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Abstract

Action recognition in uncontrolled video is an important
and challenging computer vision problem. Recent progress
in this area is due to new local features and models that
capture spatio-temporal structure between local features,
or human-object interactions. Instead of working towards
more complex models, we focus on the low-level features
and their encoding. We evaluate the use of Fisher vectors
as an alternative to bag-of-word histograms to aggregate a
small set of state-of-the-art low-level descriptors, in combi-
nation with linear classifiers. We present a large and var-
ied set of evaluations, considering (i) classification of short
actions in five datasets, (ii) localization of such actions in
feature-length movies, and (iii) large-scale recognition of
complex events. We find that for basic action recognition
and localization MBH features alone are enough for state-
of-the-art performance. For complex events we find that
SIFT and MFCC features provide complementary cues. On
all three problems we obtain state-of-the-art results, while
using fewer features and less complex models.

1. Introduction

Action and event recognition in uncontrolled video are

extremely challenging due to the large amount of intra-class

variation caused by factors such as the style and duration of

the performed action. In addition to background clutter and

occlusions that are also encountered in image-based recog-

nition, we are confronted with variability due to camera mo-

tion, and motion clutter caused by moving background ob-

jects. Finally, recognition in video also poses computational

challenges due to the sheer amount of data that needs to be

processed, particularly so for large-scale datasets.

Recently significant progress has been made in ac-

tion and event recognition. As a result, the attention of

the research community has shifted from relatively con-

trolled settings, as in, e.g ., the KTH dataset [37], to

more realistic uncontrolled datasets such as the Hollywood2

dataset [23] or the TrecVid Multimedia Event Detection

(MED) dataset [29]. At least part of the progress can be at-

tributed to the development of more sophisticated low-level

features. Currently, most successful methods are based on

some form of local space-time features; see [16, 43] for

recent evaluation studies. Most features are carefully en-

gineered, while some recent work explores learning the

low-level features from data [20, 45]. Once local features

are extracted, often methods similar to those used for ob-

ject recognition are employed. Typically, local features are

quantized, and their overall distribution in a video is repre-

sented by means of bag-of-visual-word (BoV) histograms.

Possibly, to capture spatio-temporal layout in the spirit of

[19], a concatenation of several such histograms is used,

which are computed over several space-time cells overlaid

on the video [17]. The BoV histograms are then fed into

SVM classifiers, often in combination with χ2-RBF kernels

which have been proven to be among the most effective for

object recognition.

As for object recognition, the combination of various

complementary feature types has been explored. For ex-

ample, [2] considers feature pooling based on scene-types,

where video frames are assigned to scene types and their

features are aggregated in the corresponding scene-specific

representation. Along similar lines, [9] combines local per-

son and object-centric features, as well as global scene fea-

tures. Others not only include object detector responses,

but also use speech recognition, and character recognition

systems to extract additional high-level features [27].

A complementary line of work has focused on consid-

ering more sophisticated models for action recognition that

go beyond simple bag-of-word representations, and instead

aim to explicitly capture the spatial and temporal structure

of actions, see e.g ., [6, 25]. Other authors have focused

on explicitly modeling interactions between people and ob-

jects, see e.g ., [8, 31], or used multiple instance learning

to suppress irrelevant background features [36]. Yet others

have used graphical model structures to explicitly model
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the presence of sub-events [10, 40]. Tang et al . [40] use

a variable-length discriminative HMM model which infers

latent sub-actions together with a non-parametric duration

distribution. Izadinia et al . [10] use a tree-structured CRF to

model co-occurrence relations among sub-events and com-

plex event categories, but require additional labeling of the

sub-events unlike Tang et al . [40].

Structured models for action recognition seem promis-

ing to model basic actions such as drinking, answer phone,

or get out of car, which could be decomposed into more

basic action units, e.g ., the “actom” model of Gaidon et

al . [6]. However, as the definition of the category becomes

more high-level, such as repairing a vehicle tire, or making

a sandwich, it becomes less clear to what degree it is possi-

ble to learn the structured models from limited amounts of

training data, given the much larger amount of within-class

variability. Moreover, more complex structured models

are generally also computationally more demanding, which

limits their usefulness in large-scale settings. To sidestep

these potential disadvantages of more complex models, we

instead explore the potential of recent advances in robust

feature pooling strategies developed in the object recogni-

tion literature.

