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Abstract

This paper considers the problem of action localization,

where the objective is to determine when and where certain

actions appear. We introduce a sampling strategy to pro-

duce 2D+t sequences of bounding boxes, called tubelets.

Compared to state-of-the-art alternatives, this drastically

reduces the number of hypotheses that are likely to include

the action of interest. Our method is inspired by a re-

cent technique introduced in the context of image localiza-

tion. Beyond considering this technique for the first time for

videos, we revisit this strategy for 2D+t sequences obtained

from super-voxels. Our sampling strategy advantageously

exploits a criterion that reflects how action related motion

deviates from background motion.

We demonstrate the interest of our approach by extensive

experiments on two public datasets: UCF Sports and MSR-

II. Our approach significantly outperforms the state-of-the-

art on both datasets, while restricting the search of actions

to a fraction of possible bounding box sequences.

1. Introduction

Recognizing actions in videos is an active area of re-

search in computer vision. Because of the many fine-

grained spatio-temporal variations in action appearance the

current performance is far from that achieved in other recog-

nition tasks such as image search. The goal of action clas-

sification is to determine which action appears in the video.

Temporal action detection estimates, additionally, when it

occurs. This paper specifically considers the problem of ac-

tion localization: the objective is to detect when and where

an action of interest occurs. The expected output of such an

action localization system is typically a subvolume encom-

passing the action of interest. Since a localized action only

covers a fraction of the spatio-temporal volume in a video,

the task is considerably more challenging than action clas-

sification and temporal detection. This task can be seen as

the video counterpart of object detection in still images.

There is a large body of literature that aims at bypass-

ing the costly sliding window approach [31]. The gen-

eral strategy is to limit the set of tested windows to an

acceptable number by varying optimization strategies such
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Figure 1. Overview of tubelets from motion: From an initial

spatio-temporal segmentation in super-voxels, such as the one we

propose based on motion, we produce additional super-voxels by

merging them based on a criterion capturing the motion similarity.

This produces a small set of tubelets, which is fed to a classifier.

as efficient sub-window search [15] (branch and bound

search), objectness [2] and, more recently, a “selective

search” strategy [29]. The latter generates a set of category-

independent candidate windows by iteratively agglomer-

ating super-pixels based on several similarity criteria. It

achieves, on average, a similar accuracy as that obtained

by Deformable Part Models [10] (DPM), while drastically

reducing the number of box hypotheses to be tested.

Most action localization systems are inspired by the

aforementioned object detection strategies. For instance,

Yuan et al. have extended the branch and bound approach

to videos [36], while Tian et al. [24] have proposed spatio-

temporal DPM (SDPM). A noticeable exception is selective

search [29]: To the best of our knowledge and despite its

amenability to handle varying aspect ratios (in this respect,

better than DPM), it has never been explored for videos.

Our first contribution is to investigate the selective search

sampling strategy for videos. We adopt the general princi-

ple and extend it. First, we consider super-voxels instead

of super-pixels to produce spatio-temporal shapes. This di-

rectly gives us 2D+t sequences of bounding boxes, referred

to as tubelets in this paper, without the need to address the
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problem of linking boxes from one frame to another, as re-

quired in other approaches [25, 26].

Our second contribution is explicitly incorporating mo-

tion information in various stages of the analysis. We in-

troduce independent motion evidence as a feature to charac-

terize how the action motion deviates from the background

motion. By analogy to image descriptors such as the Fisher

vector [19], we encode the singularity of the motion in a fea-

ture vector associated with each super-voxel. First, motion

is used as a merging criterion in the agglomerative stage of

our sampling strategy. Second, motion is used as an inde-

pendent cue to produce super-voxels partitioning the video.

Our approach offers several advantages. We produce

a small set of candidate tubelets, which allows us to de-

scribe each tubelet with a high-quality, computationally ex-

pensive representation. Furthermore, the bounding boxes

are tailored to super-voxel shapes, which tend to improve

the spatio-temporal localization of our bounding box se-

quences. As a result, we observe a consistent and signif-

icant gain over concurrent approaches for action localiza-

tion. This is not surprising, as the still image object detec-

tion counterpart was recently shown to outperform DPM, as

demonstrated in the VOC 2012 challenge [8]. Our motion-

based adaptation brings a large benefit, as shown by com-

paring with more naive motion-free adaptation of selective

search to videos.

