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Abstract

We study the action minimization problem which is formally associ-
ated to phase transformation in the stochastically perturbed Allen-Cahn
equation. The sharp-interface limit is related to (but different from) the
sharp-interface limits of the related energy functional and deterministic
gradient flows. In the sharp-interface limit of the action minimization
problem, we find distinct “most likely switching pathways,” depending
on the relative costs of nucleation and propagation of interfaces. This
competition is captured by the limit of the action functional, which we
derive formally and propose as the natural candidate for the Γ-limit.
Guided by the reduced functional, we prove upper and lower bounds
for the minimal action which agree on the level of scaling.
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1 Introduction

At the mean field level, phase transformation can be studied within the frame-
work of Ginzburg-Landau theory. It describes the state of the system in terms
of a scalar order parameter, u, defined in a domain Ω ⊂ Rd, and a free energy:

Eε[u] =

∫

Ω

( |∇u|2
2

+ ε−2V (u)

)
dx. (1.1)

The gradient term penalizes spatial variation, and the potential V has a
double-well shape with minima at the preferred states of the order param-
eter; the relative strength of the two terms is measured by the parameter ε.
A canonical example of V is given by

V (u) =
1

4
(1− u2)2, (1.2)

and for simplicity, we restrict our attention to this potential. Generalization
to other choices of equal-well potentials for V is possible. (This changes the
value of the constant c0, which appears, for example, in Definitions 1 and 2
below.)

The L2-gradient flow for (1.1) is the Allen-Cahn equation:

u̇ = ∆u− ε−2V ′(u). (1.3)

(Throughout, u̇ denotes the time derivative of u.) The only two stable fixed
points of the dynamics (1.3) are the pure states u− ≡ −1 and u+ ≡ +1 (for
periodic or Neumann boundary conditions). An energy barrier separates them,
and initial conditions close to u− never visit u+.

As soon as thermal effects are taken into account, the picture changes. Even
for small thermal noise, an initial state u(·, 0) = u− will eventually undergo
phase transformation (or “switching”), driven over the energy barrier and into
a small neighborhood of u+. A natural way to include a noise term in (1.3) is
via the stochastically perturbed Allen-Cahn equation:

u̇ = ∆u− ε−2V ′(u) +
√

2γ ηλ. (1.4)

Here γ is a parameter measuring the temperature of the system, and ηλ is a
spatially regularized noise:

ηλ := φλ ∗ η,

where ∗ denotes convolution, φλ(x) = λ−dφ(x/λ) for φ an approximate iden-
tity, and η is a standard space-time white noise, i.e. a Gaussian process with
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mean zero and covariance E(η(x, t)η(x′, t′)) = δ(x−x′)δ(t−t′). The parameter
λ measures the correlation length in the noise, and λ = 0 leads formally to
an invariant measure which is the Gibbs distribution for the energy (1.1) with
temperature γ.

The main objective of the paper is to study phase transformation in the
sharp-interface limit, ε → 0. The noise term in (1.4) introduces two additional
parameters, γ and λ. We are interested in the limit in which all three param-
eters go to zero. The limit γ → 0 is interesting because it is the small tem-
perature regime in which the stochastic dynamics in (1.4) are not dominated
by the noise term, but rather involve an interplay between the deterministic
and stochastic parts. As mentioned above, the limit λ → 0 is distinguished
by being (formally) consistent with the Gibbs distribution. Finally, the sharp-
interface limit, ε → 0, leads to a reduced problem in which the switching
pathway is characterized by the generation and propagation of interfaces (see
below). In this paper, we study a specific order of the limits; namely, we take
γ → 0 first, then λ → 0, and finally ε → 0. This limit is analytically accessible
because it allows us to study the problem using large deviation theory, and
even though (1.4) is ill-posed for λ = 0 in dimension d > 1, it is possible to
study λ → 0 after first letting γ → 0, as we explain in the following discus-
sion. A more general analysis of the behavior of (1.4) in terms of (ε, γ, λ) is
an interesting but complicated topic. We comment briefly on the question of
permuting the limits in Section 5.

Large deviations. The probability of a stochastically driven barrier-crossing
event is estimated by the Wentzell-Freidlin theory of large deviations in terms
of an action functional. If we define the set

A := {u(·, 0) = u−, u(·, t) ∈ nbd (u+) for some t ≤ T},
then for γ ¿ 1, the probability of switching under the dynamics (1.4) in time
T is roughly estimated by

Prob (A) ≈ exp

(
− inf

u∈A
Sε,λ[u]/γ

)
, (1.5)

where the action functional is

Sε,λ[u] =
1

4

∫ T

0

∫

Ω

∫

Ω

(Fu(x, t), K−1
λ (x, y)Fu(y, t)) dy dx dt, (1.6)

for all u such that this quantity is defined, and infinity otherwise. Here, we
have defined

Fu(x, t) := u̇(x, t)−∆u(x, t) + ε−2V ′(u(x, t)),
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and K is the spatial covariance operator of ηλ, i.e.

E (ηλ(x, t)ηλ(y, t)) = Kλ(x− y)δ(t− s).

Furthermore, the minimizer of the action functional over A is the most likely
switching pathway, the deterministic trajectory which is approximated by the
noisy path as it crosses the energy barrier (with probability one, in the limit
as γ → 0). For a complete discussion, see [14, 39, 6].

Taking the limit in (1.6) as the correlation length vanishes leads to:

Sε[u] =
1

4

∫ T

0

∫

Ω

(u̇−∆u + ε−2V ′(u))2 dx dt. (1.7)

In dimension d = 1, where the stochastic equation is well-defined even with
a space-time white noise, Faris and Jona-Lasinio [12] prove that (1.7) is the
action functional for (1.4) on the space of continuous functions. Although
the stochastic pde with λ = 0 is ill-posed in higher dimensions, the behavior
of (1.7) controls the behavior of observables (such as the mean switching time
between u− and u+) for λ ¿ 1, at least in an appropriate regime of the (ε, γ, λ)
parameter space.

Motivated by these ideas, we study the action minimization problem

inf
u(·,0)=u−
u(·,T )=u+

Sε[u].

For simplicity, we focus on Ω = [0, L]d and periodic boundary conditions.
The cases of Neumann and homogeneous-Dirichlet boundary conditions are
conceptually the same, requiring only minor modification of the assertions; we
comment occasionally on similarities and differences.

Sharp-interface limit: deterministic. When ε ¿ 1 in (1.1) or (1.3),
the field u is forced to concentrate on ±1 except possibly at sharp interfaces
between the two phases. The sharp-interface limit ε → 0 corresponds to the
limit of infinite scale separation between the interfacial length scale and the
system size, and has been studied previously both on the level of the energy
functional and the deterministic dynamics.

Any sequence uε with uniformly bounded renormalized energy,

Êε[u] := ε Eε[u] =

∫

Ω

(
ε|∇u|2

2
+ ε−1V (u)

)
dx, (1.8)

converges as ε → 0 (up to a subsequence) to a function which is a.e. ±1, with
an interface ∂{u = 1} of finite perimeter. Moreover, Modica and Mortola
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[26, 27] proved the Γ-convergence of the renormalized energy to the perimeter
functional:

Êε[·] Γ−→ c0P [·],
where here and throughout, the constant c0 corresponding to the potential
V defined in (1.2) is c0 := 2

√
2/3. (In brief, Γ-convergence is a notion of

convergence for variational problems which implies, in particular, that mini-
mizers converge to minimizers of the limit problem, and which is stable under
compact perturbations. See, for instance, [1].)

Given the Γ-convergence of the energy, one would like to know what be-
comes of the deterministic gradient flow in the sharp-interface limit. Is the
limit of the gradient flow equal to the gradient flow for the limiting energy? It
is known [36, 8, 11, 20] that in dimension d > 1, (1.3) leads to limiting dynam-
ics in which the interface ∂{u = 1} evolves by mean-curvature-flow (MCF),
i.e.

vn = −κ, (1.9)

where vn is the normal velocity of the interface and κ is the mean curvature.
Because curvature flow is the gradient flow of perimeter with respect to L2 of
the interface, we see that in this sense, the limiting dynamics are indeed the
gradient flow of the limiting energy. (The change of metric – from L2 in the
bulk to L2 on the interface – is related to the slowing down of the dynamics as
ε → 0.) In one space dimension, the situation is somewhat degenerate; here,
the interfaces are points and the slow motion of the interfaces has no effect
on the leading order term in the energy. Driven instead by the exponentially
small correction terms in the energy, the interface motion is exponentially slow
[4, 16, 3].

Sharp-interface limit: action functional. The central question in this
paper is what happens to the renormalized action functional,

Ŝε[u] := ε Sε[u] =
1

4

∫ T

0

∫

Ω

(ε1/2u̇ + ε−1/2(−ε∆u + ε−1V ′(u)))2 dx dt, (1.10)

in the sharp-interface limit. We show that the minimum action

Ŝswitch := inf
u(·,0)=u−
u(·,T )=u+

Ŝε[u] (1.11)

remains bounded and nontrivial as ε → 0 by developing ε-independent upper
and lower bounds. In other words, Ŝε[·] indeed represents the correctly renor-
malized action functional. Moreover, our upper bound constructions suggest
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the following candidates for the Γ-limit of (1.10). In dimension d > 1, the
candidate for the Γ-limit is

Snuc +
c0

4

∫ T

0

∫

Γ(t)

(vn + κ)2dσ dt, (1.12)

where Snuc is the nucleation cost, Γ(t) is the interface at time t, vn is the normal
velocity, and κ is curvature. (The nucleation cost is the jump in action which
results from the energy jump if (d− 1)-dimensional interfaces are generated.)
We use our upper bound constructions in Subsection 3.2 to prove that in d = 2,
for instance, action minimizing pathways must have higher dimensional spatial
structure (i.e. they cannot be merely one-dimensional).

