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Action Anticipation: Reading the Intentions of

Humans and Robots
Nuno Ferreira Duarte , Mirko Raković , Jovica Tasevski , Moreno Ignazio Coco ,

Aude Billard , and José Santos-Victor

Abstract—Humans have the fascinating capacity of processing
nonverbal visual cues to understand and anticipate the actions of
other humans. This “intention reading” ability is underpinned by
shared motor repertoires and action models, which we use to inter-
pret the intentions of others as if they were our own. We investigate
how different cues contribute to the legibility of human actions
during interpersonal interactions. Our first contribution is a pub-
licly available dataset with recordings of human body motion and
eye gaze, acquired in an experimental scenario with an actor inter-
acting with three subjects. From these data, we conducted a human
study to analyze the importance of different nonverbal cues for ac-
tion perception. As our second contribution, we used motion/gaze
recordings to build a computational model describing the interac-
tion between two persons. As a third contribution, we embedded
this model in the controller of an iCub humanoid robot and con-
ducted a second human study, in the same scenario with the robot
as an actor, to validate the model’s “intention reading” capability.
Our results show that it is possible to model (nonverbal) signals
exchanged by humans during interaction, and how to incorporate
such a mechanism in robotic systems with the twin goal of being
able to “read” human action intentionsand acting in a way that is
legible by humans.

Index Terms—Social human-robot interaction, humanoid
robots, sensor fusion.
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Fig. 1. Human-Human Interaction: an experiment involving one actor (top-
right) giving and placing objects and three subjects reading the intentions of
the actor (left); Human-Robot Interaction: a robot performing the human-like
action and subjects try to anticipate the robots’ intention (bottom-right).

I. INTRODUCTION

W
HEN working in a shared space, humans interpret non-

verbal cues such as eye gaze and body movements to

understand the actions of their workmates. By inferring the

actions of others, we can efficiently adapt our movements and

appropriately coordinate the interaction (Fig. 1). According to

Dragan et al. [1], the intention of others can only be understood

if and when the end-goal location becomes unambiguous to us.

For that same reason, to improve human-robot interaction (HRI),

robots should perform coordinated movements of all body parts,

so that their actions and goals can be “legible” to humans.

Recent research in HRI has focused on studying the human

behaviour [2]–[5]. Several papers, which we will discuss in more

detail in Section II, have built bio-inspired controllers that facil-

itate human action understanding and interaction, and improve

the communication with robots. However, they do not focus on

the essential part of human interaction - the communication of

intent - the central focus of our work.

We start by defining a scenario of human-human interaction

(HHI), detailed in Section III, to study non-verbal communica-

tion cues between humans, in a quantitative manner. The ex-

periment consists of an actor performing goal-oriented actions

in front of three humans sitting at a round table (Fig. 1-left).

The actor picks up a ball placed in front of him and has to
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either (i) place the ball on the table in front of one of the three

persons or (ii) give the ball to one of them (Fig. 1-top right).

Considering the two actions (placing/giving) and three spatial

parametrizations (left/middle/right), the actor executes one out

of six action-possibilities. With this HHI experiment, we have

built a dataset with the actor’s 3D body movements and eye-gaze

information during the interaction. Additionally, video record-

ings were taken during the entire experiment, and used to design

a human study.

The videos of the actor are used to analyse three different

cues: eye gaze, head orientation, and arm movement towards

the goal position (Section IV) of placing and giving actions.

For this study, we prepared a gated experiment, using a set of

video segments of increasing temporal duration, of each action

performed by the actor. The video fractions are shown to the

participants, and they are asked to predict the actor’s intended

action: giving the ball to one of the persons or placing the ball

at one of three assigned markers on the table (6 possibilities

in total). Our results reveal that early eye-gaze shifts provide

important information for the human subjects to anticipate the

intention of the actor. Additionally, we observed significant of

the eye-gaze behaviour between giving and placing actions, that

seems to be governed by and attend to multiple goals.

