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ABSTRACT
To incorporate instant effects and different timescales within
a single biological system, an extension of discrete regu-
latory networks with short-term stimuli is proposed. By
maintaining a vector of recent changes, activities initiated
by a steep increase or decrease can be captured in a quali-
tative setting. In order to compensate for the blow-up due
to enhanced states, we focus on observable behavior. Iden-
tification of bisimilar states yields a compact system repre-
sentation truthfully expressing the information relevant for
deciding logical properties. The approach is implemented by
means of a front-end to the mCRL2 tool set and illustrated
for the switching of bacteriophage lambda and a bio-medical
case study related to TGFβ driven fibrotic conditions.
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1. INTRODUCTION
Boolean and multi-valued regulatory networks are estab-

lished qualitative modeling tools in settings with imprecise
data or incomplete knowledge [16, 34]. Practical methods
can be exploited to construct networks, e.g. network syn-
thesis from gene expression data, and to analyze their dy-
namics, e.g. identifying sets of attractors. For simplicity,
in the standard asynchronous semantics of discrete regula-
tory networks all agents act at the same timescale. A priori
there is no scheduling of transitions between logical states,
although frequently the biological evidence indicates other-
wise. However, refining the computational interpretation
should be taken with care. Also in qualitative approaches
analysis techniques are hampered by state space explosion.
In view of this, we propose to distinguish in discrete regu-
latory networks between so-called fast and slow transitions,
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while applying bisimulation minimization to keep the asso-
ciated state spaces reduced.

Following [35], a discrete regulatory network is given by
an interaction graph and update functions, the nodes repre-
senting the agents involved, the edges indicating the mutual
activation and inhibition between them, the update func-
tions determining the possible fluctuations. Logical states
hold the abstract concentration levels. For a transition be-
tween states, an agent is selected, its stimuli, i.e. the incom-
ing arcs, are assessed and the next concentration value is
computed according to the activation function of the agent.
We augment the state information for each agent with dif-
ferentials, that indicate the increase or decrease since the
previous reference point. For slow transitions of an agent
only the concentration levels of its stimuli are taken into
account, as in standard discrete regulatory networks. For
fast transitions also their differential values are considered.
The expressivity gained by fast transitions is two-fold: In a
maximal progress interpretation where fast transitions have
precedence over slow transitions, two qualitative timescales
can be distinguished, separating steep increases or decreases
from moderate ones. This acts at the level of transitions.
Also, priority can be given to specific sets of stimuli over oth-
ers, distinguishing differences in activation in the presence or
absence of catalysts without affecting the target concentra-
tion level. The concepts and their application are illustrated
for the well-known switch of the lambda phage building on
work reported in [29].

As another contribution of our paper we advocate the use
of bisimulation for discrete regulatory networks, both for
standard and augmented ones [23]. We label the transi-
tions between logical states of a regulatory network with
the name and target level of the agent involved. As a conse-
quence, in many cases, one can discard the states themselves
when analyzing the system as the relevant information can
be retrieved from the actions, the labels that decorate the
transitions. Thus discrete regulatory networks yield labeled
transition systems (LTS) as their state spaces. In such an
observation centric approach quotienting of the state space
modulo bisimulation is a natural option [2]. For, properties
expressible in modal µ-calculus or fragments thereof equiv-
alently hold in the original LTS as in its bisimilar minimiza-
tion. The computational penalty is limited, minimization is
linear. Starting from a minimal representation of the reg-
ulatory network, one can either proceed by model checking
or apply dedicated algorithms, for example to find steady
states or attracting cycles, at reduced computation times.

The above approach has been implemented as a front-end



to the mCRL2 toolset [13]. From a complete description of a
discrete regulatory network, the interaction graph and up-
date functions, with or without fast transitions, a system
of parallel processes in terms of the mCRL2 specification lan-
guage is generated. One may subsequently analyze the sys-
tem by means of symbolic model checking within the toolset
or export the minimal LTS for processing by other tools.
Alternatively, as proposed in [4], one may consider an inter-
action graph by itself without update functions given. Then
one may generate all possible update functions that satisfy
a specific set of properties. For this a generate-and-test cy-
cle is set up, following the same procedure as for complete
networks. In general, one has to deal with an exponential
blow-up, but e.g. under monotonicity conditions [31] it can
be feasibly done. In an in silico case study related to myofi-
brosis we show, by chasing all possible activation functions,
the value of our approach directing further experimental in-
vestigations.

The paper is organized as follows. We recall the notion of
bisimulation and its logical invariance in Section 2 to stress
our focus on observability. Discrete regulatory networks are
covered in Section 3, taking benefit from the formal model-
ing by Bernot et al. The extension with short-term stimuli,
introducing slow and fast transitions, is presented in Sec-
tion 4. Bisimulation as a means for state space minimization
is explained in Section 5. A significant reduction in num-
ber of states, and as a consequence in number of transitions,
can be obtained. In Section 6 we show in a qualitative set-
ting how to fine-tune in an augmented regulatory network
the gene interaction to line up with experimental results.
A bio-medical case is discussed in Section 7, dealing with
short-termed influence of one agent on another. Support by
our Arne tool is discussed in Section 8. Finally, Section 9
covers related work, Section 10 wraps up and mentions fu-
ture work.

