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Summary

Actin filaments assemble into diverse protrusive and contractile structures to provide force for a number of vital cellular processes.
Stress fibers are contractile actomyosin bundles found in many cultured non-muscle cells, where they have a central role in cell adhesion
and morphogenesis. Focal-adhesion-anchored stress fibers also have an important role in mechanotransduction. In animal tissues, stress
fibers are especially abundant in endothelial cells, myofibroblasts and epithelial cells. Importantly, recent live-cell imaging studies have
provided new information regarding the mechanisms of stress fiber assembly and how their contractility is regulated in cells. In addition,
these studies might elucidate the general mechanisms by which contractile actomyosin arrays, including muscle cell myofibrils and
cytokinetic contractile ring, can be generated in cells. In this Commentary, we discuss recent findings concerning the physiological roles
of stress fibers and the mechanism by which these structures are generated in cells.
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Introduction

The actin cytoskeleton has a fundamental role in various

cellular processes such as migration, morphogenesis, cytokinesis,

endocytosis and phagocytosis. Consequently, the precise regulation

of the structure and dynamics of the actin cytoskeleton is essential

for many developmental and physiological processes in

multicellular organisms, and abnormalities in actin dynamics are

associated with many pathological disorders such as cancer,

neurological disorders and myofibrillar myopathies (Pollard and

Cooper, 2009).

The most important physiological function of actin filaments in

cells is to produce force for the above-mentioned cellular processes.

Actin filaments achieve this function by two distinct mechanisms.

First, coordinated polymerization of actin filaments against cellular

membranes provides force, for example, for the generation of

plasma membrane protrusions during cell migration and

morphogenesis and for the formation of plasma membrane

invaginations in endocytosis. During these processes, the structure

and dynamics of actin filament networks are precisely regulated by a

large array of actin-binding proteins, which control the nucleation,

elongation and disassembly of actin filaments as well as their

organization into desired three-dimensional arrays (Kaksonen et al.,

2006; Pollard and Cooper, 2009; Bugyi and Carlier, 2010).

In addition to protrusive actin filament networks, in which the

force is produced through actin polymerization, actin filaments

together with myosin II filaments form contractile structures in

cells. Here, the force is produced by ATP-driven movement of

the myosin II motor domains along the actin filaments. Because

myosin II assembles into bi-polar bundles, and the actin filaments

in these structures are arranged in bi-polar arrays, the motor

activity of myosin II bundles results in the contraction of the

actomyosin bundle. In animal cells, contractile actomyosin

structures include the cytokinetic contractile ring, myofibrils of

muscle cells and stress fibers of non-muscle cells. Whereas the

assembly mechanisms of protrusive actin filament networks are

relatively well understood, the molecular mechanisms underlying

the assembly of myosin-II-containing contractile actin filament

structures, such as stress fibers and muscle myofibrils, are

still largely unknown (Ono, 2010; Michelot and Drubin, 2011).

In this Commentary, we discuss the assembly, organization

and physiological roles of stress fibers, as well as possible

similarities in the pathways generating diverse contratile

actomyosin structures in cells.

Different stress fiber types in animal cells

Stress fibers are the major contractile structures in many cultured

animal cells. These actomyosin bundles are especially prominent

in fibroblasts, smooth muscle, endothelial and some cancer cell

lines. Stress fibers in non-motile cells are usually thick and

relatively stable. By contrast, highly motile cells typically contain

fewer, thinner and more dynamic stress fibers (Pellegrin and

Mellor, 2007).

Actin filaments are polar helical structures, with a rapidly

growing barbed end and a slowly growing pointed end (Pollard

and Cooper, 2009). Stress fibers are composed of bundles of

,10–30 actin filaments, which are crosslinked together by a-

actinin, typically in a bi-polar arrangement. These contractile

actomyosin bundles are often anchored to focal adhesions, which

connect the extracellular matrix (ECM) to the actin cytoskeleton

(Cramer et al., 1997; Pellegrin and Mellor, 2007; Naumanen et al.,

2008). However, it is important to note that stress fibers vary

in their morphology and association with focal adhesions.

Therefore, stress fibers can be divided into at least four

different categories: dorsal and ventral stress fibers, transverse

arcs and the perinuclear actin cap (Heath, 1983; Small et al.,

1998; Khatau et al., 2009) (Fig. 1A,B).
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Dorsal stress fibers are anchored to focal adhesions at their
distal ends. These actin filament bundles do not typically contain
myosin II (Tojkander et al., 2011). Therefore, unlike the other
types of stress fibers discussed below, they cannot contract. The
exact organization of actin filaments in dorsal stress fibers is not
known, but in structurally related ‘graded polarity bundles’, the
distal ends are composed of unipolar actin filaments with rapidly
growing barbed ends that face the cell periphery, whereas the
more proximal parts of the bundle are composed of actin
filaments with mixed polarity (Cramer et al., 1997; Pellegrin and
Mellor, 2007). Although they do not possess the ability to
contract, dorsal stress fibers appear to serve as a platform for the
assembly of other types of stress fibers, as well as to link them to
focal adhesions (Hotulainen and Lappalainen, 2006; Tojkander
et al., 2011).

