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Abstract

Actinobacteria is a large and diverse phylum of bacteria that contains medically and ecologically relevant organisms. Many 

members are valuable sources of bioactive natural products and chemical precursors that are exploited in the clinic and made 

using the enzyme pathways encoded in their complex genomes. Whilst the number of sequenced genomes has increased 

rapidly in the last 20 years, the large size, complexity and high G+C content of many actinobacterial genomes means that 

the sequences remain incomplete and consist of large numbers of contigs with poor annotation, which hinders large- scale 

comparative genomic and evolutionary studies. To enable greater understanding and exploitation of actinobacterial genomes, 

specialized genomic databases must be linked to high- quality genome sequences. Here, we provide a curated database of 612 

high- quality actinobacterial genomes from 80 genera, chosen to represent a broad phylogenetic group with equivalent genome 

re- annotation. Utilizing this database will provide researchers with a framework for evolutionary and metabolic studies, to 

enable a foundation for genome and metabolic engineering, to facilitate discovery of novel bioactive therapeutics and studies 

on gene family evolution. This article contains data hosted by Microreact.

DATA SUMMARY

1. All genome sequences used in this study can be found 

in the National Center for Biotechnology Information 

(NCBI) Taxonomy Browser (https://www. ncbi. nlm. nih. gov/ 

Taxonomy/ Browser/ wwwtax. cgi) and are summarized along 

with accession numbers in Table S1 (available on Figshare 

– https:// doi. org/ 10. 6084/ m9. figshare. 13143407. v1). Other 

data are available on Figshare (https:// doi. org/ 10. 6084/ m9. 

figshare. 13143407. v1).

2. Perl script files are available on GitHub (https:// github. com/ 

nselem/ ActDES), including details of how to batch annotate 

genomes in rast from the terminal (https:// github. com/ 

nselem/ myrast).

3. Table S1 shows a list of genomes from the NCBI (actino-

bacteria  database. xlsx) and is available on Figshare (https:// 

doi. org/ 10. 6084/ m9. figshare. 13143407. v1).

4. CVS genome annotation files including the fasta files 
of nucleotide and amino acids sequences (individual .cvs 
files) are available on Figshare (https:// doi. org/ 10. 6084/ m9. 
figshare. 13143407. v1).

5. blast nucleotide database (.fasta file) information is 
available on Figshare (https:// doi. org/ 10. 6084/ m9. figshare. 
13143407. v1).

6. blast protein database (.fasta file) information is available 
on Figshare (https:// doi. org/ 10. 6084/ m9. figshare. 13143407. 
v1).

7. Table S2 expansion table – genus level (expansion  table. 
xlsx – tab genus level) is available on Figshare (https:// doi. 
org/ 10. 6084/ m9. figshare. 13143407. v1).

8. Table S2 expansion table – species level (expansion  table. 
xlsx – tab species level) is available on Figshare (https:// doi. 
org/ 10. 6084/ m9. figshare. 13143407. v1).
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9. All GlcP and Glk data – blast hits from ActDES, muscle 
alignment files and .nwk tree files – can be found on Figshare 
(https:// doi. org/ 10. 6084/ m9. figshare. 13143407. v1).

10. Interactive trees in Microreact for Glk (https:// microreact. 
org/ project/ w_ KDfn1xA/ 5a178533) and associated files can 
be found on Figshare (https:// doi. org/ 10. 6084/ m9. figshare. 
13143407. v1).

11. Interactive trees in Microreact for GlcP (https:// micro-
react. org/ project/ VBUdiQ5_ k/ 045c95e1) and associated 
files can be found on Figshare (https:// doi. org/ 10. 6084/ m9. 
figshare. 13143407. v1).

