of the Negotiating stage.

There is a wide range of low-level and high-level properties that should be satisfied in a
suitable design of the RPE artifact type. For instance, a simple property that is typically of
interest is reachability : we may want to know if a research proposal can eventually be approved.
This can be specified by a CTL formula2 as follows:

EFapproved .

More complex specifications can be expressed using combinations of CTL and epistemic
operators. For example, we may want to verify that for a big proposal, whenever it is accepted
and revised, everybody from the group Γ of stakeholders consisting of PM , PO, PI, and LR
will eventually know that the final negotiation will be either approved or rejected. This property
can be captured by the following modal formula:

AG((big ∧ accepted ∧ revised)→ AFEΓ(approved ∨ rejected)),

where Γ = {PM , PO, PI, LR} is the group of stakeholders.
We may also be interested in the ability of the stakeholders to achieve certain temporal-

epistemic goals. For example, we may want to check if Γ can cooperate during the negotiation to
eventually reach a consensus and approve the proposal. This can be expressed by the following
ATL formula:

AG((big ∧ accepted ∧ revised)→ 〈〈Γ〉〉Fapproved).

2.2 Requirements Listing
In this section we consider the requirements that a suitable model checking toolkit for the
verification and synthesis of artifact-centric systems needs to fulfil. These requirements will
serve as a guide for the development of the methodology and the actual implementation of the
GSMC toolkit. Verifying full GSM has its difficulties and may not be viable to implement. Thus,
we identify fragments that are essential and must be present in the final version of the model
checker, whilst others provide advanced functionality if they are included but do not compromise
the verification if left out.

R1 Release the toolkit as an open source software.
2The modal operators used in this section have the following intuitive semantics. EFϕ: there exists a path

where ϕ eventually holds; AGϕ: along all paths ϕ holds everywhere; AFϕ: on all paths ϕ eventually holds; EΓϕ:
everybody in group Γ knows ϕ; 〈〈Γ〉〉F : group Γ can eventually enforce ϕ.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 14 of 47

Firstly, many leading model checkers, such as NuSMV and MCMAS, are publicly available and
distributed under various free software licenses. We expect that our toolkit will continue in this
tradition.

The raison d’être of the model checker is to offer functionalities for the verification of
artifact-centric systems. Thus, an important requirement is, of course, the capability of modelling
such systems. WP1 introduces the ACSI Artifact Abstract Model, referred to as A3M , which
provides the conceptual and formal basis for the artifact layer of the Artifact Paradigm. Three
instantiations of A3M were proposed: one based on finite-state machines (FSM) [CDH+08], one
based on Proclets [vdABEW01], and one based on Guard-Stage-Milestones (GSM) [HDF+11,
HDM+11]. We focus our efforts on GSM as it is planned to be the standard in the implementation
of the ACSI Interoperation Hub. Since the implementation will be based on the prototype GSM
engine, Barcelona, the model checker will be required to work with models specified by this
engine. Barcelona evolved from the Siena system [CDH+08], and as such it captures GSM models
directly in an XML format.

R2 Translating declarative specification of artifact lifecycles into finite-state machines.

The major difference between GSM models for artifact-centric systems and the FSM models
used by most static model checkers is that lifecycles specified in GSM are substantially more
declarative than the FSM variants, although GSM is able to accommodate the FSM approach.
The declarative style of artifact lifecycles is based primarily on conditions and rules, and supports
hierarchy and parallelism within a single artifact instance. One way of translating a GSM model
is by using the topological sort of the polarized dependency graph (see section 4) associated with
the model, which specifies the well-formedness condition for the model.

R3 The support of first-order features in the modelling language.

First-order logic and its fragments appear in several different contexts in artifact-centric systems.
Crucially, a sentry for an artifact type is an antecedent having the form “on an event if a
condition is satisfied”, formally defined as expression on ξ(x) if ϕ(x), where triggering event
ξ(x) is an event expression and condition ϕ(x) is a well-formed first-order formula over instances
of this artifact type. Therefore, we need support for first-order constructs occurring in these
conditions. In addition, according to WP1, the states of an artifact-centric system can be
modelled as relational database instances. This implies that our verification framework needs to
be able to express relationships among data, and this will in turn involve appropriate fragments
of first-order logic. Temporal Logic formulas are also used in A3M for dynamic constraints that
describe lifecycles of GSM artifact types.

R4 An implementation of abstraction techniques for verification of infinite-state systems.

A major obstacle for model checking artifact-centric systems arises from the fact that no
assumption can be made on the domains of values in the underlying database of the Information
Model. Since these domains can be infinite, an artifact can have infinitely many states. Model
checking infinite-state systems is one of the biggest challenges for the verification community. A
complete verification algorithm for an arbitrary infinite-state system cannot be designed as the
verification is, in general, undecidable.

One way of dealing with this problem is to place restrictions on the class of systems and/or on
the specification languages and build a finite, abstract model of the original system under these
restrictions. The abstract model can be then verified using standard model checking algorithms.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 15 of 47

This method is called abstraction, and T2.1 (WP2) currently investigates abstraction techniques
suitable for artifact-centric systems.

R5 The support of the specification languages identified by T2.1 (WP2).

Another cornerstone requirement for the model checking toolkit concerns specification languages
for artifact-centric systems. These are the languages used by the modeller to specify the properties
of the system she wants to verify. Basic temporal logics, such as LTL and CTL, are commonly
used as specification languages for simple properties such as: reachability, i.e., whether a given
state can be reached from an initial state, safety, i.e., that something undesirable will never
happen, and liveness, i.e., that something desirable will eventually happen. However, much richer
and expressive specification languages, such as ATL, epistemic, and deontic logics, seem to be
useful in the context of artifact-centric systems.

One of the objectives of T2.1 (WP2) is to explore the prospective specification languages
that are grounded on models for artifact-centric systems developed in WP1. Once the suitable
languages are identified, they will be amended for actual use by the model checker.

Note that requirements R6 and R7 are optional. They would provide advanced functionality
but may not be fully implemented due to their complexity and the higher priority of the
requirements above.

R6 A mechanism to model timeout behaviour and to verify timing properties.

The notion of time is an important aspect of A3M . On one hand, a timer may trigger events on
timeouts, while, on the other hand, tasks performed by external actors take a certain amount of
time. The actors typically carry out many tasks concurrently and we want to reason about the
order in which they complete these tasks.

We consider two ways of modelling time: discrete time and dense time. In the first case, the
clock values are natural numbers, whereas in the second case, they are real numbers. Model
checking discrete time properties is easier [ACD93], although events that occur between two
consecutive clock ticks are indistinguishable in time. In A3M , discrete logical timestamps record
the time when an event occurrence is incorporated into the system. Therefore, we can use the
global clock to synchronise the system with actors and eliminate the necessity of dense time.
However, introduction of the clock complicates symbolic model checking techniques, and so
explicit representation of time may not be feasible to implement. Instead, certain specifications
involving time can be implemented via specific propositions in ways to be explored.

R7 An implementation of game structures for synthesis.

The last, optional requirement relates to synthesis. Whilst verification uncovers deviations from
a given specification in an already built system, by synthesis one can build systems that are
compliant by construction. However, synthesis of even a finite-state system is much more difficult
in terms of computational complexity than its verification. This composition of systems can be
modelled using game structures [Alu99]. A game structure is basically an extension of a Kripke
structure, where state transitions result from choices (either turn-based, or concurrent) made by
players.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 16 of 47

3 State of the Art
In this section we provide a short review of several leading model checkers, discuss their suitability
as a potential baseline for the verification toolkit, and explain our decision to build a new model
checker rather than extend an existing one.

3.1 Model Checkers
Many model checkers for different purposes have been developed in recent years. In the following
subsections we survey some of the tools that have the potential to be employed in model checking
of artifact-centric systems.

3.1.1 NuSMV 2
Version 2 of NuSMV [CCG+02] is a symbolic model checker originated from the reimplementation
and extension of SMV, the first BDD-based model checker developed at CMU. The main novelty
in the current version is the integration of model checking techniques based on propositional
satisfiability (SAT) [BCCZ99].

The tool is written in ANSI C and provides a well structured, open and flexible platform for
model checking. The different components and functionalities of NuSMV have been isolated and
separated in modules, and interfaces between modules have been provided. This reduces the
effort needed to extend the model checker. NuSMV has been designed as starting framework
for the implementation and evaluation of new verification techniques. It has also been used as
verification engine for tools in different application areas, ranging from formal validation of
software requirements, to automated task planning.

NuSMV is able to process files written in an extension of the SMV language. In this language, it
is possible to describe finite state machines by means of declaration and instantiation mechanisms
for modules and processes, corresponding to synchronous and asynchronous composition, and to
express a set of requirements in CTL and LTL. NuSMV can work in batch mode or interactively,
with a textual interaction shell. It can also check real-time CTL specifications and computations,
which specify discrete timing constraints.

NuSMV has been successfully adopted to model check both service-oriented architectures
and multi-agent systems.

3.1.2 SPIN
SPIN [Hol03] is an open-source software tool originally developed at Bell Labs and used for the
efficient formal verification of distributed software systems. The kernel has been implemented in
ANSI standard C and the graphical interface has been developed using Tcl/Tk.

SPIN uses PROMELA as input language. PROMELA is a non-deterministic language, loosely
based on Dijkstra’s guarded command language with I/O operations based on Hoare’s CSP
language. SPIN also supports embedded C code as part of the model specification, which allows
for direct verification of a C implementation of a system.