Transverse arcs are curved actin filament bundles, which
display a periodic a-actinin–myosin pattern that is typical for
contractile actomyosin bundles. Arcs do not directly attach to
focal adhesions, but convey contractile force to the surrounding
environment through their connections with dorsal stress fibers.
An important feature of transverse arcs in migrating cells is their
ability to flow from the leading cell edge towards the cell center
(Heath, 1983; Small et al., 1998; Hotulainen and Lappalainen,
2006). This process, known as retrograde flow, is believed to be
driven by the continuous contraction of arcs (Zhang et al., 2003).

Ventral stress fibers are contractile actomyosin bundles that
are attached to focal adhesions at both ends, and they represent
the major contractile machinery in many interphase cells (Small
et al., 1998). Ventral stress fibers are often located at the
posterior parts of the cell, where occasional contraction cycles
promote rear constriction and facilitate cell movement (Chen,
1981; Mitchison and Cramer, 1996).

The perinuclear actin cap is a recently identified actin structure,
which consists of stress fibers positioned above the nucleus. The
key function of the perinuclear actin cap is to regulate the shape of
the nucleus in interphase cells. Furthermore, the perinuclear
actomyosin fibers might act as mechanotransducers to convey
force from the cell environment to the nucleus (Khatau et al.,
2009). It is also important to note that certain stress-fiber-like
structures also associate with the nuclear membrane through
specific membrane proteins (Luxton et al., 2010) and stabilize the
position of the nucleus (Nagayama et al., 2011). Thus, similar to
the connections that canonical stress fibers make with the ECM
through focal adhesions, a subset of stress fibers appears to be
mechanically connected to nuclear membrane proteins to regulate
nuclear movement.

Lamella are composed of a network of

contractile transverse arcs

Two distinct actin filament networks, lamellipodium and lamella,
have been proposed to contribute to cell migration. Although it is
well established that lamellipodium is composed of a branched
network of actin filaments, elucidation of the origin and
organization of actin filaments in the lamellum has been more
elusive (Vallotton and Small, 2009; Ydenberg et al., 2011).
However, several recent studies provide evidence that, in
migrating cells, the lamellum corresponds to the transverse arc
network, as both structures are composed of condensed actin
bundles and undergo retrograde flow towards the cell center
(Ponti et al., 2004; Hotulainen and Lappalainen, 2006). Lamella
and arcs also display similar protein compositions. For example,
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Fig. 1. Different types of stress fibers in cultured animal cells.

(A) Schematic presentation of the stress fiber network of motile mesenchymal

cells. These cells can contain at least four discrete categories of stress fibers;

(i) dorsal stress fibers, which are anchored to focal adhesions at their distal

end, (ii) transverse arcs, which are curved actomyosin bundles that flow

towards the cell center and are typically connected to focal adhesions through

interactions with dorsal stress fibers; (iii) ventral stress fibers, which are

actomyosin bundles anchored to focal adhesions at both ends, and

(iv) perinuclear actin cap bundles, which resemble ventral stress fibers but

their central parts are located above the nucleus. (B) The stress fiber network

of a motile U2OS cells. Shown here are examples of dorsal stress fibers, arcs

and ventral stress fibers, indicated with red (dorsal), yellow (arcs) and green

(ventral) lines, respectively. (C) Stress fibers in human umbilical vein

endothelial cells (HUVECs). In these cells, stress fibers from neighboring

cells are physically connected through discontinuous adherens junctions.

(D) Visualization of actin arcs in a living neuron isolated from Aplysia.

(E) Stress-fiber-like precursors of myofibrils in cultured rat neonatal

cardiomyocytes. The actin filaments in panels shown in B–E are visualized by

phalloidin staining. The images shown in panels B, C and D are from

(Hotulainen and Lappalainen, 2006; Millan et al., 2010; Schaefer et al., 2008),

respectively, and reproduced with permissions from the Rockefeller

University Press and Elsevier.
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tropomyosins, which are nearly absent from the lamellipodium,
are highly enriched in the lamellum (DesMarais et al., 2002) and
in transverse arcs (Tojkander et al., 2011). Importantly, both arcs
and the lamellum are generated through the condensation of
lamellipodial actin filaments into arc-shaped actin bundles that
run parallel to the cell edge (Hotulainen and Lappalainen, 2006;
Tojkander et al., 2011; Burnette et al., 2011).

