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Abstract

Action recognition has typically treated actions and ac-

tivities as monolithic events that occur in videos. How-

ever, there is evidence from Cognitive Science and Neuro-

science that people actively encode activities into consis-

tent hierarchical part structures. However, in Computer Vi-

sion, few explorations on representations that encode event

partonomies have been made. Inspired by evidence that the

prototypical unit of an event is an action-object interaction,

we introduce Action Genome, a representation that decom-

poses actions into spatio-temporal scene graphs. Action

Genome captures changes between objects and their pair-

wise relationships while an action occurs. It contains 10K

videos with 0.4M objects and 1.7M visual relationships an-

notated. With Action Genome, we extend an existing action

recognition model by incorporating scene graphs as spatio-

temporal feature banks to achieve better performance on

the Charades dataset. Next, by decomposing and learn-

ing the temporal changes in visual relationships that result

in an action, we demonstrate the utility of a hierarchical

event decomposition by enabling few-shot action recogni-

tion, achieving 42.7% mAP using as few as 10 examples.

Finally, we benchmark existing scene graph models on the

new task of spatio-temporal scene graph prediction.

1. Introduction

Video understanding tasks, such as action recognition,

have, for the most part, treated actions and activities as

monolithic events [8, 38, 66, 87]. Most recent models pro-

posed have resorted to end-to-end predictions that produce

a single label for a long sequence of a video [10, 23, 31,

69, 72] and do not explicitly decompose events into a series

of interactions between objects. On the other hand, image-

based structured representations like scene graphs have cas-

caded improvements across multiple image tasks, includ-

ing image captioning [2], image retrieval [36, 64], visual

question answering [35], relationship modeling [41] and

image generation [34]. The scene graph representation, in-

troduced in Visual Genome [43], provides a scaffold that
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Figure 1: We present Action Genome: a representation that

decomposes actions into spatio-temporal scene graphs. In-

spired by hierarchical bias theory [84] and event segmen-

tation theory [44], Action Genome provides the scaffold to

study the dynamics of actions as relationships between peo-

ple and objects. This decomposition also allow us to im-

prove action recognition, enable few-shot action detection,

and introduce spatio-temporal scene graph prediction.

allows vision models to tackle complex inference tasks by

breaking scenes into its corresponding objects and their vi-

sual relationships. However, decompositions for temporal

events have not been explored much [50], even though rep-

resenting events with structured representations could lead

to more accurate and grounded action understanding.

Meanwhile, in Cognitive Science and Neuroscience, it

has been postulated that people segment events into consis-

tent groups [5, 6, 55]. Furthermore, people actively encode

those ongoing activities in a hierarchical part structure — a

phenomenon referred to as hierarchical bias hypothesis [84]

or event segmentation theory [44]. Let’s consider the action

of “sitting on a sofa”. The person initially starts off next to

the sofa, moves in front of it, and finally sits atop it. Such

decompositions can enable machines to predict future and

past scene graphs with objects and relationships as an ac-

tion occurs: we can predict that the person is about to sit on
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Table 1: A comparison of Action Genome with existing video datasets. Built upon Charades [66], Action Genome is the first

large-scale video database providing both action labels and spatio-temporal scene graph labels.

Dataset
Video # videos # action Objects Relationships

hours categories annotated localized # categories # instances annotated localized # categories # instances

ActivityNet [8] 648 28K 200 - - - -

HACS Clips [87] 833 0.4K 200 - - - -

Kinetics-700 [9] 1794 650K 700 - - - -

AVA [26] 108 504K 80 - - X 49 -

Charades [66] 82 10K 157 X 37 - - -

EPIC-Kitchen [15] 55 - 125 X 331 - - -

DALY [75] 31 8K 10 X X 41 3.6K - -

CAD120++ [91] 0.57 0.5K 10 X X 13 64K X X 6 32K

Action Genome 82 10K 157 X X 35 0.4M X X 25 1.7M

the sofa when we see them move in front of it. Similarly,

such decomposition can also enable machines to learn from

few examples: we can recognize the same action when we

see a different person move towards a different chair. While

that was a relatively simple decomposition, other events like

“playing football”, with its multiple rules and actors, can

involve multifaceted decompositions. So while such de-

compositions can provide the scaffolds to improve vision

models, how is it possible to correctly create representative

hierarchies for a wide variety of complex actions?