The degeneracy in dimension d = 1 makes the situation slightly different.
There is no notion of curvature, and the contribution of the energy vanishes
in the limit. The candidate for the Γ-limit in d = 1 is

Snuc +
c0

4

N∑
i=1

∫ T

0

ġi(t)
2dt, (1.13)

where gi(t) is the position of the ith interface at time t. Whereas in higher
dimensions there is no nucleation cost for lower dimensional interfaces (inter-
faces of dimension less than d− 1), in dimension d = 1 there is no possibility
to avoid a nucleation cost.

An elementary argument produces a lower bound which matches our upper
bounds in terms of scaling (cf. Section 4). Proving sharp, ansatz-free lower
bounds for (1.10) – which is necessary in order to justify the Γ-limit candidates
suggested above – goes beyond the scope of this paper. We explain in Section
4, however, how the limiting behavior of the associated energy measures and
equipartition between the bulk and gradient terms in the energy, (1.8), are
linked to proving a lower bound for the action functional. These ideas are
used in [21] to prove rigorous results for the case d = 1. In some sense, it is
not surprising that equipartition of energy plays a role in the action problem,
since it is important in proving convergence of the Allen-Cahn dynamics to
Brakke’s notion of curvature flow [20].

Is the sharp-interface limit of the action functional the action functional of
sharp-interface gradient flow? Formally, we give a positive answer by identi-
fying the limiting action, (1.12). Indeed, given a gradient flow, one can view
the Γ-convergence of the associated energy functional and the (nondegenerate)
Γ-convergence of the decoupled action functional (1.17) as sufficient conditions
for the convergence of the dynamics to the gradient flow for the limiting energy,
much in the spirit of Sandier and Serfaty [37].
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On the deeper level of the stochastic problem, one would like to know
whether this limiting action is in fact the action functional for a well-defined
stochastic process and, moreover, whether this process is the sharp-interface
limit of the process defined by (1.4). See Section 5 for additional comments.

Initial observations and heuristics. We conclude the introduction by
explaining some basic properties of the action functional, and the heuristic
picture for d = 1. In particular, we explain the connection between the energy
and action functionals, and how a competition between the costs of forming
and transporting interfaces emerges in the sharp-interface limit.

The most fundamental relationship between the action and energy func-
tionals is revealed by the fact that for any t ∈ (0, T ]:

Ŝε[u] ≥ 1

4

∫ t

0

∫

Ω

(
ε1/2u̇ + ε−1/2DuÊ

ε(u)
)2

dx dt′

=
1

4

∫ t

0

∫

Ω

((
ε1/2u̇− ε−1/2DuÊ

ε(u)
)2

+ 4 u̇ DuÊ
ε(u)

)
dx dt′

≥ Êε[u(·, t)]− Êε[u(·, 0)]. (1.14)

(We have used DuÊ
ε := −ε∆u + ε−1V ′(u) as shorthand for the functional

derivative of the energy in L2, and in the third line we have used the bound-
ary conditions to integrate by parts.) An immediate consequence is that the
minimal action is bounded below by the energy barrier between u− and us, the
minimum-energy saddle point (which we will also call the minimal saddle):

Ŝswitch ≥ Êε[us]− Êε[u−] =: ∆Êε. (1.15)

(For periodic or Neumann boundary conditions, the barrier is exactly equal to
the energy of us; for zero-Dirichlet boundary conditions, there is a correction
due to the nonzero energy of u−.) Looked at from a slightly different point of
view, (1.14) shows that functions with bounded action are bounded in energy
at every time, t ≤ T . Thus, while action minimizers are not energy minimizers,
their energy is uniformly bounded in time.

The calculation in (1.14) also characterizes the long-time action minimizing
trajectory in terms of the deterministic Allen-Cahn dynamics. An action which
is strictly equal to the energy barrier can only be achieved by a path which
flows through the minimal saddle and satisfies

u̇ =

{
+ε−1DuÊ

ε(u) t ≤ t′

−ε−1DuÊ
ε(u) t′ < t ≤ T,

(1.16)
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with

u(·, 0) ≡ −1, u(·, t′) = us, u(·, T ) ≡ +1.

(We remark that the first part of (1.16) is well-posed only as a boundary value
problem connecting u− and us.) Such an “ideal” pathway requires infinite
time, but for switching times which are large compared to the deterministic
timescale, an approximation of the pathway (modified near the critical points)
achieves a nearly optimal action, cf. Appendix A.

When the switching time T is short compared to the deterministic timescale,
on the other hand, the action minimization problem is more complicated. The
sharp-interface limit is a regime in which the full action minimization problem
reduces to a competition between two costs: the cost to form interfaces and
the cost to move them. We call the former the nucleation cost and the latter
the propagation cost. (We use the term “nucleation” in a loose sense here;
see Remark 1, below.) The action minimizing trajectory strikes an optimal
balance between these costs, depending on the relative size of the switching
time, T , and the system size, L. The phenomenon of competing nucleation
and propagation costs was studied in [9] and also (for d = 1) in [13]; the same
phenomenon is also investigated for a different but related one-dimensional
model in [7].

To capture the main idea of the competition between nucleation and prop-
agation costs in the action, consider the case d = 1. Each point nucleation
incurs a cost. On the other hand, moving the interfaces across the system
within time T also incurs a cost, and the more interfaces there are, the less
distance that each must travel. (See Figure 3.) The back-of-the-envelope cal-
culation which compares these two costs is the following. Assume a fixed cost
per nucleation and a periodic structure, so that there are L/` nucleations,
spaced ` apart. The nucleation cost is ∼ L/`. Estimating the propagation
cost by the transportation term in the action yields a cost ∼ L`/T . Balancing
these costs implies ` =

√
T , and a minimal action which scales like L/

√
T .

Finally, the boundary conditions and the initial and final conditions also
imply that the action decouples as:

1

4

∫ T

0

∫

Ω

(
ε1/2u̇ + ε−1/2DuÊ

ε(u)
)2

dx dt

=
1

4

∫ T

0

∫

Ω

(
εu̇2 + ε−1(DuÊ

ε(u))2
)

dx dt. (1.17)

The penalization of the second term suggests using hyperbolic tangent profiles
or, more precisely, using constructions in which uε(x, t) is defined in terms
of the hyperbolic tangent of the distance from x to the interface, Γ(t), cf.
Section 2.
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Two other scaling regimes. Given the action functional:

SL,T [u] :=

∫ T

0

∫

ΩL

(u̇−∆u + V ′(u))
2

dx dt, (1.18)

one passes to the sharp-interface regime by considering L → ∞, T → ∞,
with the diffusive scaling, L ∼ √

T =: ε−1. This is the most interesting
scaling, because of the competition between nucleation cost and propagation
cost. More generally, however, the minimization problem:

Sswitch := inf
u(·,0)=u−
u(·,T )=u+

SL,T [u],

is an implicit function of the two parameters, L and T , and other limits may
of course also be considered. We point out two additional scaling regimes of
the action, the short-time limit (T → 0 with L fixed) and the energy-barrier
regime (L, T →∞ with L ¿ √

T ). These regimes are easy to understand; see
Appendix A.

In the energy-barrier regime, the action depends on the minimum-energy
saddle point, which in turn depends on the system size. We study this depen-
dence in Appendix B. In particular, we look at the crossover from u ≡ 0 to
a spatially nonuniform saddle as the energy minimizing saddle point, and at
the limiting energy of this minimal saddle as the domain becomes large (or,
equivalently, as ε vanishes).

Organization. In Section 2, we present the reduced action functional and a
heuristic derivation. We prove the scaling of the action in the sharp-interface
regime by developing matching upper and lower bounds. In Section 3, we intro-
duce the upper bound constructions. For d > 1, we introduce one-dimensional,
mean-curvature-flow, and accelerated mean-curvature-flow constructions. In
Section 4, we turn to the question of lower bounds. We prove a lower bound
for the scaling, and investigate what would be necessary in order to improve
the result to a sharp bound. In Section 5 we conclude with some additional
connections and open problems. In Appendix A, we consider two (simple)
limits other than the sharp-interface limit, namely the short-time limit and
the energy-barrier regime. Finally, in Appendix B, we study the dependence
of the energy on the system size.

Remark 1. We use the term “nucleation” to mean the nucleation of a new
phase. Classically, the term nucleation event is often used to mean passing
through a saddle point. In the case where V is an asymmetric double-well
potential, for instance, the minimum-energy saddle point is a droplet which
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Figure 1: Interfaces forming and propagating in a two-dimensional system.
The reduced action functional counts the perimeter of nucleated structures
and the propagation cost of moving against curvature.

is localized, and nucleation refers to passing through this well-defined point in
phase space. In the setting of the symmetric double-well, there is no localized
droplet, or, in other words, the minimum-energy saddle point does not converge
as the system size goes to infinity. For us, nucleation means the generation of
an interface connecting u ≈ −1 with u ≈ +1.

2 The reduced action functional

In this section, we present the candidate for the Γ-limit of the renormalized
action functional, (1.10). One can view our argument either as a formal deriva-
tion or as a building block for the upper-bound half of a Γ-limit argument.
(We use the structure of the reduced action functional to develop upper bound
constructions in Section 3.) A matching lower bound requires an analysis of
the limiting energy measures; see Section 4 and also [21], for d = 1.

We begin by defining:

Definition 1. The reduced action functional for the family of interfaces Γ(t),
t ∈ [0, T ], is

SR[Γ(·)] := SR
1 [Γ(·)] + SR

2 [Γ(·)], (2.1)
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Figure 2: A space-time view of the sharp-interface limit of a switching path in
one dimension. There are two nucleation events and the interfaces propagate
in order to achieve switching by the rescaled switching time, t = T .

where

SR
1 [Γ(·)] :=

c0

4

∫ T

0

∫

Γ(t)

(vn + κ)2dσdt, SR
2 [Γ(·)] := 2c0

∑
i

Hd−1(Γi).

Here, vn and κ are the normal velocity and curvature of the interface. In d = 1
we take the curvature of a point to be zero by definition. Hd−1 is the (d− 1)-
dimensional Hausdorff measure and Γi is the ith connected component of the
interface at the time of creation of that component.