SPIN can be used for simulating behaviours of the system, as well as for exhaustive verification
of the specified correctness, safety, and liveness properties. The theoretical foundation of its
verification technique is based on the automata-theoretic approach. In addition to checking

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 17 of 47

violation of assertions in PROMELA code, it can check if a property represented by an LTL
formula is maintained by a system. The system, described in PROMELA, is modelled by finite-
state automata. The negation of the LTL formula is modelled by a Büchi automaton. The
synchronous product of the automata for the system and the property is generated, and if the
language accepted by the product is empty, the property holds in the system. Otherwise, an error
execution violating the property is reported. SPIN employs the explicit state model checking
technique and generates the state space of a system on-the-fly. This means that it avoids the
need to statically pre-compute the state space before verification.

The main limitation of SPIN is that it supports only LTL formulae. A richer, more expressive
specification language is required for the verification of properties in artifact-centric systems.
SPIN is also not a specialised model checker for multi-agent systems.

3.1.3 MCMAS
MCMAS [LQR09] is an OBDD based symbolic model checker specifically designed for multi-agent
systems. It supports a number of modalities including CTL, ATL, and epistemic operators.
The input language of MCMAS is Interpreted Systems Programming Language (ISPL), which
has a rich specification capability to describe agents and multi-agent systems. Interpreted
Systems [CGP99] provide the formal semantics of ISPL programs.

MCMAS is implemented in C/C++ and exploits the CUDD library [Som12] for BDD
operations. The main components and the structure of the implementation can be summarised
as follows:

• Input to the model checker is an ISPL file which is parsed and checked for syntax errors
using the compiler tools Flex and GNU Bison. Various parameters are stored in temporary
lists that are processed in the next step.

• The lists are traversed to build the OBDDs, created and manipulated using the CUDD
library, for the verification algorithm. The set of reachable states is also computed.

• The formulae to be checked are parsed.

• Verification is performed by running the algorithm introduced in [RL04]. An OBDD
representing the set of states in which a formula holds is computed.

• The OBDD for the set of reachable states is then compared to the OBDD corresponding to
each formula. If they are equivalent, the formula holds in the model and the model checker
produces a positive output. Otherwise, the model checker produces a negative output.

• MCMAS supports the creation of counterexamples for universal formulae (beginning with
path quantifier A) to demonstrate how a universal formula is violated in a model, as well
as witnesses for existential formulae (beginning with path quantifier E) if an existential
formula holds in a model. MCMAS is also able to generate Graphviz files which represent
counterexamples and witnesses for the provided model and for formulae.

• MCMAS also provides an Eclipse plugin which supports the creation of skeleton ISPL files,
as well as syntax highlighting for them, and provides a graphical interface for performing
the verification and examining the eventual counterexample/witness.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 18 of 47

MCMAS is not the only tool specifically designed for model checking multi-agent systems.
Other available model checkers are MCK [GvdM04], MCTK [SSL07], and Verics [NNP+04].
However, MCMAS, to the best of our knowledge, is the only one implementing the ATL
specification language.

3.1.4 UPPAAL
UPPAAL [BLL+98] is an integrated tool environment for modelling, validation and verification
of real-time systems developed in collaboration between the universities of Uppsala and Aalborg.
The tool models real-time systems as networks of timed automata [Alu99] extended with data
types such as bounded integers and arrays. It is therefore appropriate for systems where timing
aspects are critical and that can be modelled as a collection of non-deterministic processes
with finite control structure and real-valued clocks, communicating through channels or shared
variables. UPPAAL2k, the current version of UPPAAL, is a client/server application implemented
in Java and C++ and available for Windows and Linux.

UPPAAL consists of three main modules: a description language, a simulator, and a model
checker. The description language is a non-deterministic guarded command language with clock
and data types, which serves as a modelling and design language for the system description. The
simulator serves as a validation tool which provides graphical visualization and examination of
possible dynamic behaviours of a system description in early design stages, thus allowing for
fault detection prior to the more computationally demanding verification. The model checker
exhaustively verifies dynamic behaviour of the system. It automatically checks safety and liveness
properties by reachability analysis of the symbolic state space, in which states are represented
by constraints, and also supports a simplified version of CTL, which does not allow nesting of
path formulae.

The application of the on-the-fly searching technique and the DBM symbolic technique, which
reduces verification problems to manipulation and solving of constraints, are crucial elements
for the efficiency of the model checker. To facilitate debugging in case verification of a particular
real-time system fails, the model checker may generate diagnostic traces that explain why a
property is not satisfied by a system description. The diagnostic traces can be automatically
loaded and graphically visualized using the simulator for the subsequent investigation.

3.1.5 POEM
POEM [NM10] is a modular model checking tool built to support several input languages, as
well as several analysis and solving algorithms. Like many other model checkers, POEM uses an
automaton-based internal model. It supports verification of both discrete systems and real-time
systems. POEM has the basic structure of a compiler as it consists of three interconnected
modules: a frontend performing syntactic and semantic analysis of an input model, a core
performing a model transformation, and a backend that implements solving algorithms to verify
the given property. The core then transforms the results into an XML file that is readable by a
graphical interface. This kind of architecture is frequently used in model checkers and originally
introduced in SPIN.

The frontend currently supports models written in UPPAAL or Verimag’s IF2.0 language
and transforms them into a common format. There are two backends. The original backend was
based on a state space exploration with the underlying algorithms built around partial order
reduction methods, and in particular Mazurkiewicz trace theory. For model checking of discrete

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 19 of 47

systems, it employs an explicit model checking technique, LFS, with partial order reduction,
and for real-time counterpart, it uses a DBM-like data structure accompanied by partial order
reduction. The new SAT backend performs a bounded model checking: given a multi-threaded
program and a reachability property, a SAT formula is constructed, such that it is satisfiable if
and only if a state with the property can be reached by an execution of the program with up to
some bounded number of multisteps.

The implementation language of POEM is Objective Caml. This choice is due to the
advantages of functional programming languages for compiler writing, the efficiency of the
language and the availability of non-functional features. However, the performance critical
algorithms are delegated to external software written in C, and the GUI is implemented in Java.
The disadvantage of POEM is that it does not check CTL or LTL formulae and only checks
reachability.

3.1.6 Roméo
Roméo [GLMR05] is an integrated tool environment for modelling, validation and verification
of real-time systems modelled as Time Petri Nets or Stopwatch Petri Nets, extended with
parameters. It consists of computation modules written in C++ and a graphical user interface,
written in Tcl/Tk, to edit and design Time Petri Nets.

As a design helper, Roméo implements on-the-fly simulation and reachability model-checking
of Time Petri Nets and allows the early detection of some modelling issues during the conception
stage. In addition to the on-the-fly simulation that makes simple design testing possible, Roméo
provides an on-the-fly model-checker for reachability. A property over markings can be expressed
and then the reachability of a marking satisfying the property can be tested. The tool returns a
trace leading to such a marking if reachable. The model checker allows for verification of more
complex properties expressed by observers that translate a property into a reachability test.
This is the main method used to study the behaviour of a Time Petri Net.

In addition to on-the-fly model checking for reachability, Roméo implements different the-
oretical methods to translate Time Petri Nets into automata, timed automata or stopwatch
automata. These models can be then verified against properties specified in temporal logics using
an external model checker, such as UPPAAL. The first of the main methods for the translation
is a structural transformation of a Time Petri Nets into a timed-bisimilar synchronized product
of timed automata. The second method, a state space computation based translation, consists
of the computation of the state class graphs that provide finite representations for the behaviour
of bounded nets preserving their LTL properties.

The on-the-fly model checker of Roméo can only verify reachability in a Time Petri Net. For
the richer specification language it translates the model into automata and uses UPPAAL as an
external tool for model checking against these specifications. Thus Roméo suffers from the same
shortcomings as UPPAAL.

3.2 Discussion
Building a completely new model checker is a complex and challenging task. The best tools
currently available have been in development for many years, in some cases even decades. Table 2
summarises the features of the model checkers surveyed above. However, none of them can be
applied to the verification of artifact-centric systems off-the-shelf due to the GSM declarative
approach combined with the need of supporting data.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 20 of 47

Name Modelling Specification Model Checking Timing Performance
Language Language Technique Properties

NuSMV 2 SMV LTL, CTL, Symbolic Discrete Very good
RTCTL (OBDD, SAT) time

SPIN PROMELA LTL Explicit No Medium
MCMAS ISPL ATL, CTLK Symbolic (OBDD) No Good
UPPAAL Timed Subset of Explicit & Symbolic Dense Good

automata, C TCTL (DBM) time
POEM Timed Reachability Explicit & Symbolic Dense Good

automata (LFS, DBM-like) time
Roméo Time Subset of Explicit Dense Medium

Petri Nets TCTL time

Table 2 – Summary of model checkers.

To alleviate the efforts of constructing an entirely new tool for GSM, D2.2.1 identified
a plan of work that involved a compiler from GSM to a high-level modelling language that
is supported by a model checker. The envisaged language was ISPL, the input language of
MCMAS. Continued work on the topic during the second year showed, however, that there is
a large disparity between the modelling language ISPL and GSM itself, which would lead to
difficulties relating to requirements R2 and R4: Although data abstraction could be performed
at the compiler level to produce a simplified ISPL model, the transformation of declarative
GSM into FSM is expensive to model because the application of ground PAC rules must obey a
specific order. Because MCMAS non-deterministically executes all enabled transitions in the
ISPL model, this would require to add additional variables to resolve all non-determinism, which
would lead to prohibitively large models. Alternatively, significant changes of the internals of
MCMAS would be necessary. A source-to-source compiler from GSM to extended ISPL would
also introduce problems in the verification process itself as counter-examples and witnesses
generated by MCMAS correspond to the ISPL model and needed to be translated back into the
original GSM specification to be understandable the users of the tool.