In this paper, we introduce Action Genome, a rep-

resentation that decomposes actions into spatio-temporal

scene graphs. Object detection faced a similar chal-

lenge of large variation within any object category. So,

just as progress in 2D perception was catalyzed by tax-

onomies [56], partonomies [57], and ontologies [43, 79],

we aim to improve temporal understanding with Action

Genome’s partonomy. Going back to the example of “per-

son sitting on a sofa”, Action Genome breaks down such

actions by annotating frames within that action with scene

graphs. The graphs captures both the objects, person and

sofa, and how their relationships evolve as the actions

progress from 〈person - next to - sofa〉 to 〈person
- in front of - sofa〉 to finally 〈person - sitting

on - sofa〉. Built upon Charades [66], Action Genome

provides 476K object bounding boxes with 1.72M relation-

ships across 234K video frames with 157 action categories.

Most perspectives on action decomposition converge on

the prototypical unit of action-object couplets [44, 50, 63,

84]. Action-object couplets refer to transitive actions per-

formed on objects (e.g. “moving a chair” or “throwing a

ball”) and intransitive self-actions (e.g. “moving towards

the sofa”). Action Genome’s dynamic scene graph repre-

sentations capture both such types of events and as such,

represent the prototypical unit. With this representation,

we enable the study for tasks such as spatio-temporal scene

graph prediction — a task where we estimate the decom-

position of action dynamics given a video. We can also im-

prove existing tasks like action recognition and few-shot ac-

tion detection by jointly studying how those actions change

visual relationships between objects in scene graphs.

To demonstrate the utility of Action Genome’s event de-

composition, we introduce a method that extends a state-

of-the-art action recognition model [76] by incorporating

spatio-temporal scene graphs as feature banks that can be

used to both predict the action as well as the objects and re-

lationships involved. First, we demonstrate that predicting

scene graphs can benefit the popular task of action recog-

nition by improving the state-of-the-art on the Charades

dataset [66] from 42.5% to 44.3% and to 60.3% when us-

ing oracle scene graphs. Second, we show that the com-

positional understanding of actions induces better general-

ization by showcasing few-shot action recognition experi-

ments, achieving 42.7% mAP using as few as 10 training

examples. Third, we introduce the task of spatio-temporal

scene graph prediction and benchmark existing scene graph

models with new evaluation metrics designed specifically

for videos. With a better understanding of the dynam-

ics of human-object interactions via spatio-temporal scene

graphs, we aim to inspire a new line of research in more

decomposable and generalizable action understanding.

2. Related work

We derive inspiration from Cognitive Science, compare

our representation with static scene graphs, and survey

methods in action recognition and few-shot prediction.

Cognitive Science. Early work in Cognitive Science pro-

vides evidence for the regularities with which people iden-

tify event boundaries [5, 6, 55]. Remarkably, people con-

sistently, both within and between subjects, carve out video

streams into events, actions, and activities [11, 28, 83].

Such findings hint that it is possible to predict when ac-

tions begin and end, and have inspired hundreds of Com-

puter Vision datasets, models, and algorithms to study tasks

like action recognition [19, 37, 71, 80, 81, 82]. Sub-

sequent Cognitive and Neuroscience research, using the

same paradigm, has also shown that event categories form

partonomies [28, 60, 83]. However, Computer Vision has

done little work in explicitly representing the hierarchical

structures of actions [50], even though understanding event

partonomies can improve tasks like action recognition.
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Action recognition in videos. Many research projects have

tackled the task of action recognition. A major line of work

has focused on developing powerful neural architectures to

extract useful representations from videos [10, 23, 31, 69,

72]. Pre-trained on large-scale databases for action clas-

sification [8, 9], these architectures serve as cornerstones

for downstream video tasks and action recognition on other

datasets. To assist more complicated action understanding,

another growing set of research explores structural informa-

tion in videos including temporal ordering [51, 88], object

localization [4, 25, 32, 53, 74, 76], and implicit interactions

between objects [4, 53]. In our work, we contrast against

these methods by explicitly using a structured decomposi-

tion of actions into objects and relationships.