2. Related work

In this section, we present existing works into more de-

tails, in order to position our method with respect to the

literature. Most references address recognition tasks in

videos, but our work is also related to papers on object

recognition in images, in particular object localization.

Action recognition and localization. Current action recog-

nition methods determine which action occurs in a video

with good accuracy [9, 13, 23, 30, 32]. The task of lo-

calization is more demanding as it also requires to spec-

ify the location where the action happens in the video.

This location is often expressed as a cuboid referred to

as subvolume [4, 24, 36]. Subvolume-based detection is

inadequate in the case of complex actions, when the ac-

tor moves spatially or when the aspect ratio varies signif-

icantly like exemplified in Figure 2. Recently, action loca-

tion is more precisely defined as a sequence of bounding

boxes [16, 26, 27]. The corresponding 2D+t volume, which

we refer to as tubelet, tightly bounds the actions in the video

space and provides a more accurate spatio-temporal local-

ization of actions. However, the methods considering this

definition are more costly since the search space is sig-

nificantly larger [26] than in subvolume-based localization.

Therefore, it is critical to have a high-quality sub-sampling

strategy for tubelets, as we propose in our paper.

We have recently witnessed a trend for methods aiming

at providing a more precise localization, for instance for ob-

taining generic spatio-temporal human tracks [14] using a

human detector-tracker. In other work [16], the detector

and tracker are avoided by treating the actor location as a

latent variable. Raptis et al. [21] select trajectory groups

that serve as candidates for the parts of an action. While

such a mid-level representation assists recognition, they lo-

calize only parts of actions. In [25, 26], candidate bounding

boxes are generated for each frame separately and then the

optimal spatio-temporal path is found by Max-Path Search.

However, this approach uses a sliding-window object de-

tector, which is not only impractical on large video datasets

it is also unsuitable for actions with varying aspect ratios.

Rather than considering a video as a set of images and find-

ing optimal spatio-temporal path later, we prefer to consider

it as a spatio-temporal source from the very beginning.

Trichet and Nevatia [28] propose spatio-temporal tubes

for video segmentation. The only method we are aware of

that uses tubelet-like representation for action localization

is by Wang et al. [33], that appeared in the meantime. They

model human action as a spatio-temporal tube of maximum

mutual information of feature trajectories towards the action

class. One of the advantages we have over them is that our

approach produces class-independent hypotheses.

Extensions from object localization. Many action local-

ization approaches are inspired by box sampling strategies

adapted from the object detection literature in still images.

The most popular is the sliding-window approach, extended

to sliding-subvolume for actions. Due to its considerable

computational cost in object localization, not to mention in

videos, many works have attempted to circumvent sliding

windows such as efficient sub-window search [15].

Rather than reducing the number of sliding windows,

category-independent object proposals have been proposed

to aid object localization [1, 7, 17, 20]. The object proposals

produced by these methods are 2D-locations likely to con-

tain any object. This class of approaches was shown suc-

cessful for salient object detection [11], weakly supervised

object localization [6], and supervised object detection [29].

In our paper, the goal is to generate flexible tubelets that

are independent of the action category. Our approach is in-

spired by the object sampling of selective search [29], yet

specifically considers the spatio-temporal context of video

localization. In this context and as shown in our paper, mo-

tion is a key feature and our method explicitly takes the mo-

tion into account when generating tubelets. Since actions

are highly non-rigid, we use a flexible over-segmentation

of the video into super-voxels. Super-voxels give excellent

boundary recall [3, 34, 35] for non-rigid objects. Thus, in

analogy to the 2D super-pixel methods used for static ob-

ject proposals [1, 17, 29], we use super-voxels as the main

mechanism to build video tubelets.
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Figure 2. Illustration of hierarchical sampling of tubelets. Top. A sampled sequence of frames (1st, 15th, 25th, 35th, 50th) associated

with action ’diving’ from UCF-Sports dataset. The yellow bounding boxes represent the ground-truth tubelet. Row 2 shows the video

segmentation used as input to our method. The last two rows show two stages of the hierarchical grouping algorithm. A tubelet close to

the action is also represented by bounding boxes in each row. Observe how it is close to the ground-truth tubelet in the last row.

3. Action sequence hypotheses: Tubelets

This section describes our approach for iteratively sam-

pling a set of candidate box sequences or tubelets. We

generalize the selective search [29] method from images to

videos to delineate spatio-temporal action sequences. This

generalization from 2D to 2D+t demands adaptation to the

characteristics of video, such as relying on super-voxels in-

stead of super-pixels.

