
Received November 14, 2019, accepted December 11, 2019, date of publication December 23, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2961416

ActiMon: Unified JOP and ROP Detection With

Active Function Lists on an SoC FPGA

HYUNYOUNG OH 1,2, MYONGHOON YANG 1,2, YEONGPIL CHO 3,
AND YUNHEUNG PAEK 1,2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
2ISRC, Seoul National University, Seoul 08826, South Korea
3School of Software, Soongsil University, Seoul 06978, South Korea

Corresponding authors: Yeongpil Cho (ypcho@ssu.ac.kr) and Yunheung Paek (ypaek@snu.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evalution (IITP) Grant

Funded by the Korean Government (MSIT) under Grant 2018-0-00230 (Development on Autonomous Trust Enhancement Technology of

IoT Device and Study on Adaptive IoT Security Open Architecture based on Global Standardization [TrusThingz Project]) and Grant

2017-0-00213 (Development of Cyber Self Mutation Technologies for Proactive Cyber Defense), in part by the National Research

Foundation of Korea (NRF) Grant Funded by the Korean Government (MSIT) under Grant NRF-2017R1A2A1A17069478 and Grant

NRF-2018R1D1A1B07049870, in part by the BK21 Plus Project in 2019, and in part by the EDA tool from the IC Design Education

Center (IDEC), South Korea.

ABSTRACT Field programmable gate arrays (FPGAs) have been increasingly mounted on commodity

systems. As a matter of fact, such an emerging adoption of FPGAs in the commodity systems is attributed to

their versatility came from the programmable property. Accordingly many industrial and academic attempts

have been performed to exploit FPGAs in a variety of applications. In this paper, we note that FPGAs also

can be used to protect the host CPU from a nasty security threat, called code reuse attacks (CRAs). Code

reuse attack (CRA) is a powerful technique that allows attackers to execute arbitrary code. Control-flow

integrity (CFI) has been popularly employed to mitigate CRAs. CFI entails CRA monitoring that checks if a

program runs as directed by its control-flow graph. However, as monitoring naturally incurs non-negligible

runtime overhead to the host CPU, many studies proposed hardware techniques to lessen the monitoring

overhead. To facilitate the immediate deployment of a hardware-based solution, we propose a CRAmonitor,

called ActiMon, that can be implemented on an SoC FPGAwhere the host CPU and FPGA are manufactured

together in a single platform. However, implementing the CRA monitor operating on FPGA arouses a new

challenge that has never been addressed in the previous solutions: the operating clock of FPGA is many times

slower than the CPU. By overcoming this speed difference, we ultimately purpose to evince the feasibility

of FPGA as a computing device in the field of CRA defense. For this purpose, we have developed a highly

efficient algorithm designed to run on FPGA whose goal is to monitor the existence of CRAs on the host

CPU residing in the same SoC FPGA platform. Empirical results show that ActiMon runs on our target SoC

FPGA platform efficiently enough to catch up to the speed of host code execution and promptly detects two

important types of CRAs, JOP (Jump-Oriented Programming) and ROP (Return-Oriented Programming),

as soon as they occurred in the host system. We assert that such results are encouraging thanks to our

unified, lightweight ROP/JOP detection mechanism based on a list of active functions, and also to additional

optimizations to leverage the inherent capabilities of FPGA for parallel computation.

INDEX TERMS Code reuse attacks (CRAs), control-flow integrity (CFI), external monitor, field

programmable gate arrays (FPGAs), hardware-based security.

I. INTRODUCTION

Field programmable gate arrays (FPGAs) have been

increasingly mounted on commodity systems. For exam-

ple, Amazon has established FPGA-builtin servers to allow

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed Elhoseny .

customers to use FPGAs in Amazon Web Services (AWS) [1].

In another example, Intel, a prominent commercial CPU

vendor, has recently developed a programmable acceleration

card (PAC) [2] which runs various operations on an FPGA

connected via PCIe to the host CPU. It is noteworthy that

FPGAs become more tightly coupled by being integrated

on the same die with various CPUs such as Intel Xeon [3]

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 186517

https://orcid.org/0000-0001-5123-4921
https://orcid.org/0000-0001-6263-7195
https://orcid.org/0000-0001-7842-1719
https://orcid.org/0000-0002-6412-2926
https://orcid.org/0000-0001-6347-8368

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

ARM [4], [5] and RISC-V [6]. As a matter of fact, such

an emerging adoption of FPGAs in the commodity systems

(i.e., hybrid CPU-FPGA architectures) is attributed to

their versatility came from the programmable property.

Accordingly, many industrial and academic attempts

have been performed to exploit FPGAs in a variety of

applications—data analytics [7], media processing [8], arti-

ficial intelligence [9], network security and monitoring [10],

financial [11] and genomics [12].

In this paper, we note that FPGAs also can be used to

protect the host CPU from a nasty security threat, called code

reuse attacks (CRAs). Attackers frequently launch CRAs to

hijack control-flow of the program execution so that they can

force the victim program to execute the existing code snippets

(i.e., gadgets) in a maliciously crafted order to seize sensitive

information or cause unexpected actions like program inter-

ruption or data tampering.

Many techniques for mitigating CRAs have been devised

over the past decade. Among them, control-flow integrity

(CFI) [13] has been the most popular, whose goal is to ensure

that a program is performed according to the control-flow

intended by software developers. Unfortunately, enforcing

CFI typically entails CRA monitoring [14], [15] whose run-

time overhead should grow to a great extent. To lessen the

monitoring overhead in enforcing CFI, security researchers

have developed a solution that uses hardware support, par-

ticularly FPGAs. As a concrete example, the authors in [16]

proposed an FPGA-basedmonitor to detect CRAswhich have

been launched inside the host CPU. To be brief, the solution

extracts the runtime information of a program running on

the host CPU via ARM’s built-in external interface, and then

delivers to the monitor implemented on the FPGA to check

if the CFI is violated. Note that these FPGA-based solutions

including that of [16] have built up on an assumption that

monitors on the FPGA can run virtually as fast as the host

CPU. However, such an assumption goes against the fact that

in real systems there is a big gap between the CPU and FPGA

in operating speed—according to our observations FPGAs

merely run about eight times slower than the host CPU—due

to the intrinsic nature of FPGA that has to sacrifice perfor-

mance for programmability [17]. According to our prelimi-

nary experiment, in real systems where the CPU and FPGA

shows significantly different operating speed, the implemen-

tation of [16] ran too slowly to process all crucial runtime

information emitted from the CPU for CRA detection in a

timely fashion, resultantly raisingmany false alarms and even

failing to recognize the existence of several CRAs that were

all detected in [16].

In this paper, we propose a new FPGA-based CRA mon-

itor, ActiMon, that is deployable to real systems despite of

the certain differential operating speed between the host CPU

and FPGA. ActiMon aims to defeat twomajor CRA schemes,

JOP [18] and ROP [19]. One way for ActiMon to tackle

these types of attacks is to capture all branch traces taken in

the host CPU and employ the well-known CFI enforcement

techniques such as branch regulation (BR) [20] and shadow

stack (SS) [21]. However, due to the intrinsic performance

limitation of FPGA, the monitor on FPGA was not able to

process all branch traces promptly as they are generated and

transmitted from the CPU, and thus soon overwhelmed by the

speed and volume of incoming branch traces.