Table 1 lists some of the most popular datasets used for

action recognition. One major trend of video datasets is

providing considerably large amount of video clips with

single action labels [8, 9, 87]. Although these databases

have driven the progress of video feature representation for

many downstream tasks, the provided annotations treat ac-

tions as monolithic events, and do not study how objects

and their relationships change during actions/activities. In

the mean time, other databases have provided more vari-

eties of annotations: AVA [26] localizes the actors of ac-

tions, Charades [66] contains multiple actions happening at

the same time, EPIC-Kitchen [15] localizes the interacted

objects in ego-centric kitchen videos, DALY [75] provides

object bounding boxes and upper body poses for 10 daily

activities. Still, scene graph, as a comprehensive structural

abstraction of images, has not yet been studied in any large-

scale video database as a potential representation for action

recognition. In this work, we present Action Genome, the

first large-scale database to jointly boost research in scene

graphs and action understanding. Compared to existing

datasets, we provide orders of magnitude more object and

relationship labels grounded in actions.

Scene graph prediction. Scene graphs are a formal rep-

resentation for image information [36, 43] in a form of

a graph, which is widely used in knowledge bases [13,

27, 89]. Each scene graph encodes objects as nodes con-

nected together by pairwise relationships as edges. Scene

graphs have led to many state of the art models in im-

age captioning [2], image retrieval [36, 64], visual ques-

tion answering [35], relationship modeling [41], and im-

age generation [34]. Given its versatile utility, the task of

scene graph prediction has resulted in a series of publi-

cations [14, 30, 43, 46, 48, 49, 59, 77, 78, 85] that have

explored reinforcement learning [49], structured predic-

tion [16, 40, 70], utilizing object attributes [20, 61], se-

quential prediction [59], few-shot prediction [12, 17], and

graph-based [47, 77, 78] approaches. However, all of these

approaches have restricted their application to static images

and have not modelled visual concepts spatio-temporally.

Figure 2: Action Genome’s annotation pipeline: For every

action, we uniformly sample 5 frames across the action and

annotate the person performing the action along with the

objects they interact with. We also annotate the pairwise

relationships between the person and those objects. Here,

we show a video with 4 actions labelled, resulting in 20
(= 4× 5) frames annotated with scene graphs. The objects

are grounded back in the video as bounding boxes.

Few-shot prediction. The few-shot literature is broadly di-

vided into two main frameworks. The first strategy learns a

classifier for a set of frequent categories and then uses them

to learn the few-shot categories [21, 22, 58]. For exam-

ple, ZSL uses attributes of actions to enable few-shot [58].

The second strategy learns invariances or decompositions

that enable few-shot classification [7, 18, 39, 90]. OSS

and TARN propose a measurement of similarity or distance

measure between video pairs [7, 39], CMN encodes uses a

multi-saliency algorithm to encode videos [90], and Proto-

GAN creates a prototype vector for each class [18]. Our

framework resembles the first strategy because we use the

object and visual relationship representations learned using

the frequent actions to identify few-shot actions.

3. Action Genome

Inspired from Cognitive Science, we decompose events

into prototypical action-object units [44, 63, 84]. Each ac-

tion in Action Genome is representated as changes to ob-

jects and their pairwise interactions with the actor/person

performing the action. We derive our representation as

a temporally changing version of Visual Genome’s scene

graphs [43]. However, unlike Visual Genome, whose goal

was to densely represent a scene with objects and visual re-
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attention
contact
spatial

Figure 3: Distribution of (a) relationship and (b) object occurrences. The relationships are color coded to represent attention,

spatial , and contact relationships. Most relationships have at least 1k instances and objects have at least 10k instances.