Proposition 1. For ε ↓ 0, let uε(x, t) be a periodic, action minimizing se-
quence whose zero level sets converge to the smooth family of interfaces Γ(t).
Suppose that

uε(x, 0) ≡ −1, uε(x, T ) ≡ +1,

and that away from nucleation times, uε is of the form:

uε(x, t) = v
(
ε−1 d(x, Γ(t))

)
, (2.2)

(where d(·) is the signed distance function). Then formally,

lim
ε→0

Ŝε[uε] = SR[Γ(·)].
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It is worth distinguishing the higher dimensional case from the one-dimensional
case. In d > 1, low dimensional nucleations are possible which incur no nucle-
ation cost (SR

2 [Γ(·)] = 0). In contrast, for d = 1, nucleation cost is unavoidable.
We emphasize the structure for d = 1 in a separate corollary.

Definition 2. The reduced action functional in one dimension is given by

SR[g(·)] :=
2M∑
i=1

c0

4

∫ T

0

ġi(t)
2dt + 2Mc0. (2.3)

Here, the interface is a finite collection of time-dependent points g(t) = {gi(t)}2M
i=1,

where the gi(t) give the location of the ith interface at time t. (See Figure 2.)

Corollary 1 (One dimension). Suppose that uε(x, t) is a periodic, action
minimizing sequence which satisfies the initial and final conditions and that
away from nucleation times,

uε(x, t) = v
(
ε−1 d(x, g(t))

)
.

Then formally,

lim
ε→0

Ŝε[uε] = SR[g(·)].

Proof of Proposition 1. We give a formal derivation of the reduced action func-
tional. (An even simpler argument is possible for d = 1, using the ansatz from
the corollary.) For the nucleation cost, SR

2 , we use a local estimate. Suppose
that at time t0, there is the nucleation of a (d − 1)-dimensional curve Γi of
u ≈ +1 in a region of u ≈ −1. The action cost for such an event is bounded
below by the energy of the nucleated state, which converges to 2c0Hd−1(Γi) in
the sharp-interface limit. Furthermore, this minimal cost can be achieved by
reversing time along the heteroclinic orbit (as in the proof of Proposition 2 in
Section 3, for instance).

To derive SR
1 , substitute (2.2) into the normalized functional Ŝε[u]. We

deduce v(z) = tanh(z/
√

2) so that the highest order terms vanish. (We assume
Γ(t) is a union of closed curves, and take the convention that distance is
positive if and only if the point is interior to one of the curves. This is consistent
with functions which nucleate regions of +1.) We use the properties of the
distance function

|∇d| = 1, ∆d |Γ(t)= −κ,
d

dt
d(x, Γ(t)) = vn,
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to derive

Ŝε[u] ≈ ε−1

8

∫∫
sech4

(
d(x, Γ(t))

ε
√

2

)
(vn + κ)2dxdt

=
ε−1

8

∫ T

0

∫ ∞

s=−∞

∫

d=s

sech4

(
s

ε
√

2

)
(vn + κ)2H0(d−1(s) ∩ Ω)dσdsdt

=
ε−1

8

∫ T

0

∫ ∞

s=−∞
sech4

(
s

ε
√

2

) ∫

d=s

(vn + κ)2H0(d−1(s) ∩ Ω)dσdsdt,

where σ is the variable along the level curves of d, and the second to last equal-
ity follows by the coarea formula and the fact that |∇d| = 1. The multiplicity
function H0 restricts the integration to the spatial domain. Now, because the
hyperbolic secant is sharply peaked, Laplace’s method indicates that

Ŝε[u] ≈ ε−1

8

∫ T

0

∫

Γ(t)

(vn + κ)2dσ

∫ ∞

s=−∞
sech4

(
s

ε
√

2

)
H0(d−1(s) ∩ Ω)ds dt

→
ε→0

c0

4

∫ T

0

∫

Γ(t)

(vn + κ)2dσdt.

We consider the implications of the reduced functionals below in Section 3.

3 Upper bounds: constructions

3.1 Dimension d = 1

The 1-d reduced action functional (2.3) reflects a cost for each nucleation point
and a cost for propagation. The lowest cost is achieved by choosing equally
spaced nucleation events and walls which propagate linearly in time. The
constraint of switching means that the walls must cover the entire system by
t = T , so that g1(T ) = 0 and g2M(T ) = L. (See Figure 3 for an illustration.)
The optimal number of walls minimizes

c0

(
2N +

L2

8NT

)
. (3.1)

We use these ideas in the one-dimensional upper bound construction.

Proposition 2 (Upper bound, d = 1). For periodic boundary conditions
and d = 1,

lim sup
ε→0

Ŝswitch ≤ min
N∈N

(
2N +

L2

8NT

)
c0.
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The corresponding assertion for Neumann boundary conditions follows easily:

Corollary 2. For Neumann boundary conditions and d = 1,

lim sup
ε→0

Ŝswitch ≤ min
N∈N

(
N +

L2

4NT

)
c0.

Proof. We find it convenient to rescale space and time

x̂ := x/ε, t̂ := t/ε2,

and work with the ε-independent functional

S[u] :=

∫ T̂

0

∫ L̂

0

(u̇− ux̂x̂ + V ′(u))
2

dx̂ dt̂,

in the limit T̂ → ∞, L̂ → ∞, L̂/
√

T̂ = c. For ease of notation, we drop the
hats.

Let S[ 0,T ] denote the action on [0, T ]. We need to show that for all δ > 0,
there exists a time T ∗ such that for all T ≥ T ∗,

inf
u

S[ 0,T ][u] ≤ min
N∈N

(
2N +

L2

8NT

)
c0 + δ.

We do this via explicit construction, demonstrating

∀δ > 0, ∃T ∗ such that

∀T ≥ T ∗, ∃uδ,T such that

S[ 0,T ][u
δ,T ] ≤ min

N∈N

(
2N +

L2

8NT

)
c0 + δ.

Our test function will consist of N periodic cells of length 2L̃ = L/N . At the
center of each cell is a nucleation point. Consider the action on a single cell,
where we center the construction at x = 0 and take the system to be [−L̃, L̃].

The construction proceeds in five stages. We first describe the stages and
then explain how the parameters are chosen. We make use of the “nucleation
state”

un(x) :=





tanh

(
L1 + x√

2

)
x ≤ 0

tanh

(
L1 − x√

2

)
x > 0.

Note that un is has a jump in the derivative at x = 0. For a first pass, we
ignore this problem and present the main idea of the estimates. We then
demonstrate that the discontinuity can be smoothed without loss. The same
is true for the discontinuity that comes from “gluing” two cells together.
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Figure 3: Action minimizer for L = 8
√

T .

Overview of the five stages

Stage 1. In time T0, linearly interpolate from u ≡ −1 to u0, a point on
the orbit connecting (in infinite time) un with u ≡ −1 under the dynamics
u̇ = uxx − V ′(u). (As long as L1 < L̃/2, un is in the basin of attraction of
u ≡ −1, so this orbit exists. Actually, we will choose L1 < L̃/4 for (3.2),
below.)
Stage 2. In time T1, follow the orbit from u0 to un with time reversed dy-
namics.
Stage 3. In time T2 := T − 2T0 − 2T1, propagate the hyperbolic tangent
profiles, using u(x, t) := v(x, t− T1 − T0), with

v(x, t) :=





tanh

(
L1 + x + ct√

2

)
x ≤ 0

tanh

(
L1 − x + ct√

2

)
x > 0,

where c := (L̃− 2L1)/T2 so that the zeros of the tangents reach ±(L̃−L1) by
the end of propagation.
Stage 4. In time T1, follow the orbit from this state to a point arbitrarily
near u ≡ +1. (This is symmetric to Stage 2, except that we follow the orbit
in forward time.)
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Stage 5. In time T0, linearly interpolate to u ≡ +1.

Choice of parameters and action cost

By calculating as in (1.14), the action cost in the second stage is (E(un) −
E(u0)) ≤ E(un). The energy of un on each half line converges monotonically
as L1 →∞, which comes from calculating

∫ b

−b

1

2
(∂x tanh(x/

√
2))2 +

1

4
(1− tanh2(x/

√
2))2dx ↑

b→∞

2
√

2

3
,

(by using u-substitution with u(x) := tanh(x/
√

2) and using the identity
u′(x) = (1 − u2)/

√
2). Therefore, the action of this stage is bounded by

2 × 2
√

2/3. Fix L1. (When we patch the function near x = 0 we will choose
L1 À 1 to control the error.)

Now choose u0 on the orbit between −1 and un (corresponding to the L1

chosen above) such that u0 is not identically −1 and the action cost of the
linear interpolation in stage one costs less than δ/(4N). We use the lemma of
Faris and Jona-Lasinio [12]:

Lemma 1 (Faris and Jona-Lasinio). For the linear interpolant

u(t) := u(a)(1− t/τ) + u(b)t/τ

with u(a) and u(b) uniformly bounded and ||DuE[u(a)]||L2 < ∞, ||DuE[u(b)]||L2 <
∞, there exists a constant c < ∞ and a T0 ∈ (0,∞) such that the correspond-
ing u satisfies

S[ 0,T0][u] ≤ 2c||u(a)− u(b)||L2 .

The proof is by separating the action as in (1.17). The time derivative is
controlled by

||u(a)− u(b)||2L2

τ

and ||DuE[u(t)]||L2 is estimated in terms of the end states plus a bounded
function, so that the second term in (1.17) is bounded by

Cτ.

Optimizing on τ completes the proof. By the lemma, it is possible to interpo-
late with a low cost, and there is a corresponding (small and finite) time T0

which is optimal.
Next, find the time T1 needed to connect states un and u0. Note that T1 is

finite but large. According to a theorem of Carr and Pego [4], T1 ≈ e2
√

2L1 .
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Finally, consider the action for the propagation phase, Stage 3. Here, the
propagation action on each cell is bounded by

√
2

3
c2T2 =

√
2

3

(
L̃− 2L1

T2

)2

T2

=

√
2

3

(L̃− 2L1)
2

T2

≤
√

2

3

L̃2

T − 2T0 − 2T1

=

√
2

12

L2/N2

T − 2T0 − 2T1

,

for L̃ ≥ 2L1. Thus, multiplying by N , the total propagation action for T ∗

sufficiently large satisfies the bound

S[ T0+T1,T−(T0+T1)][u] ≤
√

2

12

L2

NT
(1− 2(T0 + T1)/T )−1

≤
√

2

12

L2

NT
+

δ

4
.