12. Jupyter Notebook for exploring ActDES in MyBinder can 
be found at https:// github. com/ nselem/ ActDES.

INTRODUCTION

The increase in availability of bacterial whole- genome 
sequencing provides large amounts of data for evolutionary 
and phylogenetic analysis. However, there is great variation 
in the quality, annotation and phylogenetic skew of the 
data available in large universal databases, meaning that 
evolutionary and phylogenetic studies can be challenging. 
To address this variation, curated, high- level, taxa- specific, 
non- redundant sub- databases need to be assembled to aid 
detailed analysis. Given that there is a direct correlation 
between phylogenetic distance and the discovery of novel 
function [1–3], it is imperative that any derived databases 
must be phylogenetically representative and non- redundant 
to enable insight into the evolution of genes, proteins and 
pathways within a given group of taxa [1].

The phylum Actinobacteria is a major taxon amongst the 
Bacteria, which includes phenotypically and morphologically 
diverse organisms found on every continent and in virtually 
every ecological niche [4]. They are particularly common in 
soils, yet within their ranks are potential human and animal 
pathogens such as Corynebacterium, Mycobacterium, Nocardia 
and Tropheryma, inhabitants of the gastrointestinal tract 
(Bifidobacterium and Scardovia), as well as plant commen-
sals and pathogens such as Frankia, Leifsonia and Clavibacter 
[4, 5]. Perhaps the most notable trait of the phylum is the 
renowned ability to produce bioactive natural products such 
as antibiotics, anti- cancer agents and immuno- suppressive 
agents, with genera such as Amycolatopsis, Micromonospora 
and Streptomyces being particularly prominent [6]. As a 
result, computational ‘mining’ of actinobacterial genomes 
has become an important part of the drug- discovery pipeline, 
with increasing numbers of online resources and software 
devoted to identification of natural- product biosynthetic 
gene clusters (BGCs) [7–9]. It is important to move beyond 
approaches that rely on similarity searches of known BGCs 
and to expand searches to identify hidden chemical diversity 
within the genomes [6, 7, 10–13].

A recent study of 830 actinobacterial genomes found 
>11 000 BGCs comprising 4122 chemical families, indicating 
that there is a vast diversity of strains and chemistry to exploit 

[14], yet within each of these strains there will be hidden 
diversity in the form of cryptic BGCs. To exploit this undis-
covered diversity as the technology develops and databases 
expand, new biosynthetic logic will emerge, yet we know little 
of how natural selection shapes the evolution of BGCs and 
how biosynthetic precursors are supplied to gene products 
of BGCs from primary metabolism and to identify targets for 
metabolic engineering of industrially relevant strains. Such 
logic will expedite industrial strain improvement processes, 
enabling titre increases and development of novel molecules, 
as well as the engineering of strains to use more sustainable 
feedstocks.

To aid this process, we have created an actinobacterial metab-
olism database including functional annotations for enzymes 
from 612 species to enable phylum- wide interrogation of gene 
expansion events that may indicate adaptive evolution, help 
shape metabolic robustness for antibiotic production [15] or 
enable the identification of targets for metabolic engineering. 
Actinobacterial Database for Evolutionary Studies (ActDES) 
provides a curated list of high- quality, phylum- specific 
genomes and data to help users navigate the redundancy and 
inconsistency in sequence databases in a simplified format 
that enables researchers with little taxonomic knowledge to 
develop testable evolutionary hypotheses. To demonstrate the 
utility of ActDES, we have detailed its construction and used 
it to investigate the glucose permease/glucokinase system 
phylogeny across the Actinobacteria.