Table 2: There are three types of relationships in Action

Genome: attention relationships report which objects peo-

ple are looking at, spatial relationships indicate how objects

are laid out spatially, and contact relationships are semantic

relationships involving people manipulating objects.

attention spatial contact

looking at in front of carrying covered by

not looking at behind drinking from eating

unsure on the side of have it on the back holding

above leaning on lying on

beneath not contacting sitting on

in standing on touching

twisting wearing

wiping writing on

lationships, Action Genome’s goal is to decompose actions

and as such, focuses on annotating only those segments of

the video where the action occurs and only those objects

that are involved in the action.

Annotation framework. Action Genome is built upon the

videos and temporal action annotations available in the Cha-

rades dataset [66], which contains 157 action classes, 144
of which are human-object activities. In Charades, there are

multiple actions that might be occurring at the same time.

We do not annotate every single frame in a video; it would

be redundant as the changes between objects and relation-

ships occur at longer time scales.

Figure 2 visualizes the pipeline of our annotation. We

uniformly sample 5 frames to annotate across the range of

each action interval. With this action-oriented sampling

strategy, we provide more labels where more actions occur.

For instance, in the example, actions “sitting on a chair”

and “drinking from a cup” occur together and therefore, re-

sult in more annotated frames, 5 from each action. When

annotating each sampled frame, the annotators hired were

prompted with action labels and clips of the neighboring

Figure 4: A weighted bipartite mapping between objects

and relationships shows that they are densely intercon-

nected in Action Genome. The weights represent percent-

age of occurrences in which a specific object occurs in a

relationship. There are three colors in the graph and they

represent the three kinds of relationships: attention (in or-

ange), spatial (in green) and contact (in purple).

video frames for context. The annotators first draw bound-

ing boxes around the objects involved in these actions, then

choose the relationship labels from the label set. The clips

are used to disambiguate between the objects that are ac-

tually involved in an action when multiple instances of a

given category is present. For example, if multiple “cups”

are present, the context disambiguates which “cup” to an-

notate for the action “drinking from a cup”.

Action Genome contains three different kinds of human-

object relationships: attention, spatial and contact relation-

ships (see Table 2). Attention relationships indicate if a per-

son is looking at an object or not, and serve as indicators

for which object the person is or will interacting with. Spa-
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tial relationships describe where objects are relative to one

another. Contact relationships describe the different ways

the person is contacting an object. A change in contact

often indicates the occurrence of an actions: for example,

changing from 〈person - not contacting - book〉
to 〈person - holding - book〉 may show an action of

“picking up a book”.

It is worth noting that while Charades provides an in-

jective mapping from each action to a verb, it is differ-

ent from the relationship labels we provide. Charades’

verbs are clip-level labels, such as “awaken”, while we de-

compose them into frame-level human-object relationships,

such as a sequence of 〈person - lying on - bed〉,
〈person - sitting on - bed〉 and 〈person - not

contacting - bed〉.
Database statistics. Action Genome provides frame-level

scene graph labels for the components of each action. Over-

all, we provide annotations for 234, 253 frames with a total

of 476, 229 bounding boxes of 35 object classes (exclud-

ing “person”), and 1, 715, 568 instances of 25 relationship

classes. Figure 3 visualizes the log-distribution of object

and relationship categories in the dataset. Like most con-

cepts in vision, some objects (e.g. table and chair) and

relationships (e.g. in front of and not looking

at) occur frequently while others (e.g. twisting and

doorknob) only occur a handful of times. However, even

with such a distribution, almost all objects have at least 10K

instances and every relationship as at least 1K instances.

Additionally, Figure 4 visualizes how frequently objects

occur in which relationships. We see that most objects are

pretty evenly involved in all three types of relationships.

Unlike Visual Genome, where dataset bias provides a strong

baseline for predicting relationships given the object cate-

gories, Action Genome does not suffer the same bias.

4. Method

We validate the utility of Action Genome’s action de-

composition by studying the effect of combining learning

spatio-temporal scene graphs with learning to recognize ac-

tions. We propose a method, named Scene Graph Fea-

ture Banks (SGFB), to incorporate spatio-temporal scene

graphs into action recognition. Our method is inspired by

recent work in computer vision that uses the information

“banks” [1, 45, 76]. Information banks are feature repre-

sentations that have been used to represent, for example,

object categories that occur in the video [45], or even in-

clude where the objects are [1]. Our model is most directly

related to the recent long-term feature banks [76], which

accumulates features of a long video as a fixed size repre-

sentation for action recognition.