Now for any T ≥ T ∗, let u be constructed as outlined, with the given
choices for u0, T0, L1, and T1. Then the total action

S[ 0,T ][u] ≤ δ

4
+

4
√

2

3
N +

(√
2

12

L2

NT
+

δ

4

)
+

δ

4
,

≤ 4
√

2

3
N +

√
2

12

L2

NT
+ δ

=

(
2N +

L2

8NT

)
c0 + δ.

Minimizing over N completes the argument.

Smoothing the discontinuity

We now return to the discontinuity in the derivative of the test function at
x = 0, which we have ignored. We use the fact that the discontinuity vanishes
as L1 → ∞. Consider a smooth function φ : R → R such that φ(x) ≡ 1 for
x ≤ −1, φ(x) ≡ 0 for x ≥ 1 and φ and its derivatives are bounded by 1. Define
the smooth nucleation state:

tanh

(
x + L1√

2

)
φ

(x

a

)
+ tanh

(−x + L1√
2

) (
1− φ

(x

a

))
,

18



for a small constant a. We now show that the estimate for the cost of the
action in Stage 2 remains valid. Let Eu := (∂xu)2/2 + (1− u2)2/4. Then

E(un) =
∫ −a

−L̃

E
(

tanh

(
x + L1√

2

))
dx +

∫ L̃

a

E
(

tanh

(−x + L1√
2

))
dx +

∫ a

−a

E(un)dx.

The first two integrals are bounded by 2
√

2/3 as before, and the last integral
vanishes as a → 0 by virtue of the fact that

| tanh((x + L1)/
√

2)− tanh((−x + L1)/
√

2)| ≤ C|x|
for x ∈ [−a, a].

In Stage 3 we let

v(x, t) := tanh

(
x + L1 + ct√

2

)
φ

(x

a

)
+ tanh

(−x + L1 + ct√
2

) (
1− φ

(x

a

))
.

We need to check the behavior of the action for x ∈ [−a, a]. The bound on
the propagation term on this interval holds as before. To deal with the other
term, we use (uxx + u− u3)2 ≤ 2u2

xx + 2(u− u3)2. For the u− u3 term, notice
that u is a convex combination of the values of the two hyperbolic tangents,
and on [−a, a],

1 ≥ u ≥ tanh

(
L1 − 1 + ct√

2

)
=: 1− δ.

To complete the bound, we will also need to bound the wall speed from below.
To this end, recall the definition

c : =
L̃− 2L1

T2

,

and the relationships L1 ≤ L̃/4, L̂ = L/2N , and N ∼ L/
√

T . We estimate

c ≥ L̃

2T2

≥ L̃

2T
=

L

4NT
& 1√

T
. (3.2)

With these estimates in hand,

2

∫ T−T0−T1

T0+T1

∫ a

−a

(u− u3)2dx ≤ 2

∫ T

0

∫ a

−a

(4δ)2dx dt (for δ sufficiently small)

. a

∫ T

0

e−2
√

2(L1−1+ct)dt

. ae−2
√

2L1

c

. ae−2
√

2L1
√

T .
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We control this term by choosing
√

T ¿ e2
√

2L1 . Note that since increasing L1

forces an exponential increase in T1 (as e2
√

2L1), it is critical that we can satisfy
T 1/2 ¿ T1 ¿ T. As this is no problem for T → ∞, given any δ, choosing T ∗

large enough suffices to secure the estimates.
Finally, consider the u2

xx term. On [−a, a], uxx is a rather long expression
which we refrain from writing in full, but the worst term is the one in which
both derivatives fall on φ, which we bound in the following way

∫ T2

0

∫ a

−a

∣∣∣∣a−2φ′′
(x

a

) (
tanh

(
x + L1 + ct√

2

)
− tanh

(−x + L1 + ct√
2

))∣∣∣∣
2

dx dt

≤ a−4

∫ T2

0

∫ a

−a

∣∣∣∣tanh

(
x + L1 + ct√

2

)
+ tanh

(
x− L1 − ct√

2

)∣∣∣∣
2

dx dt

≤ 2a−4

∫ T2

0

sech4

(
L1 − 1 + ct√

2

) ∫ a

−a

x2 dx dt

=
4a−1

3

∫ T2

0

sech4

(
L1 − 1 + ct√

2

)
dt

≤ 64a−1

3

∫ T2

0

e−2
√

2(L1−1+ct)dt

=
64a−1e−2

√
2(L1−1)

6
√

2c

(
1− e−2

√
2 c T2

)

. a−1

c
e−2

√
2L1

. T 1/2

a
e−2

√
2L1 .

As before, we control this term by choosing L1 sufficiently large.

3.2 Higher space dimensions

The Γ-limit candidates (2.1) and (2.3) tell us how minimizers of (1.10) be-
have for small ε, guiding our development of upper bound constructions. In
one space dimension, it is straightforward to solve the limit problem posed
by (2.3), but the reduced functional in d > 1 is more complicated to analyze.
Below, we use it to develop two very different classes of candidates for up-
per bound constructions in d > 1, both of which give the same scaling law.
The first class are one-dimensional constructions. The second class are the
MCF-based constructions, built around the mean-curvature-flow skeleton of
Section 2. In some sense, it is surprising that one-dimensional constructions
can compete with MCF-based constructions, which take advantage of the ge-

20



Figure 4: The stripe pattern, a one-dimensional construction for periodic
boundary conditions.

ometric freedom and deterministic dynamics associated with higher dimen-
sions. Indeed, in Subsection 3.2.4, we show that at least for d = 2, accelerated
mean-curvature-flow beats the one-dimensional constructions. In other words,
action minimizers must involve two-dimensional structure. We expect that
the behavior is generic for any d ≥ 2; namely, that while one-dimensional con-
structions can achieve the optimal action in the energy-barrier regime, higher
dimensional constructions are necessary in the sharp-interface limit.

If we assume that the action minimizing front is monotone, we can rewrite
the second term in (1.12) in terms of φ(x), the arrival time of the front at
position x:

c0

4

∫

Ω

|∇φ|
(

1

|∇φ| +∇ · ∇φ

|∇φ|
)2

dx. (3.3)

Using (1.12) or (3.3) to study the full problem is in some sense the opposite
of a current method in image processing, in which a sharp-interface problem
is analyzed by studying a diffuse-interface approximation. See, for instance,
[2, 5, 10].
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3.2.1 One-dimensional constructions

Proposition 3 (Upper bound, one-dimensional constructions). For
periodic boundary conditions and d > 1, the action satisfies

lim sup
ε→0

Ŝswitch ≤ min
N∈N

(
2N +

L2

8NT

)
c0 Ld−1.

Proof. We use the same construction as for d = 1, replacing the nucleation
points with (d − 1)-dimensional hyperplanes (which propagate as travelling
planes).

Corollary 3. For Neumann boundary conditions and d > 1,

lim sup
ε→0

Ŝswitch ≤ min
N∈N

(
N +

L2

4NT

)
c0 Ld−1.

3.2.2 Connection with curvature flow

The reduced action functional (2.1) suggests curvature flow. Indeed, as the
sharp-interface analogue of (1.16), consider constructions of interface functions
which are built out of point nucleations plus reverse and forward curvature flow
to an intermediate state on the ridge, i.e. Γ(T ∗) = g and

vn =

{
+κ 0 ≤ t ≤ T ∗

−κ T ∗ < t ≤ T.
(3.4)

Point nucleations incur no nucleation cost. Moreover, the calculation

SR[Γ(·)] ≥ c0

4

∫ T ∗

0

∫

Γ(t)

(
(vn − κ)2 + 4 κ vn

)
dσ dt

≥ c0

4

∫ T ∗

0

∫

Γ(t)

(4 κ vn)dσ dt

=
c0

4

∫ T ∗

0

4 Ṗ (Γ(t))dt

= c0P (g),

shows that (3.4) leads to an action cost which is equal to the perimeter of g,
and no other construction passing through g can do better. This suggests the
time-dependent perimeter problem:

What is the state with minimal perimeter which can be reached by
forward and reverse curvature flow in time T/2?
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Figure 5: Sketch of an MCF construction. Reverse curvature motion car-
ries the interface from two point nucleations to two gray squares. After the
checkerboard is complete, the white squares collapse by forward curvature flow.

Note that we have not actually reduced the action minimization problem to
a perimeter problem, because we have only demonstrated optimality among
states which can be reached, in time, by curvature flow. In all likelihood, the
optimal path accelerates or otherwise modifies its motion so that it can pass
through an energetically better state, in exchange for a nonzero propagation
cost. These ideas generate the MCF-based upper bound constructions and
accelerated curvature flow constructions below.

3.2.3 MCF-based constructions

For MCF-based constructions, we choose g to be a “checkerboard state” of
appropriate scale, and apply (3.4), as illustrated in Figure 5. The interfaces
Γ(t) serve as the zero level sets of the constructions. Proposition 4 demon-
strates that the MCF-based constructions satisfy the optimal action scaling
law, S[u] ∼ Ld/

√
T (cf. the introduction and Appendix A).

Proposition 4 (Upper bound, MCF-based constructions).
For d > 1, it is possible to achieve the optimal scaling of the action functional,

lim sup
ε→0

Ŝε[u] ∼ Ld

√
T

,
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Figure 6: The cross pattern, an MCF construction for periodic boundary
conditions.

via constructions which use MCF flow on the natural, deterministic timescale.

Proof. The backbone of the construction is identification of the interface, Γ(t),
which defines the zero level set of our test functions:

uε(x, t) := tanh

(
d(x, Γ(t))

ε
√

2

)
.

