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Abstract

Activity recognition in video is dominated by low- and

mid-level features, and while demonstrably capable, by na-

ture, these features carry little semantic meaning. Inspired

by the recent object bank approach to image representa-

tion, we present Action Bank, a new high-level representa-

tion of video. Action bank is comprised of many individ-

ual action detectors sampled broadly in semantic space as

well as viewpoint space. Our representation is constructed

to be semantically rich and even when paired with simple

linear SVM classifiers is capable of highly discriminative

performance. We have tested action bank on four major

activity recognition benchmarks. In all cases, our perfor-

mance is better than the state of the art, namely 98.2% on

KTH (better by 3.3%), 95.0% on UCF Sports (better by

3.7%), 57.9% on UCF50 (baseline is 47.9%), and 26.9%

on HMDB51 (baseline is 23.2%). Furthermore, when we

analyze the classifiers, we find strong transfer of semantics

from the constituent action detectors to the bank classifier.

1. Introduction

Human motion and activity is extremely complex; auto-

matically inferring activity from video in a robust manner

that would lead to a rich high-level understanding of video

remains a challenge despite the great energy the vision com-

munity has invested in it. The most promising current ap-

proaches are primarily based on low- and mid-level features

such as local space-time features [18], dense point trajecto-

ries [36], and dense 3D gradient histograms [15] to name a

few; these methods have demonstrated capability on realis-

tic data sets like UCF Sports [30]. But, they are, by nature,

limited in the amount of motion semantics they can capture

being strictly low-level, which often yields a representation

with inadequate discriminative power for larger, more com-

plex data sets. For example, on the 50-class UCF50 data

set [1], the HOG/HOF method [18, 37] achieves 47.9% ac-

curacy (as reported in [17]) whereas it achieves 85.6% on

the smaller 9-class UCF Sports data set [30]. Other meth-

ods that seek a more semantically rich and discriminative
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Figure 1. Action bank is a high-level representation for video ac-

tivity recognition. Inspired by the object bank method [22], action

bank stores a large set of individual action detectors (at varying

scales and viewpoints). The action bank representation is a con-

catenation of volumetric max-pooled detection volume features

from each detector. This high-level representation transfers the se-

mantics from the bank entries through to the output (Section 2.5).

representation have focused on object and scene semantics

[13] or human pose, e.g., [2, 29], which itself is challenging

and unsolved.

In this paper, we propose a new high-level representa-

tion of human action in video that we call Action Bank.

Inspired by the Object Bank method [22], action bank ex-

plores how a large set of action detectors, which ultimately

act like the bases of a high-dimensional “action-space,”

combined with a simple linear classifier can form the ba-

sis of a semantically-rich representation for activity recog-

nition and other video understanding challenges (Figure 1

shows an overview). The individual action detectors in the

action bank are based on an adaptation of the recent ac-

tion spotting framework [6] and hence template-based; de-

spite the great amount of research on action recognition,

few methods are available that localize action in the video
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Figure 2. A montage of entries in the action bank, 36 of the 205 in the bank. Each entry in the bank is a single template video example (see

Section 2.3 for details on how these are used as detectors). The columns depict different types of actions, e.g., a baseball pitcher, boxing,

etc. and the rows indicate different examples for that action. Examples are selected to roughly sample the action’s variation in viewpoint

and time (but each is a different video/scene, i.e., this is not a multiview requirement). Faces are redacted for presentation only.

as a detector must. Individual detectors in the bank capture

example actions, such as “running-left” and “biking-away,”

and are run at multiple scales over the input video (many

examples of detectors in action bank are shown in Figure

2). The outputs of detectors are transformed into a feature

vector by volumetric max-pooling. Although the resulting

vector is high-dimensional, we test an SVM classifier that is

able to enforce sparsity among its representation, in a man-

ner similar to object bank.

Although there has been some work on mid- and high-

level representations for video recognition and retrieval

[13], to the best of our knowledge it has exclusively been

focused on object and scene-level semantics, such as face

detection. Our work hence breaks new ground in establish-

ing a high-level representation built atop individual action

detectors. We show that this high-level representation of hu-

man activity is capable of being the basis of a powerful ac-

tivity recognition method (Section 3), achieving better than

state-of-the-art accuracies on every major activity recogni-

tion benchmark attempted, including 98.2% on KTH [33],

95.0% on UCF Sports [30], 57.9% on the full UCF50 [1],

and 26.9% on HMDB51 [17]. Furthermore, action bank

also transfers the semantics of the individual action detec-

tors through to the final classifier (Section 2.5).