In particular, in this paper we explore the potential of the

Fisher vector (FV) encoding [35] as a robust feature pooling

technique that has proven to be among the most effective

for object recognition [3]. As low-level features we use the

dense motion boundary histogram (MBH) features of [41],

and evaluate the effect of adding SIFT descriptors to encode

appearance information not captured by MBH.

While recently FVs have been explored by others for ac-

tion recognition [39, 44], we are the first to use them in a

large, diverse, and comprehensive evaluation. In parallel to

this paper, Jain et al . [11] complemented the dense trajec-

tory descriptors with new features computed from optical

flow, and encode them using vectors of aggregated local de-

scriptors (VLAD), a simplified version of the Fisher vector.

We compare to these works in our experimental evaluation.

We consider three challenging problems. First, we con-

sider the classification of basic action categories using five

of the most challenging recent datasets. Second, we con-

sider the localization of actions in feature length movies,

using the four actions drinking, smoking, sit down, and

open door from [4, 18]. Third, we consider classifica-

tion of more high-level complex event categories using the

TrecVid MED 2011 dataset [29]. On all three tasks we

obtain state-of-the-art performance, improving over earlier

work that relies on combining more feature channels, or us-

ing more complex models. For action localization in full

length movies we also propose a modified non-maximum-

suppression technique that avoids a bias towards selecting

shorter segments. This technique further improves the de-

tection performance.

In the next section we present our approach in detail. We

present our experimental setup in Section 3, followed by

results in Section 4. Finally, we conclude in Section 5.

2. Video representation
In this section we first present our feature extraction and

encoding pipeline. Then, we discuss how we include weak

location information of local features, and finally we dis-

cuss non-maximum suppression for action localization.

2.1. Feature extraction

We encode the low level visual content using static ap-

pearance features as well as motion features. For appear-

ance we use densely extracted SIFT features [22], a method

that has been proven extremely successful for object recog-

nition, see e.g . [5]. We compute SIFT descriptors every

tenth video frame, at multiple scales on a dense grid (21×21
patches at 4 pixel steps and 5 scales).

We capture motion information using the recently intro-

duced dense trajectory Motion Boundary Histogram (MBH)

features of [41],1 with default parameters: trajectories of

length 15 frames extracted on a dense grid with 5 pixel

spacing. The MBH feature is similar to SIFT, but computes

gradient orientation histograms over both the vertical and

horizontal spatial derivatives of the optical flow. Instead

of using a space-time cuboid, MBH descriptors are com-

puted along feature tracks, which ensures that each descrip-

tor is computed from the spatio-temporal volume which fol-

lows the motion. Just like in SIFT, gradient orientation his-

tograms are computed in several regular cells along each

trajectory, and then concatenated.

2.2. Feature encoding

Once the two local low-level features sets are extracted,

we use them to construct a signature to characterize the

video. For this step we use the Fisher vector (FV) represen-

tation [35], which was found to be the most effective one in

a recent evaluation study of feature pooling techniques for

object recognition [3], which included FVs, bag-of-words,

sparse coding techniques, and several variations thereof.

The FV extends the bag-of-visual-words (BoV) repre-

sentation [38], which is widely used for video classification.

The BoV approach is based on the quantization of the local

descriptor space using off-line k-means clustering on a large

collection of local descriptors. The FV records, for each

quantization cell, not only the number of assigned descrip-

tors, but also their mean and variance along each dimension.

This leads to a signature with dimension K(2D + 1) for

K quantization cells and D dimensional descriptors. Since

1We use the implementation publicly available at http://lear.
inrialpes.fr/people/wang/dense_trajectories. In par-

allel to this paper an improved version of the MBH features was devel-

oped [42], which corrects the optical flow for camera motion.
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more information is stored per cell, a smaller number of

quantization cells can be used than for BoV. As the assign-

ment of local descriptors to quantization cells is the main

computational cost, the FV signature is faster to compute.

