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ACTION–INDEX RELATIONS FOR PERFECT
HAMILTONIAN DIFFEOMORPHISMS

Mike Chance, Viktor Ginzburg, and Başak Gürel

We show that the actions and indexes of fixed points of a Hamil-
tonian diffeomorphism with finitely many periodic points must satisfy
certain relations, provided that the quantum cohomology of the ambi-
ent manifold meets an algebraic requirement satisfied for projective
spaces, Grassmannians and many other manifolds. We also refine a
previous result on the Conley conjecture for negative monotone sym-
plectic manifolds, due to the second and third authors, and show that
a Hamiltonian diffeomorphism of such a manifold must have simple
periodic orbits of arbitrarily large period whenever its fixed points are
isolated.
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1. Introduction and main results

1.1. Introduction. The central theme of this paper is a rigidity feature of
Hamiltonian diffeomorphisms with finitely many periodic points. To be more
specific, we prove that there are certain relations between the actions and
indexes of fixed points of such a diffeomorphism, provided that the quantum
cohomology of the ambient manifold meets an algebraic requirement, which
is fully satisfied for projective spaces, Grassmannians, and to a degree in
all known monotone examples. We also refine our previous result on the
Conley conjecture for negative monotone symplectic manifolds (see [GG3])
and show that a Hamiltonian diffeomorphism of such a manifold must have
simple periodic orbits of arbitrarily large period whenever its fixed points
are isolated.
The fact that there are some relations between the mean indexes and/or

actions of fixed points of a Hamiltonian system with finitely many periodic
orbits is not new. For indexes of a Reeb flow on the standard sphere it goes
back to [Ek,EH,Vi1] and it has been further explored and generalized since
then; see, e.g., [Es,GK]. On the other hand, the observation that the mean
indexes, or indexes and actions, of fixed points of a Hamiltonian diffeomor-
phism (of, say, CPn) with finitely many periodic orbits must meet certain
algebraic conditions is relatively recent; see [GK] for resonance relations for
indexes and [GG1] for action–index relations. (Interestingly, no analogue of
action–index relations in the contact case appears to have been established
so far.) The main focus of this paper is a treatment of the action–index
relations in a more systematic way that connects them with the algebraic
properties of the quantum homology of the ambient manifold.
The paper is organized as follows. Below, in Sections 1.2 and 1.3, we state

the main results of the paper — the action–index relations and a refinement
of the Conley conjecture for negative monotone manifolds. In Section 2,
we set our conventions and notation and discuss some standard (and not
entirely standard) notions and results from symplectic topology, needed for
the proof of the main theorems. These include the mean index, the filtered
and local Floer homology, the action selector and the action selector carrier,
and their properties. Then, in Section 3, we prove Theorem 1.1 establishing
the existence of action–index relations. Theorem 1.8 (a refinement of the
Conley conjecture for negative monotone manifolds) is proved in Section 4.

1.2. Action–index relations. Throughout this paper, (M, ω) will stand
for a monotone or negative monotone closed symplectic manifold of dimen-
sion 2n with monotonicity constant λ and minimal Chern number N . (We
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refer the reader to Section 2 for the definitions and a detailed discussion of
the notions used in this section.) Here, we only note that we may assume
from now on that 0 < N < ∞, i.e., c1(M) |π2(M) �= 0 in R. For otherwise
the conditions of Theorem 1.1 below are never satisfied and Theorem 1.8 is
known to hold. (This is a consequence of the Conley conjecture for symplec-
tic manifolds with c1(M)|π2(M) = 0, proved in [GG1,He]; see also [Gi,Hi].)
We will also usually require that λ �= 0.
Let ϕH be a Hamiltonian diffeomorphism of M generated by a one-

periodic in time Hamiltonian H : S1 ×M → R with S1 = R/Z. We denote
by P the collection of contractible one-periodic orbits of the time-dependent
flow ϕt

H and by P̄ the collection of capped one-periodic orbits. Clearly, P can
be viewed as a subset of the fixed point set of ϕH. For x ∈ P, the augmented
action of H on x is defined by

ÃH(x) = AH(x̄)− λ

2
ΔH(x̄),

where AH(x̄) and ΔH(x̄) stand for the action and, respectively, the mean
index of a capped orbit x̄; see Section 2.1. Since AH(x̄) and ΔH(x̄) change in
the same way under recapping, up to the factor λ/2, the augmented action
is well defined, i.e., independent of the capping.
We denote the quantum cohomology of M over a ground field F by

HQ∗(M ;F) or simply by HQ∗(M) when the role of F is inessential. The
quantum product of elements u and v in HQ∗(M) will be denoted by u ∗ v
and the degree of u by |u|. Recall that the quantum cohomology is a module
over the Novikov ring Λ. The version of Λ we will utilize here is just the Lau-
rent polynomial ring F[q, q−1], where |q| = 2N . We refer the reader to Sec-
tion 2.2.2 for more details on quantum (co)homology and further references.
Below we will use the ceiling and floor functions denoted by �·� and 	·
.

Recall that �a� stands for the least integer greater than or equal to a and
	a
 is the greatest integer smaller than or equal to a.
The main result of the paper is the following.

Theorem 1.1 (Action–index relations). Let ϕH be a Hamiltonian diffeo-
morphism with finitely many periodic orbits of a closed monotone symplectic
manifold M with λ �= 0 and 0 < N < ∞.

(i) Assume that

(1.1) u0 ∗ u1 ∗ · · · ∗ u� = qνu0 in HQ∗(M),

where ν > 0, u0 �= 0, the classes u1, . . . , u� have positive degree, and

(1.2) |u1|+ · · ·+ |u�−1| < 2N.

Assume furthermore, unless ν = 1, that ϕH is non-degenerate. Then
there exist � distinct contractible one-periodic orbits x0, . . . , x�−1 of



452 M. CHANCE, V. L. GINZBURG, AND B. Z. GÜREL

ϕt
H such that

(1.3) ÃH(x0) = · · · = ÃH(x�−1).

(ii) Alternatively, assume that there exists u ∈ HQ∗>0(M) such that

(1.4) ud �= 0

for some sufficiently large d (e.g., we can take d =
⌈
2N |P|/|u|⌉+ 1)

and that ϕH is non-degenerate. Then the assertion of (i) holds for
� =

⌊
2N/|u|⌋.

We will call (1.1) a product decomposition of u0. It is essential that the
degree bound (1.2) involves neither the first term u0 of the product decompo-
sition nor the last one u�. In particular, both u0 and u� can have large degree
not necessarily bounded by 2N . (However, clearly, |u1|+· · ·+|u�| = 2Nν and
(1.2) is automatically satisfied when ν = 1.) It is also worth pointing out that
in all known examples, which are in fact listed below, of Hamiltonian dif-
feomorphisms ϕH with finitely many periodic points, ϕH is non-degenerate
and every periodic point of ϕH is a fixed point, i.e., ϕH is perfect in the
terminology of [GK] – hence the title of the paper.
The theorem cannot produce more than � = 2N fixed points with equal

augmented action. (In fact, � ≤ N when char(F) �= 2, since elements of odd
degree do not contribute to product decompositions. Indeed, assume that,
e.g., |u1| is odd. Then u21 = 0 and, multiplying (1.1) by u1∗· · ·∗u�, we obtain
that 0 = q2νu0, which is impossible. The authors are grateful to the referee
for this remark.) A difficulty here lies in showing that the points are distinct
and is similar to the difficulty arising in establishing the degenerate case of
the Arnold conjecture. However, as we will see, in all known examples all
fixed points have equal augmented actions.
Let us now examine examples of Hamiltonian diffeomorphisms with

finitely many periodic points.