Therefore, in order to avoid such a problem, we have

engineered a CRA monitoring algorithm for ActiMon such

that it can fulfill its monitoring task even on low-speed FPGA

fast enough to process all branch traces emitted from the

high-speed CPU. At the center of our algorithm, there is a

notion, called the active function, which allows ActiMon to

read a much less amount of runtime information from the

CPU with little loss of CRA detection accuracy. We here

say that a function is active if it was invoked but is not yet

returned. In our algorithm, active functions are recorded in

the active function list (AFL), which is updated every time

functions are invoked and returned during program execution.

ActiMon detects ROP attacks by enforcing the rule that a

return is only allowed to target one of the active functions.

To add JOP detection capability hereby, we have combined

our ROP detection rule with the BR rule that the control jumps

across a function boundary is only allowed to target the entry

of another function. More specifically, in our algorithm with

AFL, we classify such cross-function jumps that target the

middle of functions into two classes depending on whether

or not their target locations belong to active functions. Of the

first class are the jumps that transfer the control flow into

the middle of an inactive function. As regulated by BR,

we declare that they are making illegal control transfers

induced by CRAs. On the other hand, a jump that causes the

control transfer to the middle of active functions can be either

legal or illegal depending on the instruction type. If the jump

is made not by a return instruction but by an ordinary indirect

branch instruction, it will be judged illegal by our algorithm.

However, we rule that the jump made indeed by a return is a

legal, normal control transfer from the callee function to the

caller.

As can be seen from our description just above,

our JOP/ROP detection algorithm is deemed unified in a

sense that it tackles JOP and ROP simultaneously with a

single unified mechanism based on AFL. More accurately,

it is basically the ROP defense scheme added with JOP

detection capability where the AFL management of Acti-

Mon is involved in the detection of both JOP and ROP.

As evidenced experimentally, our unified, lighter AFL-based

detection solution runs more efficiently, thus attaining higher

performance in JOP/ROP detection than [16], heavier solu-

tion carrying out multiple schemes separately for JOP and

ROP detection. As another optimization to maximize the

inherent capabilities of FPGA specialized for parallel pro-

cessing, we parallelize the AFL management by process-

ing multiple cross-function jumps concurrently whenever

possible.

In principle, as far as two jumps have all different call

objects, return targets and return objects, the transactions to

manage AFL for these jumps can be parallelized because

186518 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

no order dependency exists among the transactions in our

scheme. The most typical, commonly-occurring case where

they must be processed sequentially is when either the pair

of call and return or that of return and return relates to the

same function. In this case, each member of the pair must be

processed in order one after the other by first updating AFL

for the one jump and then verifying the other. To reason this,

suppose that a call/return pair in the above case is processed

in parallel. Then in our scheme, the return jump may raise a

false attack alarm because the target function entry of AFL

is not yet activated by the prior call jump. At runtime, upon

receiving a group of cross-function jumps from the host CPU,

ActiMon first performs the pair-wise comparison between

them to determine if the AFL transactions for these jumps

are parallelizable. We then divide the group of jumps into

subgroups in each of which the AFL transactions for its mem-

bers are carried out concurrently. Once the AFL transactions

are complete for one subgroup, the next subgroup is chosen

in order, obeying the dependence, and all its jumps belong-

ing to the same subgroup are processed in parallel again.

Fortunately, our observations have revealed that performance

degradation due to such serialization of AFL transactions

among subgroups is negligible because a majority of jumps

encountered in reality are parallelizable.

To summarize, the AFL-based CRA defense mechanism

has been an enabler of our unified ROP/JOP detection

algorithm for ActiMon that is lightweight enough to success-

fully run on an FPGA platform today. Further performance

optimizations on the platform were made possible by paral-

lelizing AFL transactions for cross-functions jumps. Despite

all these strengths in terms of performance, we also admit

that ActiMon has a relative weakness in terms of security as

comparedwith previous solutions based on separate detection

algorithms specialized for ROP and JOP respectively. For

instance, the algorithm based on SS can regulate the strictly

ordered matching between a return address and its call site,

whereas our AFL-based algorithm is more lenient or coarse-

grained in a sense that it allows a return to target one of

the executing functions. However, our experiment revealed

that the monitoring algorithm of ActiMon is effective enough

to detect CRAs by demonstrating all the real attack sam-

ples as implemented in previous work [16] are successfully

detected. At the same time, the experiment with the SPEC

CPU2006 [22] demonstrates that ActiMon is able to run

on Zynq-7000 SoC FPGA with an acceptable performance

overhead of 9.77% on average in comparison with native

host code execution without CRA detection. This result we

assert is encouraging in a sense that it exhibits a potential

of immediate deployment of today’s SoC FPGA (possibly

including many other types of devices integrated with FPGA

inside) armed with security functions for real uses in the field.

Our contributions are as follows:

• Readily deployable FPGA-based CRA monitor.

ActiMon is a CRAmonitor that can be actually deployed

to the FPGA. Unlike previous work [16] not considering

the significant clock speed difference between FPGA

and CPU, ActiMon is workable even at up to an eight

times slower clock.

• Optimizations for an efficient CRAmonitor. To over-

come the slower clock speed of FPGA, we invented the

CRAmonitoring algorithm based onAFL to read amuch

less amount of runtime information. In addition, we par-

allelized the AFL management processes to maximize

the performance.

• Low performance and area overhead. In our

experiments, ActiMon only incurs 9.77% performance

overhead to the host CPU, while having a small binary

size increment of 18.7% and 100k LUTs which is

45.75% usage in our Zynq-7000 SoC FPGA.

II. RELATED WORK

There have been diverse attempts to mitigate CRAs by

enforcing CFI. Abadi et al. [13] introduced a software-based

CFI solution to protect against CRA attacks that change the

original control flow graph (CFG). The CFG is typically

generated by statically analyzing the source code or the

binary of a program. According to the CFG, a unique label is

assigned between the indirect branch and the basic block that

the control can move to. Then the instrumented code checks

whether the label matches between the branch and the target

basic block in runtime. While being a promising method

in defending gains JOP and ROP, representative attacks of

CRA, it still requires an expensive static analysis and incurs

non-trivial performance overhead due to a software-based

runtime check.

Coarse-grained CFI is a policy which does not strictly

enforce the full CFG in order to improve the performance

[14], [15], [23], [24] while minimizing the loss of secu-

rity measure. They set a few equivalence classes of target

addresses and verify that the target of the indirect branch

matches one of the equivalence classes. For example, binCFI

[24] allows a return to go to one of all the possible targets, and

PICFI [15] allows a return to go to one of the functions called

so far. In addition, regardless of CFI technique, DROP [14]

monitors ROP attacks by intercepting a return and examining

the length of its sequence based on the knowledge that the

ROP often connects gadgets of short length repeatedly.

As another line of study, there are various CFI solutions

augmented with hardware supports to enhance their perfor-

mance [16], [25]–[38]. Their hardware modules are inte-

grated into the CPU pipeline stage [25]–[31] or just placed

within the CPU without significant changes in the CPU

architecture [32]–[34] or combined with the outside of CPU

in the form of SoCs [16], [35], [37], [38] to extract and

analyze information needed to monitor CRA attacks. Since

their hardware modules execute monitoring algorithms in

parallel with the host CPU, the performance overhead is

greatly decreased. Our ActiMon also operates in a parallel

fashion similar to the previous hardware-based solutions. The

first group that integrates the monitor inside of the CPU has

a disadvantage where invasive modifications to the processor

VOLUME 7, 2019 186519

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

internals (e.g., registers and pipeline datapaths) are required.

In fact, modern microprocessor development may take sev-

eral years and hundreds of engineers from initial design to

production [39]. Therefore, the substantial costs of develop-

ment to integrate the customized logic would hamper pro-

cessor vendors to adopt them, unless the necessity is clearly

established. Although the second group that implements their

monitor outside of the CPU can eliminate the redesign cost

of the CPU, they still result in the tremendous cost of the

semiconductor manufacturing for the integrated custom SoC.

