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Abstract

Human eye movements provide a rich source of information into the human vi-
sual information processing. The complex interplay between the task and the
visual stimulus is believed to determine human eye movements, yet it is not fully
understood, making it difficult to develop reliable eye movement prediction sys-
tems. Our work makes three contributions towards addressing this problem. First,
we complement one of the largest and most challenging static computer vision
datasets, VOC 2012 Actions, with human eye movement recordings collected un-
der the primary task constraint of action recognition, as well as, separately, for
context recognition, in order to analyze the impact of different tasks. Our dataset
is unique among the eyetracking datasets of still images in terms of large scale
(over 1 million fixations recorded in 9157 images) and different task controls. Sec-
ond, we propose Markov models to automatically discover areas of interest (AOI)
and introduce novel sequential consistency metrics based on them. Our methods
can automatically determine the number, the spatial support and the transitions
between AOIs, in addition to their locations. Based on such encodings, we quan-
titatively show that given unconstrained read-world stimuli, task instructions have
significant influence on the human visual search patterns and are stable across
subjects. Finally, we leverage powerful machine learning techniques and com-
puter vision features in order to learn task-sensitive reward functions from eye
movement data within models that allow to effectively predict the human visual
search patterns based on inverse optimal control. The methodology achieves state
of the art scanpath modeling results.

1 Introduction

Eye movements provide a rich source of knowledge into the human visual information processing
and result from the complex interplay between the visual stimulus, prior knowledge of the visual
world, and the task. This complexity poses a challenge to current models, which often require
a complete specification of the cognitive processes and of the way visual input is integrated by
them[4, 20]. The advent of modern eyetracking systems, powerful machine learning techniques,
and visual features opens up the prospect of learning eye movement models directly from large real
human eye movement datasets, collected under task constraints. This trend is still in its infancy, here
we aim to advance it on several fronts:

• We introduce a large scale dataset of human eye movements collected under the task con-
straints of both action and context recognition from a single image, for the VOC 2012 Ac-
tions dataset. The eye movement data is introduced in §3 and is publicly available at
http://vision.imar.ro/eyetracking-voc-actions/.

• We present a model to automatically discover areas of interest (AOIs) from eyetracking data, in
§4. The model integrates both spatial and sequential eye movement information, in order to better
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Figure 1: Saliency maps obtained from the gaze patterns of 12 viewers under action recognition (left
image in pair) and context recognition (right, in pair), from a single image. Note that human gaze
significantly depends on the task (see tab. 1b for quantitative results). The visualization also suggests
the existence of stable consistently fixated areas of interest (AOIs). See fig. 2 for illustration.

constrain estimates and to automatically identify the spatial support and the transitions between
AOIs in addition to their locations. We use the proposed AOI discovery tools to study inter-subject
consistency and show that, on this dataset, task instructions have a significant influence on human
visual attention patterns, both spatial and sequential. Our findings are presented in §5.

• We leverage the large amount of collected fixations and saccades in order to develop a novel, fully
trainable, eye movement prediction model. The method combines inverse reinforcement learning
and advanced computer vision descriptors in order to learn task sensitive reward functions based on
human eye movements. The model has the important property of being able to efficiently predict
scanpaths of arbitrary length, by integrating information over a long time horizon. This leads to
significantly improved estimates. Section §6.2 gives the model and its assessment.

2 Related Work

Human gaze pattern annotations have been collected for both static images[11, 13, 14, 12, 26, 18]
and for video[19, 23, 15], see [24] for a recent overview. Most of the image datasets available
have been collected under free-viewing, and the few task controlled ones[14, 7] have been designed
for small scale studies. In contrast, our dataset is both task controlled and more than one order
of magnitude larger than the existing image databases. This makes it adequate to using machine
learning techniques for saliency modeling and eye movement prediction.

The influence of task on eye movements has been investigated in early human vision studies[25, 3]
for picture viewing, but these groundbreaking studies have been fundamentally qualitative. Statisti-
cal properties like the saccade amplitude and the fixation duration have been shown to be influenced
by the task[5]. A quantitative analysis of task influence on visual search in the context of action
recognition from video appears in our prior work[19].

