
©2014 Old City Publishing, Inc.
Published by license under the OCP Science imprint,

a member of the Old City Publishing Group

Ad Hoc & Sensor Wireless Networks, Vol. 24, pp. 135–159
Reprints available directly from the publisher
Photocopying permitted by license only

135

ACTION: Breaking the Privacy Barrier
for RFID Systems

Li Lu1, Yunhao Liu2 and Jinsong Han3

1School of Computer Science and Engineering, University of Electronic Science and
Technology of China, China E-mail: lulirui@gmail.com

2School of Software, Tsinghua University, China
E-mail: yunhaoliu@gmail.com

3Department of Computer Science and Technology, Xi’an Jiaotong University, China
E-mail: hanjinsong@mail.xjtu.edu.cn

Received: April 11, 2013. Accepted: May 16, 2014.

In order to protect privacy, Radio Frequency Identification (RFID) sys-
tems employ Privacy-Preserving Authentication (PPA) to allow valid
readers to explicitly authenticate their dominated tags without leaking
private information. Typically, an RF tag sends an encrypted message to
the RF reader, then the reader searches for the key that can decrypt the
ciphertext to identify the tag. Due to the large-scale deployment of today’s
RFID systems, the key search scheme for any PPA requires a short
response time. Previous designs construct balanced-tree based key man-
agement structures to accelerate the search speed to O(logN), where N is
the number of tags. Being efficient, such approaches are vulnerable to
compromising attacks. By capturing a small number of tags, an adversary
can identify other tags that have not been corrupted. To address this issue,
we propose an Anti-Compromising authenticaTION protocol, ACTION,
which employs sparse tree architecture, such that the key of every tag
is independent from one another. The advantages of this design include:
1) resilience to the compromising attack, 2) reduction of key storage for
tags from O(logN) to O(1), which is significant for resource critical tag
devices, and 3) high search efficiency, which is O(logN), as good as the
best in the previous designs.

Keywords:  Authentication Privacy RFID Security

1  Introduction

Due to the low cost and easy deployment, Radio-Frequency Identification
(RFID) has been an important enabling technology for everyday applications,

136	 L. Lu et al.

such as retailing, medical-patient management, access control [1], logistics
and supply chain management [2, 3]. In RFID systems, RF tags emit their
unique serial numbers to RF readers. Without privacy protection, however,
any reader can identify a tag ID via the emitted serial number. Indeed, within
the scanning range, a malicious reader can easily perform bogus authentica-
tion with detected tags to retrieve sensitive information. Today, many compa-
nies embed tags into items. As these tags contain unique information about
the items, a customer carrying those tags is subject to silent tracking from
unauthorized readers. Sensitive personal information might be exposed:
details about an illness inferred by the purchase of certain pharmaceutical
products; the malls she shops at; the types of items she prefers to buy, and so
on. Clearly, a secure RFID system must meet two requirements. On the one
hand, a valid reader must be able to identify the valid tags; on the other hand,
misbehaving readers should not be able to retrieve private information from
those tags.

In order to protect user privacy, Privacy-Preserving Authentication (PPA)
is introduced into the interactive procedure between RFID readers and tags
[4]. To achieve PPA, an RFID tag performs a cryptography enabled challeng-
ing-response procedure with a reader [5]. For example, we can let each tag
share a distinct key with the reader. During authentication, the reader first
probes a tag via a query message with a nonce. Instead of using plaintext to
directly answer the query, the tag encrypts the nonce and sends the ciphertext
back to the reader. The back-end database of the reader searches all the keys
that it holds, and, if possible, finds a proper key to recover the authentication
message, and thereby identifying the tag. (For simplicity, we use the term
“reader” to denote the reader device as well as the back-end database in the
following). If a tag is invalid, it cannot provide a proper ciphertext related to
a key owned by the reader. In this procedure, the tag does not expose its iden-
tity to any third party. Meanwhile, the key used for encrypting messages is
only known by valid readers. A malicious reader cannot identify a user via
probing the valid tag.

As it is simple and secure, such a PPA based design suffers poor scalabil-
ity. Upon receiving a nonce ciphertext, the reader needs a prompt lookup to
locate a key in the database. Clearly, the search complexity is O(N), where N
is the number of all the possible tags, even only a small portion of them are in
the reader’s range. In today’s large-scale RFID systems, N is often as large as
hundreds of millions, and thousands of tags may respond to a reader simulta-
neously, demanding a fast key-search method as well as a carefully designed
key-storage structure. Hence, balanced-tree based schemes [6-9] are pro-
posed to accelerate the authentication procedure, in which the lookup com-
plexity is O(logN).

The balanced-tree based approaches are efficient, nevertheless, not secure
due to their key-sharing feature. As the key storage infrastructure of those
approaches is static, each tag, more or less, shares some common keys with

	A CTION: Breaking the Privacy Barrier for RFID Systems	 137

other tags (in this paper, we use normal tags to denote tags that are not tam-
pered with). Consequently, compromising one tag might reveal information
of other tags [6, 9]. L. Lu et al. evaluate the damage caused by compromising
attacks to balanced-tree based approaches [9]. In an RFID system containing
220 tags, and employing a binary tree as the key tree, an adversary, by com-
promising only 20 tags, has a probability of nearly 100% of being able to
track normal tags [10].

To mitigate the impact of compromising attacks, L. Lu et al. propose a
dynamic key-updating scheme [9], SPA, for balanced-tree base approaches.
The key-updating of SPA reduces the number of keys shared among compro-
mised and normal tags, and alleviates the damage caused by compromising
attacks. SPA, however, does not completely eliminate the impact of compro-
mising attacks. For instance, using SPA in an RFID system with 220 tags, the
probability of tracking normal tags is close to 60% after an adversary com-
promises 20 tags [9].

Another drawback for balanced-tree based PPAs is the large space needed
to store keys in each tag. Balanced-tree based approaches require each tag to
hold O(logδN) keys, and the reader to store δ × N keys, where δ is a branching
factor of the key tree. Obviously, due to the limited memory capacity of RF
tags, existing PPAs are difficult to apply in current RFID systems.

To address the above issues, we propose an Anti-Compromising authentica-
TION protocol, called ACTION. By employing a sparse tree to organize keys,
ACTION generates completely independent keys for tags, so that compromised
tags have no keys that correlate with the normal ones. As a result, ACTION can
effectively defend against compromising attacks. We show that if an adversary
can track a normal tag with a probability larger than α, it must tamper with
more than N – 1/α tags, while in previous balanced-tree based approaches, by
compromising O(logN) tags, an adversary can track a normal tag with a prob-
ability more than 90% [10]. Another salient feature of this design is the low
storage requirement for tags. ACTION only allows each tag to store two keys
and the reader to store O(N) keys, achieving high storage efficiency for both
readers and tags, making this design practical for today’s RF tags. We also
show that ACTION retains high search efficiency in the sense that the lookup
complexity is still O(logN), as good as the best of previous designs.

The rest of this paper is organized as follows. We discuss the related work
in Section 2. We present the ACTION protocol in Section 3. In Section 4, we
discuss the storage and search efficiency of ACTION. We present the security
analysis in Section 5, and conclude the work in Section 6.