However, our solution is designed to be operated on com-

mercial off-the-shelf (COTS) SoC FPGAs that can easily be

acquired from the market. On top of this, ActiMon makes

its notable difference in that, unlike previous hardware-based

solutions, it does not require either high non-recurring cost or

long manufacturing time.

ActiMon, we would say, is the direct descendant of the

CRA monitor developed by Lee et al. [16] among the pre-

vious hardware-based solutions. Both ours and theirs are

detecting CRAs from the devices located outside of the ARM

host processor and connected via the built-in debug port.

These monitors are designed to detect JOP and ROP together

for comprehensive CFI enforcement. However, there is a

profound difference between these two in that their CRA

monitor is not designed for operating in FPGA while Acti-

Mon is in FPGA. For example, their CRA monitor could

operate under a circumstance where the speed ratio of CPU

and theirs is only up to 4:1. In contrast, ActiMon is designed

efficiently enough to handle the flood of data from CPU so

that it can withstand that of 8:1, which is the real frequency

discrepancy. To achieve such a notable efficiency, ActiMon

also adopted an optimized binary instrumentation technique

that extracts only the essential information, greatly reducing

the total amount of PTM packets, so that ActiMon can per-

form the monitoring algorithm in a more lightweight manner

than [16].

Efficient monitoring algorithms often used by hardware-

based solutions to monitor CRA attacks are shadow stack

[21] and branch regulation [20], defending against ROP and

JOP respectively. A shadow stack stores an extra copy of

the return addresses corresponding to each function call.

ROP attacks, which modify the return address stored in the

stack, are detected by comparing the return address with the

reference value securely stored in the shadow stack. In branch

regulation, JOP is mitigated by allowing for branching only

to any function entry point or any point within the currently

executing function. HAFIX [30] implements a coarse-grained

CFI that only allows a return to target the currently executing

active functions. ActiMon has borrowed this policy from

HAFIX to monitor ROP. In fact, our AFL-based scheme is

similar to their strategy that has the label statememory storing

the activated state of each function. However, ours differs

from theirs in several aspects, such as the unified detection

algorithm for JOP, various optimizations targeting FPGA,

and so on. ActiMon manages AFL with multiple branches

in parallel (see section IV) while HAFIX accesses only one

FIGURE 1. ActiMon overall architecture.

entry of their label state memory at once. Aside from all these,

the most noticeable difference and contribution of our work

is that ActiMon can be directly applied to a COTS hardware

platform while HAFIX entails modifications to the processor

internal architecture.

III. THREAT MODEL AND ASSUMPTIONS

We assume that the OS kernel, which configures the hard-

ware modules, is uncompromised. Therefore, attackers can-

not directly tamper with the configuration of ActiMon. It is

assumed that the OS and CPU cooperate to forbid a memory

page from being both writable and executable simultaneously

by enforcing the W⊕X security protection rule. Under this

assumption, attackers cannot directly execute their own code

bymodifying the code region of the target program. However,

attackers are well aware of the implementation details of

the target program and can undermine code randomization

techniques such as Address Space Layout Randomization

(ASLR) [40], [41]. Attackers also have full control over

the stack and heap to exploit a memory overflow vulner-

ability. We focus on detection conventional CRAs subvert-

ing control-flow by corrupting return addresses and function

pointers. Accordingly, other attacks such as COOP [42],

non-control-data attack [43] andDOP [44] that are carried out

by corrupting different types of data are outside of the scope

of this paper. Since ActiMon necessitates the static analysis

of the code, it cannot support the self-modifying code feature

that allows dynamic changes in code contents. We also rule

out physical attacks that try to compromise the underlying

CPU and the ActiMon hardware modules.

IV. DESIGN

In this section, the design of ActiMon will be described in

detail. Figure 1 depicts the overall architecture where the host

ARMCPU and ActiMon are connected and interfaced. When

the target program is running on the host CPU, ActiMon

receives the runtime program information extracted by the

built-in debug interface, ARMCoreSight PTM [45]. ActiMon

is now able to execute the monitoring algorithm by tracking

the target address of indirect branches gathered from the

information it received. Hence, it successfully detects the

control flow hijacking induced by JOP or ROP attacks. Our

design goal hereby is to engineer an efficient monitoring

algorithm and implement a viable architectural design for a

CRA monitor on FPGA. Our ultimate objective is to evince

the feasibility of FPGA as a computing device in the field

for CRA defense. The following subsections will provide

186520 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

detailed descriptions of our algorithm and each hardware

module in ActiMon.

A. PACKET BUFFER AND PACKET DECODER

First, the runtime program information extracted from ARM

CPU is stored in Packet Buffer, then, decoded by Packet

Decoder in order to obtain the indirect branch addresses.

To elaborate and justify our design choices, details regarding

ARMCoreSight PTM and TPIU will be presented as follows.

ARM CoreSight PTM captures various debug information

generated by the program, such as branch target addresses,

exceptions, instruction set mode changes (ARM/THUMB)

and current process IDs. This information is encoded into

the trace packets which is routed to TPIU then, forwarded

to the output pins afterward. Before TPIU emits the trace

packets, the packets are temporarily stored in the internal

FIFO, named PTM FIFO for ease of explanation. TPIU reads

PTM FIFO at the rate of the clock provided from the external

modules. By doing so, we achieve the synchronization of the

rate between the emitted packets and the external module

that processes them. Note that if the external clock is not

fast enough to read PTM FIFO immediately after the packets

are being stored, the PTM FIFO will soon overflow and the

packets will be discarded. This overflowwill eventually cause

the failure of the monitoring algorithm. Since the previous

study [16] assumed that the external module is operated at

almost the same clock as ARM CPU, they did not need

to address the overflow issue of PTM FIFO. In ActiMon,

however, the modules that process PTM packets are operating

on FPGA, so the clock speed is inevitably much slower than

ARM CPU, as discussed in section I.

To overcome this limitation of FPGA, the speed of con-

suming the stored packets inside PTM FIFO is maximized by

connecting 250MHz clock. It is the fastest clock that can be

provided in our FPGA to the host CPU as the external clock of

TPIU. However, the typical FPGA design cannot meet such

tight timing constraint (i.e., 4ns clock period). ActiMon mod-

ules support 100MHz as the maximum clock rate. In order to

link these two different clock domains, we have implemented

the asynchronous buffer called Packet Buffer in between the

host CPU and Packet Decoder. Packet Buffer is a two-port

SRAMwhere the ports for writing/reading are separated, and

they can be operated in different clock rates. In our design,

Packet Buffer stores the transmitted packets in 250MHz

clock rate synchronized with TPIU and Packet Decoder reads

Packet Buffer in 100MHz. Then Packet Decoder decodes

the read packets and analyze the legality according to the

algorithm aswill be explained in subsection IV-C. It takes less

than five cycles to complete all the procedures from decoding

to anlyzing the packets.

Although this asynchronous design can lower the

possibility of overflow in PTM FIFO, it does not guaran-

tee that all the packets will be decoded for a successful

monitoring task by CRA monitor. Therefore, to assure that

CRA monitor does not miss any PTM packets, which is the

minimum requirement for CRA monitor, we should reduce

the amount of PTM packets generated from the CPU to

minimize the overflow possibility of PTM FIFO as well as

Packet Buffer.

B. BINARY INSTRUMENTATION

In this subsection, we describe our special binary instrumen-

tation mechanism to achieve the following two goals: (1) for

PTM to emit only the necessary branch addresses for our

CRA monitoring algorithm and (2) to supplement the lacked

information for our algorithm.