Human visual saliency prediction has received significant interest in computer vision (see [2] for an
overview). Recently, the trend has been to learn saliency models from fixation data in images[13, 22]
and video[15, 19]. The prediction of eye movements has been less studied. In contrast, predefined
visual saliency measures can be used to obtain scanpaths[11] in conjunction with non-maximum
suppression. Eye movements have also been modeled explicitly by maximizing the expected future
information gain[20, 4] (as one step in [20] or until the goal is reached in [4]). The methods operate
on pre-specified reward functions, which limits their applicability. The method we propose shares
some resemblance with these later methods, in that we also aim at maximizing the future expected
reward, albeit our reward function is learned instead of being pre-specified, and we work in an
inverse optimal control setting, which allows, in principle, an arbitrary time horizon. We are not
aware of any eye movement models that are learned from eye movement data.

3 Action from a Single Image – New Human Eye Movement Dataset

One objective of this work is to introduce eye movement recordings for the PASCAL VOC image
dataset used for action recognition. Presented in [10], it is one of the largest and most challenging
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Figure 2: Illustration of areas of interest (AOI) obtained from scanpaths of subjects on three stimuli
for the action (left) and context (right) recognition tasks. Ellipses depict states, scaled to match the
learned spatial support, whereas dotted arrows illustrate high probability saccades. Visual search
patterns are highly consistent both spatially and sequentially and are strongly influenced by task.
See fig. 3 and tab. 1 for quantitative results on spatial and sequential consistency.

available datasets of real world actions in static images. It contains 9157 images, covering 10 classes
(jumping, phoning, playing instrument, reading, riding bike, riding horse, running, taking photo,
using computer, walking). Several persons may appear in each image. Multiple actions may be
performed by the same person and some instances belong to none of the 10 target classes.

Human subjects: We have collected data from 12 volunteers (5 male and 7 female) aged 22 to 46.

Task: We split the subjects into two groups based on the given task. The first, action group (8 sub-
jects) was asked to recognize the actions in the image and indicate them from the labels provided
by the PASCAL VOC dataset. To assess the effects of task on visual search, we asked the mem-
bers of the second, context group (4 subjects), to find which of 8 contextual elements occur in the
background of each image. Two of these contextual elements – furniture, painting/wallpaper – are
typical of indoors scenes, while the remaining 6 – body of water, building, car/truck, mountain/hill,
road, tree – occur mostly outdoors.

Recording protocol: The recording setup is identical to the one used in [19]. Before each image
was shown, participants were required to fixate a target in the center of a uniform background on the
screen. We asked subjects in the action group to solve a multi-target ‘detect and classify’ task: press
a key each time they have identified a person performing an action from the given set and also list
the actions they have seen. The exposure time for this task was 3 seconds.1 Their multiple choice
answers were recorded through a set of check-boxes displayed immediately following each image
exposure. Participants in the context group underwent a similar protocol, having a slightly lower
exposure time of 2.5 seconds. The images were shown to each subject in a different random order.

Dataset statistics: The dataset contains 1,085,381 fixations. The average scanpath length is 10.0 for
the action subjects and 9.5 for the context subjects, including the initial central fixation. The time
elapsed from stimulus display until the first three key presses, averaged over trials in which they
occur, are 1, 1.6 and 1.9 seconds, respectively.

4 Automatic Discovery of Areas of Interest and Transitions using HMMs

Human fixations tend to cluster on salient regions that generally correspond to objects and object
parts (fig. 1). Such areas of interest (AOI) offer an important tool for human visual pattern analysis,
e.g. in evaluating inter-subject consistency[19] or the prediction quality of different saliency models.
Manually specifying AOIs is both time consuming and subjective. In this section, we propose a
model to automatically discover the AOI locations, their spatial support and the transitions between
them, from human scanpaths recorded for a given image. While this may appear straightforward,
we are not aware of a similar model in the literature.