2  Related work

The fundamental principle of PPAs is based on HashLock [5], in which every
tag shares a unique key with the reader. The tag and reader use a challenging-

138	 L. Lu et al.

response scheme to conduct authentication. Recent studies [13] show that
HashLock is a secure PPA. The main drawback of HashLock is that the key
search is linear to the number of tags in the system, which limits the usage of
HashLock in large-scale RFID systems. Subsequent approaches in the litera-
ture are mostly aimed at improving the efficiency of key search. Juels [14]
classifies those approaches into three categories.

Synchronization approaches: Such approaches [15-18] use an incremental
counter to record the state of authentication. When an authentication is suc-
cessfully performed, the tag increases the counter by one. The reader com-
pares the value of a tag’s counter with the record in the database. If the
difference of the two counter values is in a proper window, the tag is viewed
as valid and the reader synchronizes the counter record of the tag. Synchroni-
zation schemes are subject to the Desynchronization Attack [14], in which a
malicious reader interrogates a tag many times such that the counter of the tag
exceeds the range of the window and the reader fails to recognize a valid tag.

Time-space tradeoff approaches: AO [19] employs Hellman tables to
improve the key-efficiency. Hellman [20] studies the problem of breaking
symmetric keys and shows that an adversary can pre-compute a Hellman
table of storage size O(N2/3), in which the adversary can search a key with the
complexity of O(N2/3). That means the key-searching efficiency of OSK or
AO is also O(N2/3). Those approaches are not sufficiently efficient for sup-
porting large-scale RFID systems.

Balanced-tree based approaches: Balanced-tree based approaches [6-9]
improve the key search efficiency from linear complexity to logarithmic com-
plexity. They employ a balanced-tree to organize and store keys for tags. In a
balanced-tree, each node stores a unique key. Keys in the path from the root
to a leaf node are distributed to a tag. Each tag uses these multiple keys to
encrypt the identification message. Upon receiving an encrypted message,
the reader performs a Depth-First Search on the key tree with a logarithmic
complexity of the system size. The balanced-tree based approaches, however,
are subject to Compromising Attack [6, 9]. In a balanced-tree, tags always
share keys with others. Hence, hacking one tag may reveal several keys used
by other tags. For example, in a binary balanced-tree based RFID system
containing 220 tags, an adversary can identify any tag with the probability of
about 90% by tampering with only 20 tags [9, 10]. To address a compromis-
ing attack, L. Lu et al. propose a dynamic key-updating scheme, SPA [9], for
enhancing balanced-tree based approaches. In the scheme, after successfully
identifying a tag, the reader dynamically and recursively updates keys in the
key tree and coordinates the keys with the tag. The key-updating scheme
reduces the probability of locating a tag via compromising attacks. However,
the threat from compromising attacks has not been completely relieved. For
instance, in a SPA system containing 220 tags, a compromising adversary still
can recognize any normal tag with a high probability (about 60%) after it
tampers with 20 tags [9].

	A CTION: Breaking the Privacy Barrier for RFID Systems	 139

3  Action design

In this section, we first discuss the motivation of this work, and then present
the details of the ACTION protocol.

3.1  Motivation
In previous balanced-tree based approaches, initially, a reader organizes a
hierarchical balanced-tree with a depth of logδN (δ is branching factor), in
which each node is assigned a unique key. The reader then monogamously
maps N leaf nodes to N tags. Figure 1 plots a balanced-tree for 8 tags. For
each tag, there is a unique shortest path from the root to the corresponding
leaf node. For example, in Fig. 1, tag 3 obtains k1, 1, k2, 2, and k3, 3. During
authentication, upon receiving a request with a nonce r from the reader, T3
encrypts r in the way {k1, 1{r}, k2, 2{r}, k3, 3{r}} and sends the ciphertexts to
the reader. Upon receiving the response from T3, the reader searches proper
keys in the key tree to recover r. This is equal to exploring a path from the
root to the leaf node of T3 in the tree. At the end of identification, if such a
path exists, R regards T3 as a valid tag. Clearly, the search complexity is
O(logN).

The fundamental nature of balanced-tree based PPAs is that a tag shares
some non-leaf nodes, more or less, with other tags in the key tree. This is a
fatal flaw when balanced-tree based PPAs are under compromising attacks.
For example, in Fig. 1, we can see that a common key, k1,1, is shared by tags
T1, T2, T3, and T4, and k2,2 is shared by T3 and T4. If an adversary compro-
mises T3 and reveals the keys stored in T3, the keys k1,1 and k2,2 are also
exposed. As a result, even though T4 is not cracked, the adversary can easily
distinguish T4 via k1,1 and k2,2. Even worse, the adversary can actually distin-
guish each normal tag by only compromising a small fraction of all tags.

Based on the above analysis, it is clear that the only solution to compro-
mising attacks is to eliminate the correlation among the keys of different tags.
Therefore, in this design, we intend to remove all correlations among the
keys. The difficulty is that we cannot sacrifice the search efficiency as well as
the storage efficiency.

Figure 1
An example of key organization in balanced-tree based PPAs.

140	 L. Lu et al.

3.2  Overview
ACTION mainly has four components: system initialization, tag identification,
key-updating, and system maintenance. In the first component, instead of using
a balanced-tree, we employ a sparse tree to organize keys for tags. In the
extreme case, the sparse tree can support 2128 tags. We generate two random
keys (128 bits), denoted as path key kp and leaf key kl, to a tag and a corre-
sponding path in the sparse tree according to kp value. After the key initializa-
tion, each tag is associated with a leaf node in the tree. The leaf node thereby
represents the key kl assigned to the tag, and the path from the root to the leaf
node indicates the key kp. Since the two keys are randomly generated, keys
among different tags are independent. In the second component, the reader
performs a logarithmic search to identify a tag. In the third component,
ACTION performs a key-updating procedure, in which ACTION employs a
cryptographic hash function, such as MD5, SHA-1, to update the old key in a
tag. Note that the new key is still random and independent of the keys used by
other tags. ACTION also reduces the maintenance overheads in highly dynamic
systems where tags join or leave frequently by using the fourth component.

3.3  System initialization
We assume that there are N tags Ti, 1£ £i N , and a reader R in the RFID
system. We denote the sparse tree used in ACTION as S. Let δ denote the
branching factor of the key tree and d denote the depth of the tree. Each tag is
associated with a leaf node in S. The secret keys shared by tag Ti and reader
R are denoted as ki

p and ki
l. Let n be the length of ki

p
 and ki

l, i.e. |ki
p| = |ki

l| = n.
We split ki

p into d parts, that is, ki
p = ki

p[0]|ki
p[1]|…|ki

p[d-1], and the length of
each ki

p[m] is n/d, m = 0...d-1. We set the branching factor, δ, of each non-leaf
node in S as 2n/d, namely d×logδ = n. For example, if we set the key length as
128 bits and d = 32, the branching factor of the S is δ = 2128/32 = 24 = 16. In
other words, each non-leaf node is able to accommodate 16 child positions in
S. If the c-th child node exists in a child position of a non-leaf node j, we set
c as the index number of this child and record c in j. Note that a non-leaf node
only stores the index numbers for existing children.

For simplicity, we denote the set of j’s index numbers as ISj, and the ele-
ment number of ISj as INj, that is, INj = |ISj|. We show an example in Fig. 2, in
which the branching factor δ = 24. Each non-leaf node has 16 child positions.
For a non-leaf node a, as shown in Fig. 2, the reader maintains its’ index
number set as ISa = {5, 7}, and the INa=2.