2. BISIMULATION
Bisimulation, strong bisimulation to be precise, is a well-

known notion of behavioral equivalence in concurrency the-
ory [23]. In essence, two states of the same or in two differ-
ent labeled transition systems are bisimilar if they cannot
be distinguished by an external observer.

Definition 1. A labeled transition system (LTS) is a triple
L = 〈S,A,→〉 with set of states S, set of actions or labels A

and a set of transitions → ⊆ S × A × S. Notation: s
a→ s′

for (s, a, s′)∈→. 2
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Figure 1: bisimilarity

Figure 1 shows two labeled transition systems, L1 and L2.
They have actions a, b, states si, s

′
i, i = 1, 2, 3, and t1, t2,

respectively, and transitions si
a→ s′i, s1

b→ s2, s2
b→ s1,

s2
b→ s3, s3

b→ s2 for L1 and t1
a→ t2, t1

b→ t1 for L2.

Definition 2. A bisimulation for two labeled transition
systems L1 and L2, say Li = 〈Si, A,→i 〉, is a binary re-
lation R ⊆ S1 × S2 such that for all s∈S1, t∈S2 such that
R(s, t) it holds that

• if s
a→1 s

′ then t
a→2 t

′ for some t′ ∈S2 with R(s′, t′);

• symmetrically, if t
a→2 t

′ then s
a→1 s

′ for some s′ ∈S1

satisfying R(s′, t′).

The states s in L1 and t in L2 are called bisimilar if R(s, t)
for a bisimulation R for L1 and L2.

Two labeled transition systems L1 and L2 are bisimula-
tion equivalent if there exists a bisimulation relation R for
L1 and L2 covering all states, i.e. S1 = { s | ∃ t : R(s, t) }
and S2 = { t | ∃ s : R(s, t) }. 2
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Figure 2: non-bisimilarity

Consider the labeled transition systems L1 and L2 de-
picted in Figure 1. The states s1 and t1 are bisimilar. Also
s2 and s3, on the one hand, and t1, on the other hand, are
bisimilar as the relation R = { (si, t1), (s′i, t2) | i = 1..3 }
is a bisimulation for L1 and L2. In fact, L2 is the minimal
labeled transition system that is bisimilar to L1. As a non-
example, the states u1 and v1 of L3 and L4 in Figure 2 are
not bisimilar, as both u2 and u3 in L3 miss a transition to
be bisimilar to v2 in L4. However, from u1 and v1 the same
traces are observed, viz. ab and ac.

Given a labeled transition system L, the minimal labeled
transition system that is bisimilar to L can be efficiently con-
structed. The well-known Paige-Tarjan algorithm for exam-
ple, has complexity O(|→| · log |S|), linear in the number of
transitions, logarithmic in the number of states. The follow-
ing fundamental result connects bisimilarity and the modal
µ-calculus. The latter is an expressive modal logic, featuring
greatest and least fixed point operators and strictly subsum-
ing CTL∗. For more detail see, e.g., [7].

Theorem 1. If for two labeled transitions systems L1 and
L2, two states s1 ∈ L1 and s2 ∈ L2 are bisimilar, then they
satisfy the same formulae of the modal µ-calculus. 2

From the theorem we derive that if L is bisimilarly min-
imized to Lmin , a property that is expressible in the modal
µ-calculus and holds for Lmin , also holds for L, and vice
versa. Hence, to check if L satisfies a certain property, it
may be computationally advantageous to check the prop-
erty on Lmin instead.

3. DISCRETE REGULATORY NETWORKS
Discrete regulatory networks or generalized logical net-

works as advocated by Thomas c.s. [35], constitute a dis-
crete multi-valued abstraction of regulatory networks. For
a set of agents, typically genes X , the interaction among
its species is represented by a directed graph G, say. The
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Figure 3: example regulatory network

nodes are the elements of X , the edges reflect an activating
or inhibiting effect of one gene, the source node of the edge,
on another gene, the target node of the edge. Self-loops,
representing auto-regulation, are permitted. Edges are la-
beled with signed integers. A positive number +n on an

edge x
+n−→ y indicates an activating influence of gene x on

gene y provided the current value of x is at least n. Like-

wise, a negative number −n on an edge x
−n−→ y indicates an

inhibitory influence of gene x on gene y, again provided the
current value of x is at least n. In addition to the interac-
tion structure we need (i) to record the logical state of the
network that holds the current gene levels, and (ii) to de-
cide, for a given gene, what is the net effect of simultaneous
influences, as well the induced change of state.

We represent a discrete regulatory network as a four-tuple

N = 〈 X , (Bx)x∈X , (Ax,y)x,y∈X , (Kx)x∈X 〉

where, for genes x, y ∈X with x
+n−→ y or x

−n−→ y,

• Bx is a positive number called the bound of x;

• Ax,y = {m | n≤m≤Bx } or Ax,y = {m | 0≤m<n },
and is called the set of activating values of x for y;

• Kx : 2Rx → Bx, with Rx = { y | Ay,x 6= ∅ } and Bx =
{0, 1, . . . , Bx}, is the activation function of x mapping
sets of stimuli of x to levels of x.

Regarding the representation as a graph G, the bound Bx

is often chosen to be the out-degree of x for G. If an arrow

x
+n−→ y connects the genes x and y, Ax,y ⊆ Bx is upward

closed and includes n, if x
−n−→ y thenAx,y ⊆ Bx is downward

closed and excludes n. If there is no edge x → y in G, we
have Ax,y = ∅. Note, by referring to Ax,y the actual value
of x is abstracted away.