Stress fibers in cell adhesion, migration and

mechanotransduction

An important feature of many cells is their ability to migrate
towards particular chemical or mechanical stimuli. This is
crucial, for example, during development and wound healing
(Gilbert, 2003; Ridley et al., 2003). Focal adhesions are complex
structures that ensure the proper communication between the cell
and the ECM during adhesion and migration. Focal adhesions are
often connected to actin stress fibers, which thus appear to play
an important role in cell adhesion and migration (Geiger et al.,
2009; Parsons et al., 2010). The assembly, growth and
maintenance of focal adhesions depend on mechanical stress.
Inhibition of myosin-II-promoted contractility leads to a decrease
in focal adhesion size (Balaban et al., 2001; Chrzanowska-
Wodnicka and Burridge, 1996; Helfman et al., 1999), whereas
applying mechanical force to the adhesions increases their size in
a myosin-II-independent manner (Riveline et al., 2001). The
mechanical force that is transmitted to focal adhesions by stress
fibers can alter the conformation of mechanosensitive focal
adhesion proteins, including that of p130CAS (also known as
BCAR1) (Sawada et al., 2006), b-integrin (Puklin-Faucher et al.,
2006) and talin (Gingras et al., 2006; Papagrigoriou et al., 2004;
del Rio et al., 2009). This suggests that stress fiber tension or
contractility can convert mechanical signals into biochemical
cues, and thus has an important role in focal adhesion maturation
and dynamics (Johnson et al., 2007; Vogel, 2006).

Stress fibers are also dependent on tension and myosin-II-
mediated contractility because myosin II inhibition leads to
the disassembly of stress fibers (Bershadsky et al., 2006;
Chrzanowska-Wodnicka and Burridge, 1996). Furthermore,
many focal-adhesion-associated proteins are involved in stress
fiber regulation. For example, zyxin has been implicated in force-
dependent actin polymerization (Hirata et al., 2008), stress fiber
mechanosensing (Colombelli et al., 2009) and stress fiber repair
(Smith et al., 2010).

Although stress fibers contribute to cell adhesion, their exact
role in cell migration has been more elusive. Stress fibers are
absent from many highly motile cells, such as leukocytes
(Valerius et al., 1981) and Dictyostelium discoideum amoeba
(Rubino et al., 1984). These observations, together with the
apparent lack of stress fibers in cells that have been embedded in
a three-dimensional environment led to the suggestion that they
are not essential for cell migration (Burridge et al., 1988). Indeed,
it is possible that, under many conditions, stress fibers instead
inhibit cell motility because the reorganization of stable actin
bundles and focal adhesions can be a relatively slow process. The
physiological significance of stress fibers in cell migration might
thus be linked to their role in constricting the ECM and
deforming the substrate through the generation of tension
(Castella et al., 2010). This could be important in wound
healing processes and in cell migration on stiff matrices. Recent
data, which reveal focal adhesions and stress-fiber-like
actomyosin bundles in cells cultured in a three-dimensional

matrix, should therefore encourage more thorough studies that
investigate the presence and function of stress fibers in cells in
the context of a three-dimensional milieu (Kubow and Horwitz,
2011; Fischer et al., 2009).

Stress fibers also have an important role in mechanosensing.
First, as described above, the contractile force generated by stress
fibers regulates the assembly and dynamics of focal adhesions.
This has also been demonstrated by recent laser nanosurgery and
drug treatment experiments showing that the localization of zyxin
to focal adhesions is rapidly regulated by the force that is
generated by stress fibers (Colombelli et al., 2009). Second,
direct mechanical stimulation (stretching) of an actin stress fiber
using optical tweezers can activate mechanosensitive channels in
cultured human umbilical vein endothelial cells (Hayakawa et al.,
2008). Thus, the force generated by stress fibers might regulate
many different biochemical or signaling pathways in cells.
The ability of cells to sense the mechanical aspects of the
environment is important for cell differentiation and cell fate
determination. Substrate stiffness controls the organization and
prominence of stress fibers and the maturation of actomyosin
bundles in myotubes (Discher et al., 2005; Geiger et al., 2009;
Walcott and Sun, 2010). Furthermore, environmental
mechanosensing is a crucial factor in stress fiber organization
and the lineage determination of stem cells (Engler et al., 2006;
Zemel et al., 2010).

Physiological roles of stress fibers

Biochemical and mechanical interactions between cells and the
environment modulate stress fiber abundance, structure and
organization. Therefore, it is not surprising that only a fraction of
cells in our bodies contain these contractile actomyosin bundles.
Cells assemble stress fibers only when they encounter mechanical
stress (force). Thus, most animal cell types that are grown on
rigid substrates, such as glass or plastic, display thick stress
fibers, whereas these structures are typically absent or only very
thin in the same cells grown on soft substrates. Furthermore, both
stress fibers and focal adhesions are aligned along the major cell
axis when cells are grown on a rigid matrix, whereas, on a
compliant matrix, focal adhesions are smaller and stress fibers are
poorly aligned (Discher et al., 2005; Prager-Khoutorsky et al.,
2011) (Fig. 2). Consequently, the most prominent examples of
stress fibers in tissues are found under conditions in which

Fig. 2. Effect of substrate stiffness on stress fibers. Stress fibers are more

prominent in cells that are grown on rigid than on soft substrates. Shown here

are fibroblasts that have been plated on substrates with various rigidities that

are made of poly(dimethylsiloxane) (PDMS). As shown in the image

on the left, cells plated on a rigid (2 MPa) substrate display thick and well-

aligned stress fibers. By contrast, as shown on the right, cells plated on a

compliant (5 kPa) substrate display thinner and poorly oriented stress fibers.