Example 1.2. The simplest Hamiltonian diffeomorphism with finitely
many periodic orbits is an irrational rotation of S2. More generally, let ϕH be
the Hamiltonian diffeomorphism of CPn, generated by a quadratic Hamilton-
ian H(z) = π

(
λ0|z0|2+· · ·+λn|zn|2

)
, where the coefficients λ0, . . . , λn are all

distinct. (Here, we have identified CPn with the quotient of the unit sphere
in Cn+1 and hence

∑ |zi|2 = 1.) Now, (1.1) takes the form un+1 = q, where
u is the first Chern class of the canonical line bundle, and N = n + 1 = �;
see, e.g., [MS, Section 11.3]. The Hamiltonian diffeomorphism ϕH is per-
fect and has exactly � fixed points (the coordinate axes). Their augmented
actions are equal to π

∑
λi/(n+1). In this connection let us point out that

there is a coefficient error in [GK, Example 1.2]. With our conventions (see
Section 2.1), Δ(xj) = 2(−∑

λi + (n+ 1)λj), where xj is equipped with the
trivial capping.
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This example fits in a much more general framework:

Example 1.3. Suppose that (M, ω) admits a Hamiltonian action of a torus
G with isolated fixed points; see, e.g., [GGK] for the definition and further
details. A generic element of G gives rise to a perfect Hamiltonian diffeo-
morphism ϕ of (M, ω) whose fixed points are exactly the fixed points of the
torus action. One can show that in this case all fixed points have the same
augmented action, i.e., (1.3) holds for the entire collection of fixed points.
One way to see that this is true is as follows. Without loss of generality,

we may assume that λ = 1. Let �H be the moment map of the action. Then
the equivariant two-form ωG = ω+ �H can be thought as simultaneously rep-
resenting the equivariant Chern class cG

1 (TM) and an equivariant extension
[ω]G of the symplectic form class. Since the fixed points of the action are
isolated, the localization of the latter class is simply the sum of the moment
map values �H(x) for x ∈ MG. On the other hand, it is not hard to see
that for cG

1 (TM) and each x this is also the sum of the weights of the rep-
resentation of G on TxM . Expressing H(x) as a linear combination of the
components of �H(x) and Δ(x)/2 as a linear combination of the components
of the sum of the weights, we conclude that H(x) = Δ(x)/2. (The authors
are grateful to Yael Karshon for this argument.)
Examples of symplectic manifolds that admit such torus actions include

a majority of coadjoint orbits of compact Lie groups, e.g., complex Grass-
mannians G(k, N). One can also construct new examples from a given one
by equivariantly blowing-up the symplectic manifold at fixed points. The
resulting symplectic manifold always inherits a Hamiltonian torus action
and, in many instances, this action also has isolated fixed points.

Example 1.4. Hamiltonian diffeomorphisms with finitely many periodic
orbits need not be associated with Hamiltonian torus actions as in Exam-
ple 1.3. For instance, there exists a Hamiltonian perturbation ϕ of an irra-
tional rotation of S2 with exactly three ergodic invariant measures: the
Lebesgue measure and the two measures corresponding to the fixed points of
ϕ; see [FH,FK] and also, for relevant results, [AK]. Taking direct products
of such diffeomorphisms we obtain examples in higher dimensions. It is easy
to see from the construction of ϕ that in this case all fixed points have again
the same augmented action. (This also follows from Theorem 1.1 since ϕ
has exactly two fixed points.)

To the best of our knowledge, Examples 1.3 and 1.4 and their products
exhaust the list of known Hamiltonian diffeomorphisms with finitely many
periodic orbits.
Product decompositions with � ≥ 2 depending on the manifold in ques-

tion exist for Grassmannians G(k, N) and their monotone products, as is
easy to see from the description of the quantum product on G(k, N); see,
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e.g., [ST,MS,Ta] for further references and details. Moreover, once a prod-
uct decomposition exists for M it also exists, with the same �, for any
monotone product of the form M × P . (This follows from the quantum
Künneth formula; [Ka].) Here, for instance, P can be symplectically aspher-
ical although in this case no products M ×P admitting perfect Hamiltonian
diffeomorphisms are known. However, “long” product decompositions are
difficult find. For instance, we have not been able to show that in general
G(k, N) admits a product decomposition of length N (the minimal Chern
number) and this is where Case (ii) of the theorem becomes useful.

Corollary 1.5. Let M be G(k, N) or, more generally, a monotone product
G(k, N)×P , and let ϕH be a Hamiltonian diffeomorphism of M with finitely
many fixed points. Then there exist � = N distinct fixed points x0, . . . , x�−1
of ϕH satisfying (1.3).

Proof. Let u be the first Chern class of the canonical vector bundle over
G(k, N). Then ud �= 0, for any d > 0, in HQ∗(G(k, N);Q). This is an
immediate consequence of quantum Schubert calculus and, more precisely,
of the quantum Pieri formula; see [Be] and also, e.g., [Ta]. Applying the
quantum Künneth formula, we see that ud �= 0 for M = G(k, N) × P ;
see [Ka] and also [MS, Exercise 11.1.15]. Now the corollary follows from
Case (ii) of Theorem 1.1. �

Remark 1.6. The hypotheses of Cases (i) and (ii) of the theorem are in
fact related. For instance, when the ground field F is finite, the existence of
an element u with ud �= 0 for all d ≥ 0 implies, by the pigeonhole principle,
a product decomposition of length � =

⌊
2N/|u|⌋. This argument however

cannot be used to find a product decomposition for G(k, N) of length N :
u3 = 0 in HQ∗(G(2, 4);Z2) and it is absolutely essential for the proof of
Corollary 1.5 that F has zero characteristic.

Remark 1.7. Theorem 1.1 generalizes Corollary 1.11 and Theorem 1.12
in [GG1], where the augmented action was originally defined. However,
a similar notion (the action–index) was considered in [Po] in a different
context for a loop of Hamiltonian diffeomorphisms. Furthermore, replacing
the mean index in the definition of the augmented action by some other
version of the Conley–Zehnder index (as in, e.g., [Sa, Section 1.6]), we still
obtain a well-defined, i.e., independent of capping, invariant. Theorem 1.1
would not hold for such an invariant. What sets apart the augmented action,
defined as above using the mean index, is that it is homogeneous with respect
to iterations of ϕH.

1.3. Conley conjecture for negative monotone symplectic mani-
folds. Our proof of Theorem 1.1 builds on the proof of the Conley con-
jecture for negative monotone symplectic manifolds in [GG3]. In turn, the
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proof of Theorem 1.1 lends itself readily to the following refinement of the
main result of [GG3].