We first give a brief overview of the action localization

pipeline. Then we describe how tubelets are sampled it-

eratively. Finally, we focus on an important aspect of the

technique, i.e., the merging criteria and the video features

upon which they are built. Later in Section 4, we further

extend this approach by incorporating motion in two stages

of the processing pipeline.

3.1. Overview of the action localization pipeline

1. Super-voxel segmentation. To generate the initial set

of super-voxels, we first rely on a third-party Graph-

based (GB) video segmentation method [34]. We

choose GB over other segmentation methods in [34]

because it is more efficient w.r.t. time and memory,

i.e., about 13 times faster than a slightly more accurate

hierarchical version (GBH) [34]. This step produces

n super-voxels, to which we associate n tubelets, ob-

tained as the sequences of bounding boxes that tightly

encompass the super-voxels.

2. Iterative generation of additional tubelets. It con-

sists of n−1 iterations. Each merges two super-voxels

into a new one. The choice of the two super-voxels to

be merged in a given iteration depends on a similarity

criterion that we will detail in the following subsec-

tions.

3. Descriptor computation. This step computes a bag-

of-words (BOW) representation for each tubelet. As

local descriptor we employ MBH [5].

4. Classification step. BOW histograms of tubelets are

used for training a classifier per class.

3.2. Hierarchical sampling of tubelets

In this section, our objective is to produce additional

tubelets from successive mergings of the super-voxels pro-

duced by the initial spatio-temporal segmentation. The al-

gorithm is inspired by the selective search for object local-

ization in images [29].

Super-voxel generation. We iteratively merge super-

voxels in an agglomerative manner. Starting from the ini-

tial set of super-voxels, we hierarchically group voxels until

the video becomes a single super-voxel. At each iteration, a

new super-voxel is produced from two super-voxels, which

are no longer considered in subsequent iterations.

Formally, we produce a hierarchy of super-voxels that

are represented as a tree: the leaves correspond to the initial

super-voxels while the internal nodes are produced by the

merge operations. The root node is the whole video and the

corresponding super-voxel is produced in the last iteration.

Since this hierarchy of super-voxels is organized as a binary

tree, it is straightforward to show that n−1 additional super-

voxels are produced by the algorithm.

Tubelets. In each frame where a super-voxel appears it is

tightly bounded by a bounding box rectangle. A sequence

of frames with such bounding boxes forms a tubelet. The



Figure 3. Example from action ‘Running’: The first two images depict a video frame and the initial super-voxel segmentation used as input

of our approach. The four other images represent the segmentation after a varying number of merge operations.

hierarchical algorithm samples tubelets with spatial boxes at

all scales and sequences of all possible lengths in time. Note

that a tubelet is a more general shape than the cuboids [16,

26, 27]. As the output of the algorithm, we have 2n − 1
tubelets, n − 1 obtained from the new super-voxels and n
from the segmentation.

The merge starts by selecting the two super-voxels to be

merged. For this purpose, we rely on similarities computed

between all the neighboring super-voxels that are still ac-

tive. The similarity measures are detailed in the next sub-

section. After the merge, we compute the new similarities

between the resulting super-voxel and its neighbors.

Figure 2 illustrates the method on a sample video. Each

color represents a super-voxel and after every iteration a

new entry is added and two are removed. After 1000 it-

erations, observe that two tubelets (blue and dark green)

emerge around the action of interest in the beginning and

the end of the video, respectively. At iteration 1720, the two

corresponding super-voxels are merged. The novel tubelet

(dark green) resembles the ground truth yellow tubelet.

This exhibits the ability of our method to group tubelets

both spatially and temporally. As importantly, it shows

the capability to sample a tubelet with boxes having very

different aspect ratios. This is unlikely to be coped by

sliding-subvolumes or even approaches based on efficient

sub-window search.

Figure 3 depicts another example, with a single frame

considered at different stages of the algorithm. Here the

initial super-voxels (second image) are spatially more de-

composed because the background is cluttered both in ap-

pearance and in motion (spectators cheering). Even in such

a challenging case our method is able to group the super-

voxels related to the action of interest.