Images are from (Prager-Khoutorsky et al., 2011) and reproduced with

permission from Nature Publishing Group.
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cells are confronted with considerable mechanical stresses. For
example, during their development to myofibroblasts in dermal
wound tissue, fibroblasts develop prominent stress fibers, which
allow wound closure through the generation of tension and ECM
remodelling (Sandbo and Dulin, 2011). However, in contrast to
stress fibers of non-muscle cells, in which b-actin is the main
actin isoform, myofibroblasts express smooth muscle a-actin that
is incorporated into stress fibers (Hintz et al., 2002). Mechanical
tension during wound closure also induces stress fiber assembly
in epithelial cells, which then differentiate into myoepithelial
cells (Pellegrin and Mellor, 2007). In developing animals, stress
fibers are also present, for example, in epithelial cells during
dorsal closure in Drosophila embryos (Jacinto et al., 2002).

The hydrostatic pressure and cyclic strain in the vasculature
represent a major stress on the endothelial cells lining the blood
vessels. Therefore, it is not surprising that these cells assemble
prominent stress fibers (Wong et al., 1983). Interestingly, in
cultures of endothelial cells, stress fibers in adjacent cells can
become linked with each other through adherens junctions,
suggesting that stress fibers can be also stabilized by multi-
protein complexes associated with adherens junctions that are
distinct from focal adhesions (Millan et al., 2010) (Fig. 1C).
After applying fluid shear stress, cultured endothelial cells show
marked elongation and orientation in the flow direction. In
addition, thick stress fibers appear and align along the long axis
of the cell. Thus, it is believed that stress fibers also contribute to
the resistance of endothelial cells against fluid shear (Sato and
Ohashi, 2005).

Contractile stress fibers are also typical for certain other types
of specialized animal cells. For example, stress-fiber-like
structures serve as templates for the assembly of myofibrils
during the development of striated muscle cells, and transverse
arcs that undergo typical retrograde flow are also present in the
neuronal growth cones (Sanger et al., 2005; Schaefer et al., 2008)
(Fig. 1D,E). Contractile transverse arcs are also present in the
immunological synapses of T lymphocytes, where they regulate
the dynamics of receptor clusters (Yi et al., 2012).

Stress-fiber-associated proteins

Actin and myosin are the main components of stress fibers and
form a functionally strictly controlled actomyosin structure that is
responsible for stress fiber contraction. In addition, several actin-
binding proteins (ABPs) and focal-adhesion-associated proteins
localize to stress fibers, and regulate their assembly and stability
(Table 1). The interactions of ABPs with stress fibers are usually
highly dynamic, as seen in fluorescence recovery after
photobleaching (FRAP) experiments (Schmidt and Nichols,
2004; Hotulainen and Lappalainen, 2006; Endlich et al., 2009;
Tojkander et al., 2011). This suggests that stress fibers are
dynamic structures, and the proteins that associate with them
display constant dissociation and association.

The different ABPs can be classified according to their
biochemical functions and their localizations along the stress
fibers. a-Actinin, an actin crosslinking protein, displays a
punctuate localization pattern on stress fibers that is
complementary to the localization of myosin II (Lazarides and
Burridge, 1975) (see Fig. 1A). Its two isoforms a-actinin-1 and -4
are expressed in many non-muscle cells. In cultured cells, a-
actinin-1 is enriched in stress fibers, whereas a-actinin-4 is more
prominently localized to the lamellipodial actin filament network
(Honda et al., 1998). In addition to its actin-bundling activity,

a-actinin is associated with kinases and signaling proteins, such
as PDZ-LIM-containing proteins, thus acting as a mediator for
cytoskeleton-targeted signaling (Vallenius et al., 2000, Vallenius
and Mäkelä, 2002). A number of other actin filament crosslinking
proteins, including fascin, filamin and palladin, localize to stress
fibers, but their exact functions in these actomyosin bundles
remain largely unknown (Adams, 1995; Wang et al., 1975; Dixon
et al., 2008). Importantly, besides their crosslinking activity,
many of these proteins have also additional roles in the regulation
of cytoskeletal dynamics. Palladin, for example, interacts with
the actin-binding proteins profilin and vasodilator-stimulated
phosphoprotein (VASP), and might thus function as a scaffolding
protein to promote actin dynamics in stress fibers (Boukhelifa
et al., 2004; Boukhelifa et al., 2006).