METHODS

We generated ActDES, a database for evolutionary analysis 
of actinobacterial genomes, in two formats: a database for 

Significance as a Bioresource to the Community

The Actinobacteria is a large diverse phylum of bacteria, 

often with large, complex genomes with a high G+C 

content. Sequence databases have great variation in 

the quality of sequences, equivalence of annotation 

and phylogenetic representation, which makes it chal-

lenging to undertake evolutionary and phylogenetic 

studies. To address this, we have assembled a curated, 

taxa- specific, non- redundant database to aid detailed 

comparative analysis of Actinobacteria. ActDES (Actino-

bacterial Database for Evolutionary Studies) constitutes 

a novel resource for the community of actinobacterial 

researchers that will be useful primarily for two types of 

analyses: (i) comparative genomic studies, facilitated by 

reliable identification of orthologs across a set of defined 

phylogenetically representative genomes, and (ii) phylog-

enomic studies, which will be improved by identification 

of gene subsets at specified taxonomic level. These anal-

yses can then act as a springboard for the studies of the 

evolution of virulence genes, the evolution of metabolism 

and identification of targets for metabolic engineering.
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interrogation by blastn or blastp for phylogenetic analysis, 
and a primary metabolic gene expansion table, which can be 
mined at different taxonomic levels (Tables S1 and S2) for 
specific metabolic functions from primary metabolism. A 
schematic overview of the generation of the dataset is shown 
in Fig. 1.

The database was generated via the National Center for 
Biotechnology Information (NCBI) Taxonomy Browser 
(https://www. ncbi. nlm. nih. gov/ Taxonomy/ Browser/ wwwtax. 
cgi) to identify actinobacterial genome sequences. The quality 
of the genome sequences was filtered by the number of contigs 
(<100 contigs per 2 Mb of genome sequence) and the genomes 
were downloaded from the NCBI WGS repository (https://
www. ncbi. nlm. nih. gov/ Traces/ wgs/). These genomes were 
then dereplicated to ensure that the database comprised a 
wide taxonomic range of the phylum, resulting in 612 species 
from 80 genera within 13 suborders of the Actinobacteria 
(Table S1).

Each of these 612 genomes was reannotated using rast. 
Default settings were used to ensure equivalence of anno-
tation across the database and the annotation files of each 
genome were downloaded (cvs files – https:// doi. org/ 10. 6084/ 
m9. figshare. 13143407. v1). These annotation files were subse-
quently used to extract all protein and nucleotide sequences 
into two files. Each of these files was subsequently converted 
into blast databases (a protein database and a nucleotide 
database – https:// doi. org/ 10. 6084/ m9. figshare. 12167724) 
to facilitate phylogenetic analysis. Sequences of interest 
can be aligned using muscle [16] and phylogenetic trees 

reconstructed using a range of tree construction software such 
as QuickTree [17], IQ tree [18] or MrBayes [19]. Subsequent 
trees may be visualized in software such as FigTree v1.4.2 
(http:// tree. bio. ed. ac. uk/ software/figtree/).

The rast annotation files were also used to extract the func-
tional roles of each coding sequence (CDS) per genome and 
the level of gene expansion was assessed for each genome 
by counting the number of genes per species per functional 
category (gene function annotation). The dataset was then 
curated manually for central carbon metabolism and amino 
acid biosynthesis pathways to create the gene expansion table 
(Table S2), with the organisms grouped according to their 
taxonomic position. The quality of the data was checked at 
each step for duplicates and inconsistencies, and was curated 
manually to exclude faulty entries. As the NCBI Taxonomy 
Browser database is overrepresented in Streptomyces genomes 
due to the number of species that have been sequenced rela-
tive to other Actinobacteria, this is also reflected in ActDES 
(288 Streptomyces genomes from a total of 612 genomes). 
However, this was addressed in the expansion table (Table S2) 
by calculating the mean occurrence of each functional cate-
gory within each genus and then calculating an overall mean 
for the phylum to compensate. The mean occurrence of each 
functional category per genus plus the standard deviation was 
also calculated, and this was used to analyse the occurrence 
of each functional gene category per species within Table S2. 
A gene function annotation with a gene copy number value 
above the mean plus the standard deviation for each genus 
indicated that there had been a gene expansion event in that 

Fig. 1. Schematic workflow for the creation of ActDES. Genomes were selected from NCBI Taxonomy Browser and uploaded for 

annotation to rast [38]. The annotated genomes were then processed for two different analyses. Firstly, the functional roles were 

downloaded and for each functional role the numbers of occurrences per genome were counted in order to obtain an expansion table 

(Table S2) by comparing the mean of each genus to the overall mean of all genera. Secondly, the genomes were used to extract all 

nucleotide and protein sequences in fasta format, which could then be queried by sequence using blast [39]. The hits were aligned in 

muscle [16] and after refinement the alignment was used to reconstruct phylogenetic trees in QuickTree [17].

