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Abstract

Predicting action class from partially observed videos, which
is known as action prediction, is an important task in com-
puter vision field with many applications. The challenge for
action prediction mainly lies in the lack of discriminative ac-
tion information for the partially observed videos. To tackle
this challenge, in this work, we propose to transfer action
knowledge learned from fully observed videos for improving
the prediction of partially observed videos. Specifically, we
develop a two-stage learning framework for action knowl-
edge transfer. At the first stage, we learn feature embed-
dings and discriminative action classifier from full videos.
The knowledge in the learned embeddings and classifier is
then transferred to the partial videos at the second stage. Our
experiments on the UCF-101 and HMDB-51 datasets show
that the proposed action knowledge transfer method can sig-
nificantly improve the performance of action prediction, es-
pecially for the actions with small observation ratios (e.g.,
10%). We also experimentally illustrate that our method out-
performs all the state-of-the-art action prediction systems.

Action prediction is an important computer vision prob-
lem with many real-world applications. For example, in
the traffic system, it is greatly expected that accidents can
be predicted at earlier stages. Also, the computational re-
source can be saved if actions can be recognized from
partial observations without processing the whole videos.
Compared with the rapid progress in video action recog-
nition (Simonyan and Zisserman 2014; Wang et al. 2016;
Carreira and Zisserman 2017), the advance in action pre-
diction is still unsatisfying, especially when the actions are
observed at very early stage (e.g., 10%). In principal, the
existing action recognition systems can be directly used for
action prediction by treating partial videos as full videos.
However, these models typically perform poorly for action
prediction, since they are not specifically developed for min-
ing action information from partial videos.

The main challenge for action prediction is that partially
observed videos often contain incomplete action executions,
and thus have less action information than the fully observed
ones. These partially observed videos are more likely to be
confused between different action classes. Take Figure 1 for
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Figure 1: Actions from different classes may be very similar
at the beginning stage. From the partially observed video, it
is not clear whether the boy was kicking a ball on the grass
or doing somersault. From the fully observed video however,
it is clear that the action was somersault. This motivates us
to transfer the knowledge from full videos to partial videos.

example. From the partially observed video in Figure 1, it
is not clear whether the boy was kicking a ball on the grass
or doing somersault. To improve the performance for action
prediction, previous works mainly focus on improving the
discriminative power of partial videos by developing max
margin learning (Kong and Fu 2015) or soft regression (Hu
et al. 2016) frameworks. Considering the superior perfor-
mance of existing action recognition models for recognizing
actions from full videos, it is more attractive to transfer the
knowledge contained in full videos to the partial videos. This
idea was firstly explored in (Kong, Tao, and Fu 2017) and
(Qin et al. 2017), where knowledge transfer was achieved
by reconstructing the visual features of the full videos from
the features of the partial videos. To obtain better predic-
tion results, they also incorporated the action class informa-
tion as additional constraints into their learning frameworks.
This, however, could result in a sub-optimal solution both
for feature reconstruction and action class information en-
coding, since their objectives for optimization are quite dif-
ferent. Furthermore, in their works, the action label for the
full video is directly used to represent partial videos, which
may introduce noises since partial videos often contain in-
complete action executions.
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To solve the aforementioned problems, we propose a
novel knowledge transfer method for action prediction. Our
method intends to learn rich action knowledge from full
videos, and then transfer the knowledge to partial videos for
the prediction of partially observed actions. This is achieved
by developing a two-stage learning framework. At the first
stage, we learn a set of feature embeddings and a discrimina-
tive classifier from full videos. The knowledge in the learned
embeddings and classifier is then transferred to the partial
videos at the second stage, improving action prediction with
partial videos. To encode rich information about action class
in the learned embeddings for full videos, we enforce the
distances between embeddings of different action classes to
be larger than a margin, by employing the Additive Margin
(AM) Softmax (Wang et al. 2018). Our discriminative clas-
sifier is learned only from the full videos, and thus has the
advantage of avoiding noises introduced by partial videos,
as partial videos often contain incomplete action executions.
We have experimentally demonstrated that the prediction
performance can be significantly improved by our proposed
knowledge transfer framework.