Another group of multifunctional proteins, which localize to
stress fibers in a punctuate pattern similar to that of a-actinin, is
the calponin family (Strasser et al., 1993). The most extensively
studied isoform is calponin-1 (also known as calponin h1), which
is expressed in smooth muscle cells and is involved in the
regulation of contractility (Winder et al., 1998). The other
calponin isoforms, -2 and -3 (h2 and h3, respectively), are found
in many non-muscle and muscle cells (Draeger et al, 1991;
Hossain et al., 2003). In addition to regulating muscle
contraction, calponins have been suggested to crosslink and
stabilize actin-based structures, as well as to regulate cell motility
(Leinweber et al., 1999b; Danninger and Gimona, 2000).
Calponins also associate with several kinases, such as
extracellular-signal-regulated kinase 1/2 (ERK1/2) and protein
kinase C (PKC), and might thus also act as scaffolding proteins
that regulate cytoskeletal dynamics (Leinweber et al., 1999a;
Patil et al., 2004).

In addition to myosin II, there are other proteins that localize to
stress fibers in a complementary pattern to a-actinin, such as
tropomyosins (TPMs), a large family of actin-binding proteins,
and caldesmon (CaD, also known as CALD1), which also
participate in the regulation of stress-fiber contraction and
reorganization (Weber and Groeschel-Stewart, 1974; Lazarides,
1975; Yamashiro-Matsumura and Matsumura, 1988; Castellino
et al., 1995). Non-muscle cells express several myosin II
isoforms that have distinct binding partners and localization
patterns, with the most thoroughly studied being myosin IIA and
IIB (Vicente-Manzanares et al., 2009). Myosin II forms bipolar
bundles that are indispensable for the formation and maintenance
of stress fibers (Bao et al., 2005; Hotulainen and Lappalainen,
2006). Myosin II is recruited to contractile stress fibers by TPMs
(Gunning, 2008; Tojkander et al., 2011). In muscle cells, TPMs
cooperate with troponin and control contraction by steric
inhibition of the actin myosin interface in a Ca2+-dependent
manner (McKillop and Geeves, 1993). Additionally, TPMs
control actin dynamics by preventing filament depolymerization
at pointed ends and by inhibiting the actin filament disassembly
that is mediated by actin depolymerization factor (ADF, or
cofilin) (Broschat, 1990; Ono and Ono, 2002). Loss or
inactivation of specific TPMs have been linked to abnormal
actin stress fiber structures that can result from enhanced filament
disassembly and impaired myosin recruitment (Gupton et al.,
2005; Tojkander et al., 2011). TPMs also stabilize actin filaments
in cooperation with CaD (Ishikawa et al., 1989a; Ishikawa et al.,
1989b), which binds actin with its C-terminal region and myosin
with its N-terminal region, thereby promoting the crosslinking
of myosin bundles to actin filaments (Marston et al., 1992;
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Katayama et al., 1995). The interaction of CaD with actin is

regulated by phosphorylation, and during the cell cycle CaD

phosphorylation leads to disassembly of actin stress fibers

(Kordowska et al., 2006). Owing to the similar localization

pattern of CaDs and TPMs on stress fibers, and their tightly

linked expression levels, the functions of these two protein

families in stress fibers are likely to be closely connected

(Yamashiro-Matsumura and Matsumura, 1988; Kashiwada et al.,

1997). In addition to the above-mentioned proteins, stress fibers

also contain several other proteins that function in stress fiber

assembly, contractility or repair (Table 1).

Stress fiber assembly

Signaling pathways that operate upstream of actin-binding

proteins control the appropriate assembly of stress fibers in a

temporal and spatial manner. The small GTPases RhoA, Rac1

and Cdc42 are the central regulators of actin dynamics in a wide

range of eukaryotic organisms (Heasman and Ridley, 2008).

Among these, at least RhoA directly promotes stress fiber

assembly through its effectors, Rho-associated protein kinase

(ROCK) and the formin mDia1 (mammalian Dia1; also known as

DIAPH1 and DRF1) (Leung et al., 1996; Watanabe et al., 1997).

mDia1 facilitates the polymerization of long parallel actin

filaments and is important for the formation of dorsal stress

fibers (Tominaga et al., 2000; Hotulainen and Lappalainen,

2006), whereas ROCK inhibits ADF- or cofilin-mediated

disassembly of actin filaments through activation of LIM

domain kinase 1 (LIMK1) (Maekawa et al., 1999). In addition

to its direct effects on the actin cytoskeleton, RhoA signaling

regulates the transcription of several genes that encode

cytoskeletal proteins through myocardin-related transcription

factor (MAL, also known as MKL1 and MRTF-A) and serum

response factor (SRF) pathway, and thus also controls the

composition of the actin cytoskeleton (Hill et al., 1995; Miralles

et al., 2003).