Action Detection vs. Action Recognition. Despite the

great emphasis on action recognition in the past decades

in the computer vision literature—activity recognition is

a core component of comprehensive image and video

understanding—there is comparatively little work on action

detection. Emphasis has been on classifying whether an ac-

tion is present or absent in a given video, rather than de-

tecting where and when in the video the action may be hap-

pening. We will next survey some of the related literature

on action recognition, and then we will discuss template-

based methods on which we base action bank because they

essentially do recognition by detection.

As mentioned in the previous section, perhaps the most

studied and successful approaches thus far in activity recog-

nition are based on bag of features (dense or sparse) mod-

els. Introduced by [18], sparse space-time interest points

and subsequent methods, such as local trinary patterns [39],

dense interest points [37], page-rank features [24], and dis-

criminative class-specific features [16], typically compute

a bag of words representation on local features and some-

times local context features that is used for classification. A

recent trend has been to use densely rather than sparsely

sampled features for better performance, e.g., [38] who

achieve scores as high as 91.3% and 94.5% overall accu-

racy on the UCF Sports [30] and KTH [33] data sets, re-

spectively. In summary, although promising, these methods

are predominantly global recognition methods and are not

well-suited as action detectors.

A second class of methods rely upon an implicit abil-

ity to find and process the human before recognizing the

action. For example, [12] develop a space-time shape rep-

resentation of the human motion from a segmented silhou-

ette. Joint-keyed trajectories [2] and pose-based methods

[29] involve localizing and tracking human body parts prior

to modeling and performing action recognition. Obviously

this class of methods is better suited to localizing action, but

the challenge of localizing and tracking humans and human

pose has limited their adoption.

Action bank uses template-based methods because they

naturally do recognition by detection (frequently through

simple convolution) and do not require complex human lo-

calization, tracking or pose. Early template-based action

recognition methods use optical flow-based representation

[7, 8, 28]. Later methods avoid the explicit computation of

optical flow due to its complexity and limitations: Bobick

and Davis [3] compute a two-vector of motion presence and



recency at each pixel. The Action MACH method [30] fuses

multiple examples into a single template via Clifford alge-

bras on vector-fields of spatiotemporal regularity flow. Der-

panis et al. [6] propose “action spotting,” a template rep-

resentation that also forgoes explicit motion computation.

The representation is based on oriented space-time energy,

e.g., leftward motion and flicker motion, and is invariant

to (spatial) object appearance, and efficiently computed by

separable convolutions [5]. Action bank uses this spotting

approach for its individual detectors due to its capability (in-

variant to appearance changes), simplicity, and efficiency.

2. The Action Bank Representation of Videos

Action bank represents a video as the collected output

of many action detectors that each produce a correlation

volume. Although, in spirit, action bank is closely related

to object bank [22], in practice, we have found the action

problem to be distinct from the object problem, as we now

explain. We use a template-based action detector (Section

2.3) as the primary element of action bank. The detector is

invariant to changes in appearance, but we have needed to

carefully infuse robustness/invariance to scale, viewpoint,

and tempo. To account for changes in scale, we run the de-

tectors at multiple scales, similar to object bank. But, to

account for viewpoint and tempo changes, we sample vari-

ations of them for each action. Figure 2 gives many good

examples of this sampling; take the left column—baseball

pitcher—which we sample from the front, left-side, right-

side and rear, whereas in the second-column we sample both

one and two-person boxing in quite different settings.

We select actions from standard data sets and provide full

details on which actions and how they are selected in Sec-

tion 3. Once constructed, we use the same action bank for

our entire paper. The nature of the representation warrants

inquiry regarding “how big” and “how diverse” the action

bank needs to be. These are complex questions to answer

theoretically and instead we carry out a thorough empirical

investigation on these questions in Section 3.4 to ultimately

find bigger is better but may be over-kill depending on the

size of the action class-space.