Theorem 1.8. Let ϕH be a Hamiltonian diffeomorphism of a closed, nega-
tive monotone symplectic manifold. Assume that ϕH has finitely many fixed
points. Then ϕH has simple periodic orbits of arbitrarily large period.

Negative monotone manifolds exist in abundance. Among them are, for
instance, the hypersurfaces zk

0+· · ·+zk
n = 0 in CPn with N = k−(n+1) > 0;

see, e.g., [MS, pp. 429–430] and also [LM, p. 88] for further examples.

Remark 1.9. The new point here, as compared to [GG3], is the existence
of simple periodic orbits with arbitrarily large period rather than just the
existence of infinitely many periodic orbits.
The proof of Theorem 1.8 utilizes Hamiltonian Floer theory. Hence, unless

M is required to be weakly monotone, the argument ultimately, although
not explicitly, relies on the machinery of multi-valued perturbations and
virtual cycles; see Remark 2.1 for further discussion.

2. Preliminaries

The goal of this section is to set notation and conventions, following mainly
[GG1, GG3], and to give a brief review of Floer homology and several
other notions used in the paper focusing on the case where M is monotone
or negative monotone with c1(M) |π2(M) �= 0.

2.1. Conventions and notation. Let (M2n, ω) be a closed symplectic
manifold. Throughout the paper, we will assume M to be monotone as
in Theorem 1.1 or negative monotone as in Theorem 1.8, i.e., [ω] |π2(M)=
λc1(M) |π2(M) for some λ ≥ 0 in the former case or λ < 0 in the latter.
In particular, M is rational, i.e., the group 〈[ω], π2(M)〉 ⊂ R formed by the
integrals of ω over the spheres in M is discrete. The positive generator λ0
of this group is called the rationality constant. In the monotone case we will
usually require that λ �= 0.
All Hamiltonians H on M considered in this paper are assumed to be

k-periodic in time, i.e., H : S1k × M → R, where S1k = R/kZ, and the
period k is always a positive integer. When the period is not specified, it is
equal to one, which is the default period in this paper. We set Ht = H(t, ·)
for t ∈ S1 = R/Z. The Hamiltonian vector field XH of H is defined by
iXH

ω = −dH. The (time-dependent) flow of XH will be denoted by ϕt
H and

its time-one map by ϕH. Such time-one maps are referred to as Hamiltonian
diffeomorphisms. A one-periodic Hamiltonian H can always be treated as k-
periodic. In this case, we will use the notation H�k and, abusing terminology,
call H�k the kth iteration of H.
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Let K and H be one-periodic Hamiltonians such that K1 = H0 and
H1 = K0. We denote by K	H the two-periodic Hamiltonian equal to Kt for
t ∈ [0, 1] and Ht−1 for t ∈ [1, 2]. Thus, H�k = H	 · · · 	H (k times).
Let x : S1k → W be a contractible loop. A capping of x is a map

u : D2 → M such that u |S1
k
= x. Two cappings u and v of x are considered

to be equivalent if the integrals of ω and c1(M) over the sphere obtained by
attaching u to v are equal to zero. A capped closed curve x̄ is, by definition,
a closed curve x equipped with an equivalence class of cappings. In what
follows, the presence of capping is always indicated by the bar.
The action of a one-periodic Hamiltonian H on a capped closed curve

x̄ = (x, u) is defined by

AH(x̄) = −
∫

u
ω +

∫
S1

Ht(x(t)) dt.

The space of capped closed curves is a covering space of the space of con-
tractible loops and the critical points of AH on the covering space are exactly
capped one-periodic orbits of XH. The action spectrum S(H) of H is the set
of critical values of AH. This is a zero measure set; see, e.g., [HZ,Sc]. When
M is rational, S(H) is closed, and hence nowhere dense. Otherwise, S(H)
is dense in R. These definitions extend to k-periodic orbits and Hamiltoni-
ans in an obvious way. Clearly, the action functional is homogeneous with
respect to iteration:

AH�k(x̄k) = kAH(x̄).
Here x̄k stands for the kth iteration of the capped orbit x̄.
The results of this paper concern only contractible periodic orbits and

throughout the paper a periodic orbit is always assumed to be contractible,
even if this is not explicitly stated.
A periodic orbit x ofH is said to be non-degenerate if the linearized return

map dϕH : Tx(0)W → Tx(0)W has no eigenvalues equal to one. Following
[SZ], we call x weakly non-degenerate if at least one of the eigenvalues is
different from one. A Hamiltonian is non-degenerate if all its one-periodic
orbits are non-degenerate.
Let x̄ be a non-degenerate (capped) periodic orbit. The Conley–Zehnder

index μCZ(x̄) ∈ Z is defined, up to a sign, as in [Sa, SZ]. (Sometimes, we
will also use the notation μCZ(H, x̄).) More specifically, in this paper, the
Conley–Zehnder index is the negative of that in [Sa]. In other words, we
normalize μCZ so that μCZ(x̄) = n when x is a non-degenerate maximum
(with trivial capping) of an autonomous Hamiltonian with small Hessian.
The mean index ΔH(x̄) ∈ R measures, roughly speaking, the total angle
swept by certain eigenvalues with absolute value one of the linearized flow
dϕt

H along x with respect to the trivialization associated with the capping;
see [Lo,SZ]. The mean index is defined regardless of whether x is degenerate
or not and ΔH(x̄) depends continuously on H and x̄ in the obvious sense.
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When x is non-degenerate or just weakly non-degenerate, we have

0 < |ΔH(x̄)− μCZ(H, x̄)| < n.

Furthermore, the mean index is homogeneous with respect to iteration:

ΔH�k(x̄k) = kΔH(x̄).

As a consequence, the augmented action is also homogeneous.

2.2. Floer and quantum (co)homology. Although the hypotheses of
Theorem 1.1 are stated in terms of quantum cohomology, we find working
with homology more intuitive in the context of Ljusternik–Schnirelman the-
ory, which the proof of the theorem relies on. Hence, here we focus mainly
on the definitions of quantum and Floer homology and just briefly indicate
the modifications needed in the case of cohomology. The assumptions of
Theorem 1.1 are reformulated via homology at the beginning of Section 3.

2.2.1. Floer homology. In this subsection, we very briefly recall, mainly
to set notation, the construction of the filtered Floer homology. We refer the
reader to, e.g., [HS, MS, Sa, SZ] and also [FO, LT] for detailed accounts
and additional references.
Fix a ground field F. Let H be a non-degenerate Hamiltonian on M .

Denote by CF(−∞, b)
k (H), where b ∈ (−∞, ∞] is not in S(H), the vector

space of finite formal sums

σ =
∑

x̄∈P̄(H)

σx̄x̄.