The recordings of the upper body and eye gaze motion are

used to develop a computational model of the human actions

(Section V). The arm movement was modelled with Gaussian

Mixture Models (GMM), and Gaussian Mixture Regression

(GMR) is used to generate the arm trajectory. The eye gaze

behaviour depends on the type of action. Before picking up the

ball, the eye fixates the initial ball position. Then, for the plac-

ing action, the eye gaze aims at the goal position (i.e. marker

on the table). In case of the giving action, the eye gaze switches

between the face of the human and end-goal position (i.e. the

handover location).

The developed computational model is incorporated in a con-

troller for the iCub humanoid robot, with the purpose of vali-

dating the model and investigating whether humans can “read”

the robot actions in the same way they can read the actions of

other humans. We have built a second human study for the same

scenario using a robot actor. We recorded videos of the robot

performing the same set of actions as the human actor. The video

fractions of the robot-actor are then presented to another group

of participants, who are asked to anticipate the robot’s action

intention (Section VI).

In Section VII we discuss our experiments and results con-

cerning the human perception of the robot’s actions, in terms

of readability. Our results show that we can model the non-

verbal communication cues during human-human interaction

and transfer that model to a robot executing placing actions or

giving a ball to a human. Finally, we draw some conclusions

and establish directions of future work.

II. STATE OF THE ART

Dragan et al. [1] discuss the aspects of predictability and leg-

ibility of arm movements. They define legible robot actions as

copies of human actions but executed with exaggerated move-

ments, and demonstrate that they can be understood sooner.

Instead, in our work, legibility is not achieved by exaggerating

the arm movements, but by modelling the natural coordination

of human eye, head, and arm movements. For that purpose, we

conduct a quantitative analysis of the importance of the robot

eye-gaze behaviour for the legibility of the robot’s movements.

We validate the model with a human study where subjects need

to read the robot’s intentions and select between (placing) or

(giving) actions with three spatial parametrizations.

Research in HRI and, more specifically, in human motion

understanding [6]–[8] and modelling [9], has relied on different

existing datasets. Zhang et al. [9] present a survey on RGB-D

based action recognition dataset. The CAD 120 dataset [10] in-

cludes a rich repertoire of human actions including the labels

of the activities performed during those actions. Some of the

existing datasets only provide information related to 3D body

coordinates, while the few which include gaze tracking have

the drawback of being limited to 1 or 2 tasks [11]–[13]. The

first contribution of this letter is to provide a publicly-available

dataset, that overcomes the shortcomings of existing datasets

and contains synchronised and labelled video+gaze and body

motion in a dyadic scenario of interaction.1 This dataset has

already been successfully used to develop a novel action antic-

ipation algorithm, that integrates the cues from both gaze and

body motion to provide faster and more accurate predictions of

human’s action [14].

Neurobiology provides extensive insight into the biological

models of the human sensory-motor system. One group of neu-

roscientists have focused on investigating cortical structures

such as the posterior parietal cortex, the premotor and the motor

cortices [15]. Another stream of research has been directed on

modelling the role of the cerebellum in the motor loop, move-

ment generation and synchronisation of sensory-motor system

[16]. These findings are used in [17], [18] to develop coupled

dynamical systems framework for arm-hand and eye-arm-hand

motion control for robots. The framework is focused on motor

control coupling. Here, we extend our previous work, to the

analysis of the interpersonal coordination of sensory-motor sys-

tems during interaction. Therefore our dataset of coordinated

gaze and body movements during dyadic interactions is then

used to build a bio-inspired model.

Authors in [19] investigate the infants’ perception during

object-handover interactions. Those studies show that, in spite

of their young age, the gaze behaviour is already modulated by

the social interaction context. The work described in [20] shows

how the gaze behaviour encompasses multiple fixation points

when the subject is engaged in complex tasks, such as tea-

making. However, none of these works develops experiments

with on-line tracking of the eye gaze, head orientation, and arm

movements during an interpersonal interaction, with placing or

giving actions in different spatial parametrizations.

Meng et al. [21] study human eye-gaze during interaction.