Initially, the tree is empty. Reader R generates two keys ki
p and ki

l uni-
formly at random for every tag Ti. Meanwhile, the reader divides each ki

p into
d parts, ki

p[0]|ki
p[1]|…|ki

p[d-1], where d is the depth of key tree S. The reader
distributes ki

p and ki
l to tag Ti and organizes ki

p into S as follows. From the root,
the reader generates a non-leaf node at each level m according to the corre-
sponding ki

p[m]. That is, after the reader generates a node a at the level m-1
according to the ki

p[m-1], it will generate the ki
p[m]-th child of node a, and set

	A CTION: Breaking the Privacy Barrier for RFID Systems	 141

an index number of a as ki
p[m]. For example, as shown in Fig. 2, the branching

factor δ of S is 16, and there are 4 tags in the system, denoted as T1, T2 , T3, and
T4. Assume that the length of path key is 12 bits. Each path key is divided into
3 parts, and the length of each part is 4 bits (because δ = 16, the length of each
part of a key should be log216 = 4 bits). The reader generates four path keys as
257, 277, 468, and 354 for tags T1-T4, respectively. The reader also generates
four leaf keys as k1

l, k2
l, k3

l, and k4
l for T1-T4, respectively. For T1, k1

p = 257
(0010|0101|0111), thus, k1

p[0] = 2, k1
p[1] = 5, and k1

p[2] = 7. The reader first
generates a child at the root, and sets an index number as 2 (k1

p[0] = 2). Here
the index number 2 means the root has a child marked as node a in its second
position, as illustrated in Fig. 2. Then the reader generates a child b of node a,
and sets an index number of a as 5 (k1

p[1] = 5). Finally, the reader generates a
child c of node b, which is a leaf node c, and sets an index number of b as 7
(k1

p[2] = 7). Indeed, the key organization can be analogous to generate a path
in tree S. In the above example, the path of T1 is root→a→b→c. After the
same procedures on tags T2, T3, and T4, we obtain a sparse tree as illustrated in
Fig. 2. The procedure is described as Algorithm 1 TagJoin.

Figure 2
A key tree with four tags (N = 4).

Algorithm 1: TagJoin (Tag T, Key Tree S)

1:  kp, kl ← KeyGeneration(T);
2:  (kp[0],…, kp[d-1]) ← KeyDivision(kp);
3:  Node ← GetRoot(S);
4:  for i = 0 to d – 1
5:   Add kp[i]into Node’s Index Set IS;
6:   if the kp[i]-th child does not exist
7:    Create the kp[i]-th child;
8:    Node ← the kp[i]-th child;
9:  else Node ← the kp[i]-th child;

142	 L. Lu et al.

3.4  Tag identification
ACTION employs cryptographic hash functions to generate authentication
messages and update keys. Let h denote a cryptographic hash function:
h:{0,1}*→{0,1}n, where n denotes the length of the hash value. Let N be
the number of all tags in the system. The basic authentication procedure
between the reader and a tag Ti (1£ £i N) includes three phases, as illus-
trated in Fig. 3. In the first phase, the reader R sends a “Request” with a ran-
dom number r1 (a nonce) to tag Ti. In the second phase, upon receiving
“Request”, tag Ti generates a random number r2 (a nonce) and calculates a
series of hash values, h(r1, r2, ki

p[0]), h(r1, r2, ki
p[1]), ..., h(r1, r2, ki

p[d-1]),
h(r1, r2, ki

l), where h(r1, r2, k) denotes the output of the hash function on three
inputs: a key k and two random numbers r1 and r2. Ti replies R with a message
U = (r2, h(r1, r2, ki

p[0]), h(r1, r2, ki
p[1]), ..., h(r1, r2, ki

p[d-1]), h(r1, r2, ki
l)). For

simplicity, we denote the elements in U as u, v0, v1, …, vd-1, vd where u = r2
and vj = h(r1, r2, ki

j), j = 0...d-1, vd = h(r1, r2, ki
l). In the third phase, R identi-

fies Ti using the key tree S and the received U.

Figure 3
The authentication procedure of ACTION.

Algorithm 2: Identification (U, node X)

1:  SUCCEED ← false;
2:  m ← DepthOfNode(X);
3:  IS ← GetIndexSet(X);
4:  IN ← |IS|;
5:  if m ≠ d
6:   for i = 1 to IN
7:    if vm = h(r1, r2, i)∧i ∈IS

8:     Y ← GetChild(X,i);
9:      Identification (U, Y);
10:   else if m = d∧h(r1, r2, kl) = vd

11:      SUCCEED ← true;
12:  if (SUCCEED = false)
13:   Fail and output 0;
14:  Accept and output 1;

	A CTION: Breaking the Privacy Barrier for RFID Systems	 143

Reader R invokes a recursive algorithm to probe a path from the root to a
leaf in S to identify Ti, as shown in Algorithm 2. Assume R reaches a non-leaf
node a at level m-1. For all index numbers stored in a, R computes a hash
value with inputs as r1, r2, as well as the index numbers, and then compares
the hash value with the element vm in the received U. If there is a match, the
path of Ti should be extended to the child related to the index number. Note
that here the child node is on the path assigned to Ti. Repeating such a proce-
dure until arriving at a leaf node, R recognizes the tag Ti. For the example in
Fig. 2, upon receiving a “Request” message with a random r1, T1 generates a
random number r2, and computes a series of hash values h(r1, r2, 2), h(r1, r2,
5), h(r1, r2, 7), and h(r1, r2, k1

l), then replies R with the message U = (u, v0, v1,
v2) = (r2, h(r1, r2, 2), h(r1, r2, 5), h(r1, r2, 7), h(r1, r2, k1

l)). Upon receiving U,
R first compute all h(r1, r2, x) to compare with v1. Here x = 2, 5, and 7, which
are all the index numbers stored in the root. Clearly, R locates 2 as a match
number and thereby moves to node a. Then R locates 5 and 7 in the nodes b
and node c, respectively. R terminates its path probing when it reaches the
leaf node c, thereby identifying T1.

Algorithm 3:  TagLeave (Tag T, Key Tree S)

 1:  kp, kl ← GetKey(T);

 2:  (kp[0],…, kp[d-1]) ← KeyDivision(kp);

 3:  Node ← GetLeaf(T);\\ Get the corresponding leaf of T

 4:  for i = d – 1 to 0

 5:   if Node doesn’t have brothers

 6:    TempNode ← Node;

 7:    Node ← FindParent(TempNode);

 8:    Delete the ki from the Index Set IS of Node;

 9:    Delete TempNode;

10:   else Node ← FindParent(Node);

3.5 K ey-updating
After successfully identifying Ti, R and Ti automatically update the key stored
in Ti and coordinate the changes to the tree S as follows.

Reader R makes use of a cryptographic hash function h to generate new
keys. Let ki

p and ki
l be the current path key and leaf key used by Ti. Reader R

computes a new path key ki
p from the old path key ki

p and leaf key ki
l by com-

puting ki
p = h(r1, r2, ki

p, ki
l). Similarly, R calculates the new leaf key as ki

l =

h(r1, r2, ki
l). The challenging issue here is that we need to carefully modify

the index numbers of non-leaf nodes according to the new key ki
p . Otherwise,

144	 L. Lu et al.

some tag identifications can be interrupted, since the index number stored in
non-leaf nodes might be shared among multiple tags.