Our first goal of the instrumentation is to filter out unnec-

essary indirect branch addresses before being stored in PTM

FIFO. Recall that, ActiMon needs to track only the target

addresses of the indirect branches that jump to outside of

the currently executing function as mentioned in section I.

To extract only those cross-function jumps, we leveraged

Address Comparators inside PTM which only pass through

the branch target addresses that match the ranges set by eight

pairs of Address Comparator registers. However, regardless

of how many registers are available, grouping the target of

cross-function jumps that are evenly distributed throughout

the code would be not only inefficient but also deterrent to

achieving the first goal of ours. This is due to the fact that it

will inevitably include useless information (i.e., branches that

are not cross-function jumps) in a group. Hence, ActiMon

is designed to only collect necessary pieces of information

which will require just a single Address Comparator to do

the job.

In relation to the second goal, the target address of an

indirect branch can only be acquired from PTM packets

coming through the debug interface. While gathering the

target addresses of indirect branches are quite straightforward

in our solution as the ARM debug interface is designed to

provide such information, it lacks the following four classes

of information: (1) type of indirect branches, (2) addresses

of each function entry, (3) source and (4) target addresses of

return.

We resolved these limitations by adding new code sections,

so-called trampolines, in the binary instrumentation. The first

step of the instrumentation is to move the first instructions

of each function, returns, calls and indirect jumps in the

original code to an associated location in the trampoline. They

are then replaced with jump instructions which point to the

associated place. We note that aforementioned binary mod-

ifications regarding trampolines preserve the original code

layout. To be concrete, the trampolines are located at the

end of the original code section and the jump instructions to

the trampolines are added by overwriting an existing indirect

branch instruction. Thus, all references to code, such as via

function pointers, remain intact even after the binary modifi-

cations. Each trampoline code section is named Entry, Exit,

Return, Comparison and CrossFunc respectively. We will

explain each code section in detail below. Figure 2 illustrates

how the trampoline code sections are inserted into the original

binary. The modified codes are represented by grey-shaded

areas in the figure.

VOLUME 7, 2019 186521

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

FIGURE 2. Comparison between the original binary and the instrumented binary.

1) ENTRY SECTION

Entry section is for delivering the following information to

ActiMon: (1) the fact that current control-flow moves to a

function entry and (2) which function is called. As shown

in Figure 2a, we make each function correspond to the ded-

icated location in Entry section. We move the original first

instruction to the corresponding location in Entry section

and insert a new indirect jump that jumps to Entry section,

at the entry of the function. Also, we insert a new direct

jump in Entry section strictly after the first instruction of the

function that has already been inserted. So, When the target

address of indirect branch 3© in Figure 2a is delivered to

ActiMon, ActiMon can calculate the unique function label

corresponding to the delivered branch address. For example,

if the branch target address is @A + 8 ∗ (#6) where A is the

starting address of Entry section, it means that function#6 is

called.

2) EXIT SECTION

Exit section is for informing ActiMon the followings:

(1) which function is returned and (2) the fact that current

indirect branch is a return. Similar to Entry section, ActiMon

can infer the returned function label from the branch target

address (emitted from 5©) within Exit section. For example,

if the target of 5© is @B + 4 ∗ (#6) where B is the starting

address of Exit section, function#6 is returned. We must

uniquely handle one particular case by ARM which does

not have the return instruction. Rather, it is implemented by

pop pc, or bx lr where both pop and bx can contain the

condition to be executed. To maintain the original function-

ality, if the original return contains the condition, we simply

exchange the newly inserted indirect jump at the exit of the

function with the conditional indirect jump. Return instruc-

tion inserted in Exit section will be without the condition.

3) RETURN SECTION

Return section is for delivering the target function of return to

ActiMon. Two instructions per every function call are added

to Return section. The first instruction is a call for the function

which is to be invoked in the original binary (2©). The second

instruction is a direct jump to move control-flow back to the

original return target (7©). The offset within Return section

corresponds to the target function of return. For example,

if the target of 6© is @C + 8 ∗ (#5) + 4 where C is the

starting address of Return section, the corresponding return

targets function#5.

4) COMPARISON SECTION

Comparison section is for checking if the current indirect

jump is cross-function jump and preventing the generation of

PTM packets when the jump does not cross the function. All

the indirect jumps are redirected to Comparison section by a

direct branch as shown in Figure 2b. One thing to note here is

that we configure PTM not to emit direct branch addresses.

So, the newly added direct branch does not increase the

amount of PTM packets. It would be acceptable to monitor

only the indirect branch because CRAs mainly targets the

indirect branch rather than the direct branch. In Comparison

section, the instrumented codes compare the target address of

the original indirect jump with the currently executing func-

tion boundaries. Function boundaries are statically extracted

from the binary and inserted as a constant operand for cmp

instruction. Only when the target address lies outside of the

currently executing function, the instrumented indirect jump

to CrossFunc section is executed (10© in Figure 2b).

5) CROSSFUNC SECTION

CrossFunc is for noticing ActiMon that the current indi-

rect branch is an indirect jump and also cross-function

jump. CrossFunc section only contains the original indirect

branches substituted by the direct branch to Comparison

section. ActiMon can infer the occurrence of cross-function

jumps by checking the branch addresses are in CrossFunc

section.

Based on these instrumented sections, the essential PTM

packets for ActiMon are generated during only the following

four cases (represented as the solid red arrow lines in Fig-

ure 2b): (1) moving from the original code section to Entry

section 3© or (2) Exit section 5© or (3) Return section

6© , and (4) moving from Comparison section to CrossFunc

section 10© . In other words, ActiMon needs to monitor

the branches that jump only to the above target sections

(i.e., Entry, Exit, Return and CrossFunc sections). So, we set

the starting and ending addresses of each target section to

the Address Comparator registers. Since the instrumented

sections are arranged in consecutive addresses, a single pair

186522 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

of Address Comparator registers that cover the sections at

once can filter out irrelevant PTM packets. This filtering

greatly relieves the heavy data pressure of both PTM FIFO

and Packet Buffer that was discussed in subsection IV-A.

C. JOP/ROP DETECTION PROCESS

In this subsection, we explain howActiMon detects the illegal

change of the control-flow induced by JOP and ROP attacks.

In the core of our algorithm, ActiMon manages Active Func-

tion List (AFL) to check the existence of those attacks. If Acti-

Mon detects a branch to Entry section, the corresponding

function label in AFL is set to one, i.e., activated. On the other

hand, the corresponding activated label in AFL is set back

to zero when a branch to the corresponding location in Exit

section is executed. Our detection algorithm is as summarized

in section I. The detailed procedure is as the following.

JOP checking procedure starts from when a branch to

CrossFunc section occurs. (10© in Figure 2b). Then, ActiMon

waits for a branch to Entry section to verify the rule of

branch regulation (BR) [20] where the cross-function jump

must target the function entry (3©). If a branch to other

sections occurs in advance to the one to Entry section, Acti-

Mon generates the interrupt that alarms the existence of a

JOP attack for ARM CPU to terminate the target program

immediately. Since all the cross-function indirect jumps must

pass through CrossFunc section, ActiMon does not miss any

malicious jump that violates the BR rule. It is worth to note

that ActiMon has a delay for detecting JOP attacks. The

detection delay is caused by executing several instructions,

called a gadget before encountering the next cross-function

indirect jump instruction. However, we believe that the delay

is negligible as a single gadget is a short code sequence. 1

In order to check the existence of ROP attacks, we regard

a return targeting the non-activated function as an illegal

control-flow induced by ROP attacks. The procedure for

monitoring ROP begins once a branch to Return section

occurs (6©). Hereafter, ActiMon checks if the function label

corresponding to the location in Return section is activated in

AFL. If the corresponding location is not activated, ActiMon

generates an interrupt to raise the ROP attack flag for ARM

CPU. The AFL based mechanism is noteworthy in that it

does not occur false positives for certain programming con-

structions that involve unusual stack management (e.g., C++

exceptions with stack unwinding and setjmp/longjmp) [30].