Rac1 and Cdc42 coordinate stress fiber assembly in more

indirect ways. Rac1 is involved in lamellipodia and membrane

ruffle formation by activating the actin nucleating complex

Arp2/3, whereas Cdc42 induces filopodia formation by

promoting actin polymerization through the formin mDia2 (also

known as DIAPH3 and DRF3) (Pollard, 2007). Both Arp2/3-

nucleated filaments and mDia2-nucleated filaments act as

building blocks for contractile stress fibers, at least in cultured

human osteosarcoma U2OS cells. Arp2/3 induces the formation

of a-actinin-crosslinked actin filaments, which assemble endwise

with mDia2-induced and tropomyosin-decorated actin filaments

to yield transverse arcs near the leading edge of the cell

(Hotulainen and Lappalainen, 2006; Tojkander et al., 2011).

Additionally, filaments generated in filopodial protrusions can be

recycled for construction of stress fiber structures (Nemethova

et al, 2008; Anderson et al., 2008). The formins mDia1 and

mDia2 can also be activated by the small RhoA-related GTPase

RhoF (also known as ARHF and Rif), and might therefore also

contribute to the formation of stress fibers, at least in certain

specific cell types (Fan et al., 2010; Tojkander et al., 2011).

Recent live-cell microscopy studies have provided valuable

information regarding the assembly mechanisms of different

types of stress fibers. Dorsal stress fibers, which are linked to

focal adhesions at their distal ends, are generated through actin

polymerization at focal adhesions. As the cell moves forwards,

new focal adhesions appear and the elongation of dorsal stress

fibers begins from these adhesion sites (Hotulainen and

Lappalainen, 2006). The polymerization of dorsal stress fibers

is linked to the formation of a contractile stress fiber network.

During protrusion, the plasma membrane at the leading edge

undergoes constant cycles of extension and retraction. In the

Table 1. Actin stress fiber components

Stress fiber component Function References

a-Actinin Filament crosslinking, signal transduction (Lazarides and Burridge, 1975; Sjöblom et al.,
2008)

Caldesmon Regulation of contractility, cell motility and stress fiber
stability

(Mayanagi and Sobue, 2011)

Calponin Regulation of contractility, motility, stability of actin-
based structures, signal transduction

(Rozenblum and Gimona, 2008)

Serine/threonine protein kinase 35 (CLIK1 or STK35) Signal transduction (Vallenius and Mäkelä, 2002)
Coactosin F-actin binding (Hou et al., 2009)
Cysteine-rich protein 1 (CRP1) Actin filament bundling (Tran et al., 2005)
Fascin Actin filament bundling (Yamashiro-Matsumura and Matsumura, 1988;

Hashimoto et al., 2011)
FH1/FH2 domain-containing protein 1 (FHOD1) Stress fiber stabilization (Jurmeister et al., 2011)
Filamin Filament crosslinking, mechanosensing (Brotschi et al., 1978; Ehrlicher et al., 2011)
Myosin phosphatase Rho-interacting protein (MPRIP) Control of MLC phosphorylation through MLCP (Mulder et al., 2003; Koga and Ikebe, 2005)
Myosin II Stress fiber contraction (Vicente-Manzanares et al., 2009)
NUAK family SNF1-like kinase 1 and 2 (NUAK1

and NUAK2)
Regulation of MLC phosphorylation (Vallenius et al., 2011)

Palladin Actin crosslinking, cytoskeletal scaffold (Parast and Otey, 2000; Mykkänen et al., 2001;
Goicoechea et al., 2008)

PDZ-LIM proteins Signal transduction (Vallenius et al., 2000; Krcmery et al., 2010)
Rho-associated protein kinase (ROCK) MLC phosphorylation (Kawabata et al., 2004)
Septin2 (SEPT2) Regulation of myosin II activity (Joo et al., 2007)
Transgelin Stabilization of stress fibers, regulation of contraction

and cell motility
(Assinder et al., 2009)

Tropomyosin Stabilization of stress fibers, myosin recruitment,
regulation of contraction

(Gunning, 2008; Tojkander et al., 2011)

Vasodilator-stimulated phosphoprotein (VASP) Stress fiber assembly (Boukhelifa et al., 2004)
Zyxin Stress fiber stability and repair (Smith et al., 2010)
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retraction phase, precursors of transverse arcs appear through the

condensation of actin and myosin bundles in the lamellipodium

(Burnette et al., 2011). More specifically, these structures are

generated through the endwise assembly of Arp2/3-nucleated and

a-actinin-crosslinked actin filament bundles and of formin-

nucleated actin bundles that contain tropomyosin and myosin

(Hotulainen and Lappalainen, 2006; Tojkander et al., 2011)

(Fig. 3A). These nascent arcs move towards the cell center and

collide with immobile focal adhesions (Shemesh et al., 2009).