They built an experiment where different types of gaze trajec-

tories are examined in a human-robot scenario. However, their

1The dataset of synchronised video, gaze fixations from Pupil eye
tracker, and body motion from OptiTrack motion tracking system of plac-

ing and giving actions can be downloaded from: http://vislab.isr.tecnico.
ulisboa.pt/datasets/#acticipate1.

http://vislab.isr.tecnico.ulisboa.pt/datasets/#acticipate1
http://vislab.isr.tecnico.ulisboa.pt/datasets/#acticipate1
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analysis is not based on a quantitative sensory system but, rather,

by manually labelling at the subject’s eyes in the video record-

ings. We propose using an eye-tracking system to record and

assess the human gaze behaviour in those actions. Furthermore,

they conclude that, for giving actions, humans prefer when the

robot fixates the person’s face and then switches, i.e. looks,

to the handover position, as opposed to just looking either the

face or the handover position exclusively. This is a contextually

based behaviour of the gaze that we intend to study using the

eye-tracking system.

The second set of limitations in [21]–[23] concerns the robot

used in the experiments. Due to the limited number of degrees

of freedom in the head of the robot, the eye gaze shifts are sim-

ulated with head rotation. In our work, we use an eye-tracking

device to observe the actual gaze fixation points during the inter-

action independently from the head gaze as this provides better

accuracy than just the head orientation [24]. We use the iCub

humanoid robot that has a human-like face where the eyes can

independently move, and thus express a readable behaviour of

eye-gaze and head-gaze.

III. INTERACTION SCENARIO

This section presents an interaction scenario for collecting: (i)

videos of actor movements to study the contribution of different

cues and timings on anticipation of actions and (ii) the motion

of the eye-gaze and relevant body-parts of a human actor, to

model the human movements.

A. Scenario Description

The scenario can be seen in Fig. 1(left). For each trial, one

actor executes a set of placing or giving actions directed towards

one of the three (left/middle/right) subjects. The actor was in-

structed to act as normal as possible when performing those

actions. The actor picks the object from the initial position and

executes one of these 6 preselected action-configurations (2 ac-

tions and 3 spatial directions).
� placing on the table to the actor’s left (PL ), middle (PM ),

or right (PR ),
� giving the ball to the person on actor’s left (GL ), middle

(GM ), or right (GR ).

The actions to execute were instructed over an earpiece to the

actor so that none of the other participants could know which

would be performed next. The order of the actions is randomly

selected to prevent the actor from adapting its posture prior to

initiation. Every action begins with picking up the ball and ends

with the actor placing the ball back to the initial position on the

table.

B. Hardware and Software Setup

The actor movements were recorded with an OptiTrack mo-

tion capture (MoCap) system, consisting of 12 cameras all

around the environment and a suit with 25 markers, placed on

the upper torso, arms, and head, that is worn by the actor. The

MoCap provides position and orientation data of all relevant

body parts (head, torso, right-arm, left-arm).

The eye gaze was recorded with the mobile, binocular

Pupil-Labs eye tracker [25], that allowed us to track the actor’s

fixation point. To track the head movements with the MoCap

system, head markers were placed on the Pupil-Lab system. To

record the scene, three video cameras are used to provide differ-

ent viewing angles that will complement during the evaluation

phase. The first camera provides the world-view perspective of

the actor from the Pupil Labs eye tracking headset (top-right

image in Fig. 1, the small window on top). The second camera

records the table top where the actions will take place. This one

provides a continuous look at the table and all the actor’s move-

ments (Fig. 1-top right). The third camera was located further

from the scene, looking inwards, giving a proper reading of the

subject’s actions and an outlook of the experiment (Fig. 1-left).

To collect all the sensory information, the OptiTrack’s Motive

and Pupil Lab’s Pupil Capture software were used. Prior to

recording, both sensors were calibrated. Custom software was

developed to acquire the video of the actor’s action. All the

sensory data are captured on distributed machines and data are

streamed through the Lab Streaming Layer [26] for centralised

storage and data synchronisation.