Overall, our SGFB model contains two components:

the first component generates spatio-temporal scene graphs

while the second component encodes the graphs to predict
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Figure 5: Overview of our proposed model, SGFB, for ac-

tion recognition using spatio-temporal scene graphs. SGFB

predicts scene graphs for every frame in a video. These

scene graphs are converted into features representations that

are then combined using methods similar to long-term fea-

ture banks [76]. The final representation is merged with 3D

CNN features and used to predict action labels.

action labels. Given a video sequence v = {i1, i2, . . . , iN},

the aim of traditional multi-class action recognition is to

assign multiple action labels to this video. Here, v repre-

sents the video sequence made up of image frames ij , ∀j ∈
[1, N ]. SGFB generates a spatio-temporal scene graph for

every frame in the given video sequence. The scene graphs

are encoded to formulate a spatio-temporal scene graph fea-

ture bank for the final task of action recognition. We de-

scribe the scene graph prediction and the scene graph fea-

ture bank components in more detail below. See Figure 5

for a high-level visualization of the model’s forward pass.

4.1. Scene graph prediction

Previous research has proposed plenty of methods for

predicting scene graphs on static images [48, 52, 77, 78,

85, 86]. We employ a state-of-the-art scene graph predic-

tor as the first step of our method. Given a video sequence

v, the scene graph predictor SG generates all the objects

and connects each object with their relationships with the

actor in each frame, i.e. SG : I −→ G. On each frame,

the scene graph G = (O,R) consists of a set of objects

O = {o1, o2, . . . } that a person is interacting with and a set

of relationships R = {{r11, r12, . . . }, {r21, r22, . . . }, . . . }.

Here rpq denotes the q−th relationship between the person

with the object op. Note that there can be multiple relation-

ships between the person and each object, including atten-
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tion, spatial, and contact relationships. Besides the graph la-

bels, the scene graph predictor SG also outputs confidence

scores for all predicted objects: {so1 , so2 , ...} and relation-

ships: {{sr11 , sr12 , . . . }, {sr21 , sr22 , . . . }, . . . }. We have

experimented with various choices of SG and benchmark

their performance on Action Genome in Section 5.3.

4.2. Scene graph feature banks

After obtaining the scene graph G on each frame, we

formulate a feature vector f by aggregating the information

across all the scene graphs into a feature bank. Let’s assume

there are |O| classes of objects and |R| classes of relation-

ships. In Action Genome, |O| = 35 and |R| = 25. We first

construct a confidence matrix C with dimension |O| × |R|,
where each entry corresponds to an object-relationship cat-

egory pair. We compute every entry of this matrix us-

ing the scores output by the scene graph predictor SG.

Cij = soi × srij . Intuitively, Cij is a high value when SG

is confident that there is an object oi in the current frame

and its relationship with the actor is rij . We flatten the con-

fidence matrix as the feature vector f for each image.

Formally, FSG = [f1, f2, ..., fT ] is a sequence of

scene graph features extracted from a subsample of frames

i1, i2, ..., iN . We aggregate the features across the frames

using methods similar to long-term feature banks [76],

i.e. FSG are combined with 3D CNN features S extracted

from a short-term clip using feature bank operators (FBO),

which can be instantiated as mean/max pooling or non-local

blocks [73]. The 3D CNN embeds short-term information

into S while FSG provides contextual information, criti-

cal in modeling the dynamics of complex actions with long

time span. The final aggregated feature is then used to pre-

dict action labels for the video.

5. Experiments

Action Genome’s representation enables us to study few-

shot action recognition by decomposing actions into tempo-

rally changing visual relationships between objects. It also

allows us to benchmark whether understanding the decom-

position helps improve performance in action recognition or

scene graph prediction individually. To study these benefits

afforded by Action Genome, we design three experiments:

action recognition, few-shot action recognition, and finally,

spatio-temporal scene graph prediction.