We create the interface at time 0 < t′ ¿ 1, with Γ(t′) a finite collection of
points. We need to connect uε(x, t′) to the initial state uε(x, 0) ≡ −1, and
count the action on [0, t′] separately. However, since Γ(t′) is comprised of only
finitely many points, Êε[uε(·, t′)] →

ε→0
0, and consequently, we can connect the

states with negligible action cost.
Let ` be the largest possible value such that [0, `]d collapses by MCF in

time t = T/2. (The length-scale ` scales like
√

T .) Since we are only interested
in the scaling, we assume for simplicity that L/` ∈ N. To construct Γ(t), break
the system into n = (L/`)d periodic cells so that on each cell, there is sufficient
time to follow the reverse MCF path from a point to a square. To proceed,
consider a checkerboard overlay of the system. A four square checkerboard is
sketched in Figure 5. On the “black” squares, let Γ(0) be the center of the
square, and Γ(T/2) be the perimeter of the square. For t ∈ [0, T/2], let the
interface move by reverse mean-curvature-flow from the initial to final state.

24



Thus, at t = T/2, the interface has grown to the outline of the checkerboard.
For t ∈ [T/2, T ], let the interface relax from this state to the centers of the
“white” squares by forward curvature motion.

Since we use the deterministic motion, the limiting action cost is just the
perimeter of the “checkerboard state” with n cells (cf. Subsection 3.2.2):

lim
ε→0

Ŝε[uε] = c0P =
d c0 Ld

`
∼ Ld

√
T

.

Remark 2. Under periodic boundary conditions, the smallest checkerboard
reduces to a cross pattern (Figure 6), where two point nucleations at a pair
of parallel edges introduce growing interfaces. Since the energy barrier of the
cross is higher than that of the one-dimensional stripe, the stripe achieves a
lower action than the cross in the energy barrier regime. In the sharp-interface
limit, however, curvature based constructions are competitive; see below.

Remark 3. Our checkerboard construction “is in no hurry.” If the interface
were to move faster than the natural timescale, it could go through a coarser,
energetically favored checkerboard, at the expense of a propagation cost. We
use this idea in the following proposition for dimension d = 2.

3.2.4 Accelerated curvature flow

In d = 2, we know the precise timescale for curvature motion. We use this
knowledge to show that accelerated curvature flow (checkerboards with vn =
γκ) can beat one-dimensional constructions in the sharp-interface regime. We
do not claim that this is the optimal construction, but it shows that the optimal
path must have two-dimensional structure. (This is not true in the energy-
barrier regime.)

Proposition 5 (A more precise upper bound for d = 2). For periodic
boundary conditions and dimension d = 2, it is possible to use accelerated
MCF to derive the improved upper bound

lim sup
ε→0

Ŝswitch ≤ min
N∈N

(
(2N)3π T

L2
+

L4

2N π2 T

)
c0 L. (3.5)

Proof. We work in terms of the interface, Γ(t), and use an N×N checkerboard
as in the previous proposition. Let the normal velocity of the interface be a
constant multiple of the curvature, vn = ±γκ for some γ > 0. We will choose
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the constant γ = γ(N) so that the checkerboard is reached in exactly time
T/2. For any closed, planar curve,

Ȧ(t) =

∫

Γ(t)

vn = −
∫

Γ(t)

γκ = −γ

∫

Γ(t)

dθ

dσ
dσ = −2πγ,

where A(t) is the area enclosed by the curve Γ(t) and θ is the angle between
a point on the curve and a fixed axis. Therefore, we impose

`2 = πγ T ⇒ γ =
`2

πT
=

L2

πT N2
. (3.6)

We calculate the cost in the reduced action functional, for the growth phase:

c0

4

∫ T/2

0

∫

Γ(t)

(vn + κ)2dσ dt =
c0

4
(1 + γ)2

∫ T/2

0

∫

Γ(t)

κ2dσ dt

=
c0

4

(1 + γ)2

γ

∫ T/2

0

∫

Γ(t)

κvndσ dt

=
c0

4

(1 + γ)2

γ
P (T/2)

=
c0

4

(1 + γ)2

γ
2NL,

and similarly for the collapse phase:

c0

4

∫ T

T/2

∫

Γ(t)

(vn + κ)2dσ dt =
c0

4

(1− γ)2

γ
2NL.

(In particular, choosing vn = κ accrues no cost for the collapse phase. The
optimal n typically requires γ > 1, however, since that allows for a smaller
perimeter.) Adding the costs, substituting for γ from (3.6), and keeping in
mind the periodicity requirement leads to (3.5).

If we minimize over N ∈ R, we find that the action for the MCF con-
structions does slightly better (by a factor of .99) than the one-dimensional
constructions. It also does slightly better when minimizing over integers, for
a wide range of the parameter L/

√
T .

4 Lower bounds

We begin by developing the rough lower bound Ŝswitch ≥ Ld/(3
√

T ), for arbi-
trary dimension. An ansatz-free, tight lower bound requires more work and
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relies on the limiting behavior of the energy measures. In Subsection 4.2, we
illustrate the role of the energy by demonstrating how two hypotheses on the
energy (reasonable for action minimizers) and an elementary argument lead
to the improved 1-d lower bound

lim inf
ε→0

Ŝswitch ≥ c0
L√
T

. (4.1)

This bound is sharp (i.e. it matches the upper bound) when L/(4
√

T ) ∈ N.
In Subsection 4.3, we consider what is necessary for a rigorous proof.

4.1 Scaling bound

Proposition 6 (Lower bound scaling). For all functions u with

u(x, 0) ≡ −1 and u(x, T ) ≡ +1

(with periodic or Neumann boundary conditions), the action functional satis-
fies

Ŝε[u] ≥ 1

3

Ld

√
T

.

Proof. On the one hand, letting E(t) := Êε[u(·, t)],

Ŝε[u] ≥ max
0≤t≤T

E(t) ≥ 1

T

∫ T

0

E(t)dt ≥ 1

T

∫ T

0

∫

ΩL

(1− u2)2

4ε
dxdt. (4.2)

On the other hand,

Ŝε[u] ≥ 1

4

∫ T

0

∫

ΩL

εu̇2dxdt .

Combining these inequalities,

Ŝε[u] ≥ 1

2

(
1

4

∫ T

0

∫

ΩL

εu̇2dxdt +
1

T

∫ T

0

∫

ΩL

(1− u2)2

4ε
dxdt

)

≥ 1

4

(∫ T

0

∫

ΩL

u̇2dx dt

)1/2 (
1

T

∫ T

0

∫

ΩL

(1− u2)2dx dt

)1/2

≥ 1

4
√

T

∫ T

0

∫

ΩL

|u̇(1− u2)|dx dt

=
1

4
√

T

∫

ΩL

∫ T

0

|u̇(1− u2)|dt dx

≥ Ld

3
√

T
.
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4.2 Sharp 1-d bound, under two assumptions

We derive the improved bound (4.1) under the hypotheses that aside from a
small initial and final layer in time, the energy is approximately constant, and
that there is approximate equipartition of energy. The hypotheses are natural
in dimension one. To achieve switching, the function must form interfaces.
Since there is no advantage for walls to nucleate late or disappear early, we
expect the number of walls to remain fixed. The DuÊ

ε term in (1.10) drives
the interfaces towards the optimal profile. Thus, in one dimension, we expect
an approximately constant energy and approximate equipartition as the walls
propagate.

Proposition 7 (Tight lower bound, with assumptions). Let uε : [0, L] →
R be a sequence of smooth functions which satisfy periodic or Neumann bound-
ary conditions and uε(x, 0) ≡ −1 and uε(x, T ) ≡ +1. Suppose that the follow-
ing two assumptions also hold as ε → 0.

1. There are times T ′ = o(1), T ′′ = T − o(1), such that

E(T ′) = E(T ′′) = max
0≤t≤T

E(T ) + o(1).

2. On [T ′, T ′′], we have approximate equipartition of energy, i.e.

1

2

∫

ΩL

ε(uε,x)
2dx =

∫

ΩL

V (uε)

ε
dx + o(1).

Then:

lim inf
ε→0

Ŝε[uε] ≥ c0
L√
T

.

Proof. Taking the limit on the sequence is necessary only to remove the o(1)
terms. Therefore, in the following calculations, we fix ε and omit the subscript
on the function u. Define

Emax := max
0≤t≤T

E(t).

We split the action over [0, T ′] and [T ′, T ′′]. On the first interval, there is a
nucleation cost which comes from the jump in energy:

Ŝε
[ 0,T ′][u] ≥ Emax + o(1).

On the second interval, there is a propagation cost from the motion of the
interfaces. To estimate the cost, we introduce the following lemma.

28



Lemma 2 (Control in time). Let

I(t) :=

∫ L

0

(u− u3/3)(·, t)dx.

We have the estimate

|I(t)− I(s)| ≤ C|t− s|1/2.

Proof. We combine the action and energy bounds

|I(t)− I(s)| =
∣∣∣∣
∫ t

s

∫ L

0

u̇(1− u2)dxdt′
∣∣∣∣

≤
(∫ t

s

∫ L

0

εu̇2dx dt′
)1/2 (∫ t

s

∫ L

0

(1− u2)2

ε
dx dt′

)1/2

≤ C|t− s|1/2.

Lemma 2 and the initial and final conditions imply:

J :=

∫ T ′′

T ′

∫ L

0

u̇(1− u2) dx dt =
4

3
L + o(1). (4.3)

On the other hand,

J ≤
(∫ T ′′

T ′

∫ L

0

εu̇2dx dt

)1/2 (∫ T ′′

T ′

∫ L

0

(1− u2)2

ε
dx dt

)1/2

.

The idea is to use the
∫∫

εu̇2 dx dt term to estimate the propagation cost. We
have

1

4

∫ T ′′

T ′

∫ L

0

(
ε1/2u̇ + ε−1/2DuÊ

ε(u)
)2

dx dt

=
1

4

∫ T ′′

T ′

∫ L

0

εu̇2 + ε−1DuÊ
ε(u)2dx dt +

1

2
(E(T ′′)− E(T ′))

≥ 1

4

∫ T ′′

T ′

∫ L

0

εu̇2dx dt,
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where the energy difference vanishes by the hypothesis on T ′ and T ′′. There-
fore,

J ≤ 2
(
S[T ′,T ′′][u]

)1/2

(∫ T ′′

T ′

∫ L

0

(1− u2)2

ε
dx dt

)1/2

≤ 2
(
S[T ′,T ′′][u]

)1/2

(
2

∫ T ′′

T ′
E(t) + o(1)dt

)1/2

(by equipartition)

≤ 2
√

2T
(
S[T ′,T ′′][u]

)1/2
(Emax + o(1))1/2. (4.4)

Combining (4.3) and (4.4),

S[ T ′,T ′′][u] ≥ 2

9

L2

TEmax

+ o(1).