3.3. Merging criteria: Similarity measures

We employ five complementary similarity measures to

compare super-voxels, in order to select which ones should

be merged. They are fast to compute. Four of these mea-

sures are adapted from selective search in still images [29]

where super-pixels are used. We revise these measures

based on color, texture, size and fill for super-voxels. In

addition and because our objective is not to segment the

objects but to delineate the action or actors, we addition-

ally employ a motion-based similarity encoding indepen-

dent motion evidence (IME) to characterize a super-voxel.

Merging with color, texture and motion: sC, sT, sM.

These three similarity measures are computed in a similar

manner: They describe each super-voxel with a histogram

and for comparison between two super-voxels, histogram

intersection is used. They differ only in the way the his-

tograms are computed from different characteristics of a

given super-voxel:

• The color histogram hC captures the HSV components

of the pixels included in a super-voxel;

• hT encodes the texture or gradient information of a

given super-voxel;

• Our merging criterion is based on a histogram hM

computed from our IME feature, which is detailed in

the section 4 devoted to motion.

As the process of merging is the same for each of the

histogram representations, let us generically denote one of

them by h. We compute an ℓ1-normalized histogram hi for

each super-voxel ri in the video. Two histograms hi and hj
compared with histogram intersection, s = δ1(hi, hj). The

histograms are efficiently propagated through the hierarchy

of super-voxels: Denoting rt = ri ∪ rj , the super-voxel

obtained by merging the super-voxels ri and rj . We have

ht =
Γ(ri) × hi + Γ(rj) × hj

Γ(ri) + Γ(rj)
(1)

where Γ(r) denotes the number of pixels in super-voxel r.

The size of the new super-voxel rt is Γ(rt) = Γ(ri)+Γ(rj).

Merging criterions based on size and fill: sΓ, sF. The

similarity sΓ(ri, rj) aims at merging smaller super-voxels

first:

sΓ(ri, rj) = 1 −
Γ(ri) + Γ(rj)

Γ(video)
(2)

where Γ(video) is the size of the video (in pixels). This

tends to produce super-voxels and therefore tubelets of

varying sizes in all parts of the video (recall that we only

merge contiguous super-voxels).

The last merging criterion sF measures how well super-

voxels ri and rj fit into each other. We define Bi,j to be the

tight bounding cuboid enveloping ri and rj . The similarity

is given by

sF(ri, rj) =
Γ(ri) + Γ(rj)

Γ(Bi,j)
. (3)



Merging strategies. The merging strategy can be any of

the individual merging criteria or it can be a sum of two or

more of them. For instance, merging can be done based on

only color similarity (sC) or only on motion similarity (sM);

alternatively it can be done using a sum of color, motion and

fill similarities (sC + sM + sF). Each merging strategy has

a corresponding hierarchy, starting from n super-voxels, it

leads to a new set of n− 1 super-voxels.

4. Motion features

Since we are concerned with action localization, we need

to aggregate super-voxels corresponding to the action of in-

terest, i.e., points that deviate from the background motion

due to camera motion. We can assume that usually later

is the dominant motion in the image frame. The dominant

(or global) image motion can be represented by a 2D para-

metric motion model. Typically, an affine motion model of

parameters θ = (ai), i = 1...6, or a quadratic model with

8 parameters can be used, depending on the type of camera

motion and on the scene layout likely to occur:

wθ(p) =(a1 + a2x+ a3y, a4 + a5x+ a6y)

or wθ(p) =(a1 + a2x+ a3y + a7x
2 + a8xy,

a4 + a5x+ a6y + a7xy + a8y
2),

where wθ(p) is the velocity vector supplied by the motion

model at point p = (x, y) in the image domain Ω. In this pa-

per, we use the affine motion model for all the experiments.

4.1. Evidence of independent motion

First, we formulate the evidence that a point p ∈ Ω un-

dergoes an independent motion at time step t. Let us intro-

duce the displaced frame difference at point p and at time

step t for the motion model of parameter θ : rθ(p, t) =
I(p + wθ(p), t + 1) − I(p, t). To simplify notation, we

drop t when there is no ambiguity. At every time step t,
the global parametric motion model can be estimated with

a robust penalty function as

θ̂ = arg min
θ

∑

p∈Ω

ρ(rθ(p, t)), (4)

where ρ(.) is defined as the robust Tukey function [12].

To solve (4), we use the publicly available software Mo-

tion2D [18].