Here σx̄ ∈ F and μCZ(x̄)+n = k and AH(x̄) < b. (Since we focus on the case
where M is monotone with λ �= 0 or negative monotone and c1(M) |π2(M) �= 0
there is no need to consider semi-infinite sums.) We say that x̄ enters the
chain σ when σx̄ �= 0. The graded F-vector space CF(−∞, b)

∗ (H) is endowed
with the Floer differential counting the anti-gradient trajectories of the
action functional; see, e.g., [HS,MS,On,Sa] and also [FO,LT]. Thus, we
obtain a filtration of the total Floer complex CF∗(H) := CF(−∞,∞)

∗ (H).
Furthermore, we set CF(a, b)

∗ (H) := CF(−∞, b)
∗ (H)/CF(−∞, a)

∗ (H), where
−∞ ≤ a < b ≤ ∞ are not in S(H). The resulting homology, the fil-
tered Floer homology of H, is denoted by HF(a, b)

∗ (H) and by HF∗(H)
when (a, b) = (−∞, ∞). Note that every F-vector space CFk(H) is finite-
dimensional since M is negative monotone or monotone with λ �= 0 and
c1(M) |π2(M) �= 0.)
The total Floer complex and homology are modules over the Novikov ring

Λ, which in our case is simply a ring of Laurent polynomials. To be more
specific, let ω(A) and 〈c1(M), A〉 denote the integrals of ω and, respectively,
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c1(M) over a cycle A. Set

Iω(A) = −ω(A) and Ic1(A) = −2 〈c1(M), A〉 ,
where A ∈ π2(M). Since M is monotone or negative monotone,

Iω =
λ

2
Ic1

and, in particular, Iω(A) and Ic1(A) have opposite signs when M is negative
monotone. Let Γ = π2(M)/ker Ic1 . Thus, Γ is the quotient of π2(M) by
the equivalence relation where two spheres A and A′ are considered to be
equivalent if ω(A) = ω(A′) (and hence 〈c1(M), A〉 = 〈c1(M), A′〉). The
homomorphisms Iω and Ic1 descend from π2(M) to Γ.
The group Γ acts on CF∗(H) and on HF∗(H) via recapping: an element

A ∈ Γ acts on a capped one-periodic orbit x̄ of H by attaching the sphere
A to the original capping. We denote the resulting capped orbit by x̄#A.
Then,

μCZ(x̄#A) = μCZ(x̄) + Ic1(A) and AH(x̄#A) = AH(x̄) + Iω(A).

In a similar vein, we also have

ΔH(x̄#A) = ΔH(x̄) + Ic1(A),

regardless of whether x is non-degenerate or not.
The Novikov ring Λ we consider here is the group algebra F[Γ] of Γ over

F. Namely, Λ comprises finite formal linear combinations
∑

αAeA, where
αA ∈ F and A ∈ Γ. Clearly, Λ is graded by setting |eA| = Ic1(A) for A ∈ Γ.
The action of Γ turns CF∗(H) and HF∗(H) into Λ-modules.
Since M is monotone or negative monotone and c1(M) |π2(M) �= 0, we

have Γ � Z. Denote by A the generator of Γ with Ic1(A) = −2N and set
q = eA ∈Λ. Then |q|= − 2N and Λ is the ring of Laurent polynomials
F[q−1, q].
The definition of Floer homology extends to all, not necessarily non-

degenerate, Hamiltonians by continuity. Let H be an arbitrary (one-periodic
in time) Hamiltonian on M and let the end points a and b of the action inter-
val be outside S(H). We set

HF(a, b)
∗ (H) = HF(a, b)

∗ (H̃),

where H̃ is a non-degenerate, small perturbation of H. It is well known that
the right hand side is independent of H̃ as long as the latter is sufficiently
close to H. Working with filtered Floer homology, we will always assume
that the end points of the action interval are not in the action spectrum. (At
this point the background assumption that M is rational becomes essential;
see [He] for the irrational case and also [GG1, Remark 2.3].)
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The total Floer homology is independent of the Hamiltonian and isomor-
phic to the homology of M . More precisely, we have

HF∗(H) ∼= H∗(M ;F)⊗ Λ

as graded Λ-modules.

Remark 2.1. We conclude this discussion by recalling that in order for
the Floer differential to be defined certain regularity conditions must be
satisfied generically. To ensure this, we have to either require M to be weakly
monotone (see [HS,MS,On,Sa]) or utilize the machinery of virtual cycles
(see [FO,FOOO,LT] or, for the polyfold approach, [HWZ1,HWZ2] and
references therein). In the latter case the ground field F is required to have
zero characteristic. Here, we are primarily interested in monotone manifolds,
which are of course weakly monotone, and negative monotone manifolds. The
latter are weakly monotone if and only if N ≥ n− 2.

2.2.2. Quantum (co)homology. The total Floer homology HF∗(H),
equipped with the pair-of-pants product, is an algebra over the Novikov ring
Λ. This algebra is isomorphic to the (small) quantum homology HQ∗(M);
see, e.g., [MS]. On the level of Λ-modules, we have

(2.1) HQ∗(M) = H∗(M)⊗ Λ

with the tensor product grading. Thus, |u ⊗ eA| = |u| + Ic1(A), where
u ∈ H∗(M) and A ∈ Γ. The isomorphism between HF∗(H) and HQ∗(M)
is defined via the PSS-homomorphism; see [PSS] or [MS, U2]. Alterna-
tively, it can be obtained from a homotopy of H to an autonomous C2-small
Hamiltonian (under slightly more restrictive conditions than weak mono-
tonicity, [HS]) or with a somewhat different definition of the total Floer
homology (as the limit of HF(a, b)

∗ (H) as a→ −∞ and b →∞, [On]).
The quantum product u ∗ v of two elements H∗(M) is defined as

(2.2) u ∗ v =
∑
A∈Γ

(u ∗ v)A eA,

where the class (u ∗ v)A ∈ H∗(M) is determined by the condition that

(u ∗ v)A ◦ w = GWM
A,3(u, v, w)

for all w ∈ H∗(M). Here ◦ denotes the intersection number and GWM
A,3 is

the corresponding Gromov–Witten invariant; see [MS].
Note that (u ∗ v)0 = u∩ v, where ∩ stands for the cap product and u and

v are ordinary homology classes. Furthermore,

|u ∗ v| = |u|+ |v| − 2n

and

(2.3) |(u ∗ v)A| = |u|+ |v| − 2n− Ic1(A).
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Also observe that Iω(A) = −ω(A) < 0 whenever A �= 0 can be represented
by a holomorphic curve. Thus, in (2.2), it suffices to limit the summation to
the negative cone Iω(A) ≤ 0. In particular, in our setting, we can write

u ∗ v = u ∩ v +
∑
k>0

(u ∗ v)k qk.

Here, |(u ∗ v)k| = |u| + |v| − 2n ± 2Nk when c1(M)|π2(M) �= 0, with the
positive or negative sign depending on whether M is positive or negative
monotone. This sum is finite.
The product ∗ extends to a Λ-linear, associative, graded-commutative

product on HQ∗(M). The fundamental class [M ] is the unit in the alge-
bra HQ∗(M). Thus, qu = (q[M ]) ∗ u, where q ∈ Λ and u ∈ H∗(M), and
|qu| = |q| + |u|. By the very definition of HQ∗(M), the ordinary homology
H∗(M) is canonically embedded in HQ∗(M). The group of symplectomor-
phisms acts on the algebra HQ∗(M) via its action on H∗(M) and, clearly,
symplectomorphisms isotopic to id act trivially.