To address the challenge, we design two algorithms for key-updating: 1)
TagJoin, as shown in Algorithm 2; and 2) TagLeave, shown in Algorithm 3.
The basic idea is that we first use the TagLeave to remove the path corre-
sponding to old path key ki

p of tag Ti, and then generate a new path corre-

sponding to key ki
p in S. It is possible that a non-leaf node in the path has

multiple branches so that some keys are used by other tags, for example, node
a in Fig. 2. In this case, the TagLeave algorithm terminates.

After deleting the old key, R re-generates a new path for tag Ti according

to the new key ki
p using the TagJoin algorithm. A potential problem of new

path generation is that the path has existed in S, which means the key ki
p has

been generated in the system. The probability of this situation happening is
quite small. First, the sparse tree is a virtual tree according to the initialization
algorithm. Prior to the tag deployment, the tree is empty. When a path key is
generated by a hash function, a path from a certain leaf to the root emerges
accordingly in the sparse tree. Therefore, a path in the sparse tree corresponds
to a hash value. This correspondence leads to two facts: 1) the capability of a
sparse tree is as large as the size of the hash value space. In our work, a path
key is a hash value with a length of 128 bits, which indicates the sparse tree
can hold 2128 paths maximum, that is, the sparse tree can hold 2128 tags cor-
respondingly. In any practice RFID system, however, the number of tags is
much less than 2128. The probability of the tree becoming dense is negligible.
2) A path in the sparse tree corresponds to a hash value. Therefore, if two tags
have the same path in the sparse tree, this means a hash collision appears.
According to the collision-resistance property of hash functions, the proba-
bility of a collision happening is also negligible. For example, an RFID sys-
tem contains 220 tags, and the length of a path key is 128 bits. The ratio of
occupied paths in the sparse tree is 2-88 (220/2128), and the path key is gener-
ated uniformly at random. Thus, the probability of generating an existing
path is 2-88. Summarizing the above analysis, it is safe to claim that the prob-
ability of two tags having a similar path is negligible.

If such a collision does happen, in this design, R first generates a new key

k h r r k ki
p

i
p

i
l

2

1 2= (, , ,), and then executes the TagJoin algorithm again to create
a new path in S. R repeats such a procedure until a new path is successfully
generated. R counts the number of TagJoin runs, denoted as s (due to the
negligible probability of collisions, s usually equals to 1), and sends a syn-

chronization message σ = (s, h (, ,)r r ki
p

s

1 2 , h (, ,)r r ki
l

1 2) to tag Ti, as shown in

Fig. 3. Here ki
p

s

 is computed from iterative equations by:

	
k k

k h r r k k

i
p

i
p

i
p

s

i
p

s

i
l

1

1 2

1

=

=









−
(, , ,)

	 (1)

	A CTION: Breaking the Privacy Barrier for RFID Systems	 145

Having σ, Ti first computes ki
p

s

 using ki
p and s with (1), then computes ki

l =

h(r1, r2, ki
l). Thus Ti gets σ’ = (s, h(r1, r2, ki

p
s

), h(r1, r2, ki
l)). After computing

σ and σ’, Ti verifies whether or not σ = σ’. If yes, Ti updates its keys as ki
p

s

and ki
l . Otherwise Ti returns an error to the user and will not update keys

stored on it; by doing that, Ti can coordinate its key with the one generated by
the reader.

3.6  System maintenance
This component is mainly for tag joining and leaving.

If a new tag Ti joins the system, R needs to find a new path in the key tree.
R invokes the TagJoin algorithm, as shown in Algorithm 1. Specifically, R
generates a new path key ki

p and leaf key ki
l independent of other keys, then

splits ki
p into d parts, ki

p[0], ki
p[1],…, ki

p[d-1]. Starting at the root, if R arrives
at a non-leaf node j at level m, R adds ki

p[m] into j’s index number set ISj, and
walks to the ki

p[m]-th child of j (if this child does not exist, R creates it).
When a leaf node is reached, R associates Ti to the leaf node, and sets the key
of the leaf node as ki

l. A new path is generated for Ti.
To withdraw a tag Ti, R should erase the path from the root to Ti’s associ-

ated leaf node, using the TagLeave algorithm. In this algorithm, R first deletes
the leaf key ki

l of Ti. Starting from the associated leaf node of Ti, if R reaches
a node e at level m, R first finds e’s parent f, and then deletes ki

p[m] from the
index set ISf. After arriving at node f, R deletes e. R repeats this procedure
until a non-leaf node in the path has multiple branches, for example, node a
in Fig. 2. Thus, R withdraws Ti.

4 Effici ency

We first investigate the storage efficiency of ACTION, and then analyze the
identification efficiency by estimating the necessary number of hash compu-
tations. We also discuss the lower and upper bounds of ACTION’s identifica-
tion efficiency.

4.1  Storage
An RFID tag normally has a very tiny memory for storing user information
as well as the keys. Hence, storage efficiency must be taken into account in
designing secure PPA protocols.

In balanced-tree based approaches, each tag is allocated multiple keys,
which incur a relatively large storage overhead. ACTION is more efficient in
the key storage on both the tag and reader sides. Specifically, ACTION allo-
cates each tag only two keys, a path key and a leaf key, and requires the reader
to store the keys for each tag. Each path key is divided into several fractions,
which are stored in the non-leaf nodes’ index sets, respectively. Thus, the

146	 L. Lu et al.

storage at readers is 2N. In contrast, balanced-tree based approaches distrib-
ute O(logδN) keys to each tag, and maintain δ × N keys on the reader side,
where δ is the branching factor of the balance key tree. Clearly, ACTION is
more practical for current RFID systems.

4.2  Identification efficiency
The basic operations in a PPA authentication are mainly hash computations
and comparisons. The numbers of these two operations are equal, because
each hash computation is followed by a comparison of hash values. Hence,
we use the number of hash computations to estimate the time complexity. We
present the best and worst cases in ACTION’s authentication procedure,
which are the computation’s lower bound and upper bound, respectively.

In the best case, the reader always meets only one index number at the
non-leaf node at each level of the key tree. After d steps probing, the reader
successfully identifies a tag. With the same branching factor setting δ, the
depth of sparse tree is larger than the balanced-tree, that is, d > logδN.
Therefore, the computational lower bound of ACTION’s identification is
logδN.

As we assume the branching factor of the key tree is δ, each non-leaf
node has at most δ children. In the worst case, at the root, the reader will
compute δ hash values, and narrow the search scope to N/δ tags; at a child
node of the root, the reader performs δ hash computations again. Then the
reader narrows the search scope to N/δ2 tags. At this time, the reader spends
2δ hash computations. The reader repeats the same process at each level. At
a given level l, the reader narrows the search scope to N/δl tags, and per-
forms l∙δ hash computations. We assume at level l, the reader finds N/δl = 1,
or l = logδN. Since d > logδN, the reader does not reach leaf nodes at level
l. We assume that the reader reaches a non-leaf node a at level l. The node
a must have only one child (if a has two children, the number of tags in the
system must be N+1, not N). Similar to a, each node of a’s offspring has
only one child, except leaf nodes that are always childless. Thus, the reader
will perform d – l hash computations after level l. We illustrate the worst
case in Fig. 4.