C. Synchronization of Sensory Data

A total of 120 trials are performed with action-configurations:

PL , PM , PR , GL , GM and GR performed 20, 23, 17, 17, 19 and

24 times respectively. The binocular eye gaze tracking system

recorded world camera video and eye gaze data at 60 Hz, the

motion capture system recorded the movements of the body

at 120 Hz, and video camera facing the actor, recorded video

at 30 Hz. The data from all sensing systems are streamed and

collected at one place, with the timestamps of each sensing

system as well as the internal clock information, that is used as

a reference to synchronise all sensory flows.

IV. READING THE INTENTIONS OF HUMANS

We conducted a human study to quantify how the different

cues contribute to the ability to anticipate the actions of others,

and how those cues are related to the spatial (left/middle/right)

distribution. The study includes a questionnaire pertaining to

the actions performed by an actor.

A. Participants

The study involved 55 participants (40 male, and 15 female),

age 31.9 ± 13 (mean ± SD). There were 13 teenagers and 6

people over 50 years of age. Approximately 62% were students,

27% were professors, 7% were researchers, and 4% were staff

members, 3 subjects were left-handed. All subjects were naive

with respect to the purpose of the research.

B. Human Study

The subjects were presented with videos of an actor perform-

ing giving or placing actions in the different spatial directions,

and were asked to reply to a questionnaire related to the action

being executed. The questionnaire consists of 24 questions.2

2A description of the human study can be seen at the following web address:
http://vislab.isr.tecnico.ulisboa.pt/wp-content/uploads/2018/07/acticipate1_
questionnaire_description.pdf

http://vislab.isr.tecnico.ulisboa.pt/wp-content/uploads/2018/07/acticipate1_questionnaire_description.pdf
http://vislab.isr.tecnico.ulisboa.pt/wp-content/uploads/2018/07/acticipate1_questionnaire_description.pdf
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Before the question is shown to the subject, they have to watch

a short video of the actor performing one of the six possible

actions (2 end-goal actions multiplied by 3 directional end-goal

locations). Based on the video shown, the participant had to

identify the actor’s intended action. The videos were fractioned

into four types according to the cues provided by the eye gaze

shift, head gaze shift, and arm movement. This can be under-

stood as a gated experiment in which fractions of video segments

are shown to subjects beginning when the actor grabs the object

and ending when:
� there is a saccadic eye movement towards the goal - G
� “G” plus the head rotates to the same goal - G+H
� “G+H” plus the arm starts moving to the goal - G+H+A
� “G+H+A” plus the arm finishes the trajectory to the goal -

G+H+A+.

The last group of videos (G+H+A+) was used as a golden

standard to remove outliers. Out of 24 questions, the first three

were used to familiarise participants with the questionnaire and

were discarded from the analysis. Out of the remaining 21 ques-

tions, five questions are from the G difficulty level, six are from

G+H, six are from G+H+A, while four were used for detecting

outliers. Twelve are for placing and nine are for giving actions,

whereas seven belong to left, eighth to middle and six to right

direction.

C. Analysis

From Section IV-B we reach 5 important conclusions, that

we describe in the following paragraphs.

The first conclusion is the most obvious and is shown in

Fig. 2(a). The more temporal information is available to subjects,

the better the decision is, the higher the success rate and the lower

the variance. We validate this trend with a quantitative analysis,

with a two-way ANOVA [27], that shows a very significant

correlation between the amount of information and the success

rate, F(2 5560) = 1396.76, p < 0.0001. Gaze alone is responsible

for a 50% success rate of (about 3 times the chance level of 1/6

= 16.7%).

The analysis is further refined by considering two variations:

(i) how well can the subjects predict spatial orientation, irre-

spective of the giving vs placing action? and (ii) how can the

subjects predict the action (giving, or placing) irrespective of

the orientation (left, middle, or right)?

Secondly, according to our results, the prediction of spatial

orientation does not depend strongly on the amount of temporal

information. The participants did not report significant difficul-

ties to understand the gaze orientation from the “G” videos when

the actor was wearing the eye tracker, compared to a case where

no glasses are used. Gaze alone is crucial for action under-

standing in the azimuth orientation, 85% success (chance level

of 33%), then head information only increases around 15%.