Coupling of actin filaments with adhesion sites probably

decreases the velocity of the arc precursors (Hu et al., 2007;

Gardel et al., 2008; Burnette, 2011), which then start to condense

into mature arcs at the lamellipodium–lamella boundary

(Shemesh et al., 2009) (Fig. 3B). These connections between

newly formed arcs and elongating dorsal stress fibers occur early

in the stress fiber assembly process, and several arcs are able to

associate with a single dorsal stress fiber and to flow towards the

cell center together with the elongating dorsal stress fiber

(Tojkander et al., 2011) (Fig. 3C). In contrast to the assembly of

dorsal stress fibers and arcs, ventral stress fibers can be formed

from the pre-existing dorsal stress fiber and arc network

(Hotulainen and Lappalainen, 2006) (Fig. 3D). In addition,

ventral stress fibers can be generated by the fusion of two

dorsal stress fibers that are attached to focal adhesions (Small

et al., 1998). A schematic model for the mechanisms of stress

fiber assembly in cultured U2OS cells is presented in Fig. 3.

Regulation of stress fiber contraction

The contractility of stress fibers is regulated by phosphorylation

of the myosin light chain (MLC; these proteins have the symbol

MYL in mammals) (Somlyo and Somlyo, 2000). Reversible

phosphorylation of MLC on Thr18 and Ser19 increases the

assembly of non-muscle myosin II filaments and the actin-

activated ATPase activity of the myosin motor domain (Vicente-

Manzanares et al., 2009). MLC-phosphorylation-mediated

contractility of stress fibers is controlled by at least two distinct

pathways, a Ca2+/calmodulin-dependent pathway and a Rho-

dependent pathway (Katoh et al., 2001a; Katoh et al., 2001b).

The Ca2+/calmodulin pathway works in a similar manner in both

smooth muscle and non-muscle cells and leads to the activation

of the myosin light chain kinase (MLCK) and subsequent

phosphorylation of MLC. The Rho–ROCK pathway results in

actomyosin activity either through direct phosphorylation of

MLC or by inhibiting the phosphorylation of the myosin light

chain phosphatase (MLCP) (Amano et al., 1996; Kimura et al.,

1996; Totsukawa et al., 2000). Both phosphorylation pathways

generate distinct contractile responses; the Ca2+/calmodulin

pathway leads to a local and rapid response, whereas activation

of the Rho pathway results in a more sustained response. In

addition, the septin SEPT2, a member of a conserved family of

Fig. 3. A hypothelical model for the assembly of stress fibers.

(A) Formation of arc precursors from two lamellipodial filament populations.

Transverse arcs are generated from Arp2/3-nucleated, a-actinin crosslinked

lamellipodial actin filaments (i), and formin-nucleated, tropomyosin-

decorated lamellipodial actin filaments (ii). The tropomyosin-decorated

filaments form a platform for myosin II recruitment and/or myosin II filament

assembly (iii). The a-actinin crosslinked and myosin-II-containing actin

filament populations assemble endwise with each other to form the precursors

of transverse arcs (iv). Dorsal stress fibers elongate through actin

polymerization at focal adhesions (v). (B) Formation of an intact stress fiber

network. Collision of nascent arcs with focal adhesions provokes arc

condensation. These mature arcs become connected with the focal-adhesion-

attached dorsal stress fibers to generate a stress fiber network. (C) Retrograde

flow of transverse arcs. The dorsal-attached arcs flow towards the cell center

with a similar velocity to that of the dorsal stress fiber elongation.

(D) Formation of ventral stress fibers. A ventral stress fiber is generated from

two focal-adhesion-attached dorsal stress fibers and a transverse arc segment

located between the two dorsal stress fibers. Barbed and pointed ends of actin

filaments are indicated by ‘+’ and ‘2’, respectively, in the figure key.
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filamentous GTPases, has a role in the regulation of contractile
structures through binding and activation of myosin II. Septins
are associated with actin stress fibers in interphase cells and with
the contractile ring in dividing cells. As inhibition of the
interaction between SEPT2 and myosin II in interphase cells
results in the loss of stress fibers, the septin-mediated regulation
of myosin II activity also appears to be essential for the
appropriate assembly of stress fibers and/or their maintenance
(Kinoshita et al., 2002; Joo et al., 2007).

Dephosphorylation of MLC and disassembly of stress fibers is
mediated by MLCP, which is targeted to actin fibers through
interactions of its regulatory subunit MYPT1 with the myosin
phosphatase Rho-interacting protein (MPRIP) (Mulder et al.,
2003; Surks et al., 2005). Interestingly, the activity of MLCP
can be regulated by the tumor suppressor liver kinase B1 (LKB1,
also known as STK11) through its interaction with NUAK
family kinases, indicating that both phosphorylation and
dephosphorylation of MLC are interlinked with multiple
signaling pathways (Zagorska et al., 2010; Vallenius et al., 2011).

Are all contractile actomyosin bundles

assembled through a common mechanism?

As discussed above, actin stress fibers are composed of a bipolar
array of actin filaments and display a periodic localization pattern
of a-actinin and myosin (Langanger et al., 1986; Cramer et al.,
1997). This resembles considerably the organization of
actomyosin arrays in muscle myofibrils. However, the
organization of actin filaments in stress fibers is less regular
compared with that of mature myofibrils, and actin filament
contraction appears to be more constant with occasional or
regional relaxation in comparison to the continuous contraction
cycles of muscles (Peterson et al., 2004). The protein
composition of stress fibers also resembles that of striated and
non-striated muscle filaments, but several actin-associated
protein families possess muscle-specific isoforms (Ono, 2010).
The structural and functional similarities between the distinct
contractile systems raise the question of whether actomyosin
bundles found in different cell types could be assembled through
a common mechanism.