We calculate hash computations in the worst case, f(δ) = δ × l + d – l.
Since l = logδN, and d = n/logδ (see Section 3.3).we have

	

f N
n

N

N
n

() log (
log

log)

() log
log

δ δ
δ

δ
δ

δ δ

δ

= ⋅ + −

= − ⋅ +1

	 (2)

In (2), n is the bit length of keys in the system; in ACTION, n = 128. Let
EACTION de note identification efficiency, log () log

logδ δδ
δ

N E N
n

ACTION< ≤ − ⋅ +1

	A CTION: Breaking the Privacy Barrier for RFID Systems	 147

log () log
logδ δδ
δ

N E N
n

ACTION< ≤ − ⋅ +1 . Hence, EACTION is O(logδN). We plot the curve of the efficiency

upper bound f(δ) in Fig. 5.
To find the optimal δ, we set f ’(δ) = 0. We have

	 log
log ln

((ln)) logδ

δ
δ δ δ

N
n e

=
− +1 1 2

	 (3)

By solving (3), we find that δ = 8 is the optimal setup for identification effi-
ciency. The upper bound is f N n() log8 7

3 3= + . According to the relation
between δ and d, if δ = 8, then d = 128/(log 8) = 128/3. By that setup d is not

Figure 5
Efficiency upper bound vs. branching factor. (Assume N = 220, n = 128).

Figure 4
The worst case of ACTION.

148	 L. Lu et al.

an integer. Hence, in ACTION, we set a sub-optimal δ = 16, such that d = 32.
The upper bound is f N n() log16 15

4 4= + . Combined with the early discus-
sion, we can see that the time complexity of ACTION authentication is
O(logN).

5  Privacy and security

The essential goal of ACTION is to protect the privacy and defend against
both passive and active attacks. For RFID systems, passive attack often
means eavesdropping on the communication between tag T and reader R,
which are intensively discussed in previous designs [5-10, 13-19]. Active
adversaries can forge, replay, or discard the messages exchanged between T
and R, so the attacks include tracking, cloning, and tag-compromising [7].
Adversaries are even able to execute bogus authentication procedures. Up
to now, the research on RFID is still short of appropriate formal models that
can explicitly define the privacy and adversaries in a general way. Lacking
such models, existing PPA schemes have to employ ad hoc notions of secu-
rity and privacy [13], and then heuristically analyze the security and privacy
via those notions. The heuristic analysis, however, only allows those PPA
schemes examine the privacy under the known attacks. It is difficult to
explore the potential vulnerabilities and flaws that are vulnerable to newly
emerging attacks.

Juels proposes a “Strong privacy” [13] to meet the demands on privacy in
RFIDs. This model employs indistinguishability to define the privacy.
Loosely speaking, indistinguishability means that RFID tags should not be
told from each other according to their output. Thus, tags need to randomize
their output such that adversaries cannot distinguish a tag from others.
Although the Strong privacy model presents a method to protect tags’ privacy
completely, the major problem of it lies in the authentication efficiency. A
PPA protocol that satisfies the Strong privacy, the legitimate reader cannot be
directly aware of which tag it is interrogating due to the random output of the
tag. The reader thereby has to search all tags in the system to identify the tag
instead. Therefore, the authentication efficiency is linear to the number of
tags in a given system, and PPAs that satisfy the Strong privacy model are not
more efficient than linear search. As analyzed in [24], protocols with logarith-
mic efficiency cannot be proven private under the Strong privacy model.

The authentication efficiency is one of major concerns in RFID systems,
so many PPAs focus on improving authentication efficiency. Although these
PPAs are more efficient than linear search, their privacy cannot satisy the
Strong privacy due to the tradeoff between privacy and authentication effi-
ciency. These PPAs including ACTION thus cannot be proven private for-
mally. L. Lu et al [24] propose a “Weak privacy” to address this issue that
how much cost on the privacy degradation brings back how much improve-

	A CTION: Breaking the Privacy Barrier for RFID Systems	 149

ment on the authentication efficiency. The Weak privacy loosens the strict
constraints on the output of tags, such as randomization and unpredictability.
For stating the tag’s identity, it allows a tag’s output to contain a temporally
constant field, which will be refreshed at the successive authentication. By
this means, RFID systems can achieve acceptable privacy protection as well
as highly efficient authentication.

In this section, we use the weak privacy model [24] to explicitly define the
privacy and adversaries. Based on this model, we generally prove that
ACTION can preserve privacy of RFID systems, instead of using those
attacks one by one to verify the capabilities against those attacks. We also
briefly present other security guarantees of ACTION.

5.1  Privacy definition
The model consists of three components: RFID Scheme, Adversaries, and
Privacy Game.

5.1.1  RFID scheme
In the model, an RFID scheme is defined as following:

Definition 1 (RFID Scheme): An RFID scheme has four components:

1.	 A polynomial-time algorithm KeyGen(1s) which generates all key mate-
rials k1, …, kn for the system depending on a security parameter s.

2.	 A setup scheme SetupTag(ID) which allocates a specific secret key k and
a distinct ID to a tag. Each legitimate tag should have a pair (ID, k) stored
in the back-end database.

3.	 A setup scheme SetupReader which stores all pairs (ID, k) in the reader’s
back-end database for all legitimate tags ID in the system.

4.	 A polynomial-time interactive protocol P between the reader and a tag in
which the reader owns the common inputs, the database and the secrets.
If the reader fails, it outputs ⊥. Otherwise, outputs some ID and may
update the database.

An RFID scheme has a correct output if the reader executes the protocol P
honestly and then infers the ID of a legitimate tag except with a negligible
probability (A function in terms of a security parameter s is called negligible
if there exists a constant x > 0 such that it is O(x-s)); otherwise, the reader
outputs ⊥ when the tag is not legitimate.

5.1.2  Adversaries
Adversaries in the model have three characteristics: the oracles they can
query, the goal of their actions, and the rules of their actions. According to
those characteristics, we define adversaries in RFID systems below.

150	 L. Lu et al.

Definition 2 (Adversaries): An adversary A in an RFID system is a polyno-
mial-time algorithm which performs attacking behaviors by querying five
oracles.

1.	 Launch → π: Execute a new protocol instance π between the reader and
a tag.

2.	 TagQuery (m, π, T) → m’: Send a message m to a given protocol session
π on the tag T. The oracle returns a message m’ as the output of T.

3.	 ReaderSend(m, π, R) → m’: Send a message m to a given protocol ses-
sion π on the reader R. The oracle returns a message m’ as the output of
R.

4.	 Corrupt(T): Compromise the tag T, and obtain the secret stored in T. the
tag T is no longer used after this oracle call. In this case, we say that the
tag T is destroyed.

5.	 Result(π): When π is complete, the oracle returns 1 if the scheme has the
correct output; otherwise, it returns 0.

The adversary starts a game by setting up the RFID system and feeding the
adversary with the common parameters. The adversary uses the oracles above
following a privacy game, which will be described in next subsection, and
produces the output. Depending on the output, the adversary wins or loses the
game.