For example, for the regulatory network in Figure 3, we
have the gene set X = {x, y, z} with bounds Bx = 2, By = 1
and Bz = 2. The activation values are Ax,y = {0} for x on y,
Ax,z = {0, 1} for x on z, Ay,x = {1} for y on x, Az,y = {0}
for z on y and Az,z = {0, 1} for z on itself. The activation
function Kx for x shows that there is no expression of x in
the absence of y. The activation function Ky captures that
expression of y is inhibited only if both x and z have reached
their threshold values. Moreover Kz is defined such that the
expression of z is moderately inhibited by z reaching the
threshold 2 only, but a value of 2 for x strongly inhibits z.
For a compact notation the resource sets Rx, Ry and Rz are
denoted as strings, e.g. xz representing the set {x, z}.

The set S =
∏

x∈X Bx comprises the state space asso-
ciated to a network N . A logical state s ∈ S is a vec-
tor (sx)x∈X of values for all the genes in X . The network N

induces a transition relation on S for each gene. We write

s
y,s′

y−−−→ s′ ⇐⇒ s′y = sy + sgn(Ky(Rs,y)− sy ) ∧
s′x = sx for x 6= y

where Rs,y = { x | sx ∈Ax,y } is the resource set of y in s.
The activation function Ky for y determines a target level,
given the resource set R in s. However, in the asynchronous
set-up, the level for y in s does not jump directly to this
target level in s′. Instead, the sign-function ‘sgn’ yields an
increase +1 if Ky(R) > sy and a decrease −1 if Ky(R) < sy.
In cases where Ky(R) = sy, we let sgn be undefined and
allow no transition. Hence, we model only those transitions
that correspond to actual level changes. Moreover, the value
of y changes at most by ±1 and the values of the other genes
remain the same.
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Figure 4: induced labeled transition system

The labeled transition system that is induced by the ex-
ample gene regulatory network as obtained after bisimula-
tion reduction is given in Figure 4. The figure has been
generated using the tool discussed in Section 8. The tran-
sitions are labeled with an action called ‘set’ which has two
arguments: (i) the name of the gene who’s activation level
changed, and (ii) the level it has changed to. Note that
our approach is action-based, and not state-based as usual
in modeling of discrete regulatory networks. This is wit-
nessed by the fact that states are anonymous and that their
respective activation levels can only be recovered by look-
ing at the history, i.e., traces leading into the states. How-
ever, specific unfoldings are needed to represent different but
bisimilar initial states. See Section 6. We believe that the
observation-oriented approach has several advantages. For
instance, we can use notions of behavioral equivalence and
reduction techniques to respectively compare and minimize
network behavior. We discuss this topic in more detail in
Sections 5 and 8.

4. SHORT-TERM EFFECTS
In order to differentiate in timescales of transitions in dis-

crete gene regulatory networks, we propose an extension of
standard networks with so-called short-term or fast dynam-
ics. To this end, a state consists of a pair 〈s, δ〉, holding
the levels of gene expression in the vector s as before, and
additionally a vector δ as an indication of a recent increase,
of a recent decrease, or of no recent change.



Definition 3. A discrete regulatory network with short-
term effects N is a five tuple

N = 〈 X , (Bx)x∈X , (Ax,y)x,y∈X , (A
′
x,y)x,y∈X , (Kx)x∈X 〉

with, for genes x, y ∈X ,

• a bound Bx > 0, Bx = { 0, 1, . . . Bx };

• a set Ax,y ⊆ Bx of regular activations of x, as before;

• a set A′x,y ⊆ Bx × Bx of short-term activations of x;

• an activation function Ky : 2Ry → By,
where Ry = { x | Ax,y ∪A′x,y 6= ∅ }. 2

Now, the activation function Ky for a gene y does not only
take into account the current level of genes x with Ax,y 6= ∅,
but also the change in level for genes x with A′x,y 6= ∅. One
may interpret a set A′x,y ⊆ Bx×Bx of short-term activations
as denoting a number of jumps in the level of the gene x. A
pair (n,m) ∈ A′x,y indicates that the gene x is stimulating
the gene y, activating or inhibiting, if x has recently jumped
from level n to level m. So, if x has changed from n into m,
the influence of x on y should be taken into account when
evaluating the target value for y. Below, we make precise
what is considered as recent.

x y
0→ 1

+2

+1 +1

Rx ∅ x y xy

Kx 1 0 1 2

Ry ∅ x y xy

Ky 0 0 2 0

Figure 5: example network with short-term effects

Consider, as an example of a discrete gene regulatory net-
work with short-term effects, the network depicted in Fig-
ure 5. We have genes X = {x, y} with respective bounds
Bx = 2, By = 2. Here we have the activation sets Ax,x =
{1, 2}, Ay,x = {2} and Ay,y = {1, 2} and the short-term ac-
tivation set A′x,y = {〈0, 1〉}. The latter is indicated visually
by the edge label 0→1 and a dashed line. Thus, if x increases
from level 0 to level 1, the gene x will activate, apparently
negatively, for a short while the gene y. The activation sets
not mentioned are empty.