The robust function ρ(rθ) produces a maximum likeli-

hood type estimate: the so-called M-estimate [12]. Indeed,

if we write ρ(rθ) = − log f(rθ) for a given function f ,

ρ(rθ) supplies the usual maximum likelihood (ML) esti-

mate. Since we are looking for independently moving ob-

jects in the image, we want to measure the deviation to the

conformity with respect to the global motion. This is in

spirit of the Fisher vector [19], where the deviation of local

Figure 4. The original frame, its IME map and the result after seg-

mentation are shown from left to right.

descriptors from a background GMM model is encoded to

produce an image representation.

Let us consider the derivative of the robust function ρ(.).
It is usually denoted as ψ(.) and corresponds to the influ-

ence function [12]. More precisely, the ratio ψ(rθ)/rθ ac-

counts for the influence of the residual rθ in the robust esti-

mation of the model parameters. The higher the influence,

the more likely the point contributes to the global motion.

Conversely, the lower the influence, the less likely the point

contributes to the global motion. This leads us to define the

independent motion evidence (IME) as

ξ(p, t) = 1 −̟(p), (5)

where ̟(p) is the ratio
ψ(r

θ̂
(p,t))

r
θ̂
(p,t) normalized within [0, 1].

4.2. Motion for segmentation

Each frame can be represented by the IMEs at each pixel,

ξ(p, t). The obtained IME frames are post-processed by ap-

plying morphological operations to obtain binary images.

These binary images are applied as masks on the corre-

sponding IME frames to obtain denoised IME maps. Ap-

plying GB video segmentation on sequences of these de-

noised maps partitions the video into super-voxels with in-

dependent motion. Therefore, we use it as an alternative

for producing our super-voxels (Step 1 in Section 3). Fig-

ure 4 shows an example frame, its IME map and the result

obtained by applying GB on the IME map. Thus resulting

tubelets are more adapted to the action sequences, as evalu-

ated in Section 5.1. This alternative for initial segmentation

is also more efficient, about 4 times faster than GB on orig-

inal video and produces 8 times fewer super-voxels.

4.3. Motion feature as merging criteria

We define a super-voxel representation for IME maps

capturing the relevant information with efficiency. This rep-

resentation is the histogram hM involved in the merging

criterion sM mentioned in Section 3. We consider the bi-

narized version of IME maps, i.e., the binary images that

resulted from morphological operations. At every point p,

we evaluate the number of points q in its 3D neighborhood

that are set to one. In a subvolume of 5 × 5 × 3 pixels,

this count value ranges from 0 to 75. The motion histogram

hMi of these values is computed over the super-voxel ri.
Intuitively, this histogram captures both the density and the

compactness of a given region with respect to the number

of points belonging to independently moving objects.



Merging Video Segmentation IME Segmentation

Strategy MABO MR #T MABO MR #T

Initial voxels 36.2 0.4 862 48.6 28.0 118

M (sM) 56.2 43.2 299 52.9 35.7 90

C (sC) 47.3 24.3 483 51.1 35.1 93

T (sT) 44.6 23.4 381 51.2 38.8 81

S (sΓ) 47.8 23.5 918 52.2 35.2 158

F (sF) 50.9 30.7 908 52.7 38.8 155

M+S+F 57.2 49.8 719 54.2 40.3 129

T+S+F 52.6 34.0 770 53.9 46.3 145

C+T+S+F 53.4 38.4 672 54.5 45.2 127

M+C+T+S+F 58.1 48.6 656 55.1 41.5 122

Strategy set I 61.5 58.2 2346 56.6 48.3 469

Strategy set II 62.0 58.9 3253 56.8 49.5 625

Table 1. Mean Average Best Overlap for tubelet hypotheses us-

ing variety of segmentation strategies from UCF-Sports train set.

[M:Independent motion evidence, C: Color, T: Texture, S: Size,

F: 3D Fill, Strategy set I: {M, M+S+F, C+T+S+F, M+C+T+S+F},

Strategy set II: {M, F, M+S+F, C+T+S+F, M+C+T+S+F}].

5. Experiments

We evaluate our approach on two benchmarks that have

localization groundtruth and have been evaluated for lo-

calization [4, 16, 24] : UCF-Sports [22] and MSR-II [4].

The first dataset consists of sports broadcasts with real-

istic actions captured in dynamic and cluttered environ-

ments. MSR-II contains videos of actors performing ac-

tions (handwaving, handclapping and boxing) in complex

environments. It is suitable for cross-dataset experiment.