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
https://www.ncbi.nlm.nih.gov/Traces/wgs/
https://www.ncbi.nlm.nih.gov/Traces/wgs/
https://doi.org/10.6084/m9.figshare.13143407.v1
https://doi.org/10.6084/m9.figshare.13143407.v1
https://doi.org/10.6084/m9.figshare.12167724
http://tree.bio.ed.ac.uk/software/ﬁgtree/
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species and this was noted. The gene expansion table (Table 
S2) enables researchers to identify groups of genes of interest 
for subsequent phylogenetic and evolutionary analysis, which 
can be performed with confidence due to the highly curated 
nature of the data included in the database.

As the NCBI Taxonomy Browser database is overrepresented 
in Streptomyces genomes due to the number of species that 
have been sequenced relative to other Actinobacteria, this is 
also reflected in ActDES (288 Streptomyces genomes from a 
total of 612 genomes). However, this was addressed in the 
expansion table (Table S2) by calculating the mean occurrence 
of each functional category within each genus and then calcu-
lating an overall mean for the phylum to compensate. The 
mean occurrence of each functional category per genus plus 
the standard deviation was also calculated, and this was used 
to analyse the occurrence of each functional gene category 
per species within Table S2. A gene function annotation with 
a gene copy number value above the mean plus the standard 
deviation for each genus indicated that there had been a gene 
expansion event in that species and this was noted. The gene 
expansion table (Table S2) enables researchers to identify 
groups of genes of interest for subsequent phylogenetic and 
evolutionary analysis, which can be performed with confi-
dence due to the highly curated nature of the data included 
in the database.

RESULTS

The gene expansion table (Table S2) lists 612 species of 80 
genera within the Actinobacteria with data that provides an 
extensive analysis at the phylum level, which is the starting 
point for detailed phylogenomic studies. Gene expansions 
were identified in separate datasets at the genus and species 
levels, along with details of the numbers of genes in each func-
tional category per species and the mean numbers of genes 
in each functional category per genus expanded within the 
genomes. These data can be used subsequently in phylog-
enomic analyses to identify targets for metabolic engineering 
and gene function studies. Identification of expanded gene 
families may also facilitate the recognition of novel natural 
product BGCs, for which gene expansion events of primary 
metabolic genes have been classified to be associated within 
BGCs as biosynthetic enzymes or through provision of 
additional copies of antibiotic targets that may subsequently 
function as resistance mechanisms [6, 11, 20–24].

This database has found utility for studying primary meta-
bolic gene expansions in Streptomyces. It enabled a detailed 
in silico analysis of the duplication event leading to the two 
pyruvate kinases in the genus of Streptomyces, subsequently 
enabling the functional characterization of the two isoen-
zymes to reveal how they contribute to metabolic robustness 
[15]. ActDES may also be useful for investigating the distribu-
tion of primary metabolic genes across the phylum to link 
phenotype to genotype and phylogenetic position. An initial 
RpoB phylogeny has been reconstructed previously using this 
database [15], which provided a robust universal phylogeny 
for comparison of individual protein trees [25].