In deriving the model, we aim at four properties. First, we want to be able to exploit not only
human fixations, but also constraints from saccades. Consider the case of several human subjects
fixating the face of a person and the book she is reading. Based on fixations alone, it can be difficult
to separate the book and the person’s face into two distinct AOIs due to proximity. Nevertheless,
frequent saccades between the book and the person’s face provide valuable hints for hypothesizing
two distinct, semantically meaningful AOIs. Second, we wish to adapt to an unknown and varying
number of AOIs in different images. Third, we want to estimate not only the center of the AOI, but
also the spatial support and location uncertainty. Finally, we wish to find the transition probabilities
between AOIs. To meet such criteria in a visual representation, we use a statistical model.

1Protocol may result in multiple keypresses per image. Exposure times were set empirically in a pilot study.
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consistency measure
task

action
recognition

context
recognition

agreement 92.2%±1.1% 81.3%±1.5%
cross-stimulus control 64.0%±0.7% 59.1%±0.9%

random baseline 50.0%±0.0% 50.0%±0.0%
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Figure 3: (a) Spatial inter-subject consistency for the tasks of action and context recognition, with
standard deviations across subjects. (b) ROC curves for predicting the fixations of one subject from
the fixations of the other subjects in the same group on the same image (blue) or on an image (green)
randomly selected from the dataset. See tab. 1 for sequential consistency results.

Image Specific Human Gaze Model: We model human gaze patterns in an image as a Hidden

Markov Model (HMM) where states {si}
n

i=1 correspond to AOIs fixated by the subjects and tran-
sitions correspond to saccades. The observations are the fixation coordinates z = (x, y). The
emission probability for AOI i is a Gaussian: p(z|si) = N(z|µi,Σi), where µi and Σi model the
center and the spatial extent of the area of interest (AOI) i. In training, we are given a set of scan-

paths
{

δj =
(

z1, z2, . . . , ztj
)}k

j=1
and we find the parameters θ = {µi,Σi}

n

i=1 that maximize the

joint log likelihood
∑k

j=1 log p(δj |θ), using EM[9]. We obtain AOIs, for each image and task, by

training the HMM using the recorded human eye scanpaths. We compute the number of states N∗

that maximizes the leave-one-out cross validation likelihood over the scanpaths within the training
set, with N ∈ [1, 10]. We then re-train the model with N∗ states over the entire set of scanpaths.

Results: Fig. 2 shows several HMMs trained from the fixations of subjects performing action recog-
nition. On average, the model discovers 8.0 AOIs for action recognition and 5.6 for context recog-
nition. The recovered AOIs are task dependent and tend to center on object and object parts with
high task relevance, like phones, books, hands or legs. Context recognition AOIs generally appear
on the background and have larger spatial support, in agreement with the scale of the corresponding
structures. There is a small subset of AOIs that is common to both tasks. Most of these AOIs fall
on faces, an effect that has also been noted in [6]. Interestingly, some AOI transitions suggest the
presence of cognitive routines aimed at establishing relevant relationships between object parts, e.g.
whether a person is looking at the manipulated object (fig. 2).

The HMM allows us to visualize and analyze the sequential inter-subject consistency (§5) among
subjects. It also allows us to evaluate the performance of eye movement prediction models (§6.2).

5 Consistency Analysis

Qualitative studies in human vision[25, 16] have advocated a high degree of agreement between the
gaze patterns of humans in answering questions regarding static stimuli and have shown that gaze
patterns are highly task dependent, although such findings have not yet been confirmed by large-
scale quantitative analysis. In this section, we confirm these effects on our large scale dataset for
action and context recognition, from a single image. We first study spatial consistency using saliency
maps, then analyze sequential consistency in terms of AOI ordering under various metrics.

Spatial Consistency: In this section, we evaluate the spatial inter-subject agreement in images.

Evaluation Protocol: To measure the inter-subject agreement, we predict the regions fixated by a
particular subject from a saliency map derived from the fixations of the other subjects on the same
image. Samples represent image pixels and each pixel’s score is the empirical saliency map derived
from training subjects[14]. Labels are 1 at pixels fixated by the test subject, and 0 elsewhere. For
unbiased cross-stimulus control, we check how well a subject’s fixations on one stimulus can be
predicted from those of the other subjects on a different, unrelated, stimulus. The average precision
for predicting fixations on the same stimulus is expected to be much greater than on different stimuli.