The main contribution of this paper is two-fold. Firstly,
we propose a novel knowledge transfer framework to boost
the performance of action prediction with partial videos, by
transferring knowledge from feature embeddings and dis-
criminative classifier of full videos. Secondly, our method
shows remarkable improvement for action prediction over
several baselines, and outperforms all the state-of-the-art ac-
tion prediction systems.

Related Works
Action recognition is a widely studied task in computer vi-
sion, which takes a fully observed video as input and output
the action class depicted in the video. Traditional methods
mainly focused on developing hand-crafted features for cap-
turing action appearance and motion, among which dense
trajectory (Wang et al. 2011) and its improvement (Wang
and Schmid 2013) showed impressive results. Recent stud-
ies showed that deep learning methods such as convolutional
neural networks (CNNs) can obtain good results for learn-
ing spatiotemporal features. Two-stream architecture (Si-
monyan and Zisserman 2014) learned spatial and temporal
information separately from RGB frame and stacked opti-
cal flow streams. Features from the two streams were fur-
ther enhanced by fusion operations (Feichtenhofer, Pinz, and
Zisserman 2016; Feichtenhofer, Pinz, and Wildes 2017) or
long-term temporal modelling (Wang et al. 2016). In (Tran
et al. 2015), spatiotemporal features were learned jointly
by 3D convolutions. Carreira et al. (Carreira and Zisserman
2017) inflated existing 2D CNNs with pre-trained weights
into 3D ones. Deeper architectures (Hara, Kataoka, and
Satoh 2018) and decompositions (Qiu, Yao, and Mei 2017;
Tran et al. 2018) were also studied for 3D convolutions.
These methods mainly learned features for the videos with
full action executions.

Action prediction aims to predict actions from partially
observed videos, before end of the action executions. Ryoo
et al. (Ryoo 2012) proposed to use integral and dynamic
bag-of-words for action prediction. In (Kong and Fu 2015), a

max margin learning framework was presented to learn dis-
criminative features for prediction. Monotonic constraints
were also utilize for early action detection (Ma, Sigal, and
Sclaroff 2016). Instead of adding constraints to the score
function, Hu et al. (Hu et al. 2016) proposed to learn a set
of soft labels for annotating partial action sequences. Lan
et al. (Lan, Chen, and Savarese 2014) developed hierarchi-
cal representations at multiple granularities to predict hu-
man action before it starts. Vondrick et al. (Vondrick, Pirsi-
avash, and Torralba 2016) proposed to predict the feature
of future frames to learn better representations for action
recognition. These approaches do not seek to make use of
the action knowledge learned from full sequences for pre-
diction. In (Kong, Tao, and Fu 2017; Qin et al. 2017), knowl-
edge in full videos was transferred to partial videos by con-
structing a linear projection from the visual features of par-
tial video to those of full videos. We also enhance the dis-
criminative power of partial videos by transferring knowl-
edge from full videos to partial videos. Different from ex-
isting approaches, we propose to mine rich action knowl-
edge from full videos. This is achieved by learning fea-
ture embeddings for full videos in a discriminative way. We
then transfer the knowledge from the learned embeddings
and discriminative function to partial videos. Metric learn-
ing is also exploited for action prediction (Lai et al. 2018;
Kong et al. 2018). Despite the impressive performance, these
models relied on nearest neighbor matching during infer-
ence, which is computationally expensive. Our method is
more computationally efficient both for training and infer-
ence, and thus is more feasible for practical applications.

Knowledge distillation is also related to our work. In
(Hinton, Vinyals, and Dean 2015; Huang and Wang 2017;
Yim et al. 2017), the knowledge contained in a large net-
work was distilled and transferred to a small network, by
enforcing the outputs or intermediate activations of the small
network to match those of the large network. We employed
a similar idea of knowledge transfer. Different from knowl-
edge distillation, our goal is to improve the discriminative
power of partially observed videos, and we achieve this goal
by transferring knowledge from the embedding and classi-
fier knowledge learned from full videos.