In the following, we define the dynamics of a regulatory
network with short-term effects, again in terms of a labeled
transition system. Essentially, we enrich the state informa-
tion with a history of recent gene updates and introduce a
new type of transitions.

Definition 4. The state space of a discrete gene regulatory
network N with short-term effects is given by S ×∆, where
S =

∏
x∈X Bx, as before, ∆x = { −Bx, . . . , Bx } for x∈X ,

and ∆ =
∏

x∈X ∆x. The network N induces two transition
relations on S × ∆, −→s and −→f , so-called slow transitions
and fast transitions, respectively, as follows.

(s, δ)
y,s′

y−−−→s (s′, δ′) ⇐⇒
s′y = sy + σ ∧ δ′y = σ ∧ s′x = sx ∧ δ′x = 0

with σ = sgn(Ky(R′)− sy ) and x 6= y

(s, δ)
y,s′

y−−−→f (s′, δ′) ⇐⇒
s′y = sy + σ ∧ δ′y = δy + σ ∧ s′x = sx ∧ δ′x = δx

with σ = sgn(Ky(Rs ∪Rf )− sy ), Rf 6= ∅ and x 6= y

where Rs = {x | sx ∈Ax,y }, Rf = {x | 〈sx−δx, sx〉 ∈A′x,y }.
2

An element (s, δ)∈S×∆ holds the current concentrations
of the genes in X in s and their current changes in δ. For
a gene x∈X its level ranges from 0 to Bx. As the level
of x’s concentration may increase or decrease, its change
ranges between the bounds −Bx and Bx. A slow transition

(s, δ)
y,s′

y−−−→s (s′, δ′) updates the level and the change infor-
mation of the gene y with the value σ, the outcome of the
activation function Ky. The activation function is evaluated
for the genes that are on, collected in the resource set R′,
according to their current concentrations and regular acti-
vation sets Ax,y as before. The levels sx of the other genes
do not change. Their change information δx however, is re-
set to 0. Hence, a slow transition starts a new ‘recent’ time
point, in this case with δy = σ as only change, if non-zero.
In contrast, for the evaluation of the activation function, a

fast transition (s, δ)
y,s′

y−−−→f (s′, δ′) not only takes the regular
stimuli into account, but also the shortly activated genes.
The latter are collected in the set of genes R′′. Together,
R′ and R′′ form the resource set for fast transitions. The
change information δy of y is updated accordingly, while the
change information of the other genes is maintained, rather
than reset as for regular stimuli.
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Figure 6: an LTS with fast transitions

Figure 6 depicts the induced labeled transitions system
with fast transitions for the network in Figure 5. An impor-
tant behavioral property of this system is that x oscillates
between the levels 0 and 1, using regular, i.e., slow transi-
tions. However, there is also a larger loop 0→ 1→ 4→ 7
in which first y raises to 2 as an effect of its (slow) auto-
activation, and then drops to 1 again due to an inhibi-
tion caused by x. Note further, that the system has multi-
stationarity (state 8 and loop 3→5) and that fast transitions
may have an influence on which state the system is attracted
to.

The labeled transition system shown in Figure 6 is ac-
tually not directly derived using Definition 4. We did not
discuss the additional minimization step, by which we re-
duced the state space modulo bisimulation and yields an
LTS of 9 states only. The usefulness of this additional step
is explained in detail in the following section.

5. STATE SPACE MINIMIZATION
An important modeling feature in our setting is the action-

based view on the dynamics of a network. Instead of in-
specting the concrete activation levels and their deltas of
a given state, we restrict our interest to their observable
change, as manifested in the actions that can be executed



from that state. This has the advantage that irrelevant de-
tails of the logical state do not have to be taken into account.
Moreover, we are still in a position to apply model checking
techniques, and additionally to reduce a generated labeled
transition system modulo bisimulation, yielding a compact
state space.

y z
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−1 +1

Rx ∅ y

Kx 0 1

Ry ∅ x y z xy xz yz xyz

Ky 0 2 0 1 0 2 0 0

Rz ∅ x z xz

Kz 0 1 0 0

Figure 7: example regulatory network

Consider the regulatory network with short-term effects
depicted in Figure 7. Roughly, the network has the following
dynamics: In absence of an influence of z on y, the genes x
and y alternately reach their peak level. The gene x has a
short-term activation on z when x rises to level 1. With z at
level 1, z inhibits the expression of y. Once, brought down
to level 0, y remains locked there.

The detailed behavior of the system is depicted in Fig-
ure 8. The picture is completely cluttered and inaccessible
to human inspection. Although there are 7 different labels
only, the transition system has 211 states and 246 transi-
tions.