2.1. The Action Bank Feature Vector

For a given action bank with Na detectors, each action

detector is run at Ns scales (spatiotemporal) to yield Na ×
Ns correlation volumes. We adapt the max-pooling method

in [20] to the volumetric case (see Figure 3) and take three

levels in the octree. For each action-scale pair, this amounts

to 13 + 23 + 43 or a 73 dimension vector. The total length

of the action bank feature vector is hence Na ×Ns × 73.

2.2. Training and Classifying with Action Bank

We use a standard SVM classifier on the action bank fea-

ture vector. Although structural risk minimization is used
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Figure 3. Volumetric max-pooling extracts a spatiotemporal fea-

ture vector from the correlation output of each action detector.

in object bank [22], we have not found it to outperform

the standard hinge loss with L2 regularization (Section 3.3).

Being a template-based method, there is actually no training

of the individual bank detectors. Presently, we manually se-

lect which detector templates are in the bank. In the future,

we foresee an automatic process of building the action bank

by selecting best-case templates from among those possible.

Nevertheless, we find that only a small subset of the actions

in the bank have a nonzero weight in the SVM classifier.

We liken this fact to a feature selection process in which the

bank detectors serve as a large feature pool and the train-

ing process selects a subset of them, hence mitigating the

manual-selection of the individual bank templates being a

limiting factor. At present the manual approach has led to

a powerful action bank that can perform significantly better

than current methods on activity recognition benchmarks.

2.3. Action Templates as Bank Detectors

Action bank allows a great deal of flexibility in choos-

ing what kind of action detectors are used; indeed different

types of action detectors can be used concurrently. In our

implementation, we use the recent “action spotting” detec-

tor [6] due to its desirable properties of invariance to ap-

pearance variation, evident capability in localizing actions

from a single template, efficiency (is implementable as a set

of separable convolutions [5]), and natural interpretation as

a decomposition of the video into space-time energies like

leftward motion and flicker. We do make a modification of

the original action spotting method to increase its sensitivity

to the action and its efficiency; in this section, we explain

the action spotting method and our variation of it.

Actions as composition of energies along spatiotem-

poral orientations. An action can be considered as a con-

glomeration of motion energies in different spatiotemporal

orientations. Consider that motion at a point is captured as

a combination of energies along different space-time ori-

entations at that point, when suitably decomposed. These

decomposed motion energies are a low-level action repre-

sentation and the basis of the action spotting method [6].

A spatiotemporal orientation decomposition is realized

using broadly tuned 3D Gaussian third derivative filters,



G3
θ̂
(x), with the unit vector θ̂ capturing the 3D direction of

the filter symmetry axis and x denoting space-time position.

The responses of the image data to this filter are pointwise

squared and summed over a space-time neighbourhood Ω to

give a pointwise energy measurement

E
θ̂
(x) =

∑

x∈Ω

(G3
θ̂
∗ I)2 . (1)

A basis-set of four third-order filters is then computed ac-

cording to conventional steerable filters [9]:

θ̂i = cos

(

πi

4

)

θ̂a(n̂) + sin

(

πi

4

)

θ̂b(n̂) (2)

where θ̂a(n̂) = n̂ × êx/‖n̂ × êx‖, θ̂b(n̂) = n̂ × θ̂a(n̂), ê
is the unit vector along the spatial x axis in the Fourier do-

main and 0 ≤ i ≤ 3. And this basis-set makes it plausible

to compute the energy along any frequency domain plane—

spatiotemporal orientation—with normal n̂ by a simple sum

Ẽn̂(x) =
∑3

i=0
E

θ̂i
(x) with θ̂(i) as one of the four direc-

tions calculated according to (2).

For our action bank detector, we define seven raw spa-

tiotemporal energies (via different n̂): static Es, leftward

El, rightward Er, upward Eu, downward Ed, flicker Ef ,

and lack of structure Eo (which is computed as a func-

tion of the other six and peaks when none of the other

six has strong energy). Finally, we have experimentally

found that these seven energies do not always sufficiently

discriminate action from common background. So, we ob-

serve that lack of structure Eo and static Es are disasso-

ciated with any action and use their signal to separate the

salient energy from each of the other five energies, yielding

a five-dimensional pure orientation energy representation:

Ei = Ei − Eo − Es ∀i ∈ {f, l, r, u, d}. Finally, the five

pure energies are normalized such that the energy at each

voxel over the five channels sums to one.