Thus,

S[u] ≥ min
M

(
M +

2

9

L2

TM

)
+ o(1)

≥ 2
√

2

3

L√
T

+ o(1).

Taking the limit on the sequence of functions completes the proof.

4.3 Ansatz-free bounds and equipartition of energy

A rigorous proof requires an analysis of the weak convergence of the energy
measures and the limiting equipartition of energy. This is related to work of
Hutchinson and Tonegawa [19] and Tonegawa [38], who study energy-bounded
sequences for which

fε := ε∆uε + ε−1(uε − u3
ε) (4.5)

is a bounded sequence of constants, or a sequence of functions which is bounded
in W 1,d. They prove that the density of the limiting energy measures has in-
teger multiplicity almost everywhere (modulo c0), and equipartition of energy
is achieved in the limit. The analytical challenge in our setting is to extend
these results under the weaker bound

ε−1

∫ T

0

∫

Ω

f 2
ε dx dt ≤ C.

This is carried out in dimension d = 1 in [21].
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In this subsection, our goal is to demonstrate that the key ingredients for
the lower bound on the action functional are the convergence of the energy
measures and the limiting equipartition of energy. We show that provided the
interface of the limit function, Γ(t) := ∂{u0 = 1}, is sufficiently smooth and
we have the convergences:

(i) Convergence of the energy measures:

(
ε|∇uε|2

2
+

V (uε)

ε

)
dx dt ⇀ c0H(d−1)xΓ(t)dt =: µ, (4.6)

(ii) Limiting equipartition of energy, or vanishing of the discrepancy mea-
sures:

∣∣∣∣
ε|∇uε|2

2
− V (uε)

ε

∣∣∣∣ dx dt ⇀ 0, (4.7)

then we have lower semi-continuity of the action functional in the sense that:

lim inf
ε→0

∫ T

0

∫

Ω

εu̇2
ε dx dt ≥ c0

∫ T

0

∫

Γ(t)

v2
n dσ dt, (4.8)

lim inf
ε→0

∫ T

0

∫

Ω

ε−1(ε∆uε − ε−1V ′(uε))
2 dx dt ≥ c0

∫ T

0

∫

Γ(t)

κ2 dσ dt. (4.9)

Let the set A consist of all ζ ∈ C1
0(Ω× (0, T )) such that

∫ T

0

∫

Γ(t)

ζ2 dσ dt ≤ 1. (4.10)

To show (4.8), we will use the dual representation:

(∫ T

0

∫

Γ(t)

v2
n dσ dt

)1/2

= sup
ζ∈A

∫ T

0

∫

Γ(t)

ζ vn dσ dt. (4.11)

Let A(t) denote the set {u0 = −1}, and take the sign convention that n is the
outward normal to A. We have two equalities:

∫ T

0

∫

Γ(t)

ζ vn dσ dt = −
∫ T

0

∫

A(t)

ζ̇ dx dt,

∫ T

0

∫

Γ(t)

ζ vn dσ dt =

∫ T

0

∫

Ac(t)

ζ̇ dx dt.
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Combining the equalities,
∫ T

0

∫

Γ(t)

ζ vn dσ dt

=
1

2

(
−

∫ T

0

∫

A(t)

ζ̇ dx dt +

∫ T

0

∫

Ac(t)

ζ̇ dx dt

)

=
3

4
lim inf

ε→0

(
−

∫ T

0

∫

Ω

ζ̇(uε − u3
ε/3) dx dt

)

=
3

4
lim inf

ε→0

(∫ T

0

∫

Ω

ζu̇ε(1− u2
ε) dx dt

)

≤ 3

4
lim inf

ε→0

(∫ T

0

∫

Ω

ζ2 (1− u2
ε)

2

ε
dx dt

)1/2 (∫ T

0

∫

Ω

εu̇2
ε dx dt

)1/2

(4.6)
(4.7)
=

3

4

(
2c0

∫ T

0

∫

Γ(t)

ζ2 dσ dt

)1/2

lim inf
ε→0

(∫ T

0

∫

Ω

εu̇2
ε dx dt

)1/2

(4.10)

≤ c
−1/2
0 lim inf

ε→0

(∫ T

0

∫

Ω

εu̇2
ε dx dt

)1/2

.

By the representation (4.11), taking the sup over ζ implies (4.8).
Similarly, to show (4.9), we let the set A consist of all ξ ∈ C1

0(Ω× (0, T ))d

such that
∫ T

0

∫

Γ(t)

|ξ|2 dσ dt ≤ 1, (4.12)

and use the dual representation:

(∫ T

0

∫

Γ(t)

|κ|2 dσ dt

)1/2

= sup
ξ∈A

∫ T

0

∫

Γ(t)

(ξ · κ) dσ dt, (4.13)

where κ is the mean curvature vector. First, we claim that (i) and (ii) imply

∫ T

0

∫

Ω

(
∇ · ξ − ∂iξj

∂iuε

|∇uε|
∂juε

|∇uε|
)

ε|∇uε|2 dx dt

→ c0

∫ T

0

∫

Γ(t)

(∇ · ξ − ∂iξj νi ⊗ νj) dσ dt

= c0

∫ T

0

∫

Γ(t)

(ξ · κ) dσ dt. (4.14)

(We use a summation convention, and ν denotes the outward unit normal to
the region enclosed by Γ(t).) The convergence of the first term is a direct
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application of (i) and (ii). The convergence of the second term relies on the
following consequence of conditions (i) and (ii), which follows from work of
Reshetnyak [32]. See also Luckhaus and Modica [24]. Their results are more
general; in our setting, the statement we need is:

Proposition 8. Suppose conditions (i) and (ii) are satisfied. Then

ε∇uε ⊗∇uε dx dt ⇀ c0ν ⊗ νH(d−1)xΓ(t)dt.

For completeness, we include the proof.

Proof. Because

λε := ε∇uε ⊗∇uε dx dt

is a bounded sequence of measures, we may assume without loss that it con-
verges to a limit measure, λ. Moreover, (4.7) implies that the limiting measure
µ (defined in (4.6)) is equal to:

µ = lim
ε→0

ε|∇uε|2 dx dt.

Therefore, |λ| ¿ µ and by the Radon-Nikodym theorem, it has a representa-
tion

λ = Aµ,

for some µ-measurable matrix A which is symmetric and positive semi-definite.
We now study the matrix A. All of the statements which we make about A
should be understood in the µ-a.e. sense.

First of all, the calculation:

µ = lim
ε→0

ε|∇uε|2 dx dt = lim
ε→0

Trace(ε∇uε ⊗∇uε) dx dt = Trace(A) µ,

reveals that

TraceA = 1, (4.15)

which by the positivity of A implies in particular that the maximal eigenvalue
of A is bounded by one. Thus

(y,A y) ≤ 1, (4.16)

for any y ∈ Rd with |y| ≤ 1. The goal is now to show that

(ν,A ν) = 1 µ− a.e., (4.17)
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which by the Rayleigh quotient implies that ν is an eigenvector of A with
eigenvalue 1. Because of (4.15) and the positivity of A, ν must therefore be
the only eigenvector of A with nontrivial eigenvalue, and A = ν ⊗ ν.

For the proof of (4.17), let ξ ∈ C∞
0 (Ω× (0, T ))d with |ξ| ≤ 1 and observe:

ε(ξ,∇uε ⊗∇uεξ) = ε(∇uε, ξ)
2 = ε|∇uε|2

( ∇uε

|∇uε| , ξ
)2

≥ ε|∇uε|2
(

2

( ∇uε

|∇uε| , ξ
)
− 1

)

= 2ε|∇uε|(∇uε, ξ)− ε|∇uε|2, (4.18)

where to get from the first to the second line, we have used the inequality
x2 ≥ 2x− 1.

We would like to integrate and pass to the limit in (4.18). The only difficult
term is the first term on the r.h.s. For this term, we will use the fact that for
all ξ with |ξ| ≤ 1,

∫∫ ∣∣∣2ε|∇uε|(∇uε, ξ)−
√

2|1− u2
ε|(∇uε, ξ)

∣∣∣ dx dt

=

∫∫ ∣∣∣2ε|∇uε|2 −
√

2|1− u2
ε||∇uε|

∣∣∣
∣∣∣∣
( ∇uε

|∇uε| , ξ
)∣∣∣∣ dx dt

≤
∫∫ ∣∣∣2ε|∇uε|2 −

√
2|1− u2

ε||∇uε|
∣∣∣ dx dt

≤
(∫∫

ε|∇uε|2 dx dt

∫∫ (
2
√

ε|∇uε| −
√

2
|1− u2

ε|√
ε

)2

dx dt

)1/2

≤
(∫∫

ε|∇uε|2 dx dt

∫∫ ∣∣∣∣4ε|∇uε|2 − 2
(1− u2

ε)
2

ε

∣∣∣∣ dx dt

)1/2

= 2
√

2

(∫∫
ε|∇uε|2 dx dt

∫∫ ∣∣∣∣
ε|∇uε|2

2
− V (uε)

ε

∣∣∣∣ dx dt

)1/2

,

which goes to zero by (4.7). Therefore,

lim
ε→0

∫ T

0

∫

Ω

2ε|∇uε|(∇uε, ξ) dx dt

= lim
ε→0

∫ T

0

∫

Ω

√
2|1− u2

ε|(∇uε, ξ) dx dt, (4.19)

Defining

W (u) :=

∫ u

0

|1− s2| ds,
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(4.19) and the convergence of uε to ±1 imply

lim
ε→0

∫ T

0

∫

Ω

2ε|∇uε|(∇uε, ξ) dx dt

= lim
ε→0

∫ T

0

∫

Ω

√
2 (∇W (uε), ξ) dx dt

= lim
ε→0

∫ T

0

∫

Ω

−
√

2 W (uε) (∇ · ξ) dx dt

= c0

∫ T

0

∫

A(t)

(∇ · ξ) dt− c0

∫ T

0

∫

Ac(t)

(∇ · ξ) dt

= 2c0

∫ T

0

∫

Γ(t)

(ξ, ν) dt

= 2

∫
(ξ, ν)dµ.