Findings: Area under the curve (AUC) measured for the two subject groups and the corresponding
ROC curves are shown in fig. 3. We find good inter-subject agreement for both tasks, consistent with
previously reported results for both images and video [14, 19].
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Sequential Consistency using AOIs: Next we evaluate the degree to which scanpaths agree in
the order in which interesting locations are fixated. We do this as a three step process. First,
we map each fixation to an AOI obtained with the HMM presented in §4, converting scanpaths to
sequences of symbols. Then, we define two metrics for comparing scanpaths, and compute inter-
subject agreement in a leave-one-out fashion, for each.

Matching fixations to AOIs: We assign a subject’s fixation to an AOI, if it falls within an ellipse
corresponding to its spatial support (fig. 2). If no match is found, we assign the fixation as null.
However, due to noise, we allow the spatial support to be increased by a factor. The dashed blue
curve in fig. 4c-left shows the fraction (AOIP) of fixations of each human subject, with 2D positions
that fall inside AOIs derived from scanpaths of other subjects, as a function of the scale factor.
Through the rest of this section, we report results for the threshold to twice the estimated AOI scale,
which ensures a 75% fixation match rate across subjects in both task groups.

AOI based inter-subject consistency: Once we have converted each scanpath to a sequence of fixa-
tions, we define two metrics for inter-subject agreement. Given two sequences of symbols, the AOI
transition (AOIT) metric is defined as the number of consecutive non-null symbol pairs (AOI tran-
sitions) that two sequences have in common. The second metric (AOIS), is obtained by sequence
alignment, as in [19], and represents the longest common subsequence among the two scanpaths.
Both metrics are normalized by the length of the longest scanpath. To measure inter-subject agree-
ment, we match the scanpath of each subject i to the scanpaths belonging to other subjects, under
the two metrics defined above. The value of the metric for the best match defines the leave-one-out
agreement for subject i. We then average over all subjects.

Baselines: In addition to inter-subject agreement, we define three baselines. First, for cross-stimulus
control, we evaluate agreement as in the case of spatial consistency, when the test and reference
scanpaths correspond to different randomly selected images. Second, for the random baseline, we
generate for each image a set of 100 random scanpaths, where fixations are uniformly distributed
across the image. The average metric assigned to these scanpaths with respect to the subjects repre-
sents the baseline for sequential inter-subject agreement, in the absence of bias. Third, we randomize
the order of each subject’s fixations in each image, while keeping their locations fixed, and compute
inter-subject agreement with respect to the original scanpaths of the rest of the subjects. The initial
central fixation is left unchanged during randomization. This baseline is intended to measure the
amount of observed consistency due to the fixation order.

Findings: Both metrics reveal considerable inter-subject agreement (table 1), with values signifi-
cantly higher than for cross-stimulus control and the random baselines. When each subject’s fixa-
tions are randomized, the fraction of matched saccades (AOIT) drops sharply, suggesting that se-
quential effects have a significant share in the overall inter-subject agreement. The AOIS metric is
less sensitive to these effects, as it allows for gaps in matching AOI sequences.2

Influence of Task: We will next study the task influence on human visual patterns. We compare the
visual patterns of the two subject groups using saliency map and sequential AOI metrics.

Evaluation Protocol: For each image, we derive a saliency map from the fixations of subjects doing
action recognition, and report the average p-statistic at the locations fixated by subjects performing
context recognition. We also compute agreement under the AOI-based metrics between the scan-
paths of subjects performing context recognition, and subjects from the action recognition group.

Findings: Only 44.1% of fixations made during context recognition fall onto action recognition
AOIs, with an average p-value of 0.28 with respect to the action recognition fixation distribution.
Only 10% of the context recognition saccades have also been made by active subjects, and the
AOIS metric between context and active subjects’ scanpaths is 23.8%. This indicates significant
differences between the subject groups in terms of their visual search patterns.