Instead of using k-means clustering, Gaussian mixture clus-

tering is used in the FV representation. Local descriptors

are then assigned not only to a single quantization cell, but

in a weighted manner to multiple clusters using the poste-

rior component probability given the descriptor.

We compute FVs for both SIFT and MBH features. Be-

fore computing the FV, we use PCA to project the features

to D = 64 dimensions. This step speeds up the FV com-

putation and decreases the storage requirements, as the FV

size scales linearly with the feature dimension. PCA also

decorrelates the data, making the data better fit the diag-

onal covariance assumption for the Gaussian components.

Experiments on the Hollywood2 dataset, using the settings

from Table 2, show the performance is stable between 60%
to 62% mAP for D ≥ 32, while it drops to 50% mAP or

lower for D ≤ 8; without PCA the performance is 58.3%
mAP. Both the PCA and the GMM are fitted on a subset of

2× 105 descriptors from the training dataset.

We apply the power and �2 normalizations of [35], which

significantly improve the performance in combination with

linear classifiers, see results in Table 2. Since the normaliza-

tion represents a non-linear transformation, it matters when

it is applied. For the SIFT features, which are temporally lo-

calized in a single frame, we considered two options. First,

we compute one FV over the complete video, and then ap-

ply the normalization. Second, we compute and normalize

a FV per frame, and then average and renormalize the per-

frame FVs. In preliminary experiments (results not shown)

we found the latter strategy to be more effective, and we use

it in all our experiments. For the MBH features we use the

first option, since the local features overlap in time.

2.3. Weak spatio-temporal location information

To go beyond a completely orderless representation of

the video content in a single FV, we consider including a

weak notion of spatio-temporal location information of the

local features. For this purpose, we use the spatial pyramid

(SPM) representation [19], and compute separate FVs over

cells in spatio-temporal grids. We also consider the spa-

tial Fisher vector (SFV) of [15], which computes per visual

word the mean and variance of the 3D spatio-temporal lo-

cation of the assigned features. This is similar to extending

the (MBH or SIFT) feature vectors with the 3D locations,

as done in [26, 34]; the main difference being that the latter

do clustering on the extended feature vectors while this is

not the case for the SFV. Both methods are complementary,

and we combine them by computing SFV in each SPM cell.

The code to aggregate the MBH features in-memory into

FVs, and to add SPM and SFV, is available online at http:

//lear.inrialpes.fr/software.

2.4. Non-maximum-suppression for localization

For the action localization task we employ a temporal

sliding window approach. We score a large pool of candi-

date detections that are obtained by sliding windows of var-

ious lengths across the video. Non-maximum suppression

(NMS) is performed to delete windows that have an overlap

greater than 20% with higher scoring windows. In prac-

tice, we use candidate windows of length 30, 60, 90, and

120 frames, and slide the windows in steps of 30 frames.

Preliminary experiments showed that there is a strong

tendency for the NMS to retain short windows. This effect

is due to the fact that if a relatively long action appears, it is

likely that there are short candidate windows that just con-

tain the most characteristic features for the action. Longer

windows might better cover the action, but are likely to in-

clude less characteristic features (even if they lead to posi-

tive classification by themselves), and might include back-

ground features due to imperfect temporal alignment.

To address this issue we consider re-scoring the seg-

ments by multiplying their score with their duration, before

applying NMS (referred to as RS-NMS). We also consider a

variant where the goal is to select a subset of candidate win-

dows that (i) covers the video, (ii) does not have overlapping

windows, and (iii) maximizes the sum of scores of the se-

lected windows. The optimal subset is found efficiently by

dynamic programming as follows. With each time step we

associate a state that indicates how long the covering seg-

ment is, and where it starts. A pairwise potential is used

to enforce consistency: if a segment is not terminated at

the current time step, then the next time step should still be

covered by the current segment, otherwise a new segment

should be started. We use a unary potential that for each

state equals the original score of the associated segment.