To demonstrate the utility of ActDES, the glucose permease/
glucokinase system of the Actinobacteria was investigated. 
The role of nutrient- sensing in regulation of antibiotic biosyn-
thesis is well known [26], with the enzyme glucokinase (Glk) 
playing a central role in carbon- catabolite repression (CCR) 
in Streptomyces [27]. In most bacteria, CCR is mediated by 
the phosphoenolpyruvate- dependent phosphotransferase 
system (PTS), yet in Streptomyces, glucose uptake is medi-
ated by the major- facilitator superfamily (MFS) transporter, 
glucose permease (GlcP), and there is evidence for direct 
interaction between Glk and GlcP, which may mediate CCR 
[28]. Understanding the nature and distribution of these 
enzymes will play a key role in developing industrial fermen-
tations with glucose as major carbon source. Investigating 
the distribution of the glucose permease/glucokinase system 
across the phylum shows that GlcP and Glk have been the 
subject of gene expansion events in some members of the 
Streptomycetales, most notably the Streptomyces, with a patchy 
distribution of the Glk/GlcP system across the remainder 
of the phylum (Table S2; genus tab). However, where the 
Glk/GlcP system is found, the number of expansion events 
observed is greater for Glk than for GlcP (Fig. 2a, b). The 
phylogenetic trees (Fig. 2a, b) clearly show two clades for 
Glk and GlcP within the Streptomycetales (interactive trees 
are available via Microreact [29]: Glk – https:// microreact. 
org/ project/ w_ KDfn1xA/ 5a178533, and GlcP – https:// 
microreact. org/ project/ VBUdiQ5_ k/ 045c95e1). However, 
these clades differ in the number of sequences, with the Glk 
clades being equal in number, suggesting that a duplication 
event has occurred within the Streptomycetales (Fig. 2b). The 
is consistent throughout the order, with the patterns largely 
the same as observed for Streptomyces coelicolor. This species 
has two ROK- family ATP- dependent glucokinases, SCO2126 
(glkA) and SCO6260, that share around 50 % amino acid 
sequence identity, and each is found in one of the distinct 
clades (permease- associated kinases and orphan kinases 
(Fig. 2b). Whilst SCO2126 is a GlcP- associated kinase, the 
gene encoding SCO6260 is located in an operon including 
genes encoding a putative carbohydrate ABC- transporter 
system, which has been reported elsewhere [30]. SCO6260 
appears to be the only glucokinase in the database that is asso-
ciated with an ABC- transporter. This may suggest that expan-
sion of the Glk gene family in Streptomycetales might have 
occurred to extend the number of CCR- mediating kinases 
in the genome, adding increased regulatory complexity to 
carbohydrate metabolism in this group of organisms that use 
CCR as a major regulator of specialized metabolism.

The two clades for GlcP within the Streptomycetales differ in 
size, suggesting either gene duplication followed by gene loss 
or an expansion through horizontal gene transfer (HGT) has 
occurred. A detailed examination of these clades by species 
(Table S2; species tab) shows the presence of both scenarios. 
There are duplicated enzymes located within the same clade 
(as observed in S. coelicolor; group I) or additional copies of 
the permease that are located in a phylogenetically distinct 
clade, which lacks congruence with the RpoB tree [15], and 
remarkably consists entirely of sequences from the genus 

https://microreact.org/project/w_KDfn1xA/5a178533
https://microreact.org/project/w_KDfn1xA/5a178533
https://microreact.org/project/VBUdiQ5_k/045c95e1
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Streptomyces (group II; Fig.  2a). This suggests that they 
may have been acquired via HGT. The expansive nature of 
the duplicated Glk enzymes compared to GlcP may be due 
to the role played in CCR by the GlkA enzymes [27], and 
the different transcriptional activities under glycolytic and 
gluconeogenic conditions [31], yet quite how these different 
Glk enzymes interact with the permease(s) under various 
conditions requires further experimental investigation to 
understand their exact physiological role, and how this may 
be translated into industrial strain improvement processes.