Figure 8: explicit labeled transition system

However, after application of bisimulation reduction, ab-
stracting away from state information, the representation
becomes significantly more clear, as can be seen from Fig-
ure 9. The number of states has dropped to 16, the number
of transition to 24. The number of different labels remains
the same, as always for bisimulation reduction. We now
more easily recognize the cycling of x and y through the
square 5→ 13→ 0→ 6, x flipping between level 0 and 1,
y between 1 and 2 as can be read from the labels of the tran-
sitions. While z remains at level 0, the system is caught in
this loop. However, in state 0 a fast transition is possible as
well, based on the short-term stimulus of x reaching level 1.
The cycle is maintained, viz. in the square 2→ 14→ 8→ 1,
but is not stable. Because of degradation of z, lowering in
level from 1 to 0, the system may return to the earlier loop.
In state 1, compared to state 6, now there is also a transition

reflecting the inhibiting of y by z leading to state 4. Once
taken, the system moves to another component and reaches
the steady cycle 9→10, where the levels of x and y stabilize
at 1 and 0, respectively, and the level of z after some oscilla-
tions eventually reaches 0. Note that state 15 represents the
unreachable states which apparently are all deadlock states.
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Figure 9: minimized labeled transition system

Thus, bisimulation reduction is helpful in keeping the num-
ber of states and transitions low. Naturally, this is an advan-
tage in tool-supported settings as well, in particular because
the reduction is efficient and needs to be done only once.
The reduced representation of the regulatory network can be
taken as starting point for subsequent analysis. Moreover,
bisimulation reduction yields a normal form of the modeled
system behavior and can be used to check the equivalence
of two labeled transition systems. We discuss the usefulness
of the latter in the section on tool support.

6. LAMBDA PHAGE
The bistable gene regulatory network controlling the tog-

gle switch from lysogene to lytic behavior has been exten-
sively studied [26]. When binding to a proper part of the
promotor area, CII proteins yield the transcription of CI .
In turn, CI proteins inhibit, via another agent, destruction
of CII , thus establishing a positive feedback loop. Also,
CI in dimerized form stimulates its own activation indirectly
and represses Cro. The stable state reached on initiation
of CII brings the bacteriophage into lysogenic state. How-
ever under external influences, e.g. change in nutrients or
UV irradiation, a protease of the host cell, targeted at CII
amongst others, becomes active. In absence of CII , Cro be-
comes expressed. Dually, Cro in dimerized form stimulates
its own activation indirectly and represses CI . Another sta-
ble state is reached making the pathogen to reproduce and
eventually lyse the host cell. Thus, in the lysogenic state,
CI is dominant and Cro is repressed. Once Cro gets acti-
vated, the system reaches lytic state with CI repressed and
Cro dominant.

Siebert and Bockmayr present in [29] an approach based
on timed automata to study gene regulatory networks. Non-
determinism of the system is restricted by adding quantita-
tive constraints. We cast their analysis of the switch of the
lambda phage to our qualitative setting. Starting point for
their four gene model of the switch is the discrete regula-
tory network proposed in [33]. By tuning the time require-
ments on transitions a number of experimental observations
reported in [25] could be incorporated. Figure 10 presents
the interaction graph and associated activation functions.
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Figure 10: lambda phage regulatory network

Figure 11 depicts the relevant part of the LTS, the node la-
beled 0 represents the state (0, 0, 0, 0) for cI , cro, cII and N.
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Figure 11: partial LTS of the lambda phage model

Steady state analysis techniques can be exploited to de-
tect attractors [12, 37]. Model checking techniques can be
applied too. By marking individual states, e.g. tagging the
state (2, 0, 0, 0) with the action aux2000 , i.e. adding the aux-
iliary transition (2, 0, 0, 0) aux2000−−−−−−→(2, 0, 0, 0) to the LTS gen-
erated for the interaction graph and activation functions of
Figure 10, the modal formula

[true∗ . aux2000 ]〈 true 〉false

verifies that (2, 0, 0, 0), node 45 in Figure 11, is a stable state.
Similarly, the transitions that mark the states (0, 2, 0, 0)
and (0, 3, 0, 0), viz. transitions (0, 2, 0, 0) aux0200−−−−−−→(0, 2, 0, 0)
and (0, 3, 0, 0) aux0300−−−−−−→(0, 3, 0, 0), can be used to show that
(0, 2, 0, 0) and (0, 3, 0, 0) form a stable cycle, nodes 34 and 35,
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−20→1, +1 −2

+1

−1−3

+2 −3, 0→0

0→0

Figure 12: refined model for the lambda phage

via the formula

[true∗ . aux0200 ]〈 true . aux0300 〉true ∧
[true∗ . aux0200 .¬aux0200 ]〈 aux0300 〉true ∧

[true∗ . aux0300 ]〈 true . aux0200 〉true ∧
[true∗ . aux0300 .¬aux0300 ]〈 aux0200 〉true

expressing that after reaching state (0, 2, 0, 0) state (0, 3, 0, 0)
can be reached in one step, and any transition different from
the loop tag aux0200 will lead to (0, 3, 0, 0). Similar for state
(0, 3, 0, 0) with respect to state (0, 2, 0, 0).

As advocated in [29], the timed automata model can be
tuned further by adjusting the time constraints for the in-
variants and guards of the timed automata involved. This
way, observations reported in [25] for the case of the lambda
phage lead to a reduced state transition graph. This is be-
cause the genes Cro and N are initially more abundantly
expressed then the genes CI and CII. In [29] priority is
achieved by adapting the parameters for the time window
of specific transitions. In our qualitative approach the same
can be achieved by adding the label 0→0 to the existing
self-loop for cro and to a new loop for N . See Figure 12.
Now, we have A′cro,cro = {〈0, 0〉} as short-term activation
set for cro on itself. The activation function Kcro remains
unchanged as cro was already a self-stimulus. For N , the
short-term activation set is now the singleton {〈0, 0〉} too.
For the activation function we have KN ({cI , cro, N}) = 1,
taking into account the short-term self-stimulus of N , be-
sides the previous KN ({cI , cro}) = 1, while KN yields zero
otherwise as before. Note, no transition is added; the net
effect is that the transitions for cro and N rising from level 0
to 1 become fast transitions.