Example 2.2. Let M = CPn. Then N = n + 1 and HQ∗(CPn) is the
quotient of F[u] ⊗ Λ, where u is the generator of H2n−2(CPn), by the ideal
generated by the relation un+1 = q[M ]. Thus, uk = u ∩ · · · ∩ u (k times)
when 0 ≤ k ≤ n and [pt] ∗ u = q[M ]. For further examples of calculations of
quantum homology and relevant references we refer the reader to, e.g., [MS].

The quantum cohomology HQ∗(M) is defined by dualizing the entire con-
struction. We have HQ∗(M) = H∗(M) ⊗ Λ as graded modules over the
Novikov ring Λ. The product of two ordinary cohomology classes is obtained
by taking the product of their Poincaré dual homology classes u and v and
then taking the Poincaré duals of the coefficients (u ∗ v)A. Note that this is
an exclusive feature of monotone (with λ �= 0) or negative monotone mani-
folds that here we can take the same Novikov ring as in the case homology;
see, e.g., [MS, Example 11.1.4 and Remark 11.1.16], for further details. For
our purposes, essentially for purely notational reasons, it is convenient to
swap the roles of q and q−1 in the identification of the Novikov ring with
the ring of Laurent polynomials. Thus, in cohomology, |q| = 2N .

2.3. Action selectors. The theory of Hamiltonian action selectors or spec-
tral invariants, as they are usually referred to, was developed in its present
Floer–theoretic form in [Oh, Sc] although the first versions of the theory
go back to [HZ,Vi2]. Here we briefly recall the main results of the theory
essential for our proofs, mainly following [GG1].
Let M be a closed symplectic manifold and let H be a Hamiltonian on M .

It is essential to assume here that M is rational — this assumption greatly
simplifies the theory (cf. [U1]) and is obviously satisfied for monotone or
negative monotone manifolds.
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The action selector cv associated with a non-zero class v ∈ HQ∗(M ;F) ∼=
HF∗(H) is defined as

cv(H) = inf{a ∈ R � S(H) | v ∈ im(ia)} = inf{a ∈ R � S(H) | ja(v) = 0},
where ia : HF(−∞, a)

∗ (H) → HF∗(H) and ja : HF∗(H) → HF(a,∞)
∗ (H) are

the natural “inclusion” and “quotient” maps. Then cv(H) > −∞ as is easy
to see; [Oh].
The action selector cv has the following properties:

(AS1) Normalization: c[M ](H) = maxH if H is autonomous and C2-small.
(AS2) Continuity: cv is Lipschitz in H in the C0-topology.
(AS3) Monotonicity: cv(H) ≥ cv(K) whenever H ≥ K pointwise.
(AS4) Hamiltonian shift: cv(H+a(t)) = cv(H)+

∫ 1
0 a(t) dt, where a : S1 → R.

(AS5) Symplectic invariance: cv(H) = cϕ−1∗ (v)(ϕ
∗H) for any symplectomor-

phism ϕ.
(AS6) Homotopy invariance: cv(H) = cv(K) when ϕH = ϕK in the universal

covering of the group of Hamiltonian diffeomorphisms and bothH and
K are normalized to have zero mean.

(AS7) Triangle inequality or sub-additivity: cv∗u(H	K) ≤ cv(H) + cu(K).
(AS8) Spectrality: cv(H) ∈ S(H). More specifically, there exists a capped

one-periodic orbit x̄ of H such that cv(H) = AH(x̄).
(AS9) Ljusternik–Schnirelman inequality: cv∗u(H) < cv(H), whenever one-

periodic orbits of H are isolated and u ∈ HQ∗<2n(M).
This list of the properties of c is far from exhaustive, but it is more

than sufficient for our purposes. It is worth emphasizing that the rationality
assumption plays an important role in the proofs of the homotopy invariance
and spectrality; see [Oh, Sc] and also [EP] for a simple proof. (The latter
property also holds in general for non-degenerate Hamiltonians. This is a
non-trivial result; [U1].) The Ljusternik–Schnirelman inequality, (AS9), is
established in [GG1, Proposition 6.2]. Finally note that for the triangle
inequality to hold one has to work with a suitable definition of the pair-of-
pants product in Floer homology; cf. [AS,U2]. We refer the reader to [U2]
for a very detailed treatment of action selectors.

2.4. Carrier of the action selector. When H is non-degenerate, the
action selector cv can also be evaluated as

cv(H) = inf
[σ]=v

AH(σ),

where we set

AH(σ) = max{AH(x̄) | σx̄ �= 0} for σ =
∑

σx̄x̄ ∈ CF|v|(H).

The infimum here is obviously attained when M is rational. Hence,
there exists a cycle σ =

∑
σx̄x̄ ∈ CF|v|(H), representing v, such that
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cv(H) = AH(x̄) for an orbit x̄ entering σ. In other words, x̄ maximizes the
action on σ and the cycle σ minimizes the action over all cycles in the homol-
ogy class v. We call such an orbit x̄ a carrier of the action selector. Note
that this is a stronger requirement than just the equality cv(H) = AH(x̄). A
carrier is not in general unique, but it becomes unique when all one-periodic
orbits of H have distinct action values.
Our next goal is to recall a generalization of this definition, following

[GG3], to the case where one-periodic orbits of H are isolated but possibly
degenerate. Under a C2-small, non-degenerate perturbation H̃ of H, every
such orbit x splits into several non-degenerate orbits that are close to x.
Furthermore, a capping of x naturally gives rise to a capping of each of
these orbits.

Definition 2.3. A capped one-periodic orbit x̄ of H is a carrier of the
action selector cv forH if there exists a sequence of C2-small, non-degenerate

perturbations H̃i
C2→ H such that one of the capped orbits which x̄ splits into

is a carrier for H̃i. An orbit (without capping) is said to be a carrier if it
turns into one for a suitable choice of capping.

It is easy to see that a carrier necessarily exists, provided that M is ratio-
nal and all one-periodic orbits of H are isolated. As in the non-degenerate
case, a carrier is of course not unique in general – different choices of
sequences H̃i and different choices of a carrier for H̃i can lead to differ-
ent carriers. However, it becomes unique when all one-periodic orbits of H
have distinct action values. In other words, under the latter requirement,
the carrier is independent of the choice of the sequence H̃i and the choice of
the carrier for H̃i.
Picking a carrier for every v ∈ HQ∗(M), we obtain a map, also referred

to as a carrier,

Φ̄H : HQ∗(M) \ {0} → P̄
sending v to the carrier for cv. This map, of course, is not unique unless H
has distinct action values.
Recall that M is assumed to be monotone with λ �= 0 or negative

monotone and c1(M) |π2(M) �= 0. In particular, Γ ∼= Z and |q| < 0.
Clearly, when H has distinct action values, Φ̄ is automatically equivariant

with respect to recapping:

(2.4) Φ̄H(qv) = Φ̄H(v)#A, where q = eA.