Therefore, integrating and taking the limit in (4.18),

∫
(ξ, Aξ)dµ ≥ 2

∫
(ξ, ν)dµ−

∫
dµ.

Letting ξ approximate ν, we conclude

∫
(ν,Aν)dµ ≥

∫
dµ,

which, in light of (4.16), implies (4.17) and completes the proof.

We will use the proposition together with the following identity, which we
derive by multiplying (4.5) by ∂juεξj and integrating by parts:

∫ T

0

∫

Ω

(
∇ · ξ − ∂iξj

∂iuε

|∇uε|
∂juε

|∇uε|
)

ε|∇uε|2 dx dt

=

∫ T

0

∫

Ω

(
(∇ · ξ)

(
ε
|∇uε|2

2
− V (uε)

ε

)
+ fε∂juεξj

)
dx dt. (4.20)

If the sum of the first two terms on the r.h.s. vanishes in the limit by equipar-
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tition of energy (cf. (4.7)), then (4.14) and (4.20) imply

c0

∫ T

0

∫

Γ(t)

(ξ · κ) dσ dt

= lim inf
ε→0

∫ T

0

∫

Ω

(
∇ · ξ − ∂iξj

∂iuε

|∇uε|
∂juε

|∇uε|
)

ε|∇uε|2 dx dt

= lim inf
ε→0

∫ T

0

∫

Ω

(fε ∂juε ξj) dx dt

≤ lim inf
ε→0

[(
ε−1

∫ T

0

∫

Ω

f 2
ε dx dt

)1/2 (∫ T

0

∫

Ω

ε|∇uε|2|ξ|2 dx dt

)1/2
]

.

Using (4.6) and (4.12) to bound the limit of the second term, we conclude

c0

∫ T

0

∫

Γ(t)

(ξ · κ) dσ dt ≤ lim inf
ε→0

(
ε−1

∫ T

0

∫

Ω

f 2
ε dx dt

)1/2

c
1/2
0 ,

which, together with the representation (4.13), implies (4.9).
The task of justifying hypotheses (i) and (ii) in space dimension greater

than one remains a challenging open problem. The topic is linked to a con-
jecture of DeGiorgi, on which there has been recent progress in three space
dimensions [30].

5 Outlook

Relevance of short-time switching pathways. Because the long-time
switching pathway (e.g. single-nucleation pathways, in the Allen-Cahn prob-
lem) are the most likely pathways when switching is considered on its natural
timescale, they receive a lot of attention. After all, on this timescale, other
switching pathways are exponentially unlikely. On shorter timescales, how-
ever, different switching pathways may become relevant. In that case, esti-
mating the probability of switching based on the long-time pathway gives a
gross underestimate. This phenomenon appears, for instance, in the context
of magnetic memory devices [22, 33].

Large systems. As discussed in the introduction, the large system limit we
study here is taken after sending the noise strength to zero. As an example of
a very different limit, consider

u̇ = uxx − V ′(u) +
√

2γ η, x ∈ [−L,L],
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where V is an unequal double-well potential and η is a space-time white noise.
In that case, nucleation events are localized and the joint limit γ → 0 with L ∼
exp(c/γ) leads to multiple nucleation events which are randomly distributed
in space and time [34].

The sharp-interface limit of the stochastic process. Is the limiting
functional (2.3) actually the action functional for a well-defined stochastic
process? Moreover, is this process the sharp-interface limit of the process
defined by (1.4)? These questions involve permuting the order of the ε, γ
limits. Partial progress in this direction is contained in [15].

Interpreting the limiting functional (2.1) for d > 1 in terms of an associated
stochastic, sharp-interface problem is yet more involved, since there is also the
regularization parameter, λ, to consider. We are not aware of work in this
direction at this time.

Boundary-vortex limit in micromagnetics. The topic of action min-
imization and sharp-interface limits for stochastically perturbed partial dif-
ferential equations is certainly not limited to the Allen-Cahn equation, nor
is the sharp-interface limit the only interesting one. In micromagnetics, for
example, one is interested in thermally-activated switching of the magnetiza-
tion. There is a regime – involving submicron-scale, soft thin-films, commonly
used for magnetoresistive memory devices – in which the magnetic behavior is
dominated by “boundary vortices” [23, 28, 29]. We wonder whether thermally-
activated switching in this regime can be described by minimizing a suitable
action involving the nucleation and motion of boundary vortices.

APPENDICES

A Two other action regimes

We now consider two additional limiting regimes of the action (1.18): the short-
time limit (T → 0) and the energy barrier regime (L, T →∞ with L ¿ √

T ).
See Figure 7 for an overview. As usual, we focus on periodic boundary condi-
tions, but suitable generalization to Dirichlet or Neumann boundary conditions
is usually straightforward, as we remark.
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Figure 7: The scaling of the action in the four parameter regimes.

A.1 Short-time limit

In the short-time limit (T → 0),

Sswitch ∼ Ld

T
.

The heuristic here is that because time is short, the transport term
∫ T

0

∫
ΩL

u̇2dxdt
is paramount, leading us to expect spatial independence and, to minimize the
transport term, linearity in time. We prove that such a path does indeed
optimize the action. The short-time limit is unique in that the optimal path
completely ignores the energy landscape.

Proposition 9 (Short time limit). For periodic or Neumann boundary con-
ditions, the action satisfies

lim
T→0

TSswitch = Ld.

Proof. (Lower bound) We show that

Sswitch ≥ Ld/T.
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We use the properties of the spatial mean, ū := L−d
∫

ΩL
u dx, to bound the

action from below. Note that ū(t = 0) = −1, ū(t = T ) = 1, and

inf
ū

ū(0)=−1
ū(T )=1

∫ T

0

˙̄u2dt =
4

T
.

On the other hand, Jensen’s inequality gives

1

Ld

∫

ΩL

u̇2dx ≥
(

1

Ld

∫

ΩL

u̇dx

)2

,

so that for any function u which switches in time T and obeys the boundary
conditions,

S[u] ≥ 1

4

∫ T

0

∫

ΩL

u̇2dxdt

≥ Ld

4

∫ T

0

˙̄u2dt

≥ Ld

T
.

Taking the infimum over u completes the lower bound.

(Upper bound) We show that

lim sup
T→0

TSswitch ≤ Ld.

We choose the spatially independent linear interpolant between end states,
u := −1 + 2t/T , as a test function and compute

1

4

∫ T

0

∫

ΩL

u̇2 + (∆u + u− u3)2dxdt =
Ld

4

∫ T

0

4

T 2
+ (u− u3)2dt

=
Ld

T
(1 + O(T 2)).

A.2 Energy-barrier regime

We now switch perspectives and consider the long-time limit of the action.
Recall that the action is always at least as big as the energy barrier. The
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energy barrier regime consists of the region of parameter space in which T is
taken to infinity in such a way that this bound can be achieved. According
to (1.16), an action-minimizing trajectory should follow the uphill gradient
flow to the minimal saddle and the downhill flow from the saddle. Although
infinite time is required to complete each of the uphill and downhill journeys
along the heteroclinic orbits, a switching time which is large compared to the
deterministic time-scale allows a nearly optimal path to be constructed by
modifying the flow near the critical points.

At first, one is surprised by the extent of the energy-barrier regime. The
deterministic timescale for (1.3) in d = 1 is exponentially large in L; therefore,
one might expect that the action is strictly larger than the energy barrier when
L À ln T . In fact, it is possible to achieve an action cost equal to the energy
barrier even when

ln T ¿ L ¿
√

T .

To achieve the bound, we use the same constructions as for the sharp-interface
limit.

In d > 1, it seems natural that L ∼ √
T marks the boundary of the energy

barrier regime, since this is indeed the timescale for curvature flow. Even here,
however, the sharp bound is surprising, since one-dimensional constructions
are used to achieve the minimal action, and there is no apparent curvature-
based construction which does as well.

We distinguish two subregions of the energy-barrier regime, according to
the uniformity or nonuniformity of the minimal saddle. The crossover is at
L = 2π, at which point the saddle u ≡ 0 is supplanted by the nonuniform
saddle. (The boundary condition affects the crossover point; for Neumann
conditions, the transition is at L = π. For Dirichlet conditions, there is no
small system regime, since there is only one critical point of the energy for
L < π, and thus, no switching problem. )

A.2.1 Energy barrier regime: small systems

In the energy barrier regime, the sharp bound (1.15) is achieved by an approx-
imation of the pathway (1.16) through the minimal saddle. For small systems,
the only saddle point is u ≡ 0 (cf. the appendix), with energy Ld. Thus, for
T →∞ with L ≤ 2π,

Sswitch ∼ Ld.

As in the short-time limit, spatially uniform switching paths can be used to
optimize the action, but now it is the smallness of the length scale (rather
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than the time scale) which is responsible. The dynamics of the minimizing
pathway are completely different from the temporally linear dynamics used
for the short-time limit.

Proposition 10 (Long time limit, small systems). For L ≤ 2π and
periodic boundary conditions, the action satisfies

lim
T→∞

Sswitch =
Ld

4
.

Proof. (Lower bound) For the energy-barrier regime (for both small and
large systems), the lower bound comes from bounding the action by the energy
of the minimum energy saddle point, as in equation (1.15). We prove in
Appendix B that for L ≤ 2π, the only saddle point is us ≡ 0, so the energy
barrier is Ld/4.
(Upper bound) For the upper bound, we want to use the dynamics (1.16),
modifying the flow near the critical points so that the trajectory can be follow-
ing in finite time. The details of the construction are contained in the proof of
the upper bound for large systems (Proposition 11, below). A difference be-
tween the construction for small and large systems is that for small systems,
it suffices to use a spatially uniform switching path.