Next, we assume fast transitions to have priority over slow
ones. One may call this a maximal progress interpretation of
the generated LTS: slow transitions in a state are discarded
when a fast transition is available. Formally, we write

s
a→mp s

′ ⇐⇒ s
a→f s

′ ∨ ( s 9f ∧ s
a→s s

′ )

reading, a maximal progress transition is either a fast tran-
sition or a slow transition provided there is no fast transi-
tion from that state (indicated by the notation 9f ). Thus,
priority is given to fast transitions. Part of the reduced
LTS is displayed in Figure 13. For example, in comparison
to Figure 11, slow transitions from state (0, 0, 0, 0) to state
(1, 0, 0, 0), nodes 0 and 30, and from state (0, 1, 0, 0) to state
(0, 2, 0, 0), nodes 2 and 34, are omitted now.

Timed automata in general, hence also in [29], make use
of clock sets that are bound to a location. Therefore, as
pointed out by Siebert and Bockmayr, one cannot express
with timed automata that synthesis of CI has a higher rate
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Figure 13: partial LTS under maximal progress

in the presence of CII than in its absence (a fact that is
crucial for explaining the switch). In our set-up, such a dif-
ference can be modeled though. E.g., with the short-term
label 0→1 for the stimulus of cII on cI in the interaction
graph in Figure 10, we have different maximal progress for
state (0, 1, 0, 1) with cII at level 0, as compared to state
(0, 1, 1, 1) with cII at level 1. Figure 14 highlights the situ-
ation.
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(0, 1, 1, 1)

(0, 2, 0, 1)

slow(cII , 1)

slow(cro, 2)

(0, 1, 1, 1)

(1, 1, 1, 1)

(1, 2, 1, 1)

fast(cI , 1)

slow(cro, 2)

Figure 14: cII influence under maximal progress

Thus, the third state component cII at level 1 indeed
makes a difference. In state (0, 1, 0, 1) the system may de-
velop into a lytic direction on expression of cro (dependent
on the resolution with respect to the alternative transition),
in state (0, 1, 1, 1) the system does develop in lysogenic di-
rection on expression of cI .

7. TGFβ DRIVEN FIBROSIS
Fibrotic diseases, such as systemic sclerosis, organ fibro-

sis and Dupuytren’s disease, are characterized by excessive
production, deposition, and contraction of extracellular ma-
trix which can lead to organ dysfunction. Tissue fibrosis
is generally considered to arise due to a failure of the nor-
mal wound healing response to terminate. After injury, new
connective tissue needs to be synthesized. During this pro-
cess, fibroblasts proliferate, migrate into inflammatory sites
and transform into so-called myofibroblasts, which synthesize
matrix proteins [36]. The key to unravel tissue fibrosis lies
most likely in understanding the growth factors that control
the proliferation and differentiation of the myofibroblasts.

Many growth factors have been implied in fibrosis. Of
these, transforming growth factorβ (TGFβ) and platelet-
derived growth factor (PDGF) are considered to be pivotal
factors. After wounding or inflammation the release and
activation of these cytokines stimulate the production of ex-
tracellular matrix proteins which contributes to tissue repair
and ideally to the restoration of normal tissue architecture.
In many diseases, excessive TGFβ and PDGF signaling con-
tributes to a pathologic excess of tissue fibrosis that compro-
mises normal organ function [5, 20].

TGFβ and PDGF ligands bind extracellularly to their dis-
tinct subset of receptors, which transduce their activation
signal through phosphorylation to cytosolic proteins. TGFβ
predominantly initiates the activation of receptor-regulated
Smad proteins. However, it also has been shown to trigger

short-term activation of the extracellular signal-regulated ki-
nases1/2 (ERK1/2) [21]. PDGF induces sustained activa-
tion of ERK1/2. The activated cytosolic proteins travel to
and accumulate in the nucleus where they act as transcrip-
tion factors and participate in the regulation of target gene
expression. Moreover, activated Smad complexes govern the
read out of TGFβ whereas elevated ERK1/2 signaling leads,
via other proteins, to increased PDGF expression. This way,
two autocrine loops are sustained. Moreover, paracrine sig-
naling through Smad controlled PDGF expression leads to
an additional level of signal regulation. See [5, 20, 17, 22].
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Figure 15: network for TGFβ/PDGF pathways

TGFβ and PDGF driven fibrosis can be modeled using the
discrete regulatory network with short-term effects in Fig-
ure 15. We have bounds Bt = 3 for TGFβ, Bs = 4 for Smad,
Bp = 2 for PDGF, Be = 3 for ERK1/2, and Bm = 3 for my-
ofibroblasts. The activation of myofibroblasts is promoted
by Smad and ERK1/2 only at their highest activation levels.
All arcs in the network represent activating effects. The arc
between t and e models TGFβ induced short-term activa-
tion of ERK1/2. In our model, the autocrine loops between
respectively TGFβ and Smad, and PDGF and ERK1/2 are
the crucial factors in the production of myofibroblasts. We
therefore seek to investigate whether the short-term activa-
tion of ERK1/2 can have a long-term and potentially irre-
versible effect on the network state.