D. HARDWARE MODULES FOR THE DETECTION

In this subsection, we explain the hardware modules that

perform our monitoring algorithm. Firstly, Packet Decoder

extracts the branch addresses from PTM packets stored in

Packet Buffer and delivers the extracted branch addresses

to Section Decoder. Section Decoder generates AFL trans-

actions from the delivered branch addresses by determining

1According to our investigation, the average length of available gadget
length is 5 instructions. Such a short length comes from the fact that long
gadgets considerably reduce stability of execution [18].

FIGURE 3. Operation of section decoder.

TABLE 1. List of AFL transactions.

which code section and function corresponds to those branch

target addresses. AFL transactions are then delivered to AFL

Manager. It checks if the rules explained in subsection IV-C

are violated based on AFL which is being updated by AFL

transactions.

1) SECTION DECODER

Figure 3 depicts the operation of Section Decoder in detail.

Firstly, to find which code section the branch has jumped

to, each branch address is compared to the section boundary

information that is set by the host CPU prior to running the

target program. Each boundary can be obtained statically

from the instrumented binary. Then, Section Decoder deter-

mines the function labels by calculating the relative offset

from each starting address of the code sections. For example,

if the relative offset of the branch address belonging to Entry

section is 120 (= 8∗15) in decimal, recalling that two instruc-

tions per the corresponding function are inserted in the entry

section, the function label is determined to be #15 as shown in

Figure 3. The section information and the determined func-

tion label are combined into an AFL transaction. There are

four transactions for managing AFL and triggering JOP/ROP

detection process as represented in Table 1. CrossFunc and

Return#C are the transactions triggering AFL Manager to

run the rule check for JOP and ROP detection respectively.

Entry#A and Exit#B are for updating the entries of AFL.

For better performance, Section Decoder is designed to

process four branch addresses simultaneously. The number of

branches is related to the amount of packet data transmitted

at once. More specifically, the output port of ARM CPU

for emitting PTM packet data can be configured to various

sizes, i.e., from 1-bit to 32-bit. We set the size of the port

to the maximum value for the fastest possible extraction

of the PTM packets from PTM FIFO within ARM CPU.

VOLUME 7, 2019 186523

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

FIGURE 4. JOP detection process of AFL Manager.

Since the length of the packet containing branch information

can be 8-bit at its minimum [45], Packet Decoder can decode

up to four branch addresses at a time. The following AFL

Manager is also designed to handle four AFL transactions at

once to synchronize the generation rate of AFL transactions

in Section Decoder. We found that ARMCPU holds the PTM

packets in the PTM FIFO until 4 bytes packets are gathered

(the concrete time or cycles is not documented [46]), which

may delay the detection of attacks that have already carried

out by this buffering period. We deem that this limitation

would be overcome easily once if ARM provides the mode

that immediately emits the PTM packet rather than buffering

unconditionally.

2) AFL MANAGER

We now describe AFL Manager that manages AFL and

enforces our JOP/ROP detection rule by processing AFL

transactions transmitted from Section Decoder.

3) JOP DETECTION PROCESS

Figure 4 illustrates a JOP detection process of AFL Manager

where thereby AFL Manager processes two groups of AFL

transactions in order. As shown in the figure, AFL Manager

enforces the BR rule for every group of AFL transactions

delivered. If a section other than Entry section is followed

after CrossFunc section, it is regarded as a JOP attack and

an interrupt is immediately generated. Although the rule

imposed by AFL Manager checks two consecutive AFL

transactions, it is not always the case where both of them are

located in the same group from Section Decoder. Figure 4

illustrates such case. Therefore, it is crucial to carefully engi-

neer AFL Manager to keep the last AFL transaction of the

previous group and combine it with the first transaction of the

next group. Figure 4 shows an example of a typical JOP attack

that stitches the gadgets by consecutive cross-function jumps.

At the second group, an interrupt will be raised to alert ARM

CPU of JOP attack because CrossFunc section is followed by

other than Entry. In this case, it was another CrossFunc that

came after CrossFunc.

4) ROP DETECTION PROCESS

Figure 5 illustrates ROP detection process of AFL Manager.

As discussed in section I, AFL Manager is designed to pro-

cess multiple AFL transactions concurrently as long as there

is no dependency among the transactions. Figure 5a portrays

one of these full parallelizable cases. Since function labels

are all different, in other words, there is no dependency issue,

FIGURE 5. ROP detection process of AFL Manager.

all the transactions are classified in the same subgroup which

is to be processed in parallel. Consequently, the second trans-

action (denoted by Return#2) triggers the checking logic

for ROP detection rule and then AFL Manager raises an

alarm for ROP attack since function#2 is inactive on AFL.

At the same clock cycle, function#0 and function#14 are

activated, and function#1 is deactivated. It is worth to note

that the value of each AFL Value entry is a counter to con-

sider recursive function calls. It prevents the false positive

in which ActiMon raises an alarm even though the program

is normally executing the recursive function calls, by inre-

menting/decrementing the counter when the same function is

successively called/returned.

In the second example Figure 5b, the transactions having

the same function labels are found. Before dividing a group

into subgroups, AFL Manager deletes the paired transactions

that have no effect on AFL. Entry and Exit with the same

label would be canceled out as long as Entry is followed

by Exit. This prior cancellation may give another chance

of performance gain by saving the clock cycles needed for

updating AFL. In Figure 5b, there is no clock cycle reduc-

tion by the deletion because there is another pair with a

dependency (Entry#1, Return#1). However, if a group of

AFL transactions is (Entry#1, Entry#2, Exit#2, Return#0),

the Entry#2/Exit#2 are canceled out and Entry#1/Return#0 is

grouped into a single subgroup that is to be executed in

parallel, so that only one clock cycle is needed to manage

AFL in this case.

V. EVALUATION

To evaluate ActiMon, we have loaded it on a Xilinx

Zynq-7000 ZC706 platform which is equipped an SoC

XC7Z045 FFG900-2 incorporating a dual-core ARM

Cortex-A9 processor and an FPGA together. We have built

186524 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

FIGURE 6. Overhead comparison between ActiMon-SW and ActiMon.

the host system with the A9 processor that is set by the

maximum possible 800MHz clock speed and deployedXilinx

ARM Linux kernel 4.9 as the host OS. Also, the two Core-

Sight modules, PTM and TPIU, in the Cortex-A9 processor

are enabled to extract branch traces from the CPU. The Acti-

Mon modules are developed in Verilog HDL to be mapped on

the FPGA. In the following subsections, we evaluateActiMon

in terms of storage and performance overhead, then report the

synthesis result and the security evaluation.

A. STORAGE AND PERFORMANCE OVERHEAD

EVALUATION

Since no existing hardware-based CRA monitor solution can

operate validly in our environment where the monitor is eight

times slower than CPU, we implemented the software version

ofActiMon, named byActiMon-SW in order to comparewith

our ActiMon. To implement ActiMon-SW, we instrumented

additional codes to the target binary which execute every

process in ActiMon operating in FPGA. The target binaries

were selected from the SPEC CPU2006 benchmark [22].