5.1. Action recognition on Charades

We expect that grounding the components that compose

an action — the objects and their relationships — will im-

prove our ability to predict which actions are occurring in

a video sequence. So, we evaluate the utility of Action

Genome’s scene graphs on the task of action recognition.

Problem formulation. We specifically study multi-class

action recognition on the Charades dataset [66]. The Cha-

Table 3: Action recognition on Charades validation set in

mAP (%). We outperform all existing methods when we si-

multaneously predict scene graphs while performing action

recognition. We also find that utilizing ground truth scene

graphs can significantly boost performance.

Method Backbone Pre-train mAP

I3D + NL [10, 73] R101-I3D-NL Kinetics-400 37.5

STRG [74] R101-I3D-NL Kinetics-400 39.7

Timeception [31] R101 Kinetics-400 41.1

SlowFast [23] R101 Kinetics-400 42.1

SlowFast+NL [23, 73] R101-NL Kinetics-400 42.5

LFB [76] R101-I3D-NL Kinetics-400 42.5

SGFB (ours) R101-I3D-NL Kinetics-400 44.3

SGFB Oracle (ours) R101-I3D-NL Kinetics-400 60.3

rades dataset contains 9, 848 crowdsourced videos with a

length of 30 seconds on average. At any frame, a person

can perform multiple actions out of a nomenclature of 157
classes. The multi-classification task provides a video se-

quence as input and expects multiple action labels as output.

We train our SGFB model to predict Charades action labels

during test time and during training, provide SGFB with

spatio-temporal scene graphs as additional supervision.

Baselines. Previous work has proposed methods for multi-

class action recognition and benchmarked on Charades. Re-

cent state-of-the-art methods include applying I3D [10] and

non-local blocks [73] as video feature extractors (I3D+NL),

spatio-temporal region graphs (STRG) [74], Timeception

convolutional layers (Timeception) [31], SlowFast net-

works (SlowFast) [23], and long-term feature banks

(LFB) [76]. All the baseline methods are pre-trained on

Kinetics-400 [38] and the input modality is RGB.

Implementation details. SGFB first predicts a scene graph

on each frame, then constructs a spatio-temporal scene

graph feature bank for action recognition. We use Faster R-

CNN [62] with ResNet-101 [29] as the backbone for region

proposals and object detection. We leverage RelDN [86]

to predict the visual relationships. Scene graph predic-

tion is trained on Action Genome, where we follow the

same train/val splits of videos as the Charades dataset.

Action recognition uses the same video feature extractor,

hyper-parameters, and solver schedulers as long-term fea-

ture banks (LFB) [76] for a fair comparison.

Results. We report performance of all models using mean

average precision (mAP) on Charades validation set in Ta-

ble 3. By replacing the feature banks with spatio-temporal

scene graph features, we outperform the state-of-the-art

LFB by 1.8% mAP. Our features are smaller in size (35 ×
25 = 875 in SGFB versus 2048 in LFB) but concisely cap-

ture the more information for recognizing actions.

We also find that improving object detectors designed

for videos can further improve action recognition re-

sults. To quantitatively demonstrate the potential of better
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Table 4: Few-shot experiments. With the ability of compo-

sitional action understanding, our SGFB demonstrates bet-

ter generalizability than LFB. The SGFB oracle shows the

great potential of how much the scene graph representation

could benefit action recognition.

1-shot 5-shot 10-shot

LFB [76] 28.3 36.3 39.6

SGFB (ours) 28.8 37.9 42.7

SGFB oracle (ours) 30.4 40.2 50.5

scene graphs on action recognition, we designed an SGFB

Oracle setup. The SGFB Oracle assumes that a per-

fect scene graph prediction method is available. The spatio-

temporal scene graph feature bank therefore, directly en-

codes a feature vector from ground truth objects and visual

relationships for the annotated frames. Feeding such fea-

ture banks into the SGFB model, we observe a significant

improvement on action recognition: 16% increase on mAP.

Such a boost in performance shows the potential of Ac-

tion Genome and compositional action understanding when

video-based scene graph models are utilized to improve

scene graph prediction. It is important to note that the per-

formance by SGFB Oracle is not an upper bound on per-

formance since we only utilize ground truth scene graphs

for the few frames that have ground truth annotations.