Figure 16 shows the corresponding (minimized) LTS. For
more clarity we left out the effects on m. State 0 repre-
sents an initial activation level: all genes and proteins are
at level 0 here, except t which is at level 1. This low initial
level is sufficient to start the autocrine loop between t and
s; they both increase to 2 in the subsequent steps. More-
over, when t reaches 2, the short-term effect on e comes into
play. As can be seen from the path 4→3→6→15→14→16,
e shows a peak, i.e., it rises to 2 via fast transitions and then
drops again to 0 via slow transitions. This is essentially the
formal equivalent of the experimentally observed short-term
activation of ERK1/2 induced by TGFβ. However, we were
interested in potential long-term effects of short-term activa-
tions. Indeed, we can see in our model that if p was already
activated by s before the short-term effect appeared, e rises
to 2 but does not drop again. Intuitively, if there is already
a (medium) activation of p, the short-term effect on e is
enough to start the autocrine loop between p and e. Hence,
the network can shift into two different stable states, viz. 20
and 22. In the former e is at its lowest, and in the latter it is
at its highest level. Follow-up experiments need to confirm
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Figure 16: LTS for TGFβ/PDGF network

if, for example synthetically, influencing the behavior in 1
and 2 is possible.

We have verified using the Arne tool, discussed in the
next section, that the basic model without short-term effects
cannot produce such a behavior. The modal formula1

〈true∗.slow(t, 2).true∗.fast(e, 2).true∗.slow(e, 0)〉true

finds all activation functions that produce a peak for e af-
ter t has raised. In our model with short-term effects we
found 1016 out of 7200 possible activations satisfying this
formula. For a standard version of the network with a basic
arc between t and e, no such activation was found.

8. TOOL SUPPORT
As the parameters of a regulatory network are usually

not known all beforehand, tool support for finding interest-
ing settings is crucial. In the present set-up, model checking
techniques and bisimulation reduction are vital for an ef-
ficient and automated analysis of network behaviors. For
this purpose we have developed the tool Arne2 (Analysis
of regulatory networks), depicted in Figure 17. The tool
consists of a graphical editor for regulatory networks and
an activation function generator. It further integrates with
the mCRL2 [13] tool suite for generating labeled transitions
systems, bisimulation reduction, model checking and visual-
ization. From the graphical descriptions of regulatory net-
works, our tool generates an equivalent description in the
mCRL2 specification language, which is based on the process
algebra ACP, extended with data and time.

Since the number of possible activation functions is in gen-
eral exponential in the size of the network, the tool supports
various mechanisms for generating those activations that
lead to a specific behavior. In particular, Arne supports fil-
tering of activations based on (i) monotonicity assumptions
for certain genes, (ii) model checking and (iii) bisimulation
equivalence of the resulting LTS, and (iv) a general require-
ment for multi-stationarity / homeostasy.

The monotonicity property [31] ensures that an enabled
activator or a disabled inhibitor cannot cause a decrease of
the activation level. Formally, monotonicity for a gene x

1For the basic model, slow and fast are replaced by set.
2Freely available at http://code.google.com/p/arne.

Figure 17: a screenshot of Arne and ltsgraph

reads

Rx ⊆ R′x ⇒ Kx(R) ≤ Kx(R′)

In our tool, monotonicity constraints can be associated to
individual nodes separately. Although other means exist to
restrict activation functions, monotonicity constraints are
particularly interesting as they reduce the search space sig-
nificantly, and do not require to compute the corresponding
LTS for selecting an activation function.

Given a regulatory network together with an activation
function, our tool transparently generates input for the mCRL2
model checker and analysis tools. For instance, we use the
tool ltsgraph of the mCRL2 tool suite for displaying the cor-
responding LTS, as shown in the lower right part of Fig-
ure 17. Moreover, we can use mCRL2 to verify temporal
properties symbolically. The use of the model checker is also
helpful for filtering of activation functions, which is done by
Arne automatically. As discussed earlier, bisimulation re-
duction is not only useful to minimize an LTS, but also to
check whether two networks are behavioral equivalent. Our
tool uses the mCRL2 utility ltscompare to check whether the
labeled transition systems generated from two different ac-
tivation functions are equivalent, i.e. strongly bisimilar. If
this is the case, one of them can be discarded.

Another important kind of constraint is a general require-
ment for multi-stationarity. In principle, such a filtering
constraint can be added using a modal µ-calculus formula.
However, in practice for each individual network a sepa-
rate formula has to be generated and checked for each LTS.
Instead, we implemented multi-stationarity checks directly,
using an efficient graph algorithm on the labeled transition
system.

We have applied the filtering techniques for generating
activation functions for the TGFβ/PDGF network in Fig-
ure 15, for now excluding the output node m. Without any
constraints Arne generates a total number of 32 × 34 × 42 ×
24 = 209.664 different activations. By imposing monotonic-
ity on all nodes, the number reduces to 7200. Using the
modal formula (7) only 1016 possible activations remain.
Additional equivalence checks yields a number of 477 acti-
vations, which can be analyzed further.