While the modelling language does not fit our requirements, the identified advantages of
using MCMAS as model checking tool remain valid. First and foremost, complex, service-oriented
distributed systems, such as artifact-centric systems, are very difficult to verify because of the
large search space that arises from the many ways services can interact. The speed and memory
cost when verifying a complex system is therefore crucial to the success of the verification.
Symbolic model checkers like MCMAS are able to deal with a large state space because they
represent states in compact structures rather than explicitly. Furthermore, we are interested in
the verification of properties concerning not only the state of an artifact-centric system, but also
the behaviour of stakeholders and their knowledge of the system. This means that the toolkit
will need rich specification languages to be able to express these properties.

To capitalise on the experience from the MCMAS development at Imperial, a new tool,
called GSMC, was developed, which directly supports GSM as input language but re-uses some
verification algorithms from MCMAS. This allows us to concentrate the allocated manpower
on GSM related features. This stand alone model checker still needs to meet the important
criteria above, e.g., symbolic model checking techniques, support for multi-agent systems and a
range of specification languages. Its main advantage is that it operates directly on GSM models
produced by the Barcelona engine. The method of translating the declarative lifecycles into the

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 21 of 47

transition relation of an FSM is described in Section 4. Given that we base GSMC loosely on
MCMAS, some algorithms can be lifted from the existing model checker, notably the verification
of CTL formulas once the transition relation is computed. However, the algorithms still need
to be re-implemented and adjusted to the new checking tool and new approaches are required
to handle the specifics of GSM. The main disadvantage of this approach is that it may not
be possible to reproduce all the functionality of MCMAS in the time allocated to the ACSI
project. The fundamental emphasis lies on the verification of artifact-centric systems and their
interaction with the environment, while extended features, like counter-example computation,
may not be implemented.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 22 of 47

4 Methodology
In the following we present a novel methodology to verify the behaviour of artifact-centric
systems in terms of its possible sequence of B-steps, which are defined as the smallest business
relevant changes in the system. We refer the reader to [HDF+11, HDM+11] for an in-depth
introduction to GSM.

4.1 Business Artifacts with GSM Lifecycles
We define a GSM model Γ as a set of all artifact instances in the system and use the context
variable x that ranges over the instances of artifact type R. At the core of the lifecycle model is
the notion of a stage, which consists of the three following concepts. A milestone represents an
operational objective that can be achieved or invalidated and corresponds to one of the ways in
which a stage might reach completion. A stage body is a hierarchical cluster of activity intended
to achieve a milestone. This can be either a set of sub-stages, or a task. A stage becomes inactive
when one of its milestones is achieved. A guard controls entry into the stage body, in which case
the stage becomes active.

The information model keeps track of business relevant information in data attributes, as
well as status attributes of stages and milestones. In particular, each stage S of an artifact
instance x has associated a status variable x.activeS that reflects if the stage is active or inactive.
Similarly, x.m reflects if milestone m is achieved. The communication between artifact instances
and the environment is performed in form of incoming and generated events, which can be either
a 1-way message, a 2-way service call, or an instance creation request. Generated events are
created by tasks contained in atomic stages, i.e., stages without sub-stages. Both milestones and
guards are controlled in a declarative manner by a condition χ(x) with a triggering event “on
ξ(x)” or an expression on data “if ϕ(x)”.

A pre-snapshot is an assignment to the variables in the information model, while a snapshot
is a pre-snapshot that satisfies the following three GSM Invariants: all milestones of an active
stage are false; all sub-stages of an inactive stage are inactive; at most one milestone of a stage
can be achieved at any time.

The operational semantics for GSM has three equivalent formulations [DHV11]:

Incremental corresponds to the incremental application of the ECA-like rules and provides a
natural, direct approach for implementation.

Fixpoint provides a top-down description of the effect of a single incoming event on an artifact
snapshot.

Closed-form provides a characterization of snapshots and the effects of events using a first-order
logic formula.

Although the GSM instantiation of A3M in WP1 uses the last one, we discuss only the incremental
formulation here since our approach is based on this semantics, which is the most suitable
for our model checking purposes. The incremental semantics of a GSM model Γ is based on
the notion of a Business step (B-step), which corresponds to the impact of a single incoming
event e on a snapshot Σ, and is considered the smallest unit of relevant change that occurs
in the system. The impact of e is gradually constructed from 1) the immediate effect of the
event, which can assign payload to data attributes and 2) a re-evaluation of the conditions in

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 23 of 47

GSM
snapshot
before

Incoming
event being
consumed

Events being
generated to send
to environment

GSM
snapshot
after

Environment
snapshot
after

Send events in
G to the Env in
this micro-step

n
Each micro-step here is impacting exactly
one status attribute, i.e.,
• Toggling a milestone attribute, or
• Toggling a stage active/inactive
Some micro-steps add a new event to G, which
is eventually be sent to external environment

Attributes directly
affected by e are
updated in (also,
newly created Artifact
instance would be here)

X
1

Environment
snapshot
before

Env

Env Env'

Env'

X

X

X
'

X
'

e

e

X
1

X
n

2G

G

n X
2 Gn

Figure 3 – Incremental computation of GSM B-step.

Rule Prerequisite Antecedent Consequent
PAC-1 ¬x.activeS χ(x) ∧ x.activeS′ +x.activeS
PAC-2 x.activeS χ(x) +x.m
PAC-3 x.m χ(x) −x.m
PAC-4 x.m on +x.activeS −x.m
PAC-5 x.activeS on +x.m −x.activeS
PAC-6 x.activeS on −x.activeS′ −x.activeS

Table 3 – PAC rule templates.

Γ by Prerequisite-Antecedent-Consequent (PAC) rules that can lead to changes in guards and
milestones. Figure 3 illustrates the incremental computation of a B-step.

The abstract PAC rules are listed in Table 3. Each PAC rule consists of the following three
parts: the prerequisite (P) determines whether the rule is relevant to the previous snapshot Σ;
the antecedent (A) contains a user-defined condition χ(x) and is evaluated relative to the next
snapshot Σ′; the consequent (C) specifies the change to the value of a status attribute in the next
snapshot Σ′ if the rule is relevant and if A holds in Σ′. The first three PAC rules in the table are
concerned with updating the status attributes on certain events, and the last three rules preserve
invariants of the model. More specifically, PAC-1 governs activation of stage S if its guard χ(x)
holds and its parent S′ is active; PAC-2 determines achieving milestone m if its corresponding
stage S is active and its condition χ(x) holds; PAC-3 controls invalidating milestone m if it was
achieved before and its invalidating condition χ(x) is true; PAC-4 directs invalidating milestone
m when its corresponding stage S becomes active; PAC-5 governs inactivation of stage S when
its milestone m is achieved; and PAC-6 induces inactivating of stage S when its parent S′

becomes inactive.
The incoming event e triggers a sequence of pre-snapshots Σ0,Σ1, . . . ,Σn with Σo = Σ,

Σ1 = ImmEffecte(Σ0), and Σn = Σ′. The transition between pre-snapshots Σi and Σi+1 is called
a micro-step, whilst the B-step constitutes the transition from snapshot Σ to Σ′. The PAC rules
are sequentially applied to Σi until a fixed-point is reached. Each micro-step can generate an

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 24 of 47

+Deciding.Evaluated

-Deciding.Accepted

+Deciding

-Deciding

+Deciding.Accepted

-Deciding.Rejected

+Deciding.Rejected

+Revisioning.Revised

-Revisioning.Revised+Revisioning

-Revidioning

+Revisioning.Accepted

Actual dependency

Assumed dependency

Guard

Stage

Milestone

Figure 4 – Partial polarized dependency graph of Research Proposal Evaluation.

outgoing event if its associated atomic stage becomes active. These events are collected and sent
to the environment in the last micro-step.

The Toggle-once Principle, that states that each status attribute can change its value at
most once through the application of PAC rules, guarantees that the application of PAC rules
terminates since there is a finite number of PAC rules. To ensure that the rules adhere to the
principle, circular dependencies among PAC rules are not allowed, i.e., there must not be a
set of rules where each C of a rule changes a status attribute required in A of another rule. A
suitable order of the PAC rules is achieved via pre-determined topological sort of the dependency
graph DG(Γ) associated with GSM model Γ. The set of nodes of the graph contains nodes
for all guards, stages and milestones for each artifact type R in Γ. The set of edges represents
dependencies between individual nodes and it is based on ground PAC rules for Γ. If DG(Γ)
satisfies the acyclicity condition the model Γ is well-formed.

Figure 4 shows part of this graph for Research Proposal Evaluation from the FRIS scenario.
The arrows indicate dependency between guards, stages and milestones. + in front of a guard
indicates that its sentry becomes true, +/− in front of a stage indicates that the stage is
open/closed, and +/− in front of a milestone indicates that the milestone is achieved/invalidated.
The dashed arrows are hypothetical dependencies, which would lead to a cycle.

As noted above, the incremental semantics of GSM is not directly amenable to symbolic
model checking as it does not provide a transition system. Instead, a B-step is constructed
from a number of micro-steps that apply changes in a sequence of updates until a fixed point
is reached. Developing a transition relation from this declarative semantics requires further
analysis of the process performing a B-step. We divide the generation of a new snapshot into
three phases illustrated in Figure 5:

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 25 of 47

Σ

Σ1 Σ2 Σn−1

Σ′

1

2 2

3
B-step

micro steps

select event
send
new

events

Figure 5 – B-steps and micro steps of GSM.