Our Approach

Given an action video (may be partially observed), our
goal is to predict the action class depicted in the video.
Following (Kong and Fu 2015; Kong, Tao, and Fu 2017;
Kong et al. 2018; Hu et al. 2018), we divide a video x con-
taining T frames uniformly into K sub-segments (K=10 in
our case). Each segment contains K

T
frames, and the k-th

segment ranges from the [(k − 1) · T
K

+ 1]-th frame to the

(kT
K
)-th frame. A partial video x(k) is generated from the

full video x by taking the beginning k segments, and the cor-
responding progress level and observation ratio are defined
as k and k

K
, respectively. Indeed, for the fully observed ac-

tions (i.e., the observation ratio r is 1), any existing action
recognition model (e.g., 3D CNN (Hara, Kataoka, and Satoh
2018)) can be employed for prediction. However, for the
prediction of videos with partial action executions (e.g., the
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Figure 2: Learning architecture for our proposed two-stage knowledge transfer scheme. Blocks with dashed lines are learned
at the first stage and fixed at the second stage. Blocks with solid lines are learned at the second stage, where light blue blocks
correspond to the embedding knowledge transfer, and orange blocks correspond to discriminative classifier knowledge transfer.
Red arrows are for loss computation. Best viewed in color.

observation ratio r = 0.1), these recognition models often
perform poorly as partially observed videos do not contain
enough action information for recognition. Here, we aim at
boosting the performance of existing recognition model for
predicting the actions at early stages, without sacrificing the
recognition accuracy for full videos.

Our method first learns a set of feature embeddings and
a discriminative action classifier from full videos, and then
use the knowledge gained from the full videos (the learned
embeddings and discriminative function) to guide our fea-
ture learning for the partial videos. The overall learning ar-
chitecture is presented in Figure 2. As shown, our learning
framework consists of two stages. At the first stage, we learn
feature embeddings and a discriminative classifier from the
visual features of full videos. At the second stage, we learn a
set of projections to map the visual features of partial videos
into the embedding space. During the projection learning,
the embeddings and classifier learned from full videos are
fixed and used to transfer the action knowledge gained from
full video to partial videos.

Learning Action Knowledge from Full Videos

Firstly, we would like to learn a set of feature embeddings
and an action classifier from the full videos, which will be
used to guide our feature learning for the partial videos. To
encode more information about action class, the feature em-
beddings are learned so that they have large inter-class dis-
tances and small intra-class distances. Here, instead of us-
ing the push-and-pull learning strategy popularly used for
metric learning, we opt to learn the embeddings under a dis-
criminative learning framework, so that both the learned em-
beddings and discriminative function can capture rich action
information, which will be transferred to partial videos.

Given a set of full videos {xi} with corresponding fea-
tures {fi} and labels {yi}, we intend to learn an embedding
function G to project the original feature onto an embed-

ding space, and a discriminative classifier D to project the
embedding to the label space:

ei = G(fi), (1)

pi = D(ei). (2)

Here, we define the linear discriminative function as D(e) =
We, where W ∈ Rp×C is the weight encoding the action
class information, which would be learned in the training
phase. C is the number of action classes and p is the di-
mension of the embeddings. To encourage large distances
between embeddings from different classes, we employed
the AM Softmax (Wang et al. 2018) to constrain our fea-
ture embedding and classifier learning. In specific, we would
minimize the following cross-entropy loss:

LAMS = −
1

n

n∑

i=1

log
es·(cosθ

yi
i

−m)

es·(cosθ
yi
i

−m) +
∑c

j=1,j 6=yi
es·cosθ

j

i

(3)

= −
1

n

n∑

i=1

log
e
s·(wT

yi
ei−m)

e
s·(wT

yi
ei−m) +

∑c

j=1,j 6=yi
es·w

T
j
ei

,

(4)

where wT
j is the j-th row of W. Here, both ei and wT

j are

L2-normalized. Hence, the element p
j
i can be considered

as the cosine distance between ei and wj : p
j
i = wT

j ei =

cos θji . A margin m is added to the cross-entropy loss to ex-
plicitly constrain the inter-class distances.

Minimizing LAMS will enforce large cosine distance be-
tween embeddings of the videos from different classes.
Since the embeddings are L2-normalized, this can also lead
to smaller intra-class distances. By employing the AM Soft-
max, both the learned embeddings and classifier contain rich
information about action class, which can benefit our knowl-
edge transfer. A scaling factor s is applied for better conver-
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gence, as suggested in (Wang et al. 2017). The parameters
m and s are fixed during the model training.