As a standard practice, we use the KTH dataset for training.

We first evaluate the quality of tubelet hypotheses generated

by our approach. Then, Section 5.2 details our localization

pipeline and compares our results with the state of the art

methods on the two datasets.

5.1. Evaluation of Tubelet Quality: MABO

To evaluate the quality of our tubelet hypotheses, we

compute the upper bound on the localization accuracy, as

previously done to evaluate the quality of object hypothe-

ses [29], by the Mean Average Best Overlap (MABO) and

maximum possible recall (MR). Extending these measures

to videos requires measuring the overlap between two se-

quences of boxes instead of boxes.

Localization score. In a given video V of F frames com-

prisingm instances of actions, the ith groundtruth sequence

of bounding boxes is given by gti = (Bi1, B
i
2, ...B

i
F ). If

there is no action of ith instance in frame f , then Bi1 =
∅. From the tubelet hypotheses, the jth tubelet formed

by a sequence of bounding boxes is denoted as, dtj =
(Dj

1, D
j
2, ...D

j
F ). Let OVi,j(f) be the overlap between the

two bounding boxes in frame, f , which is computed as

“intersection-over-union”. The localization score between

groundtruth tubelet gti and a tubelet dtj is given by:

S(gti, dtj) =
1

|Γ|

∑

f∈Γ

OVi,j(f), (6)

where Γ is the set of frames where at least one of Bif , Dj
f is

not empty. This criterion generalizes the one proposed by

Lan et al. [16] by taking into account the temporal axis. An

instance is considered as localized or detected if the action

is correctly predicted by the classifier and also the localiza-

tion score is enough, i.e., S(gti, dtj) > σ, the threshold for

localization score.

The Average Best Overlap (ABO) for a given class c
is obtained by computing, for each groundtruth annotation

gti ∈ Gc, the best localization from the set of tubelet hy-

potheses T = {dtj |j = 1 . . .m}:

ABO =
1

|Gc|

∑

gti∈Gc

max
dtj∈T

S(gti, dtj). (7)

The mean ABO (MABO) synthesizes the performance over

all the classes. Note that adding more hypotheses neces-

sarily increases this score, so must be considered jointly

with the number of hypotheses. Another measure for qual-

ity of localization used for images is maximum possible re-

call (MR). It is an upper bound on the recall with the given

tubelet hypotheses. We also compare merging strategies us-

ing MR with a stringent localization threshold, σ = 0.6.

Table 1 reports the MABO, MR and the average number

of tubelets (#T) for the train-set of the UCF-Sports dataset.

Different strategies are compared for the two methods con-

sidered for initial segmentation (regular GB, and GB on

IME). With regular GB segmentation, the best hypotheses

are clearly produced by the strategies that include our sM
merging criterion: they attain the highest MABO and MR

with the smallest number of tubelets. Many combinations

of strategies were tried and the two best sets of strategies

were chosen (described in Table 1). For the first chosen set,

we achieve MABO=61.5% and MR=58.2% with only 2346

tubelets per video. Considering that the localization score

threshold (σ) used in literature is 0.2, these MABO values

are very promising.

The GB segmentation applied on our IME de-noised

maps (See Section 4) generates a very good initial set

(MABO = 48.6%). The MABO and specially MR further

improve for all the strategies. Although the best values

obtained, MABO=56.8% and MR=49.5%, are lower than

those for the original video segmentation, the number of

tubelets is only 625 on average. This is very useful for large

videos where the number of samples, by sliding-subvolume

or even by segmentation, is substantially higher.

For regular GB segmentation, MABO and MR are simi-

lar for both the sets, so we choose strategy set I, as it needs

lesser number of tubelets. With segmentation of IME maps,

we choose strategy set II for its higher MR.
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Figure 5. Comparison with concurrent methods [16, 24] on UCF-

Sports: ROC at σ=0.2 and AUC for σ from 0.1 to 0.6.

5.2. Action localization

We, now, evaluate our tubelet hypotheses for action lo-

calization. With a relatively small number of candidate

locations, our approach enables the use of expensive and

powerful Bag-of-words based representation with large vo-

cabulary sizes. We first extract state-of-art MBH descrip-

tor computed along ω-trajectories using ω-flow [13]1. We

prefer using ω-trajectories over trajectories from optical

flow [32] because they are more active on the actors, and

also fewer trajectories are produced with ω-flow. To repre-

sent a tubelet, we aggregate all the visual words correspond-

ing to the trajectories that pass through it. For training,

we use a one-vs-rest SVM classifier with Hellinger (square-

rooting+linear) kernel.
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Figure 6. ROCs for σ from 0.1 to 0.6.