• process incoming events 1 : Each B-step processes one event that is selected from a set of
pending events. The execution of the event may cause updates to the local data or perform
structural actions like creating a new instance of an artifact.

• application of PAC rules 2 : Effects from 1 may change the conditions of guards or
milestones and thus trigger a PAC rule that updates the status attributes or issues events.
This changes may lead to the execution of further PAC rules, resulting in a sequence of
rule executions.

• send new events 3 : To finalise a B-step, the executed event is removed from the set of
pending events, and newly raised events from the PAC rule executions are added.

In the remainder of this section we show how to translate the GSM semantics to a transition
system and how to use the transition releation to verify properies specified as CTL formulas.
We start with giving a suitable encoding for a state, followed by the definition of a transition
relation from the three phases given above.

4.2 Encoding
To perform verification, we need to capture the current state of an artifact-centric system with
some additional information about its environment. A snapshot Σ consists of status attributes
and additional space for business data, which we support in form of Boolean, bounded integer and
enumeration data types. In addition, a special status attribute “exist” for each artifact instance
determines if it is active. This is used for obtaining a finite encoding by provisioning space for
a bounded number of instances, which are activated upon reception of the new event. In the
following we use a vector of variables x to subsume all artifact related data of a (pre-)snapshot
along with possible user inputs for an event. A vector of variables e encodes the events that are
pending at a certain snapshot Σ. For other pre-snapshots Σi only one e ∈ e is true and signifies
the currently executed event.

We write x e to denote the set of states spanned by the possible evaluations of the variables
in these vectors. As the micro-steps operate on different states, we use three sets of variables to
encode the transition relations: x e for the previous snapshot Σ, x′e′ for the current pre-snapshot
Σi, and x′′e′′ for the next pre-snapshot Σi+1. We use indices to access single elements in a vector.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 26 of 47

4.3 Transition Relation
Using the encoding above, we define the transition relation as set of tuples δ ⊆ Σ × Σ of
start- and end-states for all possible B-steps. Alternatively, we also represent δ symbolically
as Boolean function that evaluates to true for all (x e, x′ e′) ∈ δ. This expression is easily built
by computing the disjunction of all tuples in the set. The Boolean representation allows us to
compute the successors for a set of states Σ̂ in one step by 1) building the conjunction with the
transition relation δ and 2) removing the current state variables and replace them by the next
states: δ(Σ̂) = (∃x eΣ̂ ∧ δ)[x e/x′e′]. Concatenation of transition relations can be done similarly;
but requires the introduction of an intermediate state and in our case the conversion between
snapshots and pre-snapshots.

4.3.1 Execution of an Event
Phase 1 generates the first pre-snapshot from a snapshot Σ by picking a pending event ei and
assigning the result of its execution to the attributes x′. The effect of a single event ei is given by
δei below, where ei = true states that ei is pending in the snapshot, ei(x) returns the results of
executing ei using the current data, and all event variables in the resulting pre-snapshot except
the one for event i are false:

δei = {x e x′e′ | ei = true ∧ x′ = ei(x) ∧ e′i
∧
j 6=i
¬e′j}

The event ei changes attributes according to its type and the current values of x, which also
contains user input. The new event is executed by initialising the data of a corresponding artifact
type and setting its exist flag to true. In a snapshot with several pending events one of them is
selected non-deterministically. In the transition relation, this is expressed by disjunction of the
possible choices:

δ 1 =
⋃
ei∈e

δei

The resulting transition relation produces all possible initial pre-snapshots Σ1 for any set of
snapshots Σ.

4.3.2 Execution of the PAC Rules
The main challenge in computing the updates to status attributes within a B-step is the inter-
dependency of the PAC rules. This leads to different sequences of pre-snapshots depending on
the executed event and state of the system. The key property of the semantics that enables
us to combine the different steps in 2 into a single transition relation is the requirement that
dependencies among PAC rules are not circular, i.e., that no consequent of a rule changes the
variables needed in an antecedent of an earlier one. This allows us to find a single order of PAC
rules that covers all permitted sequences of micro-steps. The transitions for PAC rules that are
not applicable for a certain state are implemented such that all attributes are kept constant. The
order is computed using the dependency graph DG(Γ) before computing the transition relation.

To incorporate the changes in the pre-snapshot that are introduced by a PAC rule i, we
have to take into account the prerequisite (P), the antecedent (A), and the consequent (C). The
prerequisite checks a value on the last snapshot Σ. The antecedent is an expression over Σ and

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 27 of 47

the next snapshot Σ′. Recall, though, that the ordering of the PAC rules ensures that none of
the variables in A is changed during or after execution of the current rule, which allows us to
operate on Σ and the pre-snapshot Σi. If A matches, the consequent updates the values for the
next pre-snapshot while the values not touched by C remain as in Σi. The transitions generated
by PAC rule i with the unprimed variables for Σ, primed for Σi and double primed for Σi+1 are
given as:

δri = {x e x′e′x′′e′′ |Pri(x) = true ∧Ari(x e x′e′)∧
x′′e′′ = Cri(x

′e′)
∨ Pri(x) = false ∧ x′′e′′ = x′e′}

The transition relation gives a new pre-snapshot Σi+1 for a given snapshot Σ and pre-snapshot
Σi. If we build the conjunction of δr1 with δ 1 , we get a formula that describes the first and
second pre-snapshots following any snapshot Σ. Because we are only interested in the latest
pre-snapshot, we remove the middle state as follows:

δ 1 ◦ δr1 = ∃x′e′δ 1 ∧ δr1 [x′′e′′/x′e′]

The result is again a formula in x e and x′e′ and gives us the pre-snapshots that can be generated
by Σ in two steps. To complete δ 1 ◦δ 2 we repeat this step for all PAC rules in the pre-computed
order.

Note that, while P only accesses a single variable, expressions for A are more complex
and may contain specialised operators. For example, StageActive(y) is true if a status variable
corresponding to the stage y is true, independently of whether it was activated during the current
micro step computation, or during some previous B-step. The truth value of this operator can
be determined by accessing a status variable in x′. By contrast, StageActivatedOnEvent(y) is
only true if the stage just has been activated. Such an expression requires access to the previous
snapshot Σ. If the corresponding flag was false there, and is true in x′, then the stage was
activated in the current B-step computation and the StageActivatedOnEvent(y) is true. Similarly,
there is an expression that is true if and only if the current B-step computation was set off by
event ei, which requires access to e′. Access to e allows us to reason about pending events.

4.3.3 Creating a new B-Step
The final phase 3 computes the resulting new snapshot Σ′ from Σ and the last pre-snapshot Σn

by computing a new set of pending events and holding the data from Σn−1 constant. An event
is pending if it either was pending before the last B-step but was not executed, or it was created
in the last B-step. Computing the remaining events is simply done by selecting all events from
Σ that are not in Σn:

δrem = {x e x′e′x′′e′′ | x′′ = x′ ∧
∧

0≤i<m
e′′i = ei ∧ ¬e′i}

An events is created when an atomic stage is activated during a B-step execution, i.e., the
respective state attribute is set in Σn−1 but not in Σ. For simplicity we denote the set of events
that are issued by newly activated atomic stages as E . The transition to issue the newly generated
events is now given as:

δE = {x e x′e′x′′e′′ | x′′ = x′ ∧
∧

0≤j<m
e′′j = (e′′j ∈ E ∨ e′j)}

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 28 of 47

The final transition relation is now given as δ = δ 1 ◦ δ 2 ◦ δrem ◦ δE where the concatenation of
δrem and δE is done analogously to δri .

4.4 Agent Behaviour
The transition relation computed above describes the behaviour of the system while executing
events but does not create any incoming events from the environment. To fully check the system,
we need to add these incoming events and cover every possible behaviour of the artifact-centric
system. To this end, we introduce a default agent that provides input to the artifact-centric
system. Intuitively, the role of this agent is to generate all possible interactions with the system
that any arbitrary agent communicating with the system could trigger. This is done by allowing
it to non-deterministically enable any event and user input before the artifact-centric system
reacts to these events. More formally, we give the transition relation of the agent δa as:

δa = {x e x′e′ |
∧

0≤i<m
ei → e′i ∧ x′ = chguser(x)}

where chguser(x) sets arbitrary user input and keeps all other attributes in x constant.
When verifying the model, we consider all sequences consisting of alternating steps of agent

and artifact-centric system, starting from a single initial state s0 with all data and events being
zero. The joint transition relation δ̂ has the following formal definition:

δ̂ = δa ◦ δ = ∃x′e′δa ∧ δ[x′′e′′/x′e′].

4.5 Verification
Symbolic model checking [BCM+90] uses formulas to represent sets of states and their possible
transitions in a transition system M = {S, δ, I, AP}, where S is set of all possible states,
δ ⊆ S × S is the transition relation that captures all allowed transitions, I ⊆ S is the set of
initial states, and AP is a set of atomic propositions defined on the states. For clarity, we write
s for a state defined by variables x e. We use δ(s) = {s′ | (s, s′) ∈ δ} to denote all successors of
s. A run π of the system is a sequence of states s0, s1, ... such that s0 ∈ I and ∀i≥0si+1 ∈ δ(si).
We denote the ith state of a run as π[i], write AP (s) for the propositions that hold at a given
state, and use the temporal logic CTL [EH85] to specify properties on these propositions. CTL
is a branching-time logic that allows to express properties about execution paths of a system.
The syntax of a CTL formula ϕ is given as

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | E (ϕUϕ).