Transferring Action Knowledge to Partial Videos

After learning embeddings and action classifier from full
videos at the above stage, we then transfer the knowledge
(the learned embeddings and classifier) to partial videos to
improve the prediction performance. Considering that par-
tial videos often contain only a part of action executions,
learning action classifier from partial videos could introduce
some noises. Therefore, here we mainly learn a set of pro-
jections to project the visual features of partial videos onto
the embedding space with the action classifier fixed.

Similar to that for the full videos, visual features from
partial videos are also projected onto the embedding space,
so that the knowledge contained in full videos can be trans-
ferred to partial videos. Here, we use linear projection with
weights WE ,WD ∈ Rd×p for our projections, where d is
the dimension of the features, and p the dimension of the

embeddings. Given visual feature f
(k)
i for the partial video

x
(k)
i and the embedding ei of the corresponding full video

xi, the projection parameterized by WE is learned to min-
imize the squared Euclidean distance between the projected
feature eki and the embedding ei:

LE =
1

n

n∑

i=1

K∑

k=1

||WEf
(k)
i − ei||

2
2. (5)

Note that linear projection is also employed in (Qin et al.
2017) and (Kong, Tao, and Fu 2017), with a similar goal of
using knowledge contained in full videos to improve the pre-
diction of partial videos. However, they proposed to recon-
struct the visual features of full videos, which are lack of ac-
tion class information. To obtain better learning results, they
incorporated the action label information as additional con-
straints into their learning framework, which may result in a
sub-optimal solution for both knowledge transfer and label
information encoding. In comparison, we propose to first en-
code the action class information in the embeddings for full
videos. The learned embeddings serve as a unified target for
transferring both the knowledge in full videos and the action
class information to partial videos. By transferring knowl-
edge from a unified target, learning becomes much easier,
and is more flexible to extend to deeper architectures.

In addition to the embeddings of full video, the learned
discriminative classifier also contains some important action
cues, which can be exploited for the partial videos. A linear
projection with weight WD is learned to exploit the knowl-
edge in the discriminative classifier. More specifically, given

the learned action classifier W and visual feature f
(k)
i for

partial video x
(k)
i , our discriminative knowledge transfer is

achieved by minimizing the following cross-entropy loss:

LD = −
1

n

n∑

i=1

K∑

k=1

log
e
w

T
yi

WDf
(k)
i

∑c

j=1 e
wT

j
WDf

(k)
i

, (6)

where wT
yi

is the yi-th row of W, which is fixed during the
learning for WD.

Note that features from videos of different progress level
typically have different distributions. Sharing the projec-
tion weights across different progress levels may not be
optimal. Here, we select to learn two projection weights

(W
(k)
E ,W

(k)
D ) for each progress level k. In practice, the

progress level of the partially observed video is not pro-
vided, and thus needs to be estimated. We formulate the
progress level estimation as a classification problem, where
a two-layer Multi-Layer Perceptron (MLP) is applied on the
extracted features to obtain K scores corresponding to K
progress levels. During training, the progress level is avail-
able, and a standard cross-entropy loss LP is employed for
the MLP learning. During inference, the MLP computes a
estimation score for each progress level. The input partial
video is fed into the projection modules for all progress lev-
els, and the estimation scores are used as weights for com-
bining the projection outputs of all progress levels.

Overall, the loss function for the second stage of our
learning framework is as follows:

L = LD + βLE + γLP . (7)

The weighting factors β and γ are hyper-parameters deter-
mined by cross-validation.

Model Training and Inference

Training. Our model training consists two stages. At the
first stage, embeddings and the action classifier are learned
from full videos with the loss defined in Eq. (3). At the sec-

ond stage, projections (W
(k)
E ,W

(k)
D ) for each progress level

k are learned with the loss in Eq. 7. In this step, the embed-
dings and action classifier are fixed and used to improve our
feature learning for the partial videos.