We refer to this method as DP-NMS.

3. Experimental setup

Below we present the datasets, evaluation criteria, and

the classifier training procedure used in our experiments.

3.1. Datasets and evaluation criteria

Action recognition. The Hollywood2 [23] dataset is

used for a detailed evaluation of the feature encoding pa-

rameters. This dataset contains clips of 12 action categories

which have been collected from movies. Across all actions

there are 810 training samples and 884 test samples; the

train and test clips have been selected from different movies.

Performance on this data set is measured in terms of mean

average precision (mAP) across the categories.

For a comparison to the state of the art we also present

experimental results on four of the most challenging action

18191819



recognition datasets: UCF50 [33], HMDB51 [16], YouTube

[21], and Olympics [28]. For these datasets we follow the

standard evaluation protocols, as used for example in [41].

We do not repeat them here for the sake of brevity.

Action localization. The first dataset we consider

for action localization is based on the movie Coffee and

Cigarettes, and contains annotations for the actions drink-

ing and smoking [18]. The training set contains 41 and 70

examples from that movie for each class respectively. Addi-

tional training examples (32 and 8 respectively) come from

the movie Sea of Love, and another 33 lab-recorded drink-

ing examples are included. The test sets consist of about

20 minutes from Coffee and Cigarettes for drinking, with

38 positive examples; for smoking a sequence of about 18

minutes is used that contains 42 positive examples.

The DLSBP dataset of Duchenne et al . [4] contains an-

notations for the actions sit down, and open door. The train-

ing data comes from 15 movies, and contains 51 sit down

examples, and 38 for open door. The test data contains three

full movies (Living in Oblivion, The Crying Game, and The

Graduate), which in total last for about 250 minutes, and

contain 86 sit down, and 91 open door samples.

To measure performance we compute the average pre-

cision (AP) score as in [4, 6, 13, 18]; considering a detec-

tion as correct when it overlaps (as measured by intersection

over union) by at least 20% with a ground truth annotation.

Event recognition. The TrecVid MED 2011 and 2012

datasets [29] are the largest ones we consider. The 2011

dataset consists of consumer videos from 15 categories that

are more complex than the basic actions considered in the

other datasets, e.g . changing a vehicle tire, or birthday

party. For each category between 100 and 300 training

videos are available. In addition, 9,600 videos are avail-

able that do not contain any of the 15 categories; this data is

referred to as the null class. The test set consists of 32,000

videos, with a total length of about 1,000 hours, and in-

cludes 30,500 videos of the null class.

We follow two experimental setups in order to compare

our system to previous work. The first setup is the one de-

scribed above, which was also used in the TrecVid 2011

MED challenge; performance is evaluated using the min-

imum Normalized Detection Costs (min-NDC) measure.

The NDC is a weighted linear combination of the missed

detection and false alarm probabilities, and the minimum

is taken over possible decision thresholds, see [29]. We

also report results with the standard mean average preci-

sion (AP) measure. The second setup is the one of Sun

et al . [39]. Their split contains 13,274 videos: 8,840 for

training and 4,434 for testing. These videos were randomly

selected from the MED 2011 and 2012 data. Thus, there are

25 categories for this setup, corresponding to the number of

categories in MED’12. The list of videos used for training

and testing was obtained through personal communication

with the authors of [39].

The videos in the TrecVid dataset vary strongly in size:

durations range from a few seconds to one hour, while

the resolution ranges from low quality 128 × 88 to full

HD 1920 × 1080. We rescale the videos to a width of at

most 200 pixels preserving the aspect ratio and temporally

sub-sample them by discarding every second frame. These

rescaling parameters were selected on a subset of the MED

data: compared to other less severe rescaling (e.g., width at

most 800 pixels and no temporal sub-sampling), we get sim-

ilar performance, while speeding-up by more than an order

of magnitude. The number of extracted features is roughly

proportional to the video size; therefore video rescaling lin-

early speeds up the feature extraction and encoding time.

Our complete pipeline —video re-scaling, feature extrac-

tion and feature encoding— runs at 2.4 slower than real-

time on a single core.