The semantics is defined inductively, where πs denotes all runs starting from a set of states

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 29 of 47

s. We say that a system M with s is a model of formula ϕ (given as (M, s) |= ϕ) if:

(M, s) |= p iff p ∈ AP (s)
(M, s) |= ¬ϕ iff (M, s) 6|= ϕ

(M, s) |= ϕ1 ∧ ϕ2 iff (M, s) |= ϕ1 and (M, s) |= ϕ2

(M, s) |= EXϕ iff ∃π∈πs : (M,π[1]) |= ϕ

(M, s) |= EGϕ iff ∃π∈πs∀i≥0 : (M,π[i]) |= ϕ

(M, s) |= E(ϕUψ) iff ∃π∈πs∃k≥0 : (M,π[k]) |= ψ and

∀j<k(M,π(j)) |= ϕ

Additional operators can be constructed by combination of the ones given above (e.g.,
AXϕ := ¬EX¬ϕ, ϕ→ ψ := ¬(ϕ ∧ ¬ψ). Intuitively, Xϕ, Gϕ, Fϕ, are path formulas that hold
if ϕ evaluates to true in the next state, in all states, or eventually in some state of the path.
Similarly, ϕUψ holds if ϕ holds until ψ holds. The prefixes to path formulas A and E denote
that a formula holds in a state s if the formula holds for all paths (A) or at least one path (E)
starting from s. A system M satisfies a formula ϕ if (M, I) |= ϕ.

Given a CTL formula, we compute the set of all the states in which the formula holds using
the transition relations. If the set contains the initial state s0 then the formula is true in the
model and false otherwise. We now define the set of states JϕK in which formula ϕ holds for the
minimal set of CTL operators. For propositional atom p, negation ¬ϕ, and conjunction ϕ1 ∧ ϕ2,
the sets JpK, J¬ϕK, and Jϕ1 ∧ ϕ2K have straightforward definitions:

JpK = {s | p ∈ Ap(s)},
J¬ϕK = {s | s /∈ JϕK},

Jϕ1 ∧ ϕ2K = Jϕ1K ∩ Jϕ2K.

The more interesting cases arise when we deal with a formula involving temporal operators.
For operator EX, we define the set JEXϕK as the set of all states which have a transition to a
state in JϕK. We call this set the pre-image of JϕK:

JEXϕK = {s | ∃s′ ∈ JϕK ∧ s′ ∈ δ̂(s)}.

The set JEGϕK for operator EG is computed as the greatest fixed-point of states that satisfy
ϕ and can proceed to a state that satisfies ϕ as well. More specifically, starting with the set of
all states, we take the intersection of the pre-image of this set and JϕK. Pre-image EX Y takes
set Y of states and returns the set of states which can make a transition into Y . We repeat the
operation until we reach the greatest fixed point:

JEGϕK = νY.JϕK ∩ EX Y.

Similarly, the set JE(ϕUψ)K for operator EU is computed as the least fixed point of states
that satisfy ϕ and can proceed to a state that satisfies either ϕ or ψ. However, this time we start
from the empty set, take the intersection of its pre-image, which is the empty set again, and JϕK
and then we combine the result with JψK by taking the union of the two sets. We repeat the
procedure until we reach the least fixed point:

JE(ϕUψ)K = µY.JψK ∪ (JϕK ∩ EX Y).

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 30 of 47

Parse Input

Process PAC Rules

Build BDDs

Verify Formulas

True False

G
SM

C

Specification FileXML + XSD Files

Fail

Figure 6 – Architecture of GSMC.

5 GSMC: System Specification
The methodology was implemented in the tool GSMC, a symbolic model checker that uses BDDs
to represent the sets of states and transition relations. The tool is written in C++ with the
CUDD library [Som12] for BDD operations. GSMC operates directly on models designed in the
Barcelona editor. Such models of artifact-centric systems are stored in an XML based format
and can be deployed on a Barcelona engine after verification. The properties are given as a plain
text file containing formulas in the specification language. The output contains the result of the
evaluation of the properties.

The internal architecture of GSMC is illustrated in Figure 6 and consists of four phases:

Parse Input: The tool reads the inputs by using two parsers. An XML parser transforms the
GSM model into an internal representation of the system, which consists of a hierarchy of
objects representing the artifact types and stages in the system. Similarly, the specification
parser creates parse trees of the formulas.

Process PAC Rules: Using the generated information about the available guards, stages, and
milestones, the PAC rules templates from Table 3 are instantiated to generate the set
of grounded PAC rules. The dependencies among the grounded PAC rules are analysed
by constructing the dependency graph, which is used to perform a topological sort. If a
dependency cycle is detected, the GSM model is not well formed; the verification is halted
and a cycle that violates the acyclicity condition is produced and presented to the user.

Build BDDs: Starting from the sorted set of grounded PAC rules, BDD variables are allocated
for the attributes and events of the model. This step also considers the dependencies
among variables to reduce the size of the resulting BDDs. The tool then generates BDD
representations of the PAC rules and constructs the transition relation of the artifact-centric
system and the agent following the procedure described in Section 4.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 31 of 47

Verify Formulas: The properties of the model from the specification file are verified one by
one by traversing the parse tree of the formulas and computing the fixed points given
in Subsection 4.5. All computations use the transition relation that was constructed in
the previous phase and result in a BDD representation of the set of states in which a
formula holds. If this set contains the initial state, the formula is true in the model; it does
not hold otherwise. GSMC implements standard algorithms to compute the set for CTL
formulas [BCM+90].

The toolkit currently supports enumeration, bounded integer, and Boolean data types. All
other types of data are coarsely abstracted as these. For example, string constants in the model
are enumerated and can be compared for equality; concatenation is not supported. We also
allow for at most one instance per artifact type in the system, attempts to create more result in
the overflow flag being raised. In the rest of the section we describe the implementation of the
toolkit in more detail.

5.1 Barcelona GSM Models
In this section we briefly describe the input language for specifying GSM artifact-centric systems.
We use the RapidXml parser for parsing Barcelona XML/XSD files containing GSM models. It
is a small, fast, and free XML DOM-style parser written in C++ with good usability, portability,
and reasonable W3C compatibility.

Before we list the most relevant elements and attributes used to describe a GSM model, note
that the conditions of guards and milestones are specified using either Java Expression Language
(JEXL) or Object Constraint Language (OCL). Both are declarative languages for describing
rules that apply to GSM models. We currently implement JEXL only. JEXL has somewhat less
expressive power than OCL. In particular, it does not support quantification over data.

The basic structure of a model is demonstrated using the excerpt of a model in XML in
Figure 7. The structure of the model is a hierarchy, where the sections are delimited by the tags
<ca:Identifier ...> and </ca:Identifier>. Elements without subsection are written as
single tags <ca:Identifier .../>. The example contains the main sections of the model, but
omits repetitions of sections of the same kind and some details. The root element of a Barcelona
GSM application, called ca:CompositeApplication in Line 1, incorporates definitions of all
artifact types and events. An artifact type is defined in element ca:Component in Line 3 with
two attributes id and name containing the identifier and name of the artifact type. The child
element ca:InformationModel (Line 4) specifies the artifact’s information model. Importantly,
the attribute schemaUri in its child element ca:DataItem includes the path to an external XML
Schema Definition (XSD) file with the definition of the artifact type. All data attributes of the
given artifact are declared as elements xs:attribute in this XSD file. Each date attribute has
name and type, which can be either primitive (e.g., “xs:int”, “xs:string”, . . .), or user defined.
These non-primitive data types are defined using element xs:complexType and the definition is
recursive in a sense that it is composed of attributes that can be complex types themselves.

The GSM lifecycle of an artifact is defined in Line 7 in element ca:GuardedStageModel.
Children of this element represent top level stages of the artifact and are declared in ele-
ments ca:Stage with attributes id, name, and description. Stage guards are defined by
ca:StageGuard. In addition to the usual attributes id, name, and description, stage guards
have the attributes eventIds to lists events that are relevant for activating the stage, expression
with the actual condition for the activation, and the optional attribute language that can be
used to specify the language (OCL or JEXL) used in the condition.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 32 of 47

1 <ca:CompositeApplication xmlns:ca=”http://siena.ibm.com/model/CompositeApplication”
2 name=”FixedPriceProcurement”>
3 <ca:Component id=”FPR” name=”FixedPriceRequest”>
4 <ca:InformationModel id=”FPRInformationModel” rootDataItemId=”FPR”>
5 <ca:DataItem id=”FPR” schemaUri=”FPR.xsd” rootElement=”FPR” />
6 </ca:InformationModel>
7 <ca:GuardedStageModel id=”FPR” name=”FixedPriceRequest” description=””>
8 <ca:Stage id=”PreparingFPR” name=”PreparingFPR” description=””>
9 <ca:StageGuard id=”GFPR1” name=”Guardstart1”