Myofibrils in developing striated muscle cells are generated
from premyofibrils, which assemble close to the plasma
membrane. Premyofibrils are stress-fiber-like bundles, which
display a less regular organization of a-actinin and myosin II
compared with that of mature myofibrils. The clear gaps in actin
filament bundles, which are typical for mature myofibrils, are not
present in premyofibrils. Thus, the organization of actin filaments
in premyofibrils resembles that of stress fibers in non-muscle
cells (Sanger et al., 2005, Sanger et al., 2009). Although many
sarcomeric proteins are present in premyofibrils, they contain
non-muscle myosin II instead of the muscle-specific myosin II
isoform (Handel et al., 1991; Sanger et al., 2010). Premyofibrils
thus display some similarities to the transverse arcs of non-
muscle cells and might also utilize similar pathways for their
assembly (Sanger et al., 2009; Sparrow and Schöck, 2009).
Interestingly, the assembly of the contractile ring during
cytokinesis of the fission yeast Schizosaccharomyces pombe

also involves coalescence of myosin-II-containing nodes to
generate a contractile actomyosin structure (Pollard and Wu,
2010). Thus, this process might also be similar to the assembly of
contractile transverse arcs at the interface of the lamellipodium
and lamellum in animal cells.

The assembly of various contractile actomyosin structures also

involves proteins that are shared among them. In stress fibers,

formin-nucleated actin filaments become decorated by TPMs to

attract myosin II to these structures. Specifically, the Tm4

isoform is involved in recruitment of myosin II to stress fibers in

U2OS cells (Tojkander et al., 2011). Interestingly, TPM4 might

also contribute to the assembly of premyofibrils (Vlahovich et al.,

2008) and to myosin-IIA-rich podosome cores of osteoclasts

(McMichael et al., 2006), suggesting that the role of this TPM

isoform in the formation of distinct myosin-based structures is

conserved. TPMs also regulate actomyosin interactions,

including the assembly of contractile ring in fission yeast

(Stark et al., 2010; Clayton et al., 2010). Furthermore, common

phosphorylation sites in caldesmons are used for the regulation of

actomyosin function in both non-muscle and smooth muscle cells

(Yamashiro et al., 1995; Yamboliev et al., 2001). It is thus

possible that the assembly mechanisms and regulation of

contractile machineries are conserved, although tissue-specific

protein isoforms might be used by different cell types for the

generation of distinct contractile structures. It will therefore be

important to study these mechanisms in different cellular

contexts and also in a more physiological tissue environment.

Future perspectives

Studies during the past few years have provided valuable new

information concerning the mechanisms of stress fiber assembly

and the roles stress fibers have in cultured animal cells. However,

we still know relatively little regarding the functions of stress

fibers in animal development and physiology. Thus, in the future

it will be especially important to reveal which of the cell types in

the context of the entire animal contain stress fibers and what are

the exact functions of contractile actomyosin bundles in these

cells. As, in addition to focal adhesions, stress fibers can also be

anchored to adherens junctions and the nuclear membrane

(Millan et al., 2010; Luxton et al., 2010), it will be also

interesting to elucidate the molecular basis of these interactions

and to examine the roles of such interactions within a three-

dimensional tissue environment.

Although live-cell microscopy studies have provided

considerable amount of new information regarding the

mechanisms of stress fiber assembly (Hotulainen and

Lappalainen, 2006; Nemethova et al, 2008; Anderson et al.,

2008; Burnette et al., 2011; Tojkander et al., 2011), many

important questions still remain unanswered. For example, we do

not know how a-actinin and tropomyosin–myosin-II nodes

interact during the formation of transverse arcs, and how dorsal

stress fibers and arcs are subsequently connected to each other

during assembly of the contractile stress fiber network. It is also

important to note that stress fibers contain several tropomyosin

isoforms with distinct localization patterns and non-overlapping

functions (Tojkander et al., 2011), and we need to investigate

whether, for instance, focal-adhesion-anchored dorsal stress

fibers comprise several distinct populations of actin filaments.

Furthermore, it will important to elucidate the exact functions

of the many poorly characterized stress fiber components, such

as calponin, palladin and septins, in stress fiber assembly,

maintenance and contractility, as well as to decipher the exact

mechanisms through which the activities of these and other

central stress fiber components are linked to cellular signaling

pathways.
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Stress fibers also resemble other contractile actomyosin
structures, such as the myofibrils of muscle cells, actomyosin
bundles in epithelial cells and the contractile ring. Thus, another
focus of future research should be on elucidating the similarities
and differences in the assembly mechanisms of these distinct
actomyosin structures.
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