Template matching. Following [6], we use a standard

Bhattacharya coefficient m(·) when correlating the template

T with a query video V :

M(x) =
∑

u

m (V (x− u), T (u)) (3)

where u ranges over the spatiotemporal support of the tem-

plate volume and M(·) is the output correlation volume; the

correlation is implemented in the frequency domain for ef-

ficiency. Conveniently, the Bhattacharya coefficient bounds

the correlation values between 0 and 1, with 0 indicating

a complete mismatch and 1 indicating a complete match,

which gives an intuitive interpretation for the correlation

volume that is used in volumetric max-pooling.

2.4. Neurophysiological Evidence

Although action bank is not a biologically inspired

method, there is indeed evidence in the neurophysiolog-

ical literature to justify the proposed method of building
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Figure 4. A schematic of the spatiotemporal orientation energy

representation that is used for the action detectors in action bank.

A video is decomposed into seven canonical space-time ener-

gies: leftward, rightward, upward, downward, flicker (very rapid

changes), static, and lack of oriented structure; the last two are not

associated with motion and are hence used to modulate the other

five (their energies are subtracted from the raw oriented energies)

to improve the discriminative power of the representation. The

resulting five energies form our appearance-invariant template.

and applying a bank of action detectors in the manner we

do. There is neurophysiological evidence that mammalian

brains have an action bank-like representation for human

motion. Perrett et al. [27] discovered that neurons in the su-

perior temporal sulcus of the macaque monkey brain were

selective to certain types of mammalian motion, such as

head rotation. Early research in human motion perception

has also suggested that humans recognize complex activi-

ties as the composition of simpler canonical motion cate-

gories, such as that of a swinging pendulum [14]. Finally

and most significantly, other neurophysiological research,

e.g., [10], suggests that view-specific representations are

constructed in the visual pathway. For instance, recogni-

tion of certain point-light motions degrades with the angle

of rotation away from the learned viewpoint. These view-

specific exemplars (templates) of action are exactly what

comprise our action bank (see, for example, Figure 2).

2.5. Looking Inside Action Bank

Given the high-level nature of the action bank represen-

tation, we investigate the question of whether the semantics

of the representation have actually transferred into the clas-

sifiers. For example, does the classifier learned for a run-

ning activity pay more attention to the running-like entries

in the bank than it does other entries, such as spinning-like?

We perform our analysis by plotting the dominant (posi-
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Figure 5. Relative contribution of the dominant positive and negative bank entries for each one-vs-all SVM on the KTH data set. The action

class is named at the top of each bar-chart; red (blue) bars are positive (negative) values in the SVM vector. The number on bank entry

names denotes which example in the bank (recall that each action in the bank has 3–6 different examples). Note the frequent semantically

meaningful entries; for example, “clapping” incorporates a “clap” bank entry and “running” has a “jog” bank entry in its negative set.

tive and negative) weights of each one-vs-all SVM weight

vector; see Figure 5 where we have plotted these domi-

nant weights for the six classes in KTH. We select the top-

four (when available; in red; these are positive weights) and

bottom-four (or more when needed; in blue; these are nega-

tive weights).

Close inspection of which bank entries are dominating

verifies that some semantics are transferred into the clas-

sifiers; but, indeed, some unexpected transfer happens as

well. Encouraging semantics-transfers1 include but are not

limited to positive “clap4” selected for “clapping” and even

“violin6” selected for “clapping” (we suspect due to the

back and forth motion of playing the violin); positive “soc-

cer3” for “jogging” (the soccer entries are essentially jog-

ging and kicking combined) and negative “jog right4” for

“running”. An unexpected semantics-transfers is positive

“pole vault4” and “ski4” for “boxing” (for which we have

no good explanation but do note similar behavior has been

observed in object bank [22]).

3. Experimental Evaluation

Our experiments demonstrate the proposed approach for

activity recognition for a wide variety of activity categories

in realistic video and on a larger scale than has been typical

in recent papers. Sections 3.1 and 3.2 contain the compar-

ative evaluation using KTH [33], UCF Sports [30], UCF50

[1], and HMDB51 [17] data sets. In all four cases, action

bank outperforms all known methods in the literature, and

in some cases by a significant margin. In addition to raw

performance experiments, we analyze how the action bank

representation works with different classifiers (Section 3.3),

and with banks of different sizes (Section 3.4). Finally, sec-

tion 3.5 describes the computational cost of action bank.