Instead, action prediction depends strongly on the amount of

temporal information. Surprisingly, subjects were only capable

of understanding the action-type 60% (chance level of 50%) of

the time for the first video fraction, but as more information was

provided the success rate increased quite rapidly. To analyse in

more detail the reason why, we refined this results in Fig. 2(b) to

study two conditions: (i) giving actions and (ii) placing action.

Fig. 2. The success of the participants identifying the correct action a) overall
success rate; success rate in identifying the direction of the action; b) success
rate in identifying the giving and placing actions.

Thirdly, we observe a significant interaction between the type

of action and the amount of information available to the sub-

ject. This is confirmed by the two-way ANOVA, F(2 5560) =
537.70, p < 0.0001. For the placing action we have a success

rate of 85% (chance level 50%) with gaze alone. However, we

observe that for the giving action we get a success rate lower

than chance level. Our fourth conclusion comes from the two-

way ANOVA, confirming a significant importance between type

of action and subjects’ success rate, F(1 5560) = 2306.78, p <

0.0001, indicating a bias towards placing in this HHI scenario.

These experiments clearly demonstrate, quantitatively, the

importance of gaze in a dyadic action. In HHI, eye gaze infor-

mation provides the necessary information to predict the inten-

tion of the other subject. For giving actions this is not the case,

but we believe that the experimental setup geometry introduces

a unintentional bias towards the action that requires the least

energy, placing the object on the table. We evaluate the bias to-

wards placing by showing additional videos segmented before

any non-verbal cue (smaller than “G” video fraction) and the

results show that in the case of placing vs giving, the majority

of people picked placing, proving a significant preconception

in this HHI scenario. Our final conclusion is our cornerstone of

this letter. This analysis shows that human eye-gaze provides

key information to read the action correctly, and justifies the
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Fig. 3. Recorded coordinates of human hand performing PR action, repre-
sentation of corresponding covariance matrices and output from GMR with
covariance information.

need to include human-like, eye-gaze control, in order to im-

prove action-legibility and anticipation as required for efficient

human-robot interaction.

V. MODELING HUMAN MOTION

This section begins by explaining the modelling of the arm

motion and then proceeds by analysing the eye movements.

We use a Gaussian Mixture Model (GMM) [28] to model the

trajectories of the arm movement in a probabilistic framework.

The motion is represented as a state variable {ξj}
N
j=1 ∈ R

3 ,

where N is the total number of arm trajectories for all actions,

and ξj are the Cartesian coordinates of the hand for giving or

placing actions. The GMM defines a joint probability distribu-

tion function over the set of data from demonstrated trajectories

as a mixture of k Gaussian distributions each one described by

the prior probability, the mean value and the covariance matrix.

p(k) = πk

p(ξj |k) = N (ξj ;µk ,Σk )

=
1

√

(2π)D |Σk |
e−

1
2 ((ξj −µ j )T Σ−1

k
(ξj −µ j )) (1)

where {πk ;µk ,Σk} is the prior probability, mean value, and

covariance, respectively, for each k normal distribution.

The left column in Fig. 3 shows an example of the recorded

trajectories of the actor’s hand during execution of the PR action.

The middle column shows the recorded trajectories encoded in

GMM, with covariances matrices represented by ellipses. We

use four Gaussian distributions to model the behaviour of the

arm trajectory for each Cartesian coordinate. This is to take into

account the minimum error and the increase of complexity of

the problem. Then the signal is reconstructed using Gaussian

Mixture Regression (GMR). The new parameters, mean and

covariance for each Cartesian coordinate, are defined as in [28].

The right column represents the GMR output of the signals in

bold and the covariance information as the envelope around the

bold line.

Fig. 4. Spatial distribution of hand motion for all six actions (top) and corre-
sponding output from GMR (bottom).

The same modelling is done for all the 2 actions and 3 orien-

tations. Fig. 4-top, shows the spatial distribution of the recorded

data for all six actions represented by six different colours.