A.2.2 Energy barrier regime: large systems

The limit in this region is T →∞ with 2π ≤ L ¿ √
T . We prove

Sswitch ∼ Ld−1.

The scaling is different for small and large systems because for L > 2π, the
energy of the nonuniform, single-bump saddle point scales like perimeter, Ld−1.
Our constructions based on the deterministic dynamics as in (1.16) suffice as
long as

L ¿ ln T.

Notice, however, that we allow the spatial scale to grow much faster than this,
requiring only L ¿ √

T . To achieve a bound equal to the energy barrier for

ln T ¿ L ¿
√

T ,

we borrow from the constructions used for the sharp-interface regime. We also
use the fact that we can actually calculate the limit of the energy barrier as
L →∞ (Theorem 2 in Appendix B).
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Proposition 11. For L → L̃ ∈ (2π,∞] and T →∞ with lim sup
L→L̃
T→∞

L/
√

T → 0,

the action for periodic boundary conditions satisfies

lim
L→L̃
T→∞

Sswitch = ∆E(L̃), (A.1)

where ∆E(L̃) is the minimal saddle energy on an interval of length L̃.

We break the proof into two cases, L̃ < ∞ and L̃ = ∞. The former case
was already proved by Faris and Jona-Lasinio [12], but for completeness, we
include both cases.

Proof of proposition. (Lower bound) The lower bound holds as in (1.15) for
both finite and infinite L̃. (The limit of the energy barrier is well-defined even
though the periodic saddle points on [−L,L] do not converge as L →∞. See
the appendix for details.)
(Upper bound on bounded systems) We show that for L̃ ∈ (0,∞),

lim sup
L→L̃
T→∞

Sswitch ≤ ∆E(L̃).

By continuity, it is enough to show it for L fixed. Using Lemma 1, we construct
a test function ũ in five parts. The first is a linear interpolant connecting
u ≡ −1 to a point arbitrarily nearby. The second follows the reversed dynamics
to a point arbitrarily near the lowest energy saddle point. The third is a linear
interpolant between that point and a point in the basin of attraction of u ≡ +1,
also arbitrarily close to the saddle point. The fourth follows the gradient flow
towards u ≡ +1. The fifth connects the endpoint of the fourth segment with
u ≡ +1. By choosing T large enough, we can make the first, third, and fifth
contributions to the action arbitrarily small, by the lemma. Thus,

lim
T→∞

S[ũ] ≤ δ/3 + ∆E(L) + δ/3 + 0 + δ/3

= ∆E(L) + δ.

Letting δ → 0, we are done.

(Upper bound on unbounded systems) It is proved in the appendix that

lim
L→∞

L1−d∆E(L) = 2c0,
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so it is enough to show

lim sup
L→∞
T→∞

L1−dSswitch ≤ 4
√

2

3
.

This inequality follows directly from the upper bound for the sharp-interface
regime (Propositions 2 and 3), with one-dimensional test functions and one
nucleation (N = 1).

Remark 4. Proposition 11 also holds for Neumann boundary conditions. The
only thing that changes is the value of the energy barrier.

B The energy and its saddle points

The purpose of this appendix is to collect relevant information about the en-
ergy and its dependence on spatial scale. The energy barrier for small systems
is derived in Corollary 4 below, and the limit of the barrier for large systems
is derived in Theorem 2.

Remark 5. Throughout the appendix, our domain of integration is [0, L]d.

B.1 Small systems

Small systems are particularly straightforward because the only periodic saddle
point of the energy for L < 2π is u ≡ 0. This fact follows from the following
theorem, which is the adaptation to periodic boundary conditions of a theorem
of Gurtin and Matano [17].

Theorem 1. For L < 2π, the only periodic critical points are constant.

Proof. We use the fact that −1 ≤ u ≤ 1. (Suppose u has a maximum at x0

with u(x0) > 1. Then ∆u(x0) ≤ 0 but (u3−u)(x0) > 0. A similar contradiction
rules out a minimum < −1.)

First, suppose u is a nonconstant critical point of one sign. Without loss,
assume u is positive. Integrate the Euler-Lagrange equation, using the bound-
ary condition to conclude

∫
u(1− u2) = 0. (B.1)

Since the integrand is positive, it must vanish, thus u ≡ 0 or u ≡ 1. Similarly,
if u is negative, u ≡ 0 or u ≡ −1.
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Now suppose that u is a nonconstant critical point which changes sign.
We will obtain a contradiction by the method of Gurtin and Matano. The
idea is that we want to use the smallness of the spatial domain to invoke a
Poincaré inequality which contradicts an inequality supplied by the equation.
The problem is the mean value which appears in the Poincaré inequality. The
method around it is the following.

Since u changes sign, we can define w := u+ +αu−, with α > 0 chosen such
that

∫
w = 0. Furthermore, let w̃ := u+ + α2u−. Both w and w̃ are periodic.

They also satisfy the relations

uw̃ = w2

〈∇u,∇w̃〉 = |∇w|2. (B.2)

Hence,

−
∫

w̃(u3 − u) = −
∫

w̃∆u =

∫
〈∇w̃,∇u〉

=

∫
|∇w|2

≥ λ

∫
w2

>

∫
w2,

where λ = (2π/L)2 > 1 and no mean appears since by construction w has zero
mean. On the other hand,

−
∫

w̃(u3 − u) = −
∫

w̃u(u2 − 1) ≤
∫

w̃u =

∫
w2.

This contradiction establishes that there is in fact no nonconstant periodic
critical point for L < 2π.

Corollary 4. For L < 2π and periodic boundary conditions, the only critical
points of the energy E[u] =

∫
[0,L]d

1
2
|∇u|2 + 1

4
(1−u2)2dx are u ≡ ±1 and u ≡ 0.

The first two are minima, the last is a saddle point.

Remark 6. As discussed earlier, the transition for Dirichlet or Neumann
boundary conditions is at L = π, and for Dirichlet conditions, there is no
switching problem for small systems since there is only one critical point.
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B.2 The birth of a new saddle point

There is a sharp boundary at 2π demarcating the emergence of a new, lower
energy saddle point which remains the minimal saddle for all L ∈ (2π,∞).
The bifurcation is marked by the nontrivial nullspace of the linearization of
the Euler-Lagrange equation about the zero solution. We begin with a method
which is specific to one dimension. While we could proceed immediately with
a theorem for arbitrary dimension, the one-dimensional case allows direct cal-
culation and builds intuition. (As noted, the transition point for Dirichlet or
Neumann conditions is instead at π.)

Consider the Euler-Lagrange equation

uxx = V ′(u),

with V (u) := (1− u2)2/4. Recast it as a first order system,

{
ux = p

px = V ′(u),
(B.3)

a Hamiltonian system with Hamiltonian H(u, p) := p2/2 − V (u). L-periodic
solutions of the system satisfy

L = 4

∫ u∗

0

du√
2(V (u)− V (u∗))

=: f(u∗), (B.4)

where u∗ is the maximum value of u. f(u∗) is monotonic increasing and

lim
u∗→0+

f(u∗) = 2π.

For L > 2π, f−1(L) determines the unique maximum value, u∗, assumed by
uL, the unique, nontrivial, single-cycle, L-periodic solution of (B.3). Then

E[uL] = −HL + 4

∫ u∗

0

√
2(V (u)− V (u∗))du, (B.5)

and H = −V (u∗). We sample a range of u∗ and use (B.4) and (B.5) to calculate
the corresponding length and energy. Figure (8) compares the energy as a
function of L of the trivial solution, the nontrivial single-cycle saddle, and the
nontrivial two-cycle solution.

As L →∞, u∗ → 1 and the minimal saddle converges to a “kink-antikink”
pair of hyperbolic tangents. The energy converges to 4

√
2/3, twice the cost of

a domain wall. (For Neumann conditions, the convergence is to 2
√

2/3, the
cost of a single wall.)

45



6 8 10 12 14 16 18 20 22 24
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Energy as a function of L for u≡ 0, a single cycle, and a double cycle

L

E
ne

rg
y 

ba
rr

ie
r

u ≡ 0
one cycle
two cycles

Figure 8: The energy of the saddle points vs. L.

Remark 7. Note that in addition, for L > 2nπ for n > 1, there are n − 1
additional nontrivial solutions, corresponding to multiple cycles. These are
higher energy critical points, however. The energy of the 2-cycle saddle is
illustrated in Figure 8.

B.3 Bigger systems in higher dimensions

In higher dimensions, it remains true that a nonuniform saddle emerges as the
minimal saddle. We use an elementary method to calculate the limit of the
minimal saddle point energy as L →∞ for periodic boundary conditions. (As
in one dimension, the energy for Neumann conditions is half the value.)

Theorem 2.

L1−dE [minimal saddle] →
L→∞

2c0,

for c0 = 2
√

2/3.

Proof. By a one-dimensional construction, we have the upper bound

L1−dE [minimal saddle] ≤ c(L)× 2 →
L→∞

2c0,
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where 2c(L) is the energy of the minimal periodic saddle point in one dimen-
sion. For the lower bound, a min-max argument assures

E[minimal saddle] ≥ min
ū=0

E[u].

(There must be a mean zero state along any path from one minimizer to the
other.) Therefore,

L1−dE[minimal saddle] ≥ L1−dmin
ū=0

E[u]

→
L→∞

c0 P

= 2c0.

Here, P denotes the minimal perimeter of a surface bounding half the volume
of a periodic cube in d dimensions. The convergence follows from the result of
Modica [26]. The last step uses an isoperimetric inequality of Hadwiger [18]
which reveals that the minimal perimeter of a system with volume 1/2 on the
periodic lattice is P = 2. For more about isoperimetric inequalities, see also
[35].

Remark 8. The limit of the energy of the minimal saddle is achieved by
one-dimensional constructions. We conjecture that for periodic boundary con-
ditions, the minimal saddles at finite L are in fact one-dimensional.
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