We claim that there is always a recapping-equivariant carrier Φ̄, i.e., a
carrier satisfying (2.4). Indeed, we can pick Φ̄ on HQd(M) for all d in any
degree range of length 2N (for instance, [0, 2N − 1]) and then extend it to
the entire quantum homology “by periodicity”, i.e., by imposing (2.4) on Φ̄.
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A carrier gives rise to a map, also referred to as a carrier,

Φ: HQ∗(M) \ {0} → P
forgetting the capping. Clearly, Φ is recapping–invariant, i.e., ΦH(qv) =
ΦH(v), when Φ̄ is recapping-equivariant.

Remark 2.4. Note that, as an immediate consequence of the definition of
the carrier and continuity of the action and the mean index, we have

(2.5) cv(H) = AH(x̄) and |v| − 2n ≤ ΔH(x̄) ≤ |v|,
where x̄ = Φ̄(v), and the inequalities are strict when x is weakly non-
degenerate. Furthermore, the local Floer homology of H at x̄ in degree |v| is
non-trivial: HF|v|(H, x̄) �= 0. (This fact is established in [GG3] for v = [M ];
but the argument applies to other homology classes word-for-word. We refer
the reader to, e.g., [GG1,GG2] for a detailed discussion of the local Floer
homology.) Finally note that under our requirements on M it is not hard to
show that Φ̄ can be chosen so that Φ̄H(αv) = Φ̄H(v) for all α �= 0 in F.

Remark 2.5. We finish this discussion with one minor, fairly standard,
technical point; cf. [GG3]. Namely, recall that the Floer complex of a non-
degenerate Hamiltonian H depends not only on H but also on an auxiliary
structure J , e.g., an almost complex structure when M is weakly monotone.
Moreover, the complex is defined only when suitable regularity requirements
are met. As a consequence, an action selector carrier is in reality assigned
to the pair (H, J) rather than to just a Hamiltonian H in both the non-
degenerate and degenerate cases. Thus, in Definition 2.3, we tacitly assumed
the presence of an auxiliary structure J in the background and that the
regularity requirements are satisfied for the sequence of perturbations. This
can be achieved by either considering regular pairs (H̃i, Ji) with Ji → J or
even by setting Ji = J .

3. Proof of Theorem 1.1

Let, as in Theorem 1.1, ϕH be a Hamiltonian diffeomorphism with finitely
many periodic orbits of a monotone symplectic manifold M . (Recall that we
can assume that 〈c1(M), π2(M)〉 �= 0; for otherwise ϕH has infinitely many
periodic points; see [GG1,He] and also [Gi,Hi]). Recall also that P (and
P̄) stand for the collection of (capped) one-periodic orbits of ϕH.
Although the theorem is stated in terms of cohomology, we find working

with homology more intuitive at this stage. When translated to homology,
the cohomological product decomposition (1.1) retains the same form

(3.1) u0 ∗ u1 ∗ · · · ∗ u� = qνu0,
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where now all uj are in HQ∗(M), the classes u1, . . . , u� have degree less than
2n, and

(3.2) 2n(�− 1)− |u1| − · · · − |u�−1| < 2N.

As in (1.1), we have ν > 0.
In Case (ii) we simply have ud �= 0, where |u| < 2n. Recall also that now,

since we are using homology, |q| = −2N .

3.1. Case (i). Set
v0 := u0,
v1 := v0 ∗ u1,
v2 := v1 ∗ u2,
. . . . . . . . . . . . . . . . . . . . . .
v�−1 := v�−2 ∗ u�−1.

It is convenient to extend the sequence vj with 0 ≤ j ≤ � − 1 in both
directions by periodicity, using (3.1) in the definition of v�. Namely, we set

v� := v�−1 ∗ u� = qνv0,
v�+1 := v� ∗ u1 = qνv1,
v�+2 := v�+1 ∗ u2 = qνv2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and
v−1 := q−νv�−1 = v−2 ∗ u�−1,

where
v−2 := q−νv�−2 = v−3 ∗ u�−2,

etc. As a result, we have a sequence vj such that

(3.3) vj+� = qνvj

for some ν > 0, and

(3.4) vj+1 = vj ∗ wj+1,

for some wj ∈ HQ∗<2n(M). (Here wj+1 = uj+1 for j = 0, . . . , �− 1 and then
again the sequence wj extends by periodicity.) We call such a sequence {vj}
a ladder and � the length of the ladder. Let us denote the entire ladder by
L and its segment {v0, . . . , v�−1} by V .
It is important for what follows that in addition to the requirements (3.3)

and (3.4) we also have (3.2) satisfied, i.e., in terms of the ladder,

(3.5) |v0| > |v1| > · · · > |v�−1| > |v0| − 2N.

Clearly, a ladder L = {vj} is strictly ordered by the index |vj | (or, to be
more precise, the degree), since |wj | < 2n. (This fact is also incorporated in
(3.5).) Furthermore, for any Hamiltonian K with isolated fixed points, L is
strictly ordered by the action, i.e.,

(3.6) cvj (K) > cvj+1(K) for all j.
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Here the non-strict inequality follows immediately from (3.4) and the sub-
additivity of the action selector, (AS7), and holds for any K. The strict
inequality requires the fixed points of K to be isolated and is a consequence
of the Ljusternik–Schnirelman inequality (AS9), cf. [GG1, Proposition 6.2].
It is essential that these two orderings of L coincide.
We claim that there exists a sequence of prime iterations ki → ∞ and a

sequence of recapping–equivariant action selector carriers Φ̄H�ki such that
all maps ΦH�ki |V (or, equivalently, ΦH�ki |L) coincide, i.e.,
(3.7) ΦH�k1 (vj) = ΦH�k2 (vj) = · · · = ΦH�ki (vj) = · · ·
for all j = 0, . . . , �− 1 and hence, by periodicity of L, for all j ∈ Z. In other
words, all carriers Φ̄H�ki assume the same value, up to recapping, on each
class vj in L.
Indeed, note that since ϕH has finitely many periodic orbits, for every suf-

ficiently large prime pi, every pi-periodic point is in fact a fixed point. Thus
we start with a sequence pi of all sufficiently large primes. The existence of
the subsequence ki in this sequence follows immediately from the pigeonhole
principle and the existence of a recapping-equivariant carrier for any Hamil-
tonian. Indeed, the collection of maps from V to P is finite. Hence, there is
only a finite number of possible maps ΦH�pi |V .
Remark 3.1. When the ground field F is finite, a similar argument shows
that every infinite sequence of iterations contains an infinite subsequence ki

such that the carriers Φ̄H�ki are recapping-equivariant and all ΦH�ki are iden-
tically equal to each other on HQ∗(M ;F). (It is not clear however whether
this would also be true when, for instance, F = Q.) In fact, for any ground
field F, the argument applies to any finite collection of non-zero elements in
HQ∗(M ;F) in place of V .

Before we continue the proof, let us introduce some notation. Namely, set

Φ̄i = Φ̄H�ki |L : L→ P̄.