Fig. 4-bottom, shows the spatial distribution of modelled ac-

tions obtained with GMR.

Moon et al. [29] observed that the human eye gaze exhibits

a switching behaviour during giving actions. This was observed

in a HHI experiment scenario where two humans are giving a

bottle to each other. The work has several shortcomings. First,

the experiment can not guarantee that gaze behaviour occurs

in general settings. Once the human knows which action will

take place, there is no need to infer the action from non-verbal

communication. Secondly, the analysis of the different gaze be-

haviours was done empirically (manually labelling the videos).

In our dataset, we have measured fixation points, the actual

points of interest in a handover task, and the duration of eye

gaze between each switching behaviour. As future work, we

use this information to design a detailed biologically-inspired,

eye-gaze controller for HRI scenarios.

In the HRI experiment of [29], when the robot gaze fixations

switches from the human’s face to the handover position, it does

not improve the speed of the human reaching time, but it does

improve the perception of the interaction. This corroborates the

findings in [21]. Our work studies the same behaviour, using

a humanoid robot and eye-gaze cues extracted from the HHI

experiment.

The information collected to model the human gaze be-

haviour, was acquired with an eye-tracking system (Pupil-Labs).

Fig. 5 shows five different cases of the spatio-temporal distribu-

tion of the fixation point marked with a green circle. Fig. 5(a)

shows the spatio-temporal distribution of fixation points for the

PM placing action in which the green circle is concentrated

around the goal position of the red ball.

Fig. 5(b)–(e) show the spatio-temporal distributions of the

fixation points during GM giving action when the actor was

fixating: (i) only the hand of the person, (ii) only the face of

the person, (iii) first the hand and then the face, and (iv) first

the face and then the hand. From this observed behaviour, we
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Fig. 5. Sequence of images of spatiotemporal distribution of fixation point for placing and giving actions. Subgroup (a) is related to action PM . The actor only
fixates the center marker which is the end-goal point for the action. Subgroups (b)–(e) correspond to action GM . The actor changes fixation point in 4 different
patterns: (b) actor’s only fixates the hand of the subject in front; (c) only fixating the subject in front; (d) it begins by fixating the subject’s hand and it ends by
fixating the subject’s eyes; (e) it fixates the subject’s eyes in the beginning and it ends the fixation by looking at the subject’s hand.

Fig. 6. The sequence of images of a robot (top) and an actor (bottom) performing the GR action. The first sequence is the initial point for both the actor and the
robot. The second stage corresponds to when the short video stops at the video fraction ‘G’. The third is at video fraction “G+H.” Forth and fifth sequences are for
the final two video fractions, corresponding to the arm motion.

designed a controller that will generate an equivalent switching

behaviour of the fixation point, i.e. a qualitatively similar eye-

gaze behaviour.

The robot gaze controller was implemented as a state-machine

that (qualitatively) replicates the gaze shift behaviour observed

during human-human interaction. The controller’s initial state

is the starting location of the ball. Then, depending on the ac-

tion, there is a state transition to the final location of the ball

(placing) or a switch between two states: (i) face of the person,

(ii) handover location, (giving). The desired fixation point is in-

put to the coupled eye-head controller that executes saccadic eye

movements, followed by the coordinated motion of the eye/neck

joints. Fig. 6 shows the sequence of images, during the execu-

tion of the GR action by the iCub robot and the corresponding

images of the actor, when the actor looks first to hand of the

other person and then switches to the face.

The validation of the controller is presented in Section VI. The

reference arm trajectory is generated with a GMR and the arm’s

joints are controlled with a minimum jerk Cartesian controller.

The robot eye controller was based on the qualitative analy-

sis of the human gaze behaviour and the eye’s and neck joints

are simultaneously controlled using Cartesian 6-DOF gaze con-

troller [30].

VI. READING THE INTENTIONS OF ROBOTS

To study the readability of robot’s intention, we prepared a

second questionnaire with the same set of actions performed by

a robot. To assess the relative importance of the different non-

verbal (eye, head, arm) cues we have added new conditions: (i)

blurring the eyes in the video, and (ii) blurring the entire head.