DISCUSSION

Large- scale whole- genome sequencing and phylogenomic 

analysis is increasingly used for identifying targets for genome 

and metabolic engineering, studies of metabolic capabilities, 

pathogen phylogenomics and evolutionary studies. These 

studies are often complicated by the large number of sequences 

in the databases, database redundancy and the poor quality of 

some genome sequence data. The development of the high- 

quality, curated ActDES, reported here, enables phylum- wide 

Fig. 2. (a) Actinobacterial- wide phylogenetic tree of glucose permeases (GlcP) and (b) actinobacterial- wide phylogenetic tree of 

glucokinases (Glk). Trees are colour- coded according to the NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/

wwwtax.cgi). Interactive trees are also available via Microreact [29]: GlcP –https://microreact.org/project/VBUdiQ5_k/045c95e1, and 

Glk – https://microreact.org/project/w_KDfn1xA/5a178533. Scale bar indicates branch lengths equivalent to one substitution per site.

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
https://microreact.org/project/VBUdiQ5_k/045c95e1
https://microreact.org/project/w_KDfn1xA/5a178533
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taxonomic representation of the Actinobacteria coupled with 
quality- filtered genome data and equivalent annotation for 
each CDS.

The intended primary use of ActDES will be in the study of 
primary metabolism, but it is not limited. It can also inform 
the development and evolution of metabolism in strains that 
produce bioactive metabolites, given the high representa-
tion of genera renowned for their ability to produce natural 
products such as Streptomyces and Micromonospora. Due 
to a greater understanding of BGC evolution and genome 
organization in Actinobacteria, it is becoming increasingly 
clear that genes whose functions are in primary metabolism 
may actually contribute directly to the biosynthesis of special-
ized metabolites and, hence, the identification of duplicates 
may indicate the presence of cryptic BGCs [6, 11] or, when 
associated with precursor biosynthetic genes, provide the raw 
material for the enzymes across multiple BGCs [32–34].

ActDES may also find utility in evolutionary studies of 
expanded gene families across the actinobacterial phylum 
that contribute to virulence, such as the mce locus, which is 
known to facilitate host survival in mycobacteria [35], but 
also facilitates xenobiotic substrate uptake in Rhodococcus 
[36], and enables root colonization and survival in Strepto-
myces [37]. With phylum- wide taxonomic representation of 
established actinobacterial animal and plant pathogens, the 
scope for evolutionary studies using these data is enormous.

Usage notes

The CVS files of each genome contain the rast annotation 
details in addition to the DNA and protein sequences for 
each annotated CDS (https:// doi. org/ 10. 6084/ m9. figshare. 
12167880). The genome list contains the rast ID (which is 
equivalent to the name of the .cvs file) along with the NCBI 
ID (sequence ID; Table S1) plus the species name, which are 
included in the dataset. Further details of annotating batches 
of genomes in rast can be found at https:// github. com/ 
nselem/ myrast.

The primary metabolism expansion tables (Table S2) are 
organized by metabolic pathway along the top row with the 
Enzyme Commission (EC) number and functional annota-
tion, with the first column being the taxonomic assignment. 
The genus table shows the mean number of genes of the 
annotated function. Highlighted cells reflect gene expansion 
events, i.e. those genes that are present in a higher number 
than the overall mean across the database plus the standard 
deviation.

It is suggested that the gene expansion table (Table S2) is 
searched in the first instance (either by species or genus of 
interest or by a specific enzymatic function). This can be 
carried out by a simple text search. This will then allow the 
identification of a query sequence from a species or gene of 
interest (either nucleotide or amino acid sequence), which can 
then be searched against the curated blast database allowing 
a detailed phylogenetic analysis of a gene/protein of interest 
by using standard alignment and tree building software tools. 

These data can also be used in detailed evolutionary analysis 
of selection, mutation rates, etc. We have set up a Jupyter 
Notebook through the MyBinder project (https:// mybinder. 
org/) to enable ease of use of the code (https:// github. com/ 
nselem/ ActDES) with a tutorial to enable use of the database 
(https:// github. com/ nselem/ ActDES).
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