These maps are one-to-one by (3.6). Also note that the maps Φi = ΦH�ki |L
agree, due to (3.7), and we denote them by Φ in what follows.
Next we claim that all fixed points in the image Φ(L) = Φ(V ) have the

same augmented action. Thus let us pick two points x and y in the image.
Our goal is to show that

ÃH(x) = ÃH(y)
or, equivalently, once arbitrary cappings of x and y are fixed, that

(3.8) AH(x̄)−AH(ȳ) = λ

2
(
ΔH(x̄)−ΔH(ȳ)

)
,

where λ is the monotonicity constant. (Recall that λ and the rationality
constant λ0 are related by λ = λ0/N .)
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Remark 3.2. It is essential for the proof of Case (ii) that the reasoning
establishing (3.8) only uses the periodicity property (3.3) and the action
ordering property (3.6). Other than relying on these two results, it is inde-
pendent of the fact that L is a ladder: the product requirement (3.4) does not
enter the argument directly, but only via the proof of (3.6). Furthermore,
to prove in the non-degenerate case that all orbits in Φ(V ) are distinct we
will only use (3.5).

Consider the capped orbits x̄ki and ȳki . These orbits need not be in the
image of Φ̄i unless ν = 1. We denote the orbits in the image, closest to x̄ki

and ȳki , by x̄i and ȳi, respectively. In other words, x̄i = qlx̄ki and ȳi = qmȳki ,
where the integers l and m are chosen so that x̄i and ȳi are in Im(Φ̄i) and
|l| and |m| are as small as possible. (If the closest orbit is not unique – there
can be two – we pick it in an arbitrary way. When ν = 1, we have x̄i = x̄ki

and ȳi = ȳki .) It follows from the qν-periodicity of L that |l| and |m| do not
exceed ν/2 and hence

(3.9)
∣∣AH�ki (x̄i)−AH�ki (x̄

ki)
∣∣ ≤ λ0ν

2
and

∣∣AH�ki (ȳi)−AH�ki (ȳ
ki)

∣∣ ≤ λ0ν

2

and

(3.10)
∣∣ΔH�ki (x̄i)−ΔH�ki (x̄

ki)
∣∣ ≤ Nν and

∣∣ΔH�ki (ȳi)−ΔH�ki (ȳ
ki)

∣∣ ≤ Nν.

Indeed, among all cappings of x or y those coming from L via Φ̄i for any i
occur periodically at least once within any interval of ν cappings.
Let us estimate the number mi of capped orbits in Φ̄i(L) between x̄i and

ȳi using the action and index orderings. Note that the map Φ̄i and even its
image (unless ν = 1) depend on i and so does mi. However, by (3.5) and
(3.6), the two orderings agree for every i, and the results must be the same
whether we use the index or action ordering. Without loss of generality, we
may assume that AH(x̄) > AH(ȳ) and hence AH�ki (x̄ki) > AH�ki (ȳki).
Every class in V contributes an orbit occurring periodically in L. From

the action perspective, the period is λ0ν by (3.1). Thus, we have

mi =
|Φ(V )|
λ0ν

(AH�ki (x̄i)−AH�ki (ȳi)
)
+O(1)

=
|Φ(V )|
λ0ν

(AH�ki (x̄
ki)−AH�ki (ȳ

ki)
)
+O(1),

where we use (3.9) to pass to the second equality. Henceforth O(1) stands
for a term bounded from above and below by a constant independent of i.
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From the index perspective, the period is 2Nν and we have, using now
(3.10),

mi =
|Φ(V )|
2Nν

(
ΔH�ki (x̄i)−ΔH�ki (ȳi)

)
+O(1)

=
|Φ(V )|
2Nν

(
ΔH�ki (x̄

ki)−ΔH�ki (ȳ
ki)

)
+O(1).

Equating the results, we see after a simple algebraic manipulation that
1
λ0

(AH�ki (x̄
ki)−AH�ki (ȳ

ki)
)
=

1
2N

(
ΔH�ki (x̄

ki)−ΔH�ki (ȳ
ki)

)
+O(1).

Dividing by ki and passing to the limit as ki →∞, we arrive at (3.8) since the
action and the mean index are homogeneous with respect to the iteration.
Finally set

xj = Φ(vj), for j = 0, . . . , �− 1.
To finish the proof, we only need to show that these orbits are distinct, i.e.,
|Φ(V )| = �. Let us cap the orbits using say Φ̄1, i.e., by setting x̄j = Φ̄1(vj).
Then by (3.6), we have

A
H

�k1
(x̄0) > A

H
�k1
(x̄1) > · · · > A

H
�k1
(x̄�−1) > A

H
�k1
(x̄0)− λ0ν.

When ν = 1, this immediately implies that no two orbits Φ(V ) are recap-
pings of each other. When ν > 1, we use the Conley–Zehnder index — hence
the non-degeneracy assumption — rather than the action to distinguish the
orbits. Namely, recall that μCZ(x̄j) = |vj | − n. Thus, (3.5) is equivalent to

μCZ(x̄0) > μCZ(x̄1) > · · · > μCZ(x̄�−1) > μCZ(x̄0)− 2N,

and, as a consequence,
∣∣μCZ(x̄j)−μCZ(x̄k)

∣∣ < 2N . Hence, all orbits in Φ(V )
are distinct.

3.2. Case (ii). The idea of the proof is that for the previous argument to
go through we do not need the product decomposition (3.1) to hold literally.
It is in fact sufficient to have action selector carriers taking the same value
(up to a capping) on the left and right hand sides of (3.1) for the sequence of
iterations ki. The proof shares many common elements with the reasoning
in Case (i) and below we only detail the necessary changes.
Consider the finite collection

U = {u, u2, . . . , ud}
of non-zero elements in HQ∗<2n(M), where

(3.11) |ur| = 2n− (2n− |u|)r.
By arguing exactly as in the proof of Case (i), it is easy to find a sequence of
prime iterations ki and a sequence of recapping–equivariant action selector
carriers Φ̄H�ki such that the maps ΦH�ki agree on U ; cf. Remark 3.1. Let us
denote the resulting map U → P by Φ.
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Since |U | = d is sufficiently large, e.g.,

|U | =
⌈
2N |P|
2n− |u|

⌉
+ 1,

there exist s− and s+, both in the range [1, d], such that s+ > s−+2N/(2n−
|u|) or, equivalently, ∣∣us−

∣∣− ∣∣us+
∣∣ > 2N

and
Φ(us−) = Φ(us+).

This is again an immediate consequence of the pigeonhole principle. Indeed,
otherwise the number of classes mapped to any point in P would not exceed
2N/(2n− |u|), and hence we would have |U | ≤ 2N |P|/(2n− |u|).
Let, as in Section 2.2, A be the generator of Γ such that Ic1(A) = −2N ,

i.e., q = eA. For every ki,

(3.12) Φ̄H�ki (u
s+) = Φ̄H�ki (u

s−)#(νA),

where ν = (s+−s−)(2n−|u|)/2N since, due to the non-degeneracy assump-
tion,

μCZ

(
Φ̄H�ki (u

s+)
)
= |us+ | − n and μCZ

(
Φ̄H�ki (u

s−)
)
= |us− | − n.