5.1.3  Privacy game
The game experiences three phases: Learning, Challenging and Re-learning.

As shown in Fig. 6, in the Learning phase, A is able to issue any message
and perform any polynomial-time computation (i.e., query oracles in polyno-
mial times). After the Learning phase, A selects two uncorrupted tags as chal-
lenge candidates in the challenge phase. One of those challenge candidates is
then randomly chosen by the system (the challenger C) and presented to the
adversary (the oracles of the selected tag can be queried by the adversary
except the Corrupt oracle). After that, similar to the Learning phase, A is
offered the oracles of all tags in the RFID system by C except the two chal-
lenge candidates. This phase is named Re-learning. At the end of Re-learning,
A outputs a guess about which candidate tag is selected by C. If the guess is
correct, A wins the game; otherwise, A loses.

In addition, there are two requirements for our privacy game to work prop-
erly. First, at the step (7) in the Fig. 6, the challenger C refreshes the private
information of the two challenge candidates T0

* and T1
*. Thus, the adversary

cannot correlate the output of Tb
* at the Re-learning phase with the output of

T0
* and T1

* at the Learning phase. Second, if an adversary can corrupt N – 1
tags and get the keys of those tags, then the adversary can retrieve the output
of those corrupted tags. Therefore, any tag in the system can be definitely

	A CTION: Breaking the Privacy Barrier for RFID Systems	 151

distinguished from others with the output of the tag. That is why at least two
tags need to be uncorrupted.

We denote such a privacy game for an RFID system as GameA
priv s N r t c(, , , ,).

. Here s is a security parameter, for example, the length of keys, and N, r, t,
and c are respective parameters for number of tags, number of ReaderSend
queries, number of TagQuery queries, and computation steps. An adversary A
with parameters r, t, and c is denoted by A[r, t, c].

Based on the privacy game in Fig. 6, we define the privacy of an RFID
scheme in Def. 3.

Definition 3 (RFID (r, t, c) – privacy): A protocol P of an RFID system
achieves (r, t, c) – privacy with parameter s, if for any polynomial-time adver-
sary A, the probability of A wining under GameA

priv s N r t c(, , , ,). satisfies:

	 ∀ ≤ +A r t c A wins poly s(, ,),Pr[] ()
1

2
1 	

where poly(s) denotes any polynomial function of parameter s.
For a given protocol P in an RFID system, we define the advantage of an

adversary by:

Figure 6
Privacy game.

152	 L. Lu et al.

	 Adv P A A wins() Pr[]= −
1

2
	

In GameA
priv s N r t c(, , , ,)., the adversary A can win the game in a trivial way. That

is A picks up a bit b’ from {0, 1} uniformly at random, i.e., Pr[’]b b= = 1
2 . In

this case, A attacks the system without any knowledge about the tags in the sys-
tem, the successful attacking probability is the lower bound of all attacking
activities. Therefore, we define the advantage of any polynomial-time adversary
by Pr[’]b b= = 1

2 .

5.2  Privacy proof
Based on the model given in Section 5.1, we formally prove that ACTION
protocol satisfies (r, t, c) – privacy, which means an adversary has a negligible
advantage when it conducts attacks on the ACTION.

Theorem 1. ACTION achieves (r, t, c) – privacy under random oracle model
[23], for any polynomial-time adversary A, i.e., for any r, t and c polynomial in
the security parameter s, and the advantage of an adversary A is bounded by

	 AdvACTION ()
()

A
r t c c

s
≤
+ + +

+

2 2

1

4

2
	

Proof: In this proof, we use the random oracle (RO) model [23], in which
hash functions are treated as arbitrary random functions. Since all keys in
ACTION are generated independently, the keys of a tag are not related to
those in other tags. We denote the game between the challenger C and the
adversary A as G0.

We introduce another challenger C’, (who plays a simulated game G1 with
the adversary A), to simulate the real challenger C, and make them indistin-
guishable to A. Thus, from the viewpoint of A, the game G1 between A and C’
exactly simulates the real game G0 between A and the real challenger C. On
the other hand, we construct C’ without the knowledge of T0 and T1’s secret
keys, k0

l, k0
p, k1

l and k1
p. That said, there is no information about T0 and T1’s

keys is leaked to adversary A, so that A must randomly guess which tag T0 or
T1 is, that is, guessing the bit b (see the step 10 of the attack model in Fig. 6)
at random. In this case, the probability of a correct guess is 1/2. According to
the Def. 3, A’s advantage in G1 is 0. Obviously, G1 almost perfectly simulates
the real game G0, so the activities of the challenger C’ would also perfectly
simulate the real challenger C. However, without the knowledge of T0 and
T1’s secret keys, there are some differences, called Exceptions, between the
activities of C’ and C in some situations. If we can estimate the probability of
Exceptions happening, we can compute the upper bound of A’s advantage.

In G1, the challenger C’ simulates the hash function h in ACTION as a RO
h’. h’ is constructed as a hash value list, H_list, maintained by C’. H_list is

	A CTION: Breaking the Privacy Barrier for RFID Systems	 153

initialized as empty. The format of each item in H_list is (r1, r2, k, v), where
v is the hash value of r1, r2, and k, i.e. v = h(r1, r2, k).

For a query (r1, r2, k): If it exists in H_list, C’ returns the corresponding v
= h(r1, r2, k); Otherwise C’ picks up a v uniformly at random, returns the v as
the answer of h(r1, r2, k), and adds (r1, r2, k, v) into the H_list.

In the real game G0, each message is computed with the hash function; the
outputs of oracles TagQuery and ReaderSend are also computed with the
hash function. Thus, we use the h’ given above to construct the TagQuery and
ReaderSend oracles in the G1.

According to the ACTION protocol, the inputs of the TagQuery oracle are
“Request” and a nonce r1, and the outputs are the authentication messages U
= (r2, h(r1, r2, ki

p[0]), h(r1, r2, ki
p[1]),…, h(r1, r2, ki

p[d-1])). In G1, the chal-
lenger C’ simulates the TagQuery oracle as follows:

Upon receiving the “Request” and r1, the challenger C generates a nonce
r2 and two n-bits long keys kp and kl uniformly at random respectively, and
then divides kp into d parts, kp[0], kp[1],…, kp[d-1]. Then C’ accesses the
random oracle h’ for d times to get the hash value sequence h(r1, r2, k

p[0]),
h(r1, r2, k

p[1]),…, h(r1, r2, k
p[d-1]); C’ computes the hash value h(r1, r2, k

l) by
accesses h’; Return U = (r2, h(r1, r2, k

p[0]), h(r1, r2, k
p[1]),…, h(r1, r2, k

p[d-
1]), h(r1, r2, k

l)).
Similarly, C’ simulates the ReaderSend oracle in G1 as follows:
Upon U = (r2, h(r1, r2, ki

p[0]), h(r1, r2, ki
p[1]),…, h(r1, r2, ki

p[d-1]), h(r1, r2,
ki

l)): Generates a nonce r1, a path key kp, and a leaf key kl uniformly at ran-
dom; Accesses the random oracle h’ to get the hash value h(r1, r2, k

p, kl) and
h(r1, r2, k

l); Accesses the random oracle h’ to get the hash value h(r1, r2, h(r1,
r2, k

p)) and h(r1, r2, h(r1, r2, k
l)). Returns σ = (1, h(r1, r2, h(r1, r2, k)), h(r1, r2,

h(r1, r2, k
l))) (where 1 is the value of s, the number of TagJoin algorithm run-

ning; see Section 3.5).
For Corrupt oracle, C’ transfers oracle queries to the challenger C in G0

and then returns the results from C directly.
G1 is similar to G0 except the constructions of the random oracle, Tag-

Query and ReaderSend oracles. In G1, from the viewpoint of A, C’ simulates
C perfectly except following events happens:

1.	 Collisions in the input of the hash function h. For example, in G0, the real
hash function h will treat (r1, r2, ·) and (r2, r1, ·) as same input, therefore
the output of h will be identical. In G1,however, according to the defini-
tion of random oracle, h’ considers that (r1, r2, ·) and (r2, r1, ·) are differ-
ent, the output of h’ of course is different. Thus, C’ cannot answer A’s
query correctly. We denote this event as Event1.