3.2. Classifier training

In all experiments we train linear SVM classifiers, and

set the regularization parameter by cross-validation. We

weight positive and negative examples inversely propor-

tional to the number of corresponding samples, so that both

classes effectively contain the same number of examples.

When using BoV histograms we use the part of the FV

that corresponds to the derivatives of the mixing weights,

and still apply power and �2 normalizations in combination

with linear classifiers. The power normalization can be seen

as an approximate explicit embedding of the χ2 kernel [30].

When using multiple features, we employ a late fusion

strategy and linearly combine classifier scores computed for

each feature. We perform a grid-search over the weights,

and use cross-validation to directly optimize with respect to

the relevant evaluation metric.

4. Experimental results

In our experimental evaluation below, we consider the

three different problems described above in turn.

4.1. Action recognition experiments

In our first set of experiments we only use the MBH de-

scriptor and compare the Fisher Vector (FV) and Bag-of-

visual-word (BoV) encoding, for dictionaries from 50 up to

4000 visual words. We also evaluate the effect of including

weak geometric information using the spatial Fisher vec-

tor (SFV) and spatio-temporal grids (SPM). We consider

SPM grids that divide the video in two temporal parts (T2),

and/or spatially in three horizontal bins (H3). When us-

ing SPM we always concatenate the representations with

the FVs computed over the whole video, so when we use

T2+H3 we concatenate six FVs in total (one for the whole

image, two for T2, and three for H3). Note that for FVs
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Bag-of-words Fisher vectors

K SPM — SFV — SFV

50 — 38.7 43.4 52.1 54.2

50 H3 38.6 44.5 55.2 56.9

50 T2 43.2 45.7 56.2 57.2

50 T2+H3 43.9 46.8 57.7 58.8

100 — 41.5 45.1 55.9 57.5

100 T2 43.1 48.1 57.4 58.7

100 H3 45.5 47.1 57.9 59.1

100 T2+H3 47.0 50.0 59.1 60.1

500 — 46.1 51.6 57.7 59.0

500 H3 47.9 53.3 58.8 60.2

500 T2 47.8 53.1 59.6 60.1

500 T2+H3 50.7 53.8 60.5 61.5

1000 — 47.7 53.3 58.2 59.8

1000 H3 49.7 55.3 59.2 60.5

1000 T2 49.5 54.8 60.0 60.9

1000 T2+H3 52.4 56.1 60.7 61.9

4000 — 51.3 56.2 57.5 59.2

4000 H3 54.5 57.7 57.0 58.8

4000 T2 55.1 57.7 59.1 60.0

4000 T2+H3 56.5 58.1 59.2 60.0

Table 1. Comparison of FV and BoV on the Hollywood2 dataset

using MBH features only, and varying the number of Gaus-

sians (K), and using SPM and SFV to include location informa-

tion.

the SFV has only a limited effect on the representation

size, as it just adds six dimensions (for the spatio-temporal

means and variances) for each visual word, on top of the

64 + 64 + 1 = 129 dimensional gradient vector computed

for the mixing weights, means and variances in the descrip-

tor space. For the BoV representation the situation is quite

different, since in that case there is only a single count per

visual word, and the additional six dimensions of the SFV

multiply the signature size by a factor of seven.

In Table 1 we present the performance of the different

settings in terms of the mAP. Generally across all settings,

performance is increasing with the number of Gaussians,

and FVs lead to significantly better performance than BoV.

Both BoV and FV benefit from including SPM and SFV,

which are complementary since best performance is always

obtained when they are combined. SFV is relatively more

effective for BoV than for FV, probably because it has a

larger impact on the signature dimensionality for the former.

Our experiments show that FVs using 50 visual words

are comparable to BoV histograms for 4000 visual words;

confirming that for FVs fewer visual words are needed than

for BoV histograms. This shows that FVs are more efficient

for large-scale applications, since the feature encoding step

is one of the main computational bottlenecks and it scales

linearly with the dictionary size.