This second human study involved 20 participants answering

36 questions: 18 without any blurring; 12 with eye blurring, and

6 with the whole head blurred. The 12 eyes blurred questions

correspond to the 6 × 2 possible action-configurations with: (i)

blurred eye gaze and with visible head gaze and (ii) blurred eye

gaze, with visible head gaze, and visible arm movement); the 6

whole head blurred questions correspond to the 6 × 1 possible

action-configurations with blurred eye gaze, blurred head gaze,

and visible arm movement). There were less participants in this

second study but each subject had to answer to more questions

than in the previous case. Fig. 7(a) shows the participants success

rate in identifying the robot-action in the three cases: giving

action, placing action or both.

As in the first study, we observed that the more temporal

information the subjects had, the better their decision was, and

the higher the success rate. The average success rate increases

as more information is provided, Fig. 7(a).
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Fig. 7. The success of the participants identifying the correct action:
(a) Comparison between the overall success, giving actions, and placing ac-
tions, throughout all the different video fractions; (b) The effects of blurring
in the success rate. The “(Blrd)” indication after one non-verbal cues, means
that one or more non-verbal cues were blurred, in those video fractions. For
example, “(Blrd) G + H” means that the eyes were blurred in those video frac-
tions, thus preventing the use of gaze information to read the robot’s intention.
Nevertheless, in those videos the orientation of the head was still visible. The y
axis starts from 80% for visualization purposes. Gaze and head information (G
+ H) is in (a), success rate for giving or placing actions for the blurred gaze and
just head information (blurred G + H) is in (b)

In addition, we analyse the effects of blurring on the suc-

cess rate of placing and giving actions, Fig. 7(b). We can see

that when blurring the eyes, and preserving only the head in-

formation (“(Blrd) G+H”) the success rate drops around 5%.

Since there is a clear distinction between the head orientation

in placing and giving actions, for most people, this is enough

information to predict the robot’s intention. When blurring the

whole head, the only information available is the motion of the

arm. In [1], this motion is classified as “predictable,” as such, it

will not give the most information to the user.

Our experiment showed that the difficulty increases with the

increase of the blurred area. This means that the legibility of the

robot’s actions improves with the integration of human-like eye

gaze behaviour into the controller. Our work generalizes Dragan

et al. [1], as legibility is achieved through the combination of

both human arm, body, and eye-gaze movements.

Our results show the importance of non-verbal cues in a

human-human interaction scenario, and we successfully trans-

ferred the models to a human-robot experiment, where human-

level action-readability of robot actions was achieved.

VII. DISCUSSIONS AND CONCLUSION

We conducted experiments and studies to investigate the hu-

man ability to read the intention of a human actor during placing

and giving actions in 6 pre-selected action-configurations. One

of our contributions was a publicly available dataset of synchro-

nized videos, gaze and body motion data. We conducted an HHI

experiment with two objectives: (i) understand how the partic-

ipants manage to predict the observed actions of the actor; (ii)

use the collected data to model the human arm behaviour and

(in a qualitative sense) the eye gaze behaviour.

With the human study data, we analysed the different types of

non-verbal cues during interpersonal interaction: eye gaze, head

gaze, and arm information. For the placing actions, with just eye

gaze information 85% of subjects can read the intentions of the

actor correctly (chance 50%). However, for the giving actions

the results were much worse (chance 20%). To understand the

reason behind these results we analysed the eye gaze behaviour

recordings from the eye-tracking system for the giving actions.

The analysis of these data shows that for the same type of action,

there are different gaze trajectories Fig. 5(b)–(e). According to

Moon et al. [29], humans prefer a giving action when the actor

performs this switching behaviour [21] observed in Fig. 5(d)–

(e). This switching behaviour can be seen as a confirmation

routine to acknowledge to the other person that an interaction is

taking place. Since the human motion is a combination of eyes,

head, and arm movement, coupled during the action execution,

the “communication” is only properly established, once it is

signalled with this behaviour. As such, the logical choice is to

infer that the actor is not trying to communicate with us, which

justifies the preference for the placing action.