6 Task-Specific Human Gaze Prediction

In this section, we show that it is possible to effectively predict task-specific human gaze patterns,
both spatially and sequentially. To achieve this, we combine the large amounts of information avail-
able in our dataset with state-of-the art visual features and machine learning techniques.

2Although harder to interpret numerically, the negative log likelihood of scanpaths under HMMs also de-
fines a valid sequential consistency measure. We observe the following values for the action recognition task:
agreement 9.2, agreement (random order) 13.1, cross-stimulus control 25.8, random baseline 46.6.
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consistency measure
task

action recognition context recognition
AOIP AOIT AOIS AOIP AOIT AOIS

agreement 79.9%±1.9% 34.0%±1.3% 39.9%±1.0% 76.4%±2.6% 35.6%±0.9% 44.9%±0.4%
agreement (random order) 79.9%±1.9% 21.8%±0.7% 31.0%±0.7% 76.4%±2.6% 23.2%±0.3% 35.5%±0.3%

cross-stimulus control 29.4%±0.8% 4.9%± 0.3% 13.9%±0.3% 40.0%±2.1% 7.9%± 0.5% 19.6%±0.2%
random scanpaths 15.5%±0.1% 1.5%± 0.0% 2.5%± 0.0% 31.9%±0.1% 4.2%± 0.0% 7.6%± 0.0%

Table 1: Sequential inter-subject consistency measured using AOIs (fig. 2), for both task groups.
A large fraction of each subject’s fixations falls onto AOIs derived from the scanpaths of the other
subjects (AOIP). Significant inter-subject consistency exists in terms of AOI transitions (AOIT) and
scanpath alignment score (AOIS).

6.1 Task-Specific Human Visual Saliency Prediction

We first study the prediction of human visual saliency maps. Human fixations typically fall onto
image regions that are meaningful for the visual task (fig. 2). These regions often contain objects
and object parts that have similar identities and configurations for each semantic class involved, e.g.
the configuration of the legs while running. We exploit this repeatability and represent each human
fixation by HoG descriptors[8]. We then train a sliding window detector with human fixations and
compare it with competitive approaches reported in the literature.

Evaluation Protocol: For each subject group, we obtain positive examples from fixated locations
across the training portion of the dataset. Negative examples are extracted similarly at random
image locations positioned at least 3o away from all human fixations. We extract 7 HoG descrip-
tors with different grid configurations and concatenate them, then represent the resulting descriptor
using an explicit, approximate χ2 kernel embedding[17]. We train a linear SVM to obtain a de-
tector, which we run in sliding window fashion over the test set in order to predict saliency maps.
We evaluate the detector under the AUC metric and the spatial KL divergence criterion presented
in [19]. We use three baselines for comparison. The first two are the uniform saliency map and
the central bias map (with intensity inversely proportional to distance from center). As an upper
bound on performance, we also compute saliency maps derived from the fixations recorded from
subjects. The KL divergence score for this baseline is derived by splitting the human subjects into
two groups and computing the KL divergence between the saliency maps derived from these two
groups, while the AUC metric is computed in a leave-one-out fashion, as for spatial consistency. We
compare the model with two state of the art predictors. The first is the bottom-up saliency model
of Itti&Koch[11]. The second is a learned saliency predictor introduced by Judd et al.[13], which
integrates low and mid-level features with several high-level object detectors such as cars and people
and is capable to optimally weight these features given a training set of human fixations. Note that
many of these objects often occur in the VOC 2012 actions dataset.

Findings: Itti&Koch’s model is not designed to predict task-specific saliency and cannot handle task
influences on visual attention (fig. 4). Judd’s model can adapt to some extent by adjusting feature
weights, which were trained on our dataset. Out of the evaluated models, we find that the task-
specific HoG detector performs best under both metrics, especially under the spatial KL divergence,
which is relevant for computer vision applications[19]. Its flexibility stems from its large scale
training using human fixations, the usage of general-purpose computer vision features (as opposed,
e.g., to the specific object detectors used by Judd et al.[13]), and in part from the use of a powerful
nonlinear kernel for which good linear approximations are available[17, 1].