Building the bank. The action bank used for all exper-

iments consists of 205 template actions collected from all

50 action classes in UCF50 [1] and all six action classes

from KTH [33]. We use three to six action templates from

the same action but each being shot from different views

1In these examples, “clap4”, “violin6”, “soccer3”, “jog right4”,

“pole vault4’, “ski4”, “basketball2”, and “hula4” are names of individual

templates in our action bank.

and scales, but note this is not “multiview” action recog-

nition as these templates are of different people in differ-

ent videos. When selecting the templates, we have sought

to roughly sample the different viewpoints and temporal

scales; we have constructed only one bank and it is used

in all of the experiments, without any manual tweaking or

optimization. The action templates have an average spatial

resolution of approximately 50× 120 pixels and a temporal

length of 40 − 50 frames (examples are in Figure 2); each

template is cropped spatially to cover the extent of the hu-

man motion within it. No videos in the action bank are used

in the experimental testing set.

3.1. Benchmark Action Recognition Datasets

We compare performance on the two standard action

recognition benchmarks: KTH [33] and UCF Sports [30].

In these experiments, we run the action bank at two spa-

tial scales (we do not modify the temporal scale). On KTH

(Table 1 and Figure 6), we use the original splits from [33]

with any testing videos in the bank removed. Our method, at

98.2%, outperforms all other methods, three of which share

the current best performance of 94.5% [11, 16, 38]. Most

of the previous methods reporting high scores are based

on feature points and hence have quite a distinct charac-

ter from action bank; following, it is interesting to note

1 0 0 0 0 0

0 0.92 0.08 0 0 0

0 0.03 0.97 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

handwaving

boxing

walking

jogging

clapping

running

hw bx wk jg cl rn

Figure 6. Confusion matrix for

the KTH [33] data set.

that we seem to confuse

classes they understand

and learn classes they

confuse. We perfectly

learn jogging and run-

ning whereas we con-

fuse boxing and walk-

ing frequently; yet, other

methods seem to most

frequently confuse jog-

ging and running.

We use a leave-one-out cross-validation strategy for UCF

Sports as others have used in the community, but do not

engage in horizontal flipping of the data as some have

[16, 37, 38]. Again, our performance, at 95% accuracy, is

better than all contemporary methods, who achieve at best



Method Accuracy (%)

Schüldt et al. [33] 71.7

Klaser et al. [15] 84.3

Savarese et al. [32] 86.8

Ryoo and Aggarwal [31] 91.1

Liu et al. [23] 91.6

Laptev et al. [19] 91.8

Bregonizo et al. [4] 93.2

Liu et al. [24] 93.8

Le et al. [21] 93.9

Liu and Shah [25] 94.3

Gilbert et al. [11] 94.5

Kovashka and Grauman [16] 94.5

Wu et al. [38] 94.5

Action Bank 98.2

Table 1. Recognition accuracies on the KTH data set.

Method Accuracy (%)

Rodriguez et al. [30] 69.2

Yeffet and Wolf [39] 79.3

Varma and Babu [35] 85.2

Wang et al. [37] 85.6

Le et al. [21] 86.5

Kovashka and Grauman [16] 87.3

Wu et al. [38] 91.3

Action Bank 95.0

Table 2. Recognition accuracies on the UCF Sports data set.

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0.83 0 0 0.17 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0.91 0 0 0 0.09

0 0 0 0.08 0 0 0.92 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0.11 0.89 0

0.04 0.05 0 0 0 0 0 0.05 0 0.86
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Figure 7. Confusion matrix for the UCF Sports [30] data set.

91.3% [38] (Table 2, Figure 7).

These two sets of results clearly demonstrate that action

bank is a notable new representation for human activity in

video and capable of robust recognition in realistic settings.

However, these two benchmarks are small; next we move

to more realistic benchmarks that are an order of magnitude

larger in terms of classes and number of videos.

3.2. UCF50 and HMDB51: Larger Scale Tests

The action recognition data sets presented in Section 3.1

are all relatively small, ranging from 6 − 11 classes and

150−599 videos, and are unable to test the scalability of an

action recognition system to more realistic scenarios. The

UCF50 [1] data set, however, is better suited to test scalabil-

ity: it has 50 classes and 6680 videos. We are aware of only

[17] who have recently processed two methods through the

UCF50 data set (and also released a new data set HMDB51

of similar size to UCF50).