10 expression=”!GSM.isStageCompleted(’PreparingFPR’)” eventIds=””/>
11 <ca:Milestone id=”STS” name=”SubmittedToSuppliers” eventIds=””>
12 <ca:Condition expression=”GSM.isMilestoneAchieved(’Launched’)”/>
13 </ca:Milestone>
14 <ca:Milestone id=”Abandoned” name=”Abandoned” eventIds=””>
15 <ca:Condition expression=”GSM.milestoneAchievedOnEvent(’FPRAbandoned’)”/>
16 </ca:Milestone>
17 <ca:SubStage id=”Drafting” name=”Drafting” description=””>
18 <ca:StageGuard id=”Guard17839” name=”Guard1”
19 expression=”!GSM.isStageCompleted(’Drafting’)” eventIds=””/>
20 [...]
21 <ca:Milestone id=”RRS” name=”RequesterReadySubmit” eventIds=”BlessSubmit”>
22 <ca:Condition expression=”GSM.isEventOccurring(’BlessSubmit’)”/>
23 </ca:Milestone>
24 [...]
25 <ca:SubStage id=”DraftingFPRData” name=”DraftingFPRData” description=””>
26 <ca:StageGuard id=”Guard13171” name=”Guard1”
27 expression=”GSM.isEventOccurring(’InitiateFPR’)” eventIds=”InitiateFPR”/>
28 <ca:Milestone id=”InitiateFPRDone” name=”InitiateFPRDone” eventIds=””>
29 <ca:Condition expression=”GSM.hasTaskCompleted(’DraftingFPRDataTask’)” />
30 </ca:Milestone>
31 <ca:Task id=”DraftingFPRDataTask” name=”DraftingFPRDataTask”>
32 <ca:Assign>
33 <ca:Mapping type=”set”>
34 <ca:Source sourceId=”InitiateFPRRequest” refType=”serviceRequest”
35 xPath=”InitiateFPRInputMessage/ProjectName”/>
36 <ca:Target targetId=”FPR” refType=”artifact” xPath=”FPR/ProjectName”/>
37 [...]
38 </ca:Mapping>
39 </ca:Assign>
40 </ca:Task>
41 </ca:SubStage>
42 [...]
43 </ca:SubStage>
44 [...]
45 </ca:Stage>
46 [...]
47 </ca:GuardedStageModel>
48 </ca:Component>
49 [...]
50 <ca:EventModel id=”FPPEventModel” name=”FixedPriceProcurementEventModel”>
51 <ca:Event id=”MCT” name=”ManuallyCloseTracking”>
52 <ca:InputMsg id=”MCTReq” schemaUri=”MCTIn.xsd” rootElement=”MCTIn”/>
53 <ca:OutMsg id=”MCTResp” schemaUri=”MCTOut.xsd” rootElement=”MCTOut”/>
54 </ca:Event>
55 [...]
56 </ca:EventModel>
57 </ca:CompositeApplication>

Figure 7 – Excerpt of a Barcelona model

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 33 of 47

AG (ParentFPR == 0
|| BiddingStyle != ”FreeForm”
|| !GSM.isMilestoneAchieved(’SupplierResponse’, ’SelectedAsWinner’)
|| EF GSM.isMilestoneAchieved(’FixedPriceRequest’, ’WinnerAssigned’)

)

EF (ParentFPR == 1
&& GSM.isMilestoneAchieved(’FixedPriceRequest’, ’WinnerAssigned’)
&& !GSM.isMilestoneAchieved(’SupplierResponse’, ’SelectedAsWinner’)

)

EF (GSM.isMilestoneAchieved(’FixedPriceRequest’, ’RequesterReadySubmit’)
&& EF GSM.isMilestoneAchieved(’FixedPriceRequest’, ’Drafted’)

)

Figure 8 – Property formulas for GSMC

Element ca:Milestone (e.g., in Lines 11 and 21) uses the attributes id, name, description,
and eventIds as defined above and contains at least one element ca:Condition to describe an
achieving condition of the milestone, and possibly a list of elements ca:InvalidateCondition
to describe invalidating conditions of the milestone. Both elements have similar syntax as
ca:StageGuard with attributes id, name, description, expression, and language.

A composite stage also contains a list of substages defined by elements ca:SubStage which
have the same structure as element ca:Stage. An atomic stage may have a task specified by
element ca:Task (Line 31). It has attributes id and name and can perform two different actions.
Either a service, such as creation of a new artifact instance, can be invoked by an element
ca:Invoke with an attribute serviceDefinitionId, or values can be assigned to some data
attributes via element ca:Assign. Element ca:Mapping denotes the assignment to the data and
its attribute type determines whether the current value will be overwritten or a new value will
be added to a set. Child elements ca:Source and ca:Target then determine the actual value
and the data attribute.

Finally, element ca:EventModel in Line 50 includes all incoming events that an agent in the
environment can send to the artifact-centric system. Each such event has a corresponding element
ca:Event with attributes id, name, and description. Its child element ca:InputMessage defines
the payload of the event while ca:OutputMessage carries the system’s response. Both elements
have attributes id, schemaUri containing valid path to the XSD definition of the message, and
rootElement defining the root element of the XSD file.

5.2 Input Language for Requirement Specifica-
tion

The requirements for a model are supplied in a plain text file using a context-free language for
logic formulas as shown in Figure 8. The file consists of a list of property formulas for temporal
logic that are required to hold in the model. The parser for this language is implemented using
the compiler generators Flex and GNU Bison.

We currently support expressions on data attributes and events, and operators for writing
CTL formulas as presented in Subsection 4.5. In the following we give the grammar of the
currently permitted operators in Backus-Naur form. We expect to extend the list with the

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 34 of 47

operators identified in the specification language developed in WP2 (T2.1).
Formally, expressions are defined as:

expression ::= constant
| variable
| expression aop expression

| expression lop expression

| GSM.isStageActive(‘artifactID ’, ‘stageID ’)
| GSM.isMilestoneAchieved(‘artifactID ’, ‘milestoneID ’)

Where aop is an arithmetic operator, lop a logic operator, and GSM.isStageActive and
GSM.isMilestoneAchieved are Boolean GSM operators to reason about the current state of
an artifact with the identifier artifactID, one of its stages with identifier stageID, and a milestone
milestoneID respectively. Type safety is checked by the parser, where currently supported types
and operators are as follows:

data types: integer, double, string, Boolean constants and data attributes from XSD definition
of the information model of an artifact;

arithmetic operators (aop) : addition (+), subtraction (−), multiplication (∗), division: (/),
and negation (−);

logic comparison operators (lop): equal to (==), not equal to (! =), less than (<), less
than or equal to (<=), greater than (>), and greater than or equal to (>=).

Using expression from above, a formula in the specification language has the following formal
grammar:

formula ::= expression

| (formula)

| formula && formula

| formula || formula
| ! formula

| AG formula

| EG formula

| AX formula

| EX formula

| AF formula

| EF formula

| A (formula UNTIL formula)

| E (formula UNTIL formula)

The grammar supports the usual logical connectives and (&&), or (||), and not (!). In
addition, the CTL quantifiers over paths all (A) and exists (E), and the CTL operators next
(X), eventually (F), always (G), and until (U) are supported.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 35 of 47

5.3 Data
In GSM models, data types are only declared and used without formal definition or implementa-
tion of the corresponding operations on them. This has the advantage that they can include
data attributes of arbitrary type and leave the actual implementation to a simulation engine
like Barcelona. To perform a correct analysis in GSMC, however, these data types need to
be mapped to implementations with a concrete semantics of all operations. GSMC currently
implements three data types that can be used to represent Barcelona data: Boolean, enumeration,
and bounded integer. In the following we give details on the implementation and the mapping
between data in the models and GSMC. In line with requirement R4, we focus our efforts to
further improve data handling for future versions of the toolkit.

A number of Barcelona data types have a direct correspondence in GSMC. A Barcelona
xs:boolean data attribute with possible values true or false, for example, is directly mapped
into a Boolean variable. The integer types xs:int and xs:long are mapped into bounded integer
variables where the user can define the lower and the upper bounds for each variable. GSMC
automatically adds an offset to the variables to optimise the internal representation as BDDs
and corrects different offsets in computations. Any integer or long constants that appear in
assignments to variables, however, must be in the specified range. The user can also define
data attributes with predetermined lists of values. Such attributes are directly mapped into
enumeration variables.

For data types without direct correspondence, some level of abstraction is required. We
use C++ style type-casting to convert the xs:double data type to a bounded integer. This
conversion between the two numerical types implies a loss of precision. For the xs:string data
type, we enumerate all the string constants in the model and convert string data attributes to
enumeration variables. Such variables can be assigned to any value that explicitly appears in the
model. In addition, we define a special value ⊥ that represents other possible unknown string
constants from the environment. This basic abstraction allows us to assign values and compare
strings for equality. More sophisticated string operations like concatenation are not supported
yet and are reported by GSMC as error. Other data type are only rudimentary implemented. A
variable of type xs:date, for example, is mapped into a Boolean flag that captures if it received
a new value since initialisation of the artifact.

Encoding of the three data types requires the following number n of BDD variables: n = 1
for a Boolean variable; n = dlog2 |E|e for an enumeration variable, where E is the set of all
enumeration values; and n = dlog2(u− l+1)e for a bounded integer variable, where u is the upper
bound and l is the lower bound. GSMC supports equality checks for Boolean and enumeration
variables. The full range of comparison operations is permitted for bounded integers. Furthermore,
the bit operations ! (not), && (and), and ‖ (or) are supported for Boolean variables and the
arithmetic operations +, −, ∗, and \ are supported for bounded integers. In case of arithmetic
underflow or overflow, we raise a special Boolean flag to indicate this condition has occurred.

5.4 PAC Rules
To compute the transition relation of the model as outlined in Section 4, we instantiate the
abstract PAC rule templates from Table 3 to model specific ground PAC rules. This section gives
details of their encoding as BDDs, and how to compute the order in which they are applied
during computation of the transition relation.