Using the best setting from these experiments, FVs with

SFV+T2+H3 and K = 1000, we now compare our results
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MBH N N 83.8 42.6 84.4 77.7 53.7

N Y 86.1 46.5 86.8 78.4 58.9

Y N 86.2 45.5 86.2 80.9 61.5

MBH Y Y 87.8 51.9 88.5 84.6 61.9

SIFT Y Y 76.3 34.8 77.2 58.7 42.5

MBH+SIFT Y Y 90.0 54.8 89.0 82.1 63.3

BT’10 [1] — — 77.8 — —

LZYN’11 [20] — — 75.8 — 53.3

KGGHW’12 [14] 72.7 29.2 — — —

WWQ’12 [44] — 31.8 — — —

JDXLN’12 [12] — 40.7 — 80.6 59.5

GHS’12 [7] — — — 82.7 —

MS’12 [24] — — — — 61.7

WKSCL’13 [41] 85.6 48.3 85.4 77.2 59.9

JJB’13 [11] — 52.1 — 83.2 62.5

Table 2. Comparison to the state of the art of our FV-based results

with SFV+T2+H3, K = 1000 for both MBH and SIFT features.

For the MBH features we show the impact of the signed square

root normalization (
√·) and �2 normalization (�2).

to the state of the art in Table 2 on five action recognition

datasets. On all datasets our performance is comparable or

better than the current state of the art using only MBH fea-

tures. The SIFT features perform significantly worse, and

carry relatively little useful complementary information.

The comparison to [41] shows the effectiveness of the

FV representation: they used 4000 visual words with χ2-

RBF kernels and in addition to MBH also included HOG,

HOF and trajectory features as well as a spatio-temporal

grid. Le et al . [20], learn spatio-temporal features directly

using a convolutional network, instead of relying on de-

signed features. Brendel et al . [1] represent videos as a tem-

poral sequence of poses and use an exemplar-based recog-

nition at test time. Kliper-Gros et al . [14] encode local mo-

tion patterns by matching patches across successive video

frames, and aggregate the quatized motion patterns in a

BoV reprensentation. Wang et al . [44] uses sparse cod-

ing with sum-pooling over the STIP+HOG/HOF features

of [17], which they found to work slightly better than FVs

(albeit using 64 times fewer visual words for the FVs). Jiang

et al . [12] use the dense trajectory features of [41] and use

an extended BoV encoding over pairs of local features to ex-

plicitly cancel common (camera) motion patterns. The re-

sults of Gaidon et al . [7] are based on a hierarchical cluster-

ing of dense trajectories of [41] and concatenated BoV rep-

resentations over child and parent nodes in the clustering hi-

erarchy. Mathe and Sminchisescu [24] use multiple-kernel

learning to combine 14 descriptors sampled on human at-

tention maps with the dense trajectory features of [41]. Jain
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NMS 20 56.5 42.8 27.0 17.0

RS-NMS 20 61.9 48.7 23.6 17.7

DP-NMS 0 53.9 47.1 23.7 14.1

NMS-0 0 54.4 42.9 26.9 17.2

RS-NMS-0 0 63.9 50.5 26.5 18.2

Table 3. Evaluation of the NMS variants for action localization.

et al . [11] use camera motion stabilization, and use VLADs

to aggregate local MBH, HOG, HOF, and their novel kine-

matic Divergence-Curl-Shear flow features.

4.2. Action localization experiments

In our second set of experiments we consider the local-

ization of four actions in feature length movies. Given the

size of the test dataset, we encode both the MBH and SIFT

features with FVs with K = 128 Gaussians and do not in-

clude location information with SPM or SFV.

First, we consider the effect of the different NMS vari-

ants in Table 3 using MBH features alone. We see that

simple rescoring (RS-NMS) compares favorably to stan-

dard NMS on three out of four classes, while the dynamic-

programming version (DP-NMS) improves on a single

class, but deteriorates on three. To test whether this is due

to the fact that DP-NMS does not allow any overlap, we

also test NMS and RS-NMS with zero-overlap. The results

show that for standard NMS zero or 20% overlap does not

significantly change the results on three out of four classes,

while for RS-NMS zero overlap is beneficial on all classes.