Figure 6a depicts the comparison of the storage overhead

due to the binary instrumentation between ActiMon-SW

and ActiMon. The y-axis value represents the instrumented

binary size that is normalized by adjusting the size of the

original binary to be 1. The higher bar means that more codes

are inserted to the original binary. Since each code of the

benchmark program includes a different number of branches,

the storage overhead varies. ActiMon incurred only 18.7%

storage overhead on average, while 26.2% for ActiMon-SW.

If we simply compare the numberwith the previousworkwith

ignoring their limitations, the storage overhead of 18.7% by

ActiMon is relatively comparable to that of 16.6% by [16].

Figure 6b illustrates a graph comparing the performance

overhead between ActiMon-SW and ActiMon. The perfor-

mance overhead was calculated by measuring the execution

time of both the original binary and instrumented binary. The

higher bar in the figure means that the performance overhead

is greater. ActiMon-SW shows the performance overhead

of 19.7% on average while 9.77% for ActiMon. In other

words, The performance overhead was reduced to half by

offloading the monitoring algorithm to our ActiMon operated

on FPGA.

The performance overhead also varied with respect to

each benchmark program similar to the storage overhead.

TABLE 2. Synthesis result of ActiMon.

However, the performance overhead correlated to the number

of branch execution in runtime, while the storage overhead

was proportional to the number of branch instructions in the

code. As shown in Figure 6b, our instrumented codes cor-

responding to indirect branches are executed more frequently

especially in 445.gobmk and 464.h264ref. The internal

buffers (PTM FIFO, Packet Buffer) did not overflow during

running those two benchmark programs as well.

B. SYNTHESIS RESULT

We have synthesized ActiMon onto the FPGA in the

Zynq-7000 board and quantified the logics necessary for the

hardware modules of ActiMon in terms of lookup tables

for logic (LUTs), flip-flops (FFs) and memory elements

(BRAMs). Such modules include Packet Buffer, Packet

Decoder, Section Decoder and AFL Manager. The synthesis

results are shown in Table 2. The total hardware resources

available for the Zynq board are 218600 LUTs, 437200 FFs,

and 545 BRAMs, and ActiMon utilizes 45.75%, 2.08%,

and 0.73% of that for each hardware resource respectively.

As shown in Table 2, AFLManager which comprises of AFL

and logics for managing AFL, occupies most of the resources

within ActiMon (i.e., 95.20% of LUTs and 85.86% of FFs).

The fact that the percentage of resource usage is highly

concentrated on one module (i.e., AFLManager) is related to

our design choice for the performance, in which our AFL was

implemented by flip-flops, not by BRAM. If AFL was made

of BRAM, additional clock cycles would have been required

to access entries of AFL. In contrast, flip-flops do not require

a clock cycle to access the value because the data is always

loaded on Q port. More importantly, we can access multiple

entries concurrently as explained in subsection IV-Dwhich is

only feasible if AFLwas built with flip-flops. As a result, such

FFs/LUTs are respectively mapped to AFL entries and the

logics (e.g., muxes and adders) for reading and updating all

VOLUME 7, 2019 186525

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

the entries of AFL concurrently. In our evaluation, the number

of entries of AFL is implemented as 2048, and each entry

value can range from 0 to 7. We decided on the number of

the entry to be 2048 so as to cover the maximum number of

functions in our benchmark programs used for the evaluation

(i.e., 6k (= 2048∗3) bits are allocated to AFL in total). If we

try to adjust the size of the AFL according to the specific

target program, we merely have to adjust the parameters

(i.e., the number of entries and the bit-width of each one) of

the AFLManager Verilog-HDL code and then load the resyn-

thesized ActiMon on FPGA. By utilizing the programmabil-

ity of FPGA in this way, it is easy to update the ActiMon

module.

C. SECURITY EVALUATION

To evaluate the detection capability of our ActiMon, we have

implemented five CRA samples as explained in [16]. Two

samples are ROP attacks to open a shell, the other two sam-

ples are JOP attacks that aim to achieve the same goal as the

first two ROP attacks, and another sample is a ROP attack to

invokemprotect system call. For this, we used a vulnerable

program that has buffer overflow vulnerability and exploited

it to launch the CRA samples.More specifically, we corrupted

the stack by inputting a file that has characters of a length

greater than the allocated for the destination of strcpy.

Since at least one gadget comes from an inactive function

in all tested ROP samples, ActiMon correctly detected the

existence of such the ROP attacks. Similarly, since every

corrupted target of indirect jumps in all tested JOP samples is

always beyond the currently executing function bounds and

does not target a function entry, ActiMon, again, successfully

detected such JOP attacks.

To analyze the reliability of ActiMon more statistically,

we analyzed the false positive and the false negative rate.

First, there is no false positives—ActiMon does not make

a false alarm on normal program executions. Our interested

cross-function jumps are induced by a function call or a return

instruction. Since every legal function call should transfer the

program control to entries of the target functions, they must

obey our JOP detection rule, BR. Similarly, all legal returns

jump back to the call sites which must be activated already in

our AFL.

On the other hand, ActiMon involves a little false negatives

regarding its monitoring capability. Simply put, ActiMon

might be bypassed by JOP andROP attacks that stitch gadgets

still in active functions as shown in [47], but we believe the

risk is minor. First, the false negative rate for detecting JOP

attacks is virtually zero. To carry out JOP attacks, a dispatcher

gadget (to orchestrate the sequence of gadgets) and a system

call instruction (to do something beyond the compromised

program) are required, but it is hardly that both the dispatcher

gadget and system call exist together in an active function.

Experimentally, for instance, no such a case is found in the

commonly used libraries such as libc or libssl [20].

Similarly, the false negative rate of ActiMon for ROP

attacks is also limited.We evaluated the false negative rate for

TABLE 3. ROP gadgets reduction of ActiMon.

detecting ROP by analyzing gadgets reduction. To measure

to what extent ActiMon reduces the set of valid gadgets,

we calculated and compared the number of the gadgets in

a program and the number of the actually available gadgets

at each return instruction. Table 3 shows the gadget reduc-

tions by ActiMon. We utilized ROPgadget to identify ROP

gadgets in code and Callgrind, a sub tool of Valgrind, to log

each function call and call counts. After logging all call

history of each benchmark program, we built a call-graph

to identify possible active functions from the main function

to the leaf functions, and calculated the min/max/average

number of ROP gadgets from the activated functions. As a

result, ActiMon reduces the number of gadgets by 96.1% on

average. ActiMon exhibits 92.56% reduction on average even

at the worst case (max.) among all the return instructions.

This reduction is relatively better than those of related work,

88.93% [32] and 91.92% [33].

VI. CONCLUSION

The recent rise of FPGA as a versatile embedded comput-

ing device has motivated us to implement a CRA monitor

(i.e., ActiMon) inside an ARM system that is built together

with FPGA within a COTS FPGA SoC platform readily

available in the market today. To overcome the performance

handicap of FPGA, we have crafted ActiMon to achieve fast

performance sufficient to detect realistic JOP/ROP attacks

on a real SoC FPGA platform. We ascribe such achieve-

ment to its lightweight, unified algorithm based on AFL.

To further improve the performance, ActiMon processes mul-

tiple branches in parallel whenever possible. Additionally,

our binary instrumentation mechanism alleviates the perfor-

mance overhead of ActiMon by filtering out all jumps except

essential cross-function jumps before transmitting them to

it. Consequently, the experiments demonstrated that unlike

existing solutions piggybacking the high speed of custom

SoCs, our ActiMon was able to meet the minimum per-

formance requirements for successful JOP/ROP detection,

even when running on SoC FPGA, with acceptable storage

overhead of 18.7% and performance overhead of 9.77% on

average.