Inference. Figure 3 shows our model architecture for in-

ference. During inference, feature f (k) for the partial video

x(k) is projected to the embedding space by WE and WD,

respectively. Estimated score α(p) for each progress level p
is also computed if the progress level is unknown. Then the

prediction scores p(k) are computed as follows:

e(k) =

K∑

p=1

α(p)(W
(p)
E f (k) +W

(p)
D f (k)), (8)

p(k) = D(e(k)) = We(k). (9)

The predicted class ỹ(k) is given by the element that has the
largest prediction score:

ỹ(k) = argmaxp(k). (10)

Experiment

Datasets

We test our method on two datasets: UCF-101 (Soomro, Za-
mir, and Shah 2012) and HMDB-51 (Kuehne et al. 2011).
The UCF-101 dataset consists of 13,320 videos from 101
human action classes, which are mainly human-object inter-
actions and sports, such as ”Playing Guitar” and ”Basket-
ball Dunk”. Following (Kong, Tao, and Fu 2017; Kong et
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al. 2018), we use the first 15 groups of videos in UCF-101
split-1 for model training; the next 3 groups for model vali-
dation; and the remaining 7 groups for testing. The HMDB-
51 dataset consists of 6766 videos from 51 action classes.
Compared with UCF-101, HMDB-51 is more challenging
with larger intra-class variance. For HMDB-51, We follow
the standard evaluation protocol using three training/testing
splits, and report the average accuracy over three splits.

Implementation Details

We use the 3D ResNext-101 (Hara, Kataoka, and Satoh
2018) trained on Kinetics (Kay et al. 2017) for feature ex-
traction without finetuning. Visual features are extracted
from sampled clips, which contain 16 video frames. Given
a video with T frames, roughly T

4 clips are sampled for fea-
ture extraction. The extracted features from all the clips are
averaged and normalized by L2 norm to form our video rep-
resentation. The dimension of the extracted feature is 2048.
We set the dimension of the feature embeddings as 1024.
Stochastic gradient descent algorithm is employed for opti-
mizing the model parameters, with a batch size of 64 and
momentum rate of 0.9. We follow the suggestion in (Wang
et al. 2018) and set the margin m and scaling factor s for the
AM Softmax to 0.4 and 30, respectively.

Compared Baselines

We compare our method with two baselines with the same
visual features. The first baseline uses the model trained at
the first stage of our method for action prediction. We de-
note it as No-Transfer. Indeed, it is a traditional recognition
model for recognizing actions from fully observed videos,
without being specifically designed for action prediction.
The second baseline has the same model architecture as our
method, and the key difference lies in the learning strat-
egy. For this baseline, the projection layers and classifier
are learned jointly for both partial videos and full videos,
with a single classification loss. The weight for the dis-
criminative function is shared and learned from videos of
all progress levels, thus enabling implicit knowledge trans-
fer (Implicit-Transfer). In comparison, our method adopts

a two-stage learning strategy. The discriminative function
is learned from the full videos at the first stage, rather
than learned jointly from the full videos and partial videos.
Knowledge in the learned embeddings and discriminative
function is then explicitly transferred to the partial videos,
by learning the projections with the losses defined in Eq. (5)
and Eq. (6). For both methods, we assume that the progress
level is unknown during inference.

Results

Table 1 presents detailed prediction performance at each ob-
servation ratio on the HMDB-51 dataset. As shown, with-
out knowledge transfer (No-Transfer), the accuracy for ac-
tion prediction at observation ratio r = 0.1 is 22.7% lower
than that of full videos (observation ratio r = 1.0). Implicit-
Transfer shows a 2.7% gain at observation ratio r = 0.1,
by exploiting the partial videos during training and trans-
ferring knowledge from full videos to partial videos implic-
itly. Our method further improves the accuracy by 2.1% over
Implicit-transfer, and 4.8% over No-transfer, demonstrating
the effectiveness of our method to boost accuracy at early
stages. The performance boost over the baselines becomes
smaller as the observation ratio increases. This is expected,
since the information contained in partial videos becomes
richer with an increasing observation ratio. For full videos
(observation ratio r = 1.0), the accuracy of our method
is on par with No-Transfer, which is not surprising because
we cannot gain extra information by transferring knowledge
from a full video to itself. For action prediction, we focus
more on improving the performance at early stages rather
than late stages.