Experiments on UCF-Sports. This dataset consists of

150 videos with actions extracted from sports broadcasts.

Ten action categories are represented, for instance “diving”,

“swinging-bench”, “horse-riding”, etc. We use the disjoint

train-test split suggested by Lan et al. in [16]. The ground

truth is provided as sequences of bounding boxes enclosing

the actors. For training, we use the groundtruth tubelets and

the tubelets provided by our method that have localization

score greater than 0.7 with the groundtruth. Negative sam-

ples are randomly selected by considering tubelets whose

overlap with ground truth is less than 0.2. We set the vocab-

ulary size to K = 500 for Bag-of-words and use a spatial

pyramid (1x1+2x2). We use the initial voxels from the GB

segmentation performed on the original videos.

For evaluating the quality of action localization, we fol-

low the criteria explained in [16] and described in Sec-

tion 5.1. Following previous works, we compare using the

1Source code: www.irisa.fr/texmex/people/jain/w-Flow
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Figure 7. Precision/recall: Comparison with [4, 24] for the 3

classes on MSR-II. x-axis: precision, y-axis: recall.

ROC curves and its AUC in Figure 5. On the left, we plot

the ROC curve with σ = 0.2. In order to be consistent with

SDPM and Lan et al., we stop at FPR=0.6 and compute the

AUC only for this part. On the right, we report AUCs for

thresholds ranging from 0.1 to 0.6.

As can be seen from these figures, our approach signif-

icantly outperforms both the methods. Figure 6 shows the

complete ROC curves with different thresholds. We have

almost total recall for σ ≤ 0.2 and even for σ = 0.5 our

recall is around 50%. Although our focus is localization,

for classification we simply assign the video to the class to

which the tubelet with maximum score is assigned. We ob-

tain 80.24% of accuracy with this maximum score strategy.

This is better than 79.4% of [22] and can be improved by

specifically considering the classification task.

Experiments on MSR-II. This dataset consists of 54

videos recorded in a crowded environment, with many peo-

ple moving in the background. Each video may contain one

or more of three types of actions: boxing, handclapping and

handwaving. An actor appears, performs one of these ac-

tions, and walks away. A single video has multiple actions

(5-10) of different types, making the temporal localization

challenging. Bounding subvolumes or cuboids are provided

in the ground-truth. Since the actors do not change their lo-

cation, it is as good as a sequence of bounding boxes. The

localization criterion is subvolume-based, so we follow Cao

et al. [4] and use the tight subvolume or cuboid envelop-

ing tubelet. Precision-recall curves and average precision

(AP) is used for evaluation [4]. Since MSR-II videos are

much larger than UCF-Sports videos, to keep the number

of tubelets low, we use the initial super-voxels from the GB

segmentation of the IME maps along with strategy set II.

This dataset is designed for cross-dataset evaluation.

Following standard practice, we train on the KTH dataset

and test on MSR-II. While training for one class, the videos

from other the two classes are used as the negative set. We

compare with Cao et al. [4] and SDPM [24] in Figure 7.

Table 2 shows that our tubelets significantly outperform the

two other methods for all three classes.



Method Boxing Handclapping Handwaving

Cao et al. 17.5 13.2 26.7

SDPM 38.9 23.9 44.7

Tubelets 46.0 31.4 85.8

Table 2. Average precisions for MSR-II

6. Conclusions

We show, for the first time, the effectiveness of selec-

tive sampling for action localization in videos. Such hier-

archical sampling produces category-independent proposals

for action localization and implicitly covers variable aspect

ratios and temporal lengths. Our independent motion evi-

dence (IME) based representation of video provides a more

efficient alternative for segmentation. The IME motion fea-

ture expresses both the individual density and the compact-

ness of the action-related moving points in the super-voxel.

An analysis shows that the proposed tubelet sampling heav-

ily benefits from our motion features.

Overall, our approach outperforms the state of the art

for action localization on two public benchmarks. As our

method considers a significantly smaller number of candi-

date volumes at test time, we believe that our method will

enable the use of more effective but also more costly repre-

sentations of spatio-temporal volumes in future works.
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