2.	 Collisions in the output of h’. Since A performs at most c computa-
tions, the number of h’ is not more than c. We denote this event as
Event2.

154	 L. Lu et al.

3.	 A guesses the correct keys of tags Ti and Tj. Thus, A can find that the
output from C’ is not correct. We denote this event as Event3.

The probabilities of Event1 and Event2 are bounded by the birthday paradox:

	 Pr[]
()

Event Event
r t c

s1 2

2 2

2 2
∨ ≤

+ +
⋅

	

For Event3, given that h’ is a random oracle, its output reveals no information
about the secret keys. Hence, the probability that an adversary A can success-
fully guess keys of Ti and Tj is at most 2

2

c
s

.
As discussed at the beginning of the proof, the advantage of A in G1 is

zero. Considering the probabilities of any event happening, the advantage of
A in G0 is bounded by:

	

Adv

ACTION () Pr[]A Event Event Event= ∨ ∨1 2 3

≤
+ +
⋅

+

=
+ + +

()

()

r t c c

r t c c

s s

2 2

2 2

2 2

2

2

4

22 1s+

	

From above inequation, we get that the advantage of any adversary A is neg-
ligible. ACTION hereby is (r, t, c) – privacy according to Def. 3.

Theorem 1 states that, under the privacy model defined in Section 5.1, the
advantage of adversaries is negligible. That is, in the extreme case, even if an
adversary has captured N – 2 tags, the probability of distinguishing a normal
tag from another one is still 1/2. In general, assume the adversary has tam-
pered with t tags. To distinguish a normal tag, the adversary has to perform
random guessing on N – t normal tags, and the probability of correctly guess-
ing, that is, the probability of a successful attack, α = 1/(N – t).

We compare the successful probabilities of attacks in balanced-tree based
approaches, SPA, and ACTION. In this comparison, we assume SPA and
balanced-tree based approaches use binary trees. The RFID system contains
220 tags. As shown in Fig. 7, in SPA and other balanced-tree based approaches,
adversaries have an overwhelming probability of distinguishing any normal
tag after they tamper with 10 tags in the system, while ACTION perfectly
eliminates the impact of those attacks.

5.3  Security
In this subsection, we show how ACTION achieves other security objec-
tives. Specifically, a PPA must achieve the following security objectives as
well [6, 9].

	A CTION: Breaking the Privacy Barrier for RFID Systems	 155

5.3.1  Key extraction attack
We note that the path key of a tag may suffer from an extracting attack. In
ACTION, we set the branching factor at 16 when the length of a path key is
128-bits long. The path key will be divided into 32 4-bit parts with this set-
ting. In this case, for any identification message h(r1, r2, ki

p[j]), an adversary
can easily extract ki

p[j] by enumerating all 16 4-bit strings, like a brute-force
search. Repeating the enumeration, the adversary can crack the entire path
key.

Actually, the effect of extraction attack is very limited. First, adversaries
can only get path key temporally. In Action, even if adversaries can extract
the path key of the tag which is been accessed, they can only track a tag
within the interval between two consecutive interrogations from the legiti-
mate reader. After a successful authentication with the legitimate reader, the
path key of tag will be refreshed or updated for next authentication proce-
dure. Second, path key is protected with leaf key. The length of each leaf key
is similar to that of the path key, that is, 128 bits in our protocol. After identi-
fication, the path key is updated by h(r1, r2, ki

p, ki
l) and the key ki

l is also
updated accordingly in each key updating procedure. Without knowing the
leaf key, the adversary cannot predict the updated path key by guessing or
performing a brute-force-like search on its sub-parts. Thus, ACTION can be
resilient to an extracting attack.

In a normal RFID system without privacy-preserving technologies, an
adversary is able to track a target tag by continuous scanning, while in
ACTION, the adversary can also record the trace of the target tag within the
time interval between two successive authentications. In the worst case, the
impact on privacy of ACTION is identical to the normal RFID system if the
time interval is infinite. The adversary against ACTION, however, cannot pre-
dict the future output of the target tag even in the case of long time interval

Figure 7
Comparisons on defending against the compromising attack (Assume N = 220).

156	 L. Lu et al.

since the keys stored in the tag will be refreshed. That is, the adversary can
track the target tag temporally in ACTION, but permanently in normal RFID
systems. Secondly, although ACTION is subject to privacy degradation (i.e.
temporally tracking), it achieves logarithmic complexity, which is more effi-
cient than Hashlock-like approaches that protect tag privacy completely.
Thirdly, balanced-tree based approaches have same authentication complex-
ity as ACTION, but cannot be formally proved private under current formal
privacy models including the Strong as well as the Weak privacy model.
Moreover, balanced-tree based approaches cannot defend against the com-
promising attack, while ACTION can do. Therefore, the privacy of ACTION
holds a midway between Hashlock-like and balanced-tree based approaches.

5.3.2  Cloning resistance
This property means that adversaries cannot impersonate a valid tag via
bogus tags or repeatedly forwarding valid responses to the reader.

In a cloning attack, an adversary captures the messages from a tag and
resends them to the reader [6]. In ACTION, the reader and the tag embed
random numbers r1 and r2 in the authentication messages to defend against
the cloning attack. Since the random numbers r1 and r2 are generated uni-
formly at random and are varied in each authentication procedure, it is infea-
sible for an adversary to predicate them. In addition, the length of r1 or r2 in
ACTION is sufficiently long (more than 64 bits), which guarantees the prob-
ability of an adversary successfully guessing the random numbers as negli-
gible. Thus, ACTION is not subject to cloning attacks.

5.3.3  Forward secrecy
Forward secrecy means that adversaries cannot reveal the previous messages
sent from the captured tag if they compromise a tag and obtain the keys.

If a tag is captured, the adversary might obtain the tag’s current keys. In
ACTION, however, the adversary cannot trace back the tag’s previous com-
munications because the keys have been updated at the latest authentication
procedure. That means the adversary, even if obtaining the keys from a tag,
cannot retrieve any useful information from the past outputs of the tag, unless
it can successfully invert the one-way cryptographic hash function. On the
contrary, not many balanced tree based protocols [6, 7], can update the keys
in practical systems. In those approaches, an adversary can easily reveal all
past authentication messages of a tampered tag if revealing the stored keys.

5.3.3  Tag Impersonation
The aim of tag impersonation in the context of authentication is to make an
honest reader accept a fake tag as valid. It should be noted that the keys in a
tag are constantly refreshed in every request from readers and then past tag
responses are uniformly distributed irrespective of the queries requested.