Table 2 shows the detailed prediction performance on the
UCF-101 dataset. As can be seen, our method outperforms
the baselines in term of action prediction at early stages. We
can observe that our baseline without knowledge transfer
already achieves an accuracy of 76.3% when only 10% of
the videos are observed. The gap between the accuracies at
observation ratio r = 0.1 and r = 1.0 is 14.8% for No-
Transfer, which is much smaller than that on the HMDB-51
dataset (22.7%). This confirms that HMDB-51 is more chal-
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Table 1: Prediction results (%) on HMDB-51 dataset.

Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 avg.

No-Transfer 38.7 44.7 47.5 52.5 55.2 57.0 58.7 60.0 60.6 61.4 53.7

Implicit-Transfer 41.4 46.7 49.9 52.3 55.2 56.9 58.3 60.1 61.1 61.5 54.3

Our method 43.5 48.4 51.2 54.2 56.4 58.4 59.6 60.2 61.1 61.8 55.5

Table 2: Prediction results (%) on UCF-101 dataset.

Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 avg.

No-Transfer 76.3 82.7 85.9 87.7 89.3 90.0 90.3 90.5 90.9 91.1 87.5

Implicit-Transfer 79.0 83.8 86.4 87.9 88.4 89.7 90.1 90.6 90.9 90.8 87.7

Our method 80.0 84.7 86.9 88.6 89.7 90.3 90.6 90.9 91.0 91.3 88.4

lenging than UCF-101. We also find that our method can
achieve an improvement of 3.7% over No-Transfer and 1.0%
over Implicit-Transfer at observation ratio r = 0.1. This
demonstrates that the proposed knowledge transfer method
can largely improve the prediction of partial videos over
a strong baseline. However, the performance gap becomes
smaller when observation ratio becomes larger, which is
consistent with the results on HMDB-51 dataset.

Observation ratio
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Figure 4: Comparison with the state-of-the-art prediction
systems on (a) UCF-101 dataset and (b) HMDB-51 dataset.

Table 3: Prediction accuracy (%) for different variants of
our model on HMDB-51 split-1. Results are shown for
partial videos at early stages with observation ratio r ∈
{0.1, 0.2, 0.3, 0.4, 0.5}.

Methods 0.1 0.2 0.3 0.4 0.5

No-Transfer 40.7 46.9 51.4 54.9 57.7

Embedding-Only 46.0 50.2 53.3 55.3 58.2

Discriminative-Only 44.6 49.5 51.9 53.9 57.3

Ours w/o AM Softmax 44.8 49.9 52.4 55.7 57.6

Ours w/ shared weights 44.6 49.9 53.3 56.7 58.8

Our method 46.8 51.0 53.5 56.1 58.4

Comparison with the State-of-the-art Methods

We compare our method with IBOW and DBOW (Ryoo
2012), MSSC (Cao et al. 2013), MTSSVM (Kong and Fu
2015), MSDA (Chen et al. 2012), DeepSCN (Kong, Tao,
and Fu 2017) and mem-LSTM (Kong et al. 2018) on the
UCF-101 dataset. Figure 4(a) shows the detailed compari-
son results. As shown, our method outperforms all the state-

of-the-arts by a large margin at early stages. We achieve an
accuracy of 80.0% when only 10% of the videos are ob-
served. We also observe that for the recognition of full ac-
tion videos (i.e., observation ratio r = 1.0), the performance
of our method is on par with the mem-LSTM model. How-
ever, mem-LSTM employed a complex network architecture
(two-stream networks followed by Bi-LSTMs) for predic-
tion, which is computationally expensive. In comparison,
our method is much more efficient both for model training
and inference. We also compare our method with MSSC,
MTSSVM and Global-Local Metric Prediction (Lai et al.
2018) on HMDB-51 dataset. As shown in Figure 4(b), our
method outperforms all of the compared methods.

Ablation Study

We provide more evaluation results on split-1 of HMDB-
51 dataset. Specifically, we experiment with only transfer-
ring embedding knowledge from full videos (denoted by
Embedding-Only), or only transferring discriminative clas-
sifier knowledge from full videos (Discriminative-Only).

For Embedding-Only, only the projections W
(k)
E and the cor-

responding loss LE in Eq. (5) are considered for knowl-
edge transfer. For Discriminative-Only, only the classifier

parameter W
(k)
D the loss LD in Eq. (6) are used for knowl-

edge transfer. We also experiment with other variants of our
method, including the one without AM Softmax (denoted by
Ours w/o AM Softmax), and the one with the same projec-
tion weights across different progress levels (Ours w/ shared
weights). All the results are presented in Table 3, where the
results for the prediction of actions at early stages (observa-
tion ratio r ∈ {0.1, 0.2, 0.3, 0.4, 0.5}) are reported.