REFERENCES

[1] Amazon. (2018). AWS EC2 FPGA Development Kit. [Online]. Available:

https://github.com/aws/aws-fpga

186526 VOLUME 7, 2019

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

[2] Intel. (2018). Intel(r) Programmable Acceleration Card (PAC) With

Intel(r) Arria(r) 10GXFPGADatasheet. [Online]. Available: https://www.

intel.com/content/dam/www/programmable/us/en/pdfs/literature/ds/ds-

pac-a10.pdf

[3] (2018). Intel(r) Xeon(r) Gold 6138 Processor. [Online]. Available:

https://en.wikichip.org/wiki/intel/xeon_gold/6138p

[4] Xilinx. (2018). Zynq-7000 SOC Data Sheet: Overview. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/data_sheets/ds190-

Zynq-7000-Overview.pdf

[5] (2018). Versal: The First Adaptive Compute Acceleration

Platform (ACAP). [Online]. Available: https://www.xilinx.com/support/

documentation/white_papers/wp505-versal-acap.pdf

[6] Microchip. (2019). Polarfire FPGA: Building a MI-V Processor

Subsystem. [Online]. Available: https://www.microsemi.com/document-

portal/doc_download/136945-tu0775-polarfire-fpga-building-a-risc-v-

processor-subsystem-tutorial

[7] K. Neshatpour, M. Malik, M. A. Ghodrat, and H. Homayoun,

‘‘Accelerating big data analytics using FPGAs,’’ in Proc. IEEE 23rd

Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2015,

p. 164.

[8] R. Dhanabal, S. K. Sahoo, V. Bharathi, K. Dowluri, B. S. R. P. Varma, and

V. Sasiraju, ‘‘Fpga based image processing unit usage in coin detection and

counting,’’ inProc. Int. Conf. Circuits, Power Comput. Technol. (ICCPCT),

Mar. 2015, pp. 1–5.

[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, ‘‘A survey of FPGA

based neural network accelerator,’’CoRR, vol. abs/1712.08934, Dec. 2017,

pp. 1–26. [Online]. Available: http://arxiv.org/abs/1712.08934

[10] B. Nagy, P. Orosz, and P. Varga, ‘‘Low-reaction time FPGA-based

DDoS detector,’’ in Proc. NOMS IEEE/IFIP Netw. Oper. Manage. Symp.,

Apr. 2018, pp. 1–2.

[11] A. Boutros, B. Grady, M. Abbas, and P. Chow, ‘‘Build fast, trade fast:

FPGA-based high-frequency trading using high-level synthesis,’’ in Proc.

Int. Conf. ReConFigurable Comput. FPGAs (ReConFig), Dec. 2017,

pp. 1–6.

[12] A. Surendar, ‘‘FPGA based parallel computation techniques for bioinfor-

matics applications,’’ Int. J. Res. Pharmaceutical Sci., vol. 8, pp. 124–128,

Jan. 2017.

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, ‘‘Control-flow

integrity,’’ in Proc. 12th ACM Conf. Comput. Commun. Secur.,

New York, NY, USA, 2005, pp. 340–353, doi: 10.1145/1102120.

1102165.

[14] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, ‘‘Drop: Detecting

return-oriented programming malicious code,’’ in Proc. 5th Int. Conf.

Inf. Syst. Secur. Berlin, Germany: Springer-Verlag, 2009, pp. 163–177,

doi: 10.1007/978-3-642-10772-6_13.

[15] B. Niu and G. Tan, ‘‘Per-input control-flow integrity,’’ in Proc. 22nd ACM

SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA, 2015,

pp. 914–926, doi: 10.1145/2810103.2813644.

[16] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, ‘‘Using CoreSight PTM

to integrate CRA monitoring IPs in an arm-based SoC,’’ ACM Trans. Des.

Autom. Electr. Syst., vol. 22, p. 52:1–52:25, 2017.

[17] I. Kuon and J. Rose, ‘‘Measuring the gap between FPGAs and ASICs,’’

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,

pp. 203–215, Feb. 2007.

[18] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, ‘‘Jump-oriented pro-

gramming: A new class of code-reuse attack,’’ in Proc. 6th ACM Symp.

Inf., Comput. Commun. Secur., New York, NY, USA, 2011, pp. 30–40,

doi: 10.1145/1966913.1966919.

[19] H. Shacham, ‘‘The geometry of innocent flesh on the bone: Return-

into-libc without function calls (on the x86),’’ in Proc. 14th ACM Conf.

Comput. Commun. Secur., New York, NY, USA, 2007, pp. 552–561,

doi: 10.1145/1315245.1315313.

[20] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, ‘‘Branch

regulation: Low-overhead protection from code reuse attacks,’’ in

Proc. 39th Annu. Int. Symp. Comput. Archit. Washington, DC, USA:

IEEE Computer Society, 2012, pp. 94–105. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2337159.2337171

[21] T.-C. Chiueh and F.-H. Hsu, ‘‘RAD: A compile-time solution

to buffer overflow attacks,’’ in Proc. 21st ICDSC, Apr. 2001,

pp. 409–417.

[22] J. L. Henning, ‘‘SPEC CPU2006 benchmark descriptions,’’ ACM

SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006,

doi: 10.1145/1186736.1186737.

[23] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,

D. Song, and W. Zou, ‘‘Practical control flow integrity and randomiza-

tion for binary executables,’’ in Proc. IEEE Symp. Secur. Privacy. Wash-

ington, DC, USA: IEEE Computer Society, May 2013, pp. 559–573,

doi: 10.1109/SP.2013.44.

[24] M. Zhang and R. Sekar, ‘‘Control flow integrity for cots bina-

ries,’’ in Proc. 22nd USENIX Conf. Secur. Berkeley, CA, USA:

USENIX Association, 2013, pp. 337–352. [Online]. Available: http://

dl.acm.org/citation.cfm?id=2534766.2534796

[25] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, ‘‘Hardware-assisted

run-time monitoring for secure program execution on embedded proces-

sors,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 12,

pp. 1295–1308, Dec. 2006.

[26] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,

‘‘HCFI: Hardware-enforced control-flow integrity,’’ in Proc. 6th ACM

Conf. Data Appl. Secur. Privacy, New York, NY, USA, 2016, pp. 38–49,

doi: 10.1145/2857705.2857722.

[27] W. He, S. Das, W. Zhang, and Y. Liu, ‘‘No-jump-into-basic-block: Enforce

basic block CFI on the fly for real-world binaries,’’ in Proc. 54th

Annu. Design Autom. Conf., New York, NY, USA, 2017, pp. 23:1–23:6,

doi: 10.1145/3061639.3062291.

[28] A. Francillon, D. Perito, and C. Castelluccia, ‘‘Defending embedded

systems against control flow attacks,’’ in Proc. 1st ACM Workshop

Secure Execution Untrusted Code, New York, NY, USA, 2009, pp. 19–26,

doi: 10.1145/1655077.1655083.

[29] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-Ghazaleh,

‘‘SCRAP: Architecture for signature-based protection from code reuse

attacks,’’ in Proc. IEEE 19th Int. Symp. High Perform. Comput.

Archit. (HPCA). Washington, DC, USA: IEEE Computer Society,

Feb. 2013, pp. 258–269, doi: 10.1109/HPCA.2013.6522324.