We have processed the entire UCF50 data set through

action bank (using a single scale for computational rea-

sons) and ran it through 10-fold video-wise cross-validation

(Figure 8 and Tables 3 and 4) and 5-fold group-wise cross-

validation (Table 4) experiment. We first note that the base-

lines run on UCF50 by [17] perform lower than action

bank. Our confusion matrix shows a dominating diagonal

with no stand-out confusion among the classes; most fre-

quently, skijet and rowing are inter-confused and yoyo is

confused as nunchucks. Pizza-tossing is the worst perform-

ing class (46.1%) but its confusion is rather diffuse. The

generalization from the data sets with much less classes to

UCF50 is encouraging for our action bank representation.

Furthermore, we have also run the experiment on the new

HMDB51 data set (using the three-way splits in [17]) and

find a similar relative performance of 26.9% to a baseline

HOG/HOF performance of 20.2% (see Table 4).

3.3. Varying the Classifier

We have primarily used a standard SVM to train the clas-

sifiers in these experiments. However, given the emphasis

on sparsity and structural risk minimization in the original
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Figure 8. Confusion matrix for the UCF50 [1] data set. Numbers

are not shown for clarity; the color legend is drawn at the bottom

(please view in color). Table 3 shows the per-class accuracy in

more detail.



pushups 95.8 golfswing 83.5 javelinthrow 77.4 ropeclimbing 66.7

jumpingrack 93.7 diving 83.3 playingviolin 76.7 yoyo 66.4

jumprope 93.2 throwdiscus 83.1 breaststroke 75.8 trampolinejump 65.4

playingguitar 93.1 pommelhorse 82.9 highjump 75.7 basketball 64.2

billiards 92.6 jugglingballs 81.7 militaryparade 73.0 rowing 64.2

baseballpitch 91.9 playingpiano 81.1 lunges 73.0 soccerjuggling 61.7

benchpress 91.0 polevault 80.6 volleyballspik 72.4 skiing 60.5

pullups 88.9 drumming 80.0 taichi 71.1 biking 60.0

cleanandjerk 87.1 salsaspin 79.2 skateboarding 70.4 skijet 54.4

fencing 86.0 horserace 78.9 nunchucks 68.9 walkingwithdog 46.4

mixing 85.0 rockclimb 78.4 kayaking 68.3 pizzatossing 46.1

punch 84.0 hulahoop 77.7 tennisswing 68.0

playingtabla 83.8 horseriding 77.4 swing 67.5

Table 3. Per class (sorted) accuracy score for UCF50 [1].

Accuracy (%)

Method UCF50-V UCF50-G HMBD51

Gist [26] - 38.8 13.4

Laptev et al. [18, 37] - 47.9 20.2

C2 [17] - - 23.2

Action Bank 76.4 57.9 26.9

Table 4. Comparing overall accuracy on UCF50 [1] and HMDB51

[17] (-V specifies video-wise CV, and -G group-wise CV). We

have relied on the scores reported in [17] for the baseline Gist

and HOG/HOF bag of words. We are not aware of other methods

reporting results on UCF50 or HMDB51.

object bank work [22], we also test the performance of ac-

tion bank when used as a representation for other classifiers,

including a feature sparsity L1-regularized logistic regres-

sion SVM (LR1) and a random forest classifier (RF). We

evaluated the LR1 on UCF50 and found the performance

to drop to 71.1% on average, and we evaluated the RF on

the KTH and UCF Sports data sets on which we found 96%

and 87.9%, respectively. These efforts have demonstrated

a degree of robustness inherent in the action bank classifier

(accuracy does not drastically change) and that a standard

SVM performs best, given our experiment conditions.