In Table 4 we compare our results for the RS-NMS-0

method with previously reported results. On three of the

four actions we obtain substantially better results, despite

the fact that previous work used more elaborate techniques.

For example, [13] relied on a person detector, while [6] re-

quires finer annotations that indicate the position of charac-

teristic moments of the actions (actoms).

As for the action recognition datasets, we also find that

the SIFT features carry little complementary information,

and are actually detrimental when combined with the MBH

features by late fusion. The negative impact on performance

might be due to the small training datasets used here, which

might render the late-fusion process unstable.

4.3. Event recognition experiments

In our last set of experiments we consider the TrecVid

MED 2011 event recognition dataset. In Table 5 we pro-

vide a detailed per-event evaluation of the MBH and SIFT

features, as well as their combination. For both features

we use K = 256 visual words, and exclude SPM and SFV

for efficiency. In this case the SIFT and MBH features are
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LP’07 [18] 49 — — —

DLSBP’09 [4] 40 — 14.4 13.9

KMSZ’10 [13] 54.1 24.5 — —

GHS’11 [6] 57 31 16.4 19.8
MBH 63.9 50.5 26.5 18.2

SIFT 22.1 20.7 10.6 11.0

MBH+SIFT 56.6 43.0 23.2 16.7

Table 4. Action localization performance with RS-NMS-0 and dif-

ferent features compared to earlier work.

highly complementary as their combination leads to signif-

icant performance improvements.

We compare our results to the best submitted run2 in

the 2011 MED challenge [27], which outperforms our

SIFT+MBH results on six of the ten classes using the min-

NDC measure. It should be noted, however, that Natarajan

et al . [27] combine many features from different modalities,

including audio features, and high-level features obtained

from object detector responses, automatic speech recogni-

tion, and video text recognition.

We did not want to include any high-level features, since

that implies employing external training data, which renders

any comparison more difficult. We did, however, experi-

ment with adding audio features: the mel-frequency cep-

stral coefficients (MFCC) and their first and second deriva-

tives [32]. The concatenation of these three parts, each hav-

ing 13 dimensions, yielded a 39-dimensional vector. We

follow exactly the same FV encoding scheme as used be-

fore for the MBH and SIFT features, using K = 512. With

the inclusion of the audio features our results are compara-

ble or better on eight of the ten categories, and also better

on average. For completeness and better readability, we in-

clude the AP scores for our results in the same table.

Finally, we compare to the results reported in [39] in Ta-

ble 6, using the second evaluation setup described in Sec-

tion 3.1. Our results significantly outperform theirs by 8%

mAP without using the MFCC audio features. The results

obtained with the MBH features are comparable to theirs.

Sun et al . [39] also use FVs for dense trajectories, but in-

clude four types of descriptors (MBH, HOG, HOF and the

shape of the trajectories) as well as use a spatial pyramid

and a Gaussian kernel, whereas we only use FVs with MBH

descriptors and linear classifiers, but use more visual words.

This is significantly faster, which is important if the entire

MED dataset is used and not only a subset. Our results fol-

low a similar trend as in the previous experiment, Table 5:

the main gain is due to the SIFT descriptors (8% mAP) and

adding the audio further increases the score by 4% mAP.

2This run is referred to as BBNVISER c-Fusion2 2 in MED 2011.
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Best MED 2011 entry [27] 0.446 0.475 0.280 0.379 0.622 0.570 0.446 0.308 0.381 0.575 0.448