6.2 Scanpath Prediction via Maximum Entropy Inverse Reinforcement Learning

We now consider the problem of eye movement prediction under specific task constraints. Models
of human visual saliency can be used to generate scanpaths, e.g. [11]. However, current models are
designed to predict saliency for the free-viewing condition and do not capture the focus induced by
the cognitive task. Others [20, 4] hypothesize that the reward driving eye movements is the expected
future information gain.

Here we take a markedly different approach. Instead of specifying the reward function, we learn it
directly from large amounts of human eye movement data, by exploiting policies that operate over
long time horizons. We cast the problem as Inverse Reinforcement Learning (IRL), where we aim
to recover the intrinsic reward function that induces, with high probability, the scanpaths recorded
from human subjects solving a specific visual recognition task. Our learned model can imitate
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baselines

feature
action recognition context recognition

KL AUC KL AUC

uniform baseline 12.00 0.500 11.02 0.500

central bias 9.59 0.780 8.82 0.685

human 6.14 0.922 5.90 0.813

predictors

HOG detector∗ 8.54 0.736 8.10 0.646

Itti & Koch[11] 16.53 0.533 15.04 0.512

Judd et al.[13]∗ 11.00 0.715 9.66 0.636

(a) human visual saliency prediction

baselines

feature
action recognition context recognition

AOIP AOIT AOIS AOIP AOIT AOIS

human scanpaths 79.9% 34.0% 39.9% 76.4% 35.6% 44.9%

random scanpaths 15.5% 1.5% 2.5% 31.9% 4.2% 7.6%

predictors

IRL∗ 35.6% 6.6% 18.4% 44.9% 11.6% 25.7%

Renninger [20] 24.4% 2.0% 14.6% 40.3% 7.0% 23.9%

Itti & Koch [11] 28.6% 2.7% 16.8% 42.9% 7.5% 24.1%

(b) eye movement prediction
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Figure 4: Task-specific human gaze prediction performance on the VOC 2012 actions dataset. (a)
Our trained HOG detector outperforms existing saliency models, when evaluated under both the KL
divergence and AUC metrics. (b-c) Learning techniques can also be used to predict eye movements
under task constraints. Our proposed Inverse Reinforcement Learning (IRL) model better matches
observed human visual search scanpaths when compared with two existing methods, under each of
the AOI based metrics we introduce. Methods marked by ‘*’ have been trained on our dataset.

useful saccadic strategies associated with cognitive processes involved in complex tasks such as
action recognition, but avoids the difficulty of explicitly specifying these processes.

Problem Formulation: We model a scanpath δ as a sequence of states st = (xt, yt) and actions
at = (∆x,∆y), where states correspond to fixations, represented by their visual angular coordinates
with respect to the center of the screen, and actions model saccades, represented as displacement
vectors expressed in visual degrees. We rely on a maximum entropy IRL formulation[27] to model

the distribution over the set ∆(s,T ) of all possible scanpaths of length T starting from state s for a
given image as:

p
(s,T )
θ

(δ) =
1

Z(T )(s)
· exp

[

T
∑

t=1

rθ(st, at)

]

, ∀δ ∈ ∆(s,T ) (1)

where rθ(st, at) is the reward function associated with taking the saccadic action at while fixating

at position st, θ are the model parameters and Z(T )(s) is the partition function for paths of length T

starting with state s, see (3). The reward function rθ(st, at) = f⊤(st)θat is the inner product between
a feature vector f(st) extracted at image location st and a vector of weights corresponding to action
at. Note that reward functions in our formulation depend on the subject’s action. This enables the
model to encode saccadic preferences conditioned on the current observation, in addition to planning
future actions by maximizing the cumulative reward along the entire scanpath, as implied by (1).