Evaluation for Embedding-Only and Discriminative-
Only. Compared with No-Transfer, both Embedding-Only
and Discriminative-Only improve the accuracy of action
prediction at early stages significantly, demonstrating that
both methods can enhance the discriminative power for par-
tial videos at early stages. Embedding-Only shows better re-
sults than Discriminative-Only, because the embeddings of
full videos are much more informative. By learning the em-
beddings in a discriminative way, both action class informa-
tion and intra-class distribution are encoded in the learned
embeddings. The learned discriminative function also con-
tains information about action class, but it lacks of informa-
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tion about the distribution within certain class. Our method
achieves the best performance at early stages, by exploiting
both the learned embeddings and discriminative function for
knowledge transfer.

Effect of AM Softmax. Learning the embeddings for full
videos without AM Softmax (Ours w/o AM Softmax) gives
lower accuracies than our method. AM Softmax enforces
large cosine distance between different classes by adding
a margin in the loss function. Embeddings that have larger
inter-class distances help to transfer more discriminative
knowledge to partial videos. Although the desired embed-
dings can be learned in other ways, such as invoking the
pull-and-push strategy, AM Softmax provides a more con-
venient way to incorporate this target into the discriminative
learning process.

Effect of sharing weights. Sharing projection weights
across all progress levels (Ours w/ shared weights) gives
lower accuracies for action prediction at early stages. It is in-
herently challenging to learn a set of shared weights for dif-
ferent progress level, since the distribution of the extracted
features varies a lot from small observation ratios to large
observation ratios. The results show that learning a set of
projection weights for each progress level can obtain a bet-
ter prediction performance.

Effect of parameter β. In our knowledge transfer frame-
work, we employ a parameter β to control the influence of
the learned embedding knowledge (please refer to Eq. (7)).
Figure 5 presents the mean accuracies for the prediction of
videos over all the considered progress levels. As shown, our
method is quite robust to the setting of β. A proper β gives a
better result. Generally, too large β (e.g., larger than 20000)
will result in an inferior performance.

weight factor 
2 20 200 2000 20000 200000 2e+06

0.4

0.45

0.5

0.55

0.6

Figure 5: Average accuracy on HMDB-51 for different val-
ues of weighting factor β.

Table 4: Prediction accuracy (%) on HMDB-51 split-1
at observation ratio r ∈ {0.1, 0.2, 0.3, 0.4, 0.5} with un-
known/known progress level or uniform scores during in-
ference.

Methods 0.1 0.2 0.3 0.4 0.5

Our method (Uniform) 44.4 49.8 53.7 56.0 58.1

Our method (unknown) 46.8 51.0 53.5 56.1 58.4

Our method (known) 46.5 51.5 53.7 56.1 58.8

Known progress level. Generally, we assume that the
progress level is unknown during inference. We learn to pre-
dict a score for each progress level, which are then used to
compute a weighted sum of the outputs for all progress lev-
els. Here, we evaluate the influence of the progress level es-
timation by comparing with two variants. The first one as-
sumes that the progress level is known. The second one use
uniform scores for each progress level. Our results in Table
4 show that our method is quite robust to the progress level
estimation. The prediction performance of our method drops
slightly if we set the estimated scores to the uniform ones.
We also observe that the performance would be slightly im-
proved if we use the manually provided progress level in-
stead of estimating it.

Conclusion

In this paper, we have proposed a novel knowledge transfer
framework for improving the performance of action predic-
tion with partial videos. We transferred the knowledge of
feature embeddings and action classifier from full videos by
a two-stage learning framework. At the first stage, we learn a
set of feature embeddings and action classifier from the full
videos. The learned embeddings and classifier knowledge
are then used to improve the prediction of partial videos at
the second stage. We experimentally show that the proposed
knowledge transfer method can significantly improve the ac-
curacy of action prediction with partial videos, especially for
the actions of small observation ratios (e.g., less than 10%).
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