In particular, ν is independent of ki. (One can bypass this reference to non-
degeneracy by observing that there are only finitely many possible values
of ν, as a simple mean index argument shows, and then by passing to a
subsequence of iterations.)
Let us set � =

⌊
2N/(2n− |u|)⌋. Consider the finite sequence V formed by

� classes
v0 := us− ,
v1 := us−+1 = v0 ∗ u,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v�−1 := us−+�−1 = v�−2 ∗ u,

which we extend in both directions by qν-periodicity to have (3.3) satisfied.
In other words, we set

v� = qνv0, v�+1 = qνv1, . . .

and
v−1 = q−νv�−1, v−2 = q−νv�−2, . . . .

Note that

(3.13) us+ = v�−1 ∗ us+−s−−�+1, where s+ − s− − �+ 1 > 0

due to our choice of �. Furthermore, for all i, we have

(3.14) cus+

(
H�ki

)
= cv�

(
H�ki

)
by (3.12) and the definition of v�.
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The sequence L = {vj} is not a ladder. For (3.4) need not hold for j = �.
However, we claim that L is still strictly ordered by the index and the action
(for the Hamiltonians H�ki) and that the two orderings agree.
For the index ordering, this immediately follows from (3.11) and our choice

of �. To see that L is strictly ordered by the action, i.e., (3.6) holds for
K = H�ki , we argue as follows. For j in the range from 0 to �− 2, exactly as
in Case (i) this follows from (AS9) for any Hamiltonian with isolated fixed
points. For j = �− 1, we have

cv�

(
H�ki

)
= cv0

(
H�ki

)− νλ0

= cus−
(
H�ki

)− νλ0

= cus+

(
H�ki

)
< cv�−1

(
H�ki

)
.

Here the third equality follows from (3.12). The ultimate inequality is again
a consequence of the Ljusternik–Schnirelman inequality, (AS9), and (3.13)
and (3.14). Hence, the required inequalities (3.6) hold for j = 0, . . . , � − 1
and, by periodicity, for all j and K = H�ki .
Finally note that (3.5) is satisfied by the definition of L and �. With these

observations in mind, the proof is finished exactly in the same way in Case
(i); cf. Remark 3.2.

4. Proof of Theorem 1.8

The proof follows roughly the same line of reasoning as the argument in
[GG3] with some changes in the general logic of the proof. Throughout this
section, we will use the notation and conventions from Sections 2 and 3.
Arguing by contradiction, assume that all periodic orbits of ϕH with suf-

ficiently large period are iterated. In particular, for every large prime k the
set of contractible k-periodic orbits is naturally identified with the set P
of contractible one-periodic orbits. Then there exists a sequence of primes
ki →∞ and a sequence of recapping-equivariant action carriers Φ̄H�ki such
that

ΦH�k1

(
[M ]

)
= ΦH�k2

(
[M ]

)
= · · · .

Indeed, for a large prime k, the carrier ΦH�k takes values in P and the
assertion follows from the pigeonhole principle. We denote the resulting fixed
point by x. Thus, we have

ΦH�ki

(
[M ]

)
= xki .

Set

Φ̄H�ki

(
[M ]

)
= x̄ki .
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Let us first focus on the capped orbit x̄k1 . By Remark 2.4 and, in particular,
(2.5), we have

0 ≤ ΔH�k1 (x̄k1) ≤ 2n and AH�k1 (x̄k1) = c[M ]

(
H�k1

)
.

We treat the cases where the mean index is zero and where it is positive
separately. These are the so-called degenerate and weakly non-degenerate
cases of the Conley conjecture.

The degenerate case: ΔH�k1 (x̄k1) = 0. Note that we can, without loss
of generality, take k1 arbitrarily large. More specifically, we can assume
that k1 is so large that none of the Floquet multipliers, different from one,
of any one-periodic orbit y ∈ P is a k1th root of unity. In other words,
using the terminology from [GG2], k1 is an admissible iteration of ϕH.
Furthermore, we require k1 to be large enough to ensure that ΔH(y) = 0
mod 2N whenever k1ΔH(y) = 0 mod 2N for any y ∈ P. (Here we treat the
mean index as an element of R/2NZ, which is obviously well–defined, i.e.,
independent of the capping.)
In particular, we have

k1ΔH(x) = ΔH�k1 (x
k1) = ΔH�k1 (x̄k1) = 0 mod 2N,

and hence ΔH(x) = 0 mod 2N . As a consequence, ΔH(x̄) = 0 for a suitable
capping x̄ of x. With this capping, ΔH�k1

(
x̄k1

)
= ΔH�k1

(
x̄k1

)
in Z, and

therefore x̄k1 = x̄k1 , since M is negative monotone.
We claim that x̄ is a so-called symplectically degenerate maximum of H,

i.e., HF2n(H, x̄) �= 0 and ΔH(x̄) = 0; [GG1]. (See also [Gi,GG2,He] for
the definition, a detailed discussion and applications of this notion, which
originates from Hingston’s proof of the Conley conjecture for tori; see [Hi].)
The vanishing of the mean index has already been established. On the other
hand, the local Floer homology of x̄ in degree 2n does not vanish since

HF2n(H, x̄) = HF2n
(
H�k1 , x̄k1

) �= 0.

Here, the first equality is a consequence of the persistence of local Floer
homology for admissible iterations established in [GG2] and the second one
follows from Remark 2.4.
In the presence of a symplectically degenerate maximum, the Conley

conjecture (the existence of simple orbits with arbitrarily large period) is
proved for rational, and in particular negative-monotone, symplectic mani-
folds in [GG1]. This concludes the proof of Theorem 1.8 in the degenerate
case.

The weakly non-degenerate case: ΔH�k1 (x̄k1) > 0. Set li = 	ki/k1

and let ri to be the remainder of dividing ki by k1, i.e., lik1 + ri = ki and
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0 ≤ ri < k1. Define νi by

(4.1) x̄ki = x̄li
k1
#(νiA),

where A is a generator of Γ.
Looking at the action values on x̄ki , we have,

AH�ki (x̄ki) = c[M ]

(
H�ki

)
≤ li c[M ]

(
H�k1

)
+ c[M ]

(
H�ri

)
≤ li c[M ]

(
H�k1

)
+ const,

where const stands for a constant independent of i. Here, the first inequality
follows from the sub-additivity of the action selector.
On the other hand, by (4.1) and since the action is homogeneous,

AH�ki (x̄ki) = liAH�k1 (x̄k1) + νiIω(A),

and thus

(4.2) νiIω(A) ≤ const.

Examining the mean indexes, we obtain in a similar vein that

ΔH�ki (x̄ki) = liΔH�k1 (x̄k1) + νiIc1(A),

where we used again (4.1) and the homogeneity of the mean index. By the
weak non-degeneracy assumption we have ΔH�k1 (x̄k1) > 0, and we conclude
that

νiIc1(A)→ −∞
as ki →∞. Therefore, since M is negative monotone,

νiIω(A)→∞,

which is impossible due to (4.2). This contradiction completes the proof of
the theorem.
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systems, Vol. I – Warsaw, Astérisque, 49 (1977), 37–59.
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