	A CTION: Breaking the Privacy Barrier for RFID Systems	 157

Therefore, a fake tag without knowledge of valid keys has no advantage than
to reply with random responses. Let N and L be the number of total tags man-
aged by a reader and the length of hash values in tag responses (see the mes-
sage U in Fig. 3), respectively. Then the probability of the response being
accepted by the reader is at most N/2(d+1)L for each query. Where d is the
number of path keys stored in a tag. Thus, our protocol can defend against tag
impersonation with a cheating probability of at most N/2(d+1)L.

5.3.4  Reader Impersonation
The aim of reader impersonation is to make an honest tag accept the adver-
sary as a legitimate reader. Obviously, a fake reader without knowledge of
valid shared secret keys associated with an honest tag. Thus, the adversary
has no advantage than to send a random s (see the last message in Fig. 3) in
the final protocol round. The probability of such a response being accepted by
the honest tag is negligible. Now assume that an adversary can tamper with a
tag at time t. Suppose that the adversary obtains the tag’s secret keys. The
adversary obviously cannot get any advantage if the tag has been identified
by a legitimate reader at time t’ > t which the adversary could not eavesdrop,
since the secret keys stored in the tag would have been refreshed with the
random numbers generated by the legitimate reader which is unknown to the
adversary. Thus, we consider the case of the adversary attacking the tag
immediately after compromising the tag secret keys. This is the only potential
threat but inevitable in our protocol. This threat, however, is useless to the
adversary in practice, since the adversary cannot impersonate the legitimate
reader to other tags even he totally controls the compromised tag.

5.3.5  Denial of Service
Our protocol has strong resistance against Denial-of-Service (DoS) attacks
on the last protocol message. Any block or alteration of this message may
cause desynchronization of keys shared between the tag and the reader, but
such a desynchronization problem can be detected by a legitimate reader in
the next identification. Specifically, the tag would not update the shared keys
if the last message sent from the reader (see s in Fig. 3) has been blocked or
altered, since s will not pass the verification by the tag. The reader, however,
can detect the inconsistence of shared keys stored in the tag and the reader,
and then launch a new instance of ACTION to identify and update the tag.

6  Conclusions

We propose a privacy-preserving authentication protocol, ACTION, to sup-
port secure and efficient authentication in RFID applications. To the best of
our knowledge, this is the first work that is able to defend against a compro-

158	 L. Lu et al.

mising attack in tree-based approaches. The advantages of this design also
include high efficiency in terms of storage and identification. We believe
wide deployment of this design will make privacy preserving authentications
more practical and effective for large scale RFID systems.

Acknowledgement

This work is supported by National Natural Science Foundation of China
under Grant No. 61173171, the Fundamental Research Funds for the Central
University under Grant No. ZYGX2012J072 and Project funded by China
Postdoctoral Science Foundation No. 2014M550466

Refrences

  [1]	 T. Kriplean, E. Welbourne, N. Khoussainova, V. Rastogi, M. Balazinska, G. Borriello, T.
Kohno, and D. Suciu, “Physical Access Control for Captured RFID Data,” IEEE Pervasive
Computing, vol. 6, 2007.

  [2]	 B. Sheng, C. C. Tan, Q. Li, and W. Mao, “Finding Popular Categories for RFID Tags”. in
Proceedings of ACM Mobihoc, 2008.

  [3]	 Y. Li and X. Ding, “Protecting RFID Communications in Supply Chains,” in Proceedings
of ASIACCS, 2007.

  [4]	 P. Robinson and M. Beigl, “Trust Context Spaces: an Infrastructure for Pervasive Security
in Context-Aware Environments,” in Proceedings of International Conference on Security
in Pervasive Computing, 2003.

  [5]	 S. Weis, S. Sarma, R. Rivest, and D. Engels, “Security and Privacy Aspects of Low-Cost
Radio Frequency Identification Systems,” in Proceedings of International Conference on
Security in Pervasive Computing, 2003.

  [6]	 T. Dimitriou, “A Secure and Efficient RFID Protocol that Could make Big Brother (par-
tially) Obsolete,” in Proceedings of PerCom, 2006.

  [7]	 D. Molnar and D. Wagner, “Privacy and Security in Library RFID: Issues, Practices, and
Architectures,” in Proceedings of CCS, 2004.

  [8]	 D. Molnar, A. Soppera, and D. Wagner, “A Scalable, Delegatable Pseudonym Protocol
Enabling Owner-ship Transfer of RFID Tags,” in Proceedings of Selected Areas in Cryp-
tography - SAC, 2005.

  [9]	 L. Lu, J. Han, L. Hu, Y. Liu, and L. M. Ni, “Dynamic Key-Updating: Privacy-Preserving
Authentication for RFID Systems,” in Proceedings of PerCom, 2007.

[10]	 G. Avoine, E. Dysli, and P. Oechslin, “Reducing Time Complexity in RFID Systems,” in
Proceedings of Selected Areas in Cryptography - SAC, 2005.

[11]	 S. Bono, M. Green, A. Stubblefield, A. Juels, A. Rubin, and M. Szydlo, “Security Analysis
of a Cryptographically-Enabled RFID Device,” in Proceedings of USENIX Security,
2005.

[12]	 M. C. O’Connor, “Taking Advantage of Memory-Rich Tags”, http://www.rfidjournal.com/
magazine/article/2925.

[13]	 Juels and S. Weis, “Defining Strong Privacy for RFID,” in Proceedings of PerCom, Work-
shop PerTec, 2007.

[14]	 Juels, “RFID Security and Privacy: a Research Survey,” Journal of Selected Areas in Com-
munications, vol. 24, pp. 381-394, 2006.

[15]	 M. Ohkubo, K. Suzuki, and S. Kinoshita, “Efficient Hash-Chain based RFID Privacy Pro-
tection Scheme,” in Proceedings of UbiComp, Workshop Privacy, 2004.

	A CTION: Breaking the Privacy Barrier for RFID Systems	 159

[16]	 Juels, “Minimalist Cryptography for Low-Cost RFID Tags,” in Proceedings of Interna-
tional Conference on Security in Communication Networks - SCN, 2004.

[17]	 T. Dimitriou, “A Lightweight RFID Protocol to Protect Against Traceability and Cloning
Attacks,” in Proceedings of SecureComm, 2005.

[18]	 G. Tsudik, “YA-TRAP: Yet Another Trivial RFID Authentication Protocol,” in Proceed-
ings of PerCom Workshops, 2006.

[19]	 G. Avoine and P. Oechslin, “A Scalable and Provably Secure Hash Based RFID Protocol,”
in Proceedings of PerCom, Workshop PerSec, 2005.

[20]	 M. E. Hellman, “A Cryptanalytic Time-Memory Trade-off,” IEEE Transactions on Infor-
mation Theory, vol. 26, pp. 401-406, 1980.

[21]	 “Expands Tag-it ISO/IEC 15693 RFID Product Line”, News Releases from Texas Instru-
ments, http://www.ti.com/rfid/shtml/news-releases-rel12-14-05.shtml.

[22]	 G. Avoine, “Adversarial Model for Radio Frequency Identification,” Technical Report
2005/049. http://eprint.iacr.org/2005/049, 2005.

[23]	 M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols,” in Proceedings of CCS, 1993.

[24]	 L. Lu, Y. Liu and X. Li, “Refresh: Weak Privacy Model for RFIDs”, in Proceedings of
INFOCOM, 2010.