The BDD encoding of a ground PAC rule is computed from the encodings of its prerequisite,

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 36 of 47

antecedent, and consequent respectively. The antecedents of the PAC-1, PAC-2, and PAC-3
rules are taken from the conditions of guards and milestones, while all others are determined
by the abstract PAC rule templates. As an example, consider the following condition in some
milestone achieving sentry:

GSM.isEventOccurring(‘ReworkFPR’) &&GSM.isMilestoneAchieved (‘Rejected’).
Assume that the ReworkFPR event at the current micro step is represented by the primed BDD
variable e′, and the milestone Rejected is represented by the primed BDD variable m′. In this
case, the BDD representation of the antecedent is simply e′ ∧m′. Other GSM operators need to
access the the previous snapshot, which is represented by unprimed variables in our encoding.
An example for such an operator is GSM.isMilestoneAchievedOnEvent (‘Rejected’), which is
only true if the milestone Rejected was achieved during the current B-Step and was false before.
This is encoded as ¬m ∧m′. The following GSM operators are currently implemented in GSMC
and can be combined with the usual Boolean operators:

• GSM.hasGroupOfAllRelatedArtifactsMilestoneBeenAchieved

• GSM.hasGroupOfAnyRelatedArtifactsMilestoneBeenAchieved

• GSM.hasRelatedArtifactMilestoneBeenAchieved

• GSM.hasTaskCompleted

• GSM.isRelatedArtifactStageActive

• GSM.isEventOccurring

• GSM.isMilestoneAchieved

• GSM.isStageActive

• GSM.isStageCompleted

• GSM.milestoneAchievedOnEvent

• GSM.RelatedArtifactMilestoneAchievedOnEvent

• GSM.stageActivatedOnEvent

• GSM.stageClosedOnEvent

Once the prerequisite, the antecedent, and the consequent are encoded into BDDs p, a, and
c respectively, the BDD representation r for the rule can be constructed in two steps. First,
we consider cases when the rule is applicable and the consequent needs to be enforced. This is
simply a conjunction of the three BDDs r1 := p ∧ a ∧ c. Second, we account for cases when the
rule is not applicable. In those cases the data must not be changed, which is expressed by u,
which is the pairwise conjunction of all primed and double primed BDD variables that represent
the artifact-centric system. The full expression for cases when the rule is not applicable is now
given as r2 := ¬(p∧ a)∧ u. Finally, we take the disjunction of the two BDDs r1 and r2 to obtain
the BDD representation of the rule r := r1 ∨ r2, which handles the full state space.

In the following we summarise the details for the different PAC rules from Table 3. We use s,
s′ and s′′ to encode the active flag of the corresponding stage for the previous snapshot, the
current micro step and the next snapshot respectively. Similarly, m, m′ and m′′ are used for the
corresponding milestone.

PAC-1 is instantiated for every guard in the model to activate the corresponding stage when the
guard is fulfilled. The antecedent is taken from the condition of the guard. The prerequisite
is encoded as p := ¬s (stage was not open in the last snapshot) and the consequent as
c := s′′ (stage will be enabled in the next snapshot).

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 37 of 47

Algorithm 1 topologicalSort(Q)

1: while |Q| 6= 0 do
2: n← Q.pop()
3: if n.colour = 0 then
4: n.colour ← 1
5: P .push(n)
6: while |P | 6= 0 do
7: n← Q.top()
8: if n.nextChild() 6= ∅ then
9: n← n.nextChild()

10: if n.colour = 0 then
11: n.colour ← 1
12: P .push(n)
13: else if n.colour = 1 then
14: ERROR: circular dependency
15: end if
16: else
17: n.colour ← 2
18: R.push(n)
19: P .pop()
20: end if
21: end while
22: end if
23: end while
24: return R

PAC-2 is instantiated for every achieving sentry of every milestone in the model. We use the
sentry as antecedent, encode the prerequisite as p := s (stage was already open in the last
snapshot), and the consequent as c := m′′ (milestone achieved in the next snapshot).

PAC-3 is instantiated for every invalidating sentry of every milestone in the model. Again, the
sentry is used as antecedent. We encode the prerequisite as p := m and the consequent as
c := ¬m′′.

PAC-4 gives one ground rule for every guard-milestone pair of every stage in the model to
invalidate the milestone if a stage opens. We encode the prerequisite as p := m and the
consequent as c := ¬m′′. The antecedent has the same encoding as the antecedent of the
corresponding PAC-1 rule that opens the stage.

PAC-5 gives one ground rule for every milestone in the model to close the stage when the
milestone is fulfilled. We encode the prerequisite as p := s, the antecedent as a := ¬m∧m′,
and the consequent as c := ¬s′′.

PAC-6 gives one ground rule for every stage that is not a top-level stage in the model to close
it when its parent Sp is closed. Assume the parent is encoded using sp, s′p and s′′p. We
encode the prerequisite as p := s, the antecedent as a := sp ∧ ¬s′p , and the consequent as
c := ¬s′′.

We build the dependency graph as described in section 4. The nodes correspond to guards,

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 38 of 47

stages and milestone and the edges between them have associated ground PAC rules. Algorithm 1
describes the topological sort of this graph that determines the order in which the ground PAC
rules are applied. The algorithm takes stack Q of unsorted nodes and returns stack R of nodes in
their topological order, stack P is auxiliary. Once the nodes are sorted, we examine the inbound
edges of the nodes one by one and sort the ground PAC rules accordingly. After that, any ground
PAC rule that has not been picked yet does not depend on any other rule and is pushed to the
front.

5.5 Quick Reference Guide
GSMC is a command line application developed for Linux operating system. The toolkit can
be downloaded from http://vas.doc.ic.ac.uk/gsmc/gsmc.tar.gz. To obtain the executable
gsmc, extract GSMC source files with tar and type make. The command line options are displayed
by running GSMC with -h or --help options. The following example executes verification of
GSM model fpr.xml against specifications formulas.txt:

./gsmc -m fpr.xml -s formulas.txt

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 39 of 47

Supplier Response

EvaluatingResponding

Supplier Response

EvaluatingResponding

Fixed Price Request
Preparing FPR

Reviewing

Launching ResponsesDrafting

Supplier

Requester

Buyer

Reviewer

Tracking of Evaluations

Supplier Response

EvaluatingResponding

Figure 9 – Overview of the Fixed Price scenario.

6 Experimental Results
To evaluate our approach, we present preliminary results on the verification of artifact-centric
systems using GSMC. Even though the evaluation is not yet done on the ACSI use cases from
W5, we are able to verify properties of non-trivial GSM models produced by Barcelona engine.
The reason why we have evaluated the tool neither on the case study nor on the Order-to-Cash
example is that we did not have Barcelona models for these scenarios in the early stage of
development. We stress that the verification is done automatically and directly on Barcelona
models without the need for translating them into another modelling language.

6.1 Fixed Price Scenario
The Fixed Price contracting scenario [HDF+11] is based on a real-world application to facilitate
purchasing of services or goods at fixed, predetermined prices. The application manages the
interaction between a requester who wants to acquire a product, a buyer who manages the
purchasing process, a number of optional reviewers who evaluate the order, and the actual
suppliers of the product.

This scenario is modelled with two artifact types. Figure 9 gives an overview of the most
important stages of the two types called Fixed Price Request (FPR) and Supplier Response
(SR). An FPR instance is created when the requester makes the initial draft of the order in
the ‘Drafting’ stage. Depending on the specifics, the buyer may initiate a reviewing process in
the ‘Reviewing’ stage that may lead to redrafting. If the conditions are met, the ‘Launching

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 40 of 47

Responses’ stage is activated where SR instances are automatically created. For each supplier,
there is one SR instance, which manages the particular response. After a supplier responds to the
request in the ‘Responding’ stage, the requester, the buyer, and possibly one or more reviewers
evaluate the bid in the ‘Evaluating’ stage of the SR instance. The FPR instance manages these
evaluations for each SR instance in the ‘Tracking of Evaluations’ stage and eventually checks
with the buyer to select a winner who will be offered the contract for the order.

This is only a portion of the actual artifact-centric system. The full model has 28 stages and
37 milestones in both artifact types together. We here evaluate the case where the order is sent
just to a single supplier. However, we take into consideration the whole Barcelona model, which
was supplied by IBM Watson. For more details we refer to Figures 10 and 11, where � represents
guards, ◦ represents milestones, and the arrows represent dependencies between them. Labels
on arrows express additional conditions on a guard or milestone.

6.2 Verification
We checked a number of properties directly on the Barcelona model of the Fixed Price scenario.
We discuss four of the more interesting specifications below, where the formulas are slightly
simplified to contain only relevant concepts from the stages explained above. The full model also
contains, e.g., different styles of how a supplier can respond to the request. By using GSMC, we
were able to identify two previously undiscovered bugs in the Barcelona model. We present the
specifications that we found not to hold and explain why this is the case.

The first requirement concerns the reachability of milestones. It is reasonable to assume
that all milestones of an artifact instance can be achieved at some point. This does not mean
that all are achieved during a particular run but rather that at least one sequence of events
leads to the achievement of any milestone. An unachievable milestone signifies that either the
milestone is superfluous or that the system does not behave as expected. The following CTL
formula specifies this requirement for the milestone ‘Drafted’ of the FPR artifact instance:

EF MilestoneAchieved(′Drafted′)

There are 37 milestones and by using GSMC we could verify that all the milestones, with
the exception of ‘Implicitly Rejected’ milestone of the ‘Evaluating’ stage of the SR instance, can
be achieved. The reason for this failure is that an SR instance becomes implicitly rejected only
if another SR instance is selected as winner. This cannot happen in our model since we allow for
at most one instance per artifact type.