Finally, in Arne several options can be used to influence
the tool output, e.g. bisimulation reduction and self-loop
transitions corresponding to zero-changes can be switched
on or off, and initial activation levels for agents can be set.

http://code.google.com/p/arne


9. RELATED WORK
In [29] Siebert and Bockmayr exploit timed automata to

refine discrete regulatory networks. In their quantitative
set-up pseudo-states are introduced that record all the asyn-
chronous changes that may happen from a certain state.
Timing constraints are incorporated by combining state in-
variants and guards to set the window for firing. This way
non-determinism is reduced: if the time windows of two
transitions do not overlap, one will have priority over the
other when both are enabled. Our analysis of the switch of
bacteriophage λ has been inspired by the approach of [29],
providing a qualitative alternative that applies if exact tim-
ing constraints and/or threshold values for activation and
inhibition are not available. Siebert and Bockmayr call upon
the Uppaal modeling environment. For timed model check-
ing, limited state space reduction is achieved implicitly by
considering region graphs.

In [1] a mix of hybrid automata and discrete regulatory
networks is proposed for the modeling of delays. Also here,
it is argued that time passes for an agent to reach a thresh-
old as well as to express its activating/inhibiting influence.
To incorporate such, real-valued variables are added to a
system state. The variables evolve over time as governed
by a specific slope reflecting a first order approximation of
the actual trajectory. Again, the relevant quantitative in-
formation, or a sufficiently precise estimation, needs to be
available for an exhaustive analysis. However, the approach
can also be applied reversely to detect which variables are
influenced directly by specific regulators, yielding a system
of linear constraints for the slope variables involved. Ah-
mad c.s. exploit the HyTech tool for reachability analysis
and develop a specific algorithm to find all paths between
two states under the timing constraints given.

There is a large number of applications of discrete regu-
latory networks in bio-medical settings, in particular using
simulation and attractor finding as analysis techniques. For
example, in [11] non-Boolean discrete regulatory networks
are used for the analysis of the Hedgehog signaling for the
wing disc development in D. melanogaster with modeling
and simulation support by the GINsim toolset [12]. Dedi-
cated graph reduction techniques to mitigate state space ex-
plosion are reported in [24]. The approach is more focused
and preserves a number of stability conditions, compared
to the general approach based on bisimulation that respects
modal µ-calculus.

Petri nets have been widely exploited as a qualitative mod-
eling and analysis framework for biological systems. See [27]
for an early reference, [15] for an introduction. We men-
tion [30], where Petri nets are used for a qualitative modeling
of tryptophan production in E. coli, identifying attractors by
means of reachability analysis. Steggles and co-workers [32]
seek to optimize by propositional simplification to reduce
the Petri net representation of a regulatory network. In a
sporulation case study for B. subtilis the Petri net model of
a Boolean regulatory network is examined using unfolding
based model checking techniques. The powerful technique of
invariant analysis, both for places and for transitions, is piv-
otal in the Petri net approach of [28] modeling human iron
homeostasis. Extensions of qualitative Petri nets e.g. with
localities and range arcs are proposed in [18] for the rep-
resentations of dynamic membrane structures. In general,
for these approaches it is hard to maintain explicit state
spaces of reduced size. In [6] the vulva development of C.

elegans is studied under maximal parallelism assumptions,
to reduce the state space by restricting the number of inter-
leaving points.

Various qualitative and quantitative process oriented mod-
eling techniques for biological systems have been combined
with model checking. See, e.g. [8, 14, 15, 9]. In the setting
of process calculi and membrane computing a number of no-
tions of equivalences have been studied, e.g. for the looping
calculus [3], for bio-κ [19], for Bio-PEPA [10] as well as [2]
forXS-systems. The focus on minimization when employing
bisimulation, in particular for discrete regulatory networks,
is distinguishing for the present paper.

10. CONCLUSIONS
We presented an extension of discrete regulatory networks

for modeling short-term effects. Activation of an agent not
only depends on the current activation levels, but also on
their discrete differentials, modeling a recent change. Ad-
ditional expressiveness is gained by considering the network
behavior under a maximal progress condition. Using this
approach, two qualitative timescales, i.e., steep and mod-
erate changes can be distinguished. Also, priority can be
given to transitions triggered by activation sets including or
excluding specific stimuli.

Bisimulation minimization helps to deal with the enlarged
state space. The reduction in state and transitions is sub-
stantial as states are anonymous in our approach. Bisim-
ulation equivalence is also applied when scanning over all
possible activation functions for a given interaction graph.
This limits the number of candidate activations that needs
to be considered in further detail. We implemented our ap-
proach in a prototype with graphical interface that uses the
mCRL2 tool suite as a back-end. Either the model checking
facilities of mCRL2 and native algorithms for dedicated tasks
such as attractor finding can be applied, or the generated
label transition system or systems can be exported to other
analysis software. We discussed the switch of the lambda
phage and a bio-medical case related to myofibrosis to illus-
trate the approach.

As future work we plan to implement additional mech-
anisms to steer the generation of activation functions, e.g.
using a constraint language. Minimization modulo maximal
progress equivalence, possibly for more than two timescales
as considered here, is a natural next step. As being close
to branching bisimulation, an equivalence supported by the
mCRL2 tool set, we are confident that technically this can be
achieved. Also, filtering based on maximal progress reduc-
tion is planned. However, further validation by other bio-
logical or bio-medical case studies, with a larger number of
agents and more complex interaction, is essential. Therefore,
techniques to trace back from a reduced LTS to the explicit
state-transition model, based on the interaction graph and
associated activation function, are to be worked out.
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