5.2. Few­shot action recognition

Intuitively, predicting actions should be easier from a

symbolic embedding of scene graphs than from pixels.

When trained with very few examples, compositional action

understanding with additional knowledge of scene graphs

should outperform methods that treat actions as mono-

lithic concept. We showcase the capability and potential of

spatio-temporal scene graphs to generalize to rare actions.

Problem formulation. In our few-shot action recognition

experiments on Charades, we split the 157 action classes

into a base set of 137 classes and a novel set of 20 classes.

We first train a backbone feature extractor (R101-I3D-NL)

on all video examples of the base classes, which is shared

by the baseline LFB, our SGFB, and SGFB oracle. Next,

we train each model with only k examples from each novel

class, where k = 1, 5, 10, for 50 epochs. Finally, we eval-

uate the trained models on all examples of novel classes in

the Charades validation set.

Results. We report few-shot experiment performance in

Table 4. SGFB achieves better performance than LFB on

all 1, 5, 10-shot experiments. Furthermore, if with ground

truth scene graphs, SGFB Oracle shows a 10.9% 10-shot

mAP improvement. We visualize the comparison between

SGFB and LFB in Figure 6. With the knowledge of spatio-

temporal scene graphs, SGFB better captures action con-

cepts involving the dynamics of objects and relationships.

person

beneath

bed

lying on

pillow

holdingin front of

person

beneath

bed

lying on

pillow

holdingin front of

person

beneath

bed

sitting on

pillow

not 
contactingin front of

Ground truth: Awakening in bed,
Lying on a bed, Snuggling with a pillow

LFB top-3:
Lying on a bed,
Watching television,
Holding a pillow

Our top-3:
Lying on a bed,
Awakening in bed,
Holding a pillow

Figure 6: Qualitative results of 10-shot experiments. We

compare the predictions of our SGFB against LFB [76].

Since SGFB uses scene graph knowledge and explicitly cap-

tures the dynamics of human-object relationships, it easily

learns the concept of “awakening in bed” even when only

trained with 10 examples of this label. Also, since SGFB

is trained to detect and ground objects, it avoids misclassi-

fying objects, such as television, which then results in

more robust action recognition.

5.3. Spatio­temporal scene graph prediction

Progress in image-based scene graph prediction has cas-

caded to improvements across multiple Computer Vision

tasks, including image captioning [2], image retrieval [36,

64], visual question answering [35], relationship model-

ing [41] and image generation [34]. In order to promote

similar progress in video-based tasks, we introduce the

complementary of spatio-temporal scene graph prediction.

Unlike image-based scene graph prediction, which only has

a single image as input, this task expects a video as input

and therefore, can utilize temporal information from neigh-

boring frames to strength its predictions. In this section,

we define the task, its evaluation metrics and report bench-

marked results from numerous recently proposed image-

based scene graph models applied to this new task.

Problem formulation. The task expects as input a video

sequence v = {i1, i2, . . . in} where ij∀j ∈ [1, n] represents

image frames from the video. The task requires the model

to generate a spatio-temporal scene graph G = (O,R) per

frame. ok ∈ O is represented as objects with category la-

bels and bounding box locations. rj,kl ∈ R represents the

relationships between objects oi and oj .

Evaluation metrics. We borrow the three standard evalu-

ation modes for image-based scene graph prediction [52]:

(i) scene graph detection (SGDET) which expects input im-

ages and predicts bounding box locations, object categories,

and predicate labels, (ii) scene graph classification (SGCLS)

which expects ground truth boxes and predicts object cate-

gories and predicate labels, and (iii) predicate classification

(PREDCLS), which expects ground truth bounding boxes
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Table 5: We evaluate recently proposed image-based scene graph prediction models and provide a benchmark for the new

task of spatio-temporal scene graph prediction. We find that there is significant room for improvement, especially since these

existing methods were designed to be conditioned on a single frame and do not consider the entire video sequence as a whole.