The second specification, illustrated by Figure 10, says that whenever the ‘Selected As
Winner’ milestone of the SR instance is achieved, then the ‘Winner Assigned’ milestone of the
FPR instance can be eventually achieved. This is formally specified as follows:

AG (MilestoneAchieved(′SelectedAsWinner′)
→ EF MilestoneAchieved(′WinnerAssigned′)))

This formula holds in the model as expected. Note that we checked that the ‘Winner Assigned’
milestone always can be achieved (AG EF) rather than that it always will be achieved (AG AF).
This is because ‘Winner Assigned’ requires interaction from the buyer to perform an ‘Assign
Winner’ event. Since we check the artifact-centric system for interactions with arbitrary agents,
this event can be delayed forever. However, no matter what the user of the system does, the
milestone can always be achieved when the event is executed.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 41 of 47

Tracking Of Evaluations

Winner
Selected

Evaluating

Explicitly
Rejected
Implicitly
Rejected

Selected
As Winner

on `Selected As Winner'

Assigning Winner
Winner
Assigned

on `Manually Close Tracking'

Figure 10 – Structure of ‘Evaluating’ and ‘Tracking Of Evaluations’ stages.

Preparing FPR

Reviewing
Buyer Ready
Submit

Reject

Drafting
Drafted

Request
Ready Submit

FPR Abandoned

Launching Responses
Launched

on `Drafted'

on `Rework FPR' & Rejected

Figure 11 – Structure of the ‘Preparing FPR’ stage.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 42 of 47

The third specification we verified is similar to the previous one and is also illustrated by
Figure 10. This time, though, we require that whenever the ‘Winner Assigned’ milestone of
the FPR instance is achieved, then the ‘Selected As Winner’ milestone of the corresponding
SR instance is achieved as well. In other words, the winner cannot be assigned within the FPR
instance without the SR instance being selected as the winner. This property is expressed by
the following CTL formula:

AG (MilestoneAchieved(′WinnerAssigned′)
→MilestoneAchieved(′SelectedAsWinner′))

As it turns out, this formula is false in the model. This is because an agent can send a
‘Manually Close Tracking’ event to activate the ‘Assigning Winner’ stage manually. This causes
the ‘Winner Assigned’ milestone to be reached without the milestone of the ‘Evaluating’ stage
being updated. This means that the current implementation of the ‘Evaluating’ stage does not
handle manual intervention of the agent properly. The problem can be fixed by adding another
atomic sub-stage to the ‘Tracking Of Evaluations’ stage that deals with cancelling the tracking.

The last requirement we identify, shown in Figure 11, relates to the inner consistency of the
‘Preparing FPR’ stage. A requester may bypass the ‘Reviewing’ stage by sending an event to
cause the ‘Requester Ready Submit’ milestone to be achieved, which activates the ‘Launching
Responses’ stage directly. Since the latter sends the request to the suppliers, the ‘Drafting’ stage
must not be reactivated since this would allow for changes to the already sent order. This can
be specified as follows:

AG (MilestoneAchieved(′RequesterReadySubmit′)
→ ¬EF StageActive(′Drafting′))

We verified this formula using GSMC but found it to be false. Close inspection of the model
shows that the problem occurs when a draft is reviewed and rejected at first, and then submitted
without a second review via the ‘Requester Ready Submit’ milestone. In such a scenario, the
second guard of the ‘Drafting’ stage, “on ‘Rework FPR’ & ‘Rejected’”, does not behave properly.
Since the ‘Rejected’ milestone remains achieved from the initial review, an agent may activate
the ‘Drafting’ stage at any time by sending the ‘Rework FPR’ event. Now the data attributes
of the FPR instance can be significantly changed whilst the SR instances are being sent to
suppliers. This may lead to unexpected consequences. The error can be corrected by changing
the guards of the ‘Drafting’ stage such that they do not allow activation once the ‘Launching
Responses’ stage is active.

The presented results demonstrate that GSMC provides invaluable assistance in modelling
by identifying cases in which the system behaves as expected, and reporting cases that need
more attention.

6.3 Toolkit Evaluation
We conclude this section with a short discussion on the performance of GSMC. A pre-snapshot
of the FP scenario is encoded by the model checker into BDD using 116 Boolean variables.
Therefore, the state space of the model spans over approximately 8× 1034 pre-snapshots. The
construction of the transition relation, which is reused for the evaluation of all the specifications,
requires three distinct sets of Boolean variables (348 in total).

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 43 of 47

Operation Result Memory Time
Milestones can be Achieved True 100MB 129.21s
Winner can be Assigned True 112MB 26.52s
Winner Assignment Consistent False 84MB 9.10s
Order Consistent False 73MB 3.72s

Table 4 – Performance results.

We verified the properties on a 64-bit Fedora 16 Linux machine with a 3.47GHz Intel R©
CoreTM i5 processor and 8GB RAM. The GSMC constructed the transition relation in 3.76s
using 72MB. Table 4 shows the results for the memory and CPU usage of the verification of the
four properties discussed in this section. Note, that the first specification consists of 37 separate
formulas. These results suggest that the verication time and memory requirements of the tool
are small even for a realistic scenario with a large model.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 44 of 47

7 Conclusions
In this document we reported progress in the development of the toolkit for the verification of
artifact-centric systems after 24 months in the ACSI project. We presented the requirements
that served as a guideline for selecting the necessary features of the toolkit. After the survey of
several leading model checkers, we decided to capitalise on our experience from the development
of MCMAS and build the new model checker, called GSMC.

We then presented a methodology to model check declarative models of artifact systems by
translating GSM artifact systems into a symbolic transition system used for symbolic model
checking. A notable feature of our approach is that it is completely automatic and we implemented
the methodology in GSMC model checker. The toolkit takes files directly from the web-based
GSM engine Barcelona as input.

We also provided preliminary results on the verification of GSM-based artifact-centric systems
using GSMC. We demonstrated the applicability on Fixed Price contracting scenario, an example
from a real-world application. The toolkit has shown to be capable of handling large models.

Although GSMC has already proven to be very helpful for validating GSM models, we
investigate the implementation of abstraction techniques developed in T2.1 (WP2) to improve
data handling in future versions of GSMC. A further important requirement is to check how
the overall system behaves in presence of different agents. This gives rise to questions about
the relationship between agents and the knowledge they have about the system and each other.
Properties of this kind can be handled by supporting specification languages investigated again
in T2.1 (WP2). We also work on the support of multiple instances per artifact type.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 45 of 47

Bibliography

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104/1, 1993.

[Alu99] R. Alur. Timed automata. In Proceedings of CAV ’99, 1999.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of TACAS ’99, 1999.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Inform. and Comput., 98/2, 1990.

[BLL+98] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New
generation of UPPAAL. In Proceedings of the International Workshop on Software
Tools for Technology Transfer, 1998.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic
model checking. In Proceedings of CAV ’02, 2002.

[CDH+08] D. Cohn, P. Dhoolia, F. F. Heath, III, F. Pinel, and J. Vergo. Siena: From
powerpoint to web app in 5 minutes. In Proceedings of ICSOC ’08, 2008.

[CGP99] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model checking. MIT Press,
1999.

[DHV11] E. Damaggio, R. Hull, and R. Vaculin. On the equivalence of incremental and
fixpoint semantics for business artifacts with Guard-Stage-Milestone lifecycles. In
BPM ’11, 2011.

[EH85] E.Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. JCSS, 30/1, 1985.

[GLMR05] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Roméo: A tool for analyzing
time petri nets. In Proceedings of CAV ’05, 2005.

[GvdM04] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.
In Proceedings of CAV ’04, 2004.

[HDF+11] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath, S. Hobson, M. Linehan,
S. Maradugu, A. Nigam, and P. Sukaviriya. Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In Proceedings of WSFM ’10,
2011.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 46 of 47

[HDM+11] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. T. Heath, S. Hob-
son, M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculin. Business
artifacts with guard-stage-milestone lifecycles: Managing artifact interactions with
conditions and events, 2011.

[Hol03] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

[LQR09] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: a model checker for the
verification of multi-agent systems. In Proceedings of CAV ’09, 2009.

[LQS08] A. Lomuscio, H. Qu, and M. Solanki. Towards verifying contract regulated service
composition. In Proceedings of ICWS ’08, 2008.

[NM10] P. Niebert and J. Malinowski. SAT based bounded model checking with partial
order semantics for timed automata. In Proceedings of TACAS ’10, 2010.

[NNP+04] W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, and M. Szreter. Verics
2004: A model checker for real time and multi-agent systems. In Proceedings of
CS&P ’04, 2004.

[RL04] F. Raimondi and A. Lomuscio. Verification of multiagent systems via ordered
binary decision diagrams: An algorithm and its implementation. In Proceedings
of AAMAS ’04, 2004.

[Som12] F. Somenzi. CUDD: CU Decision Diagram Package - Release 2.5.0, 2012.

[SSL07] K. Su, A. Sattar, and X. Luo. Model checking temporal logics of knowledge via
OBDDs. The Computer Journal, 50(4), 2007.

[vdABEW01] W. M. P. van der Aalst, P. Barthelmess, C. Ellis, and J. Wainer. Proclets: A
framework for lightweight interacting workow processes. International Journal of
Cooperative Information Systems, 10(4), 2001.

c© D2.2.2 Model Checking Tool for Artifact Interoperations (MOCAI) – Iteration II Page 47 of 47