[30] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,

O. Arias, and Y. Jin, ‘‘HAFIX: Hardware-assisted flow integrity exten-

sion,’’ in Proc. 52nd Annu. Design Autom. Conf., New York, NY, USA,

2015, pp. 74:1–74:6, doi: 10.1145/2744769.2744847.

[31] D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin,

‘‘Strategy without tactics: Policy-agnostic hardware-enhanced control-

flow integrity,’’ in Proc. 53rd Annu. Design Autom. Conf., New York, NY,

USA, 2016, pp. 163:1–163:6, doi: 10.1145/2897937.2898098.

[32] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu, ‘‘Control flow integrity

based on lightweight encryption architecture,’’ IEEE Trans. Comput.-

AidedDesign Integr. Circuits Syst., vol. 37, no. 7, pp. 1358–1369, Jul. 2018.

[33] P. Qiu, Y. Lyu, D. Zhai, D.Wang, J. Zhang, X.Wang, and G. Qu, ‘‘Physical

unclonable functions-based linear encryption against code reuse attacks,’’

in Proc. 53nd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2016,

pp. 1–6.

[34] J. Zhang, B. Qi, Z. Qin, and G. Qu, ‘‘HCIC: Hardware-assisted control-

flow integrity checking,’’ IEEE Internet Things J., vol. 6, no. 1,

pp. 458–471, Feb. 2019.

[35] Z. Guo, R. Bhakta, and I. G. Harris, ‘‘Control-flow checking for intrusion

detection via a real-time debug interface,’’ in Proc. Int. Conf. Smart Com-

put. Workshops, Nov. 2014, pp. 87–92.

[36] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, ‘‘Integration of ROP/JOP

monitoring IPs in an arm-based SoC,’’ in Proc. Conf. Design, Autom. Test

Eur., San Jose, CA, USA: EDA Consortium, 2016, pp. 331–336. [Online].

Available: http://dl.acm.org/citation.cfm?id=2971808.2971884

[37] J. Lee, I. Heo, Y. Lee, and Y. Paek, ‘‘Efficient security monitoring

with the core debug interface in an embedded processor,’’ ACM Trans.

Des. Autom. Electron. Syst., vol. 22, no. 1, pp. 8:1–8:29, May 2016,

doi: 10.1145/2907611.

[38] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, ‘‘Towards a practical

solution to detect code reuse attacks on ARMmobile devices,’’ in Proc. 4th

Workshop Hardw. Architectural Support Secur. Privacy, New York, NY,

USA, 2015, pp. 3:1–3:8, doi: 10.1145/2768566.2768569.

[39] D. Y. Deng and G. E. Suh, ‘‘High-performance parallel accelerator for

flexible and efficient run-time monitoring,’’ in Proc. IEEE/IFIP Int. Conf.

Dependable Syst. Netw. (DSN), Jun. 2012, pp. 1–12.

[40] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis,

C. Giuffrida, and H. Bos, ‘‘Undermining information hiding (and what to

do about it),’’ in Proc. 25th USENIX Secur. Symp. (USENIX Secur.), 2016,

pp. 105–119.

[41] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,

‘‘Poking holes in information hiding,’’ in Proc. 25th USENIX Secur.

Symp. (USENIX Secur.), 2016, pp. 121–138.

VOLUME 7, 2019 186527

http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1007/978-3-642-10772-6_13
http://dx.doi.org/10.1145/2810103.2813644
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1186736.1186737
http://dx.doi.org/10.1109/SP.2013.44
http://dx.doi.org/10.1145/2857705.2857722
http://dx.doi.org/10.1145/3061639.3062291
http://dx.doi.org/10.1145/1655077.1655083
http://dx.doi.org/10.1109/HPCA.2013.6522324
http://dx.doi.org/10.1145/2744769.2744847
http://dx.doi.org/10.1145/2897937.2898098
http://dx.doi.org/10.1145/2907611
http://dx.doi.org/10.1145/2768566.2768569

H. Oh et al.: ActiMon: Unified JOP and ROP Detection With Active Function Lists on an SoC FPGA

[42] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,

‘‘Counterfeit object-oriented programming: On the difficulty of preventing

code reuse attacks in C++ applications,’’ in Proc. IEEE Symp. Secur.

Privacy, May 2015, pp. 745–762.

[43] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, ‘‘Non-control-data

attacks are realistic threats,’’ in Proc. 14th Conf. USENIX Secur. Symp.,

vol. 14. Berkeley, CA, USA: USENIX Association, 2005, p. 12. [Online].

Available: http://dl.acm.org/citation.cfm?id=1251398.1251410

[44] H. Hong, S. Shweta, A. Sendroiu, L. C. Zheng, S. Prateek, and L. Zhenkai,

‘‘Data-oriented programming: On the expressiveness of non-control

data attacks,’’ in Proc. IEEE Symp. Secur. Privacy (S P), May 2016,

pp. 969–986.

[45] AC Ltd. (2017). Arm CoreSight Architecture Specification V3.0.

[Online]. Available: http://infocenter.arm.com/help/topic/com.arm.doc.

ihi0029e/coresight_v3_0_architecture_specification_IHI0029E.pdf

[46] (2017). CoreSight PTM-A9 Techincal Reference Manual. [Online].

Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0401c/

DDI0401C_coresight_ptm_a9_r1p0_trm.pdf

[47] M. Theodorides and D. Wagner, ‘‘Breaking active-set backward-edge

CFI,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST),

May 2017, pp. 85–89.

HYUNYOUNG OH received the B.S. and M.S.

degrees in electrical and electronics engineering

from Yonsei University, South Korea, in 2005 and

2007, respectively. He is currently pursuing the

Ph.D. degree in electrical and computing engineer-

ing with Seoul National University, South Korea.

He was a SoCDesigner with Samsung Electronics,

South Korea, from 2007 to 2017. His research

interest includes hardware-backed system security

against various types of threats.

MYONGHOON YANG received the B.S. degree

in electronics and radio engineering from

Kyunghee University, South Korea, in 2016, and

the M.S. degree in electrical and computing engi-

neering from Seoul National University, South

Korea, in 2019. His research interest includes

hardware-backed system security against various

types of threats.

YEONGPIL CHO received the B.S. degree in elec-

trical engineering from POSTECH, South Korea,

in 2010, and the Ph.D. degree in electrical and

computer engineering from Seoul National Uni-

versity, South Korea, in 2018. He is currently a

Professor with the School of Software, Soongsil

University. His research interest includes system

security against various types of threats.

YUNHEUNG PAEK received the B.S. and M.S.

degrees in computer engineering from Seoul

National University, South Korea, in 1988 and

1990, respectively, and the Ph.D. degree in com-

puter science from the University of Illinois at

Urbana–Champaign, in 1997. He is currently a

Professor with the Department of Electrical and

Computer Engineering, Seoul National University.

His research interests include system security with

hardware, secure processor design against various

types of threats, and machine learning-based security solution.

186528 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	THREAT MODEL AND ASSUMPTIONS
	DESIGN
	PACKET BUFFER AND PACKET DECODER
	BINARY INSTRUMENTATION
	entry section
	EXIT SECTION
	RETURN SECTION
	COMPARISON SECTION
	CROSSFUNC SECTION

	JOP/ROP DETECTION PROCESS
	HARDWARE MODULES FOR THE DETECTION
	SECTION DECODER
	AFL MANAGER
	JOP DETECTION PROCESS
	ROP DETECTION PROCESS

	EVALUATION
	STORAGE AND PERFORMANCE OVERHEAD EVALUATION
	SYNTHESIS RESULT
	SECURITY EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	HYUNYOUNG OH
	MYONGHOON YANG
	YEONGPIL CHO
	YUNHEUNG PAEK