After the analysis, our next contribution was on modelling the

human behaviour from the data collected. The arm movements

of the actor were modelled with GMM/GMR that can replicate

the natural movement of the human arm. Dragan et al. [1] pro-

posed two types of arm movements (predictable and legible),

and demonstrated that a legible arm movement, which is an

overemphasised predictable motion of the human arm, can give

more information about the action that the human or the robot is

going to do. The experimental scenario involved two end-goals,

close to each other. The participants were faster and more ac-

curate to predict the end goal in the case of the overemphasised

arm movement. However, there were only very few options in

that scenario, and we argue that it would not generalize well if

there were more end-goals (for example six as in our case).

We propose an alternative to embed action legibility with

overemphasized arm motions, and extend the motion model

to incorporate eye gaze information. Our approach improves

legibility, by coordinating human-like eye-gaze behaviour with

natural arm movements. The resulting robot’s behaviour showed

to be legible even for multiple sets of actions.

We validated these findings with a second human study, where

subjects had to read/predict the intentions of a robot. In our

experiments, it was much easier to read intentions of a robot

than those of a human. We can explain this by looking at Fig. 6,

that shows a side by side comparison of the action performed

by the human and the robot. In the second pair of images, we

see already a clear change in the eyes of the iCub, which is
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not yet visible in the case of the human actor. This can be

due to the high contrast between the white face and black eyes

of the iCub. A different perspective on these results will be

addressed in discussion of future work. A link for the video is

provided here to illustrate the different steps taken in this work-

https://youtu.be/HirRPgZGgFA.

The final conclusion taken from the second human study is

the importance of the robot’s gaze for the overall readability

of the coordinated motion. Fig. 7 shows that just by looking at

the arms without any gaze information the success rate drops

below 85%. This also results in a slower prediction since the

subjects have to wait for the arm of the robot to start moving

which is slower than the movement of the eyes. Although 85%
is a good result, it is only when we combine eyes and head

movement that the results reach an almost perfect score. Our

proposal combines the human gaze behaviour with the human

arm movement to achieve legible behaviour to humans.

In the future we plan to improve our work in several ways,

e.g. by expanding our dataset to more actors. We plan to revisit

the modelling of the arm in order to better coordinate the over-

all eyes/head/arm speed. In our implementation, the robot arm

controller is slower than the actual human arm motion. More-

over, while we carefully modelled the arm trajectories using

GMMs, the gaze switching behaviour was not modelled with

the same level of detail. While the robot gaze controller could

qualitatively reproduce the human gaze-shift behaviours, “the

human likeness” were not so close. We will thus investigate

methodologies to model the gaze shift dynamics to a greater

detail.

Our work stems the importance of non-verbal cues during

a HHI, and the benefit of affording robots with the two-fold

capacity: (i) interpreting those cues to read the action intentions

of their human counterparts and (ii) to act in a way that is legible

and predictable to humans.
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[14] P. Schydlo, M. Raković, and J. Santos-Victor, “Anticipation in human-
robot cooperation: A recurrent neural network approach for multiple action
sequences prediction,” in Proc. IEEE Int. Conf. Accepted Publication

Robot. Automat., 2018, pp. 5909–5914.
[15] M. A. Goodale, “Transforming vision into action,” Vis. Res., vol. 51,

no. 13, pp. 1567–1587, 2011.
[16] T. Ohyama, W. L. Nores, M. Murphy, and M. D. Mauk, “What the cere-

bellum computes,” Trends Neurosci., vol. 26, no. 4, pp. 222–227, 2003.
[17] A. Shukla and A. Billard, “Coupled dynamical system based arm-hand

grasping model for learning fast adaptation strategies,” Robot. Auton. Syst.,
vol. 60, no. 3, pp. 424–440, 2012.

[18] L. Lukic, “Visuomotor coordination in reach-to-grasp tasks: From humans
to humanoids and vice versa,” Ph.D. dissertation, École Polytechnique
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