In our formulation, the goal of Maximum Entropy IRL is to find the weights θ that maximize the
likelihood of the demonstrated scanpaths across all the images in the dataset. For a single image and
given the set of human scanpaths E, all starting at the image center sc, the likelihood is:

Lθ =
1

|E|

∑

δ∈E

log p
(sc,T )
θ

(δ) (2)

This maximization problem can be solved using a two step dynamic programming formulation. In
the backward step, we compute the state and state-action partition functions for each possible state
s and action a, and for each scanpath length i = 1, T :

Z
(i)
θ

(s) =
∑

δ∈∆(s,i)

exp

[

i
∑

t=1

rθ(st, at)

]

, Z
(i)
θ

(s, a) =
∑

δ∈∆(s,i)

s.t.
a1=a

exp

[

i
∑

t=1

rθ(st, at)

]

(3)
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The optimal policy π
(i)
θ

at the ith fixation is:

π
(i)
θ
(a|s) = Z

(T−i+1)
θ

(s,a)/Z
(T−i+1)
θ

(s) (4)

This policy induces the maximum entropy distribution p
(sc,T )
θ

over scanpaths for the image and is
used in the forward step to efficiently compute the expected mean feature count for each action

a, which is f̂
a

θ
= E

δ∼p
(sc,T )
θ

[

∑T

t=1 f(st) · I [at = a]
]

, where I [·] is the indicator function. The

gradient of the likelihood function (2) with respect to the parameters θa is:

∂Lθ

∂θa

= f̃
a − f̂

a

θ (5)

where f̃
a = 1

|E|

∑

δ∈E

∑

t f(st) · I [at = a] is the empirical feature count along training scanpaths.

Eqs. (1)–(5) are defined for a given input image. The likelihood and its gradient over the training
set are obtained by summing up the corresponding quantities. In our formulation policies encode
the image specific strategy of the observer, based on a task specific reward function that is learned
across all images. We thus learn two different IRL models, for action and context analysis. Note
that we restrict ourselves to scanpaths of length T starting from the center of the screen and do not
predefine goal states. We validate T to the average scanpath length in the dataset.

Experimental Procedure: We use a fine grid with 0.25o stepsize for the state space. The space of all

possible saccades on this grid is too large to be practical (≈ 105). We obtain a reduced vocabulary
of 1, 000 actions by clustering saccades in the training set, using k-means. We then encode all
scanpaths in this discrete (state,action) space, with an average positional error of 0.47o. We extract
HoG features at each grid point and augment them with the output of our saliency detector. We
optimize the weight vector θ in the IRL framework and use a BFGS solver for fast convergence.

Findings: A trained MaxEnt IRL eye movement predictor performs better than the bottom up models
of Itti&Koch[11] and Renninger et al.[20] (fig. 4bc). The model is particularly powerful for predict-
ing saccades (see the AOIT metric), as it can match more than twice the number of AOI transitions
generated by bottom up models for the action recognition task. It also outperforms the other models
under the AOIP and AOIS metrics. Note that the latter only captures the overall ranking among
AOIs as defined by the order in which these are fixated. A gap still remains to human performance,
underlining the difficulty of predicting eye movements in real world images and for complex tasks
such as action recognition. For context recognition, prediction scores are generally closer to the
human baseline. This is, at least in part, facilitated by the often larger size of background structures
as compared to the humans or the manipulated objects involved in actions (fig. 2).

7 Conclusions

We have collected a large set of eye movement recordings for VOC 2012 Actions, one of the most
challenging datasets for action recognition in still images. Our data is obtained under the task
constraints of action and context recognition and is made publicly available. We have leveraged this
large amount of data (1 million human fixations) in order to develop Hidden Markov Models that
allow us to determine fixated AOI locations, their spatial support and the transitions between them
automatically from eyetracking data. This technique has made possible to develop novel evaluation
metrics and to perform quantitative analysis regarding inter-subject consistency and the influence of
task on eye movements. The results reveal that given real world unconstrained image stimuli, the
task has a significant influence on the observed eye movements both spatially and sequentially. At
the same time such patterns are stable across subjects.

We have also introduced a novel eye movement prediction model that combines state-of-the-art
reinforcement learning techniques with advanced computer vision operators to learn task-specific
human visual search patterns. To our knowledge, the method is the first to learn eye movement
models from human eyetracking data. When measured under various evaluation metrics, the model
shows superior performance to existing bottom-up eye movement predictors. To close the human
performance gap, better image features, and more complex joint state and action spaces, within
reinforcement learning schemes, will be explored in future work.
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