3.4. Varying the Size of the Bank

A driving factor in this work is the generality of the

action bank to adapt to different video understanding set-

tings: for a new setting, simply add more detectors to the

bank. However, it is not given that a larger bank necessarily

means better performance: the curse of dimensionality may

counter this intuition. To assess it, we have conducted an ex-

periment that varies the size of the bank from 5 detectors to

the full 205 detectors. For each different size k, we run 150

iterations in which we randomly sample k detectors from

the full bank and construct a new bank. Then, we perform a

full leave-one-out cross-validation on the UCF Sports data

set. The results are reported in Figure 9, and as we expect,

the bigger bank does indeed perform better, though not to

the expected extent. With a bank of size 80 we are able to

match the existing state-of-the-art score from [38], and with

a bank of size 5, we achieve 84.7% accuracy, which is still

surprisingly high.
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Figure 9. Experiment to analyze the effect of the bank size of the

recognition accuracy. We vary the size of the bank from 5 elements

to 205 by random sub-selection and then average the results over

150 runs. The red curve plots this average accuracy and the blue

curve plots the drop in accuracy for each respective size of the

bank with respect to the full bank. These results are on the UCF

Sports data set. Clearly the strength of the method is maintained

even for banks half as big as the one we have primarily used.

How can we explain this surprising stability for such a

small bank? Consider the following interpretation of ac-

tion bank: the bank is an embedding of the video into an

action-space whose bases are the individual action detec-

tors. A given activity is then described as a combination

of these action detectors (seldom or never is a sole detec-

tor the only one firing in the bank). Recall Figure 5, the

nonzero weights for boxing are “disc throw”, “lunges”, etc.

even though boxing templates are in the action bank. Fur-

thermore, we also point out that, although we are not us-

ing a group sparsity regularizer in the SVM, we observe a

gross group sparse behavior. For example, in the jogging

and walking classes, only two entries in the bank have any

positive weight and few have any negative weight. In most

cases, 80 − 90% of the bank entries are not selected; but

across the classes, there is variation among which are se-

lected. We believe this is because of the relative sparsity in

our action bank detector outputs when adapted to yield pure

spatiotemporal orientation energy (Section 2.3). With this

evidence, the performance stability even with a very small

bank is not very surprising: even in the case of a large bank,

only a small subset of the actions in the bank are actually

incorporated into the final classification.

3.5. Computational Cost

From a computational cost perspective, action bank is

convolution. We have, of course, implemented our code

to use FFT-based convolution but have otherwise not opti-

mized it, nor are we using a GPU in our current implemen-

tation. On a 2.4GHz Linux workstation, the mean cpu-time

used to process a video from UCF50 is 12210 seconds (204
minutes) with a range of 1560−121950 seconds (26−2032
minutes or 0.4− 34 hours) and a median of 10414 seconds

(173 minutes). As a basis of comparison, a typical bag of

words with HOG3D method ranges between 150−300 sec-



onds, a KLT tracker extracting and tracking sparse points

ranges between 240-600 seconds, and a modern optical flow

method [34] takes more than 24 hours on the same machine.

If we parallelize the processing over 12 cpus by running the

video over elements in the bank in parallel, we can dras-

tically reduce the mean running time to 1158 seconds (19
minutes) with a range of 149 − 12102 seconds (2.5 − 202
minutes) and a median of 1156 seconds (19 minutes).

4. Conclusion

We have presented Action Bank, a conceptually simple

yet effectively powerful method for carrying out high-level

activity recognition on a wide variety of realistic videos “in

the wild.” The method leverages on the fact that a large

number of smaller action detectors, when pooled appropri-

ately, can provide high-level semantically rich features that

are superior to low-level features in discriminating videos—

our results show a moderate to significant improvement

from action bank on every major benchmark we have at-

tempted, including both small and large-scale settings. Our

method builds a high-level representation using the output

of a large bank of individual, viewpoint-tuned action detec-

tors. This high-level representation has rich applicability

in a wide-variety of video understanding problems, and we

have shown its capability on activity recognition in this pa-

per.

We are investigating a few extensions to the current ver-

sion of action bank. Namely, the process of building the

action bank (i.e., selecting the templates) is prone to human

error; we are looking into automatically building an action

bank given a set of videos. We are also conscious of the

increasing emphasis on real-time applications of computer

vision systems; we are working on a method that will iter-

atively apply the action bank on streaming video by selec-

tively sampling frames to compute based on an early coarse

resolution computation.

Source Code and Precomputed Results The entire source code
for action bank is available for download at http://www.cse.
buffalo.edu/˜jcorso/r/actionbank. We also make
precomputed action bank feature vectors of many popular video
data sets available at this site to foster easy use of the method.
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