Method

PredCls SGCls SGGen

image video image video image video

R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50

VRD [52] 14.75 14.85 14.51 14.60 13.65 14.69 13.41 14.44 10.28 10.94 10.04 10.70

Freq Prior [85] 32.70 32.84 32.25 32.37 31.52 32.78 31.08 32.32 24.03 24.87 23.49 24.31

IMP [77] 35.15 35.56 34.50 34.86 31.73 34.85 31.09 34.16 23.88 25.52 23.23 24.82

MSDN [48] 35.27 35.64 34.61 34.93 31.89 34.98 31.28 34.28 24.00 25.64 23.39 24.95

Graph R-CNN [78] 35.36 35.74 34.80 35.12 31.94 35.07 31.43 34.46 24.12 25.77 23.59 25.15

RelDN [86] 35.89 36.09 35.36 35.51 33.47 35.84 32.96 35.27 25.00 26.21 24.45 25.63

and object categories to predict predicate labels. We refer

the reader to the paper that introduced these tasks for more

details [52]. We adapt these metrics for video, where the

per-frame measurements are first averaged in each video as

the measurement of the video, then we average video results

as the final result for the test set.

Baselines. We benchmark the following image-based scene

graph models for the spatio-temporal scene graph predic-

tion task: VRD’s visual module (VRD) [52], neural mo-

tif’s frequency prior (Freq-prior) [85], iterative mes-

sage passing (IMP) [77], multi-level scene description net-

work (MSDN) [48], graph R-CNN (Graph R-CNN) [78],

and relationship detection network (RelDN) [86].

Results. To our surprise, we find that IMP, which was

one of the earliest scene graph prediction models actu-

ally outperforms numerous more recently proposed meth-

ods. The most recently proposed scene graph model,

RelDN marginally outperforms IMP, suggesting that mod-

eling similarlities between object and relationship classes

improve performance in our task as well. The small gap

in performance between the task of PredCls and SGCls

suggests that these models suffer from not being able to

accurately detect the objects in the video frames. Improv-

ing object detectors designed specifically for videos could

improve performance. The models were trained only us-

ing Action Genome’s data and not finetuned on Visual

Genome [43], which contains image-based scene graphs, or

on ActivityNet Captions [42], which contains dense cap-

tioning of actions in videos with natural language para-

graphs. We expect that finetuning models with such datasets

would result in further improvements.

6. Future work

With the rich hierarchy of events, Action Genome

not only enables research on spatio-temporal scene graph

prediction and compositional action recognition, but also

promises various research directions. We hope future work

will develop methods for the following:

Spatio-temporal action localization. The majority of

spatio-temporal action localization methods [24, 25, 33, 68]

focus on localizing the person performing the action but ig-

nore the objects, which are also involved in the action, that

the person interacts with. Action Genome can enable re-

search on localization of both actors and objects, formu-

lating a more comprehensive grounded action localization

task. Furthermore, other variants of this task can also be ex-

plored; for example, a weakly-supervised localization task

where a model is trained with only action labels but tasked

with localizing the actors and objects.

Explainable action models. Explainable visual models is

an emerging field of research. Amongst numerous tech-

niques, saliency prediction has emerged as a key mecha-

nism to interpret machine learning models [54, 65, 67]. Ac-

tion Genome provides frame-level labels of attention in the

form of objects that a the person performing the action is

either looking at or interacting with. These labels can

be used to further train explainable models.

Video generation from spatio-temporal scene graphs.

Recent studies have explored image generation from scene

graphs [3, 34]. Similarly, with a structured video represen-

tation, Action Genome enables research on video genera-

tion from spatio-temporal scene graphs.

7. Conclusion

We introduce Action Genome, a representation that de-

composes actions into spatio-temporal scene graphs. Scene

graphs explain how objects and their relationships change

as an action occurs. We demonstrated the utility of Action

Genome by collecting a large dataset of spatio-temporal

scene graphs and used it to improve state of the art results

for action recognition as well as few-shot action recogni-

tion. Finally, we benchmarked results for the new task of

spatio-temporal scene graph prediction. We hope that Ac-

tion Genome will inspire a new line of research in more

decomposable and generalizable video understanding.
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