MBH 0.766 0.785 0.338 0.590 0.754 0.768 0.523 0.254 0.531 0.652 0.596

SIFT 0.713 0.627 0.400 0.452 0.746 0.693 0.713 0.570 0.611 0.768 0.629

MBH+SIFT 0.624 0.543 0.256 0.369 0.666 0.618 0.445 0.223 0.461 0.604 0.481

MBH+SIFT+MFCC 0.488 0.480 0.261 0.377 0.586 0.646 0.414 0.214 0.351 0.517 0.434

A
P

MBH 20.40 15.50 54.76 30.43 18.33 13.10 41.21 71.03 34.56 29.15 32.84

SIFT 23.10 28.88 48.49 31.76 17.12 17.09 30.27 37.50 33.20 22.95 29.04

MBH+SIFT 27.37 34.59 61.94 41.64 21.37 20.21 47.88 71.43 43.55 34.57 40.45

MBH+SIFT+MFCC 45.33 41.77 63.90 39.16 27.24 21.64 53.22 71.91 50.85 38.20 45.32

Table 5. Performance in terms of min-NDC and AP on the TrecVid MED 2011 dataset, and comparison to the best entry in MED 2011.

Note that for min-NDC lower is better.
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Attempting board trick 50.7 50.7 44.8 55.5 59.5
Feeding an animal 15.9 12.9 11.9 20.9 22.1
Landing a fish 44.7 32.4 43.5 45.9 49.3
Wedding ceremony 61.0 57.7 70.8 72.9 72.2

Woodworking project 29.3 18.3 30.7 41.6 52.3
Birthday party 30.9 20.0 28.2 31.2 43.8
Changing a vehicle tire 28.0 26.2 30.1 37.9 38.9
Flash mob gathering 57.6 57.6 53.5 61.9 64.2
Getting vehicle unstuck 46.9 45.4 51.4 57.9 60.0
Grooming an animal 29.5 20.5 32.8 37.6 36.9

Making a sandwich 25.6 36.8 32.3 43.2 44.6
Parade 51.7 48.5 35.7 54.9 53.9

Parkour 48.3 60.1 46.2 65.7 66.1
Repairing an appliance 45.7 46.8 47.9 56.0 65.1
Sewing project 47.1 49.9 33.3 56.1 62.6
Attempting a bike trick 49.1 46.4 43.9 60.0 63.6
Cleaning an appliance 9.1 11.2 11.3 15.9 25.5
Dog show 67.4 75.6 60.6 77.1 75.8

Giving directions to a location 9.3 17.1 13.0 13.5 27.0
Marriage proposal 14.0 23.6 4.9 24.1 31.7
Renovating a home 44.7 26.5 39.4 41.6 36.2

Rock climbing 56.6 43.7 38.8 54.5 56.8
Town hall meeting 45.0 48.0 44.6 55.1 78.8
Winning a race without a vehicle 27.5 35.2 26.4 36.9 33.6

Working on a metal crafts project 10.1 12.9 18.3 22.7 22.9
mAP 37.8 37.0 35.8 45.6 49.7

Table 6. Evaluation on TrecVid MED using the protocol of [39].

5. Conclusions
We presented an efficient action recognition system that

combines three state-of-the-art low-level descriptors (MBH,

SIFT, MFCC) with the recent Fisher vector representation.

In our experimental evaluation we considered action recog-

nition, action localization in movies, and complex event

recognition. For the first two tasks, we observed that MBH

motion features carry much more discriminative informa-

tion than SIFT features, and that the latter bring little or

no complementary information. A detailed evaluation on

the Hollywood2 action recognition dataset showed the ef-

fectiveness and complementarity of SPM and SFV to in-

clude weak geometric information, and that FVs provide

a more efficient feature encoding method than BoV his-

tograms since fewer visual words are needed. We found that

action localization results can be substantially improved by

using a simple re-scoring technique before applying NMS,

to suppress a bias for shorter windows. For recognition of

event categories, we find that the SIFT features do bring

useful contextual information, as do MFCC audio features.

Our experimental evaluation is among the most extensive

and diverse ones to date, including five of the most chal-

lenging action recognition benchmarks, action localization

in feature length movies, and large-scale event recognition

with a test set of more than 1,000 hours of video. Across all

these datasets the combination of FVs with state-of-the-art

descriptors outperforms the current state of the art, while

using less features and less complex models. Therefore we

believe that, currently, the presented system is the most ef-

fective one for deployment in large-scale action and event

recognition problems, such as encountered in practice in

broadcast archives or user-generated content archives.
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