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ABSTRACT

Recently, Convolutional Neural Networks (ConvNets) have shown

promising performances in many computer vision tasks, especially

image-based recognition. How to effectively use ConvNets for

video-based recognition is still an open problem. In this paper, we

propose a compact, effective yet simple method to encode spatio-

temporal information carried in 3D skeleton sequences into mul-

tiple 2D images, referred to as Joint Trajectory Maps (JTM), and

ConvNets are adopted to exploit the discriminative features for real-

time human action recognition. The proposed method has been

evaluated on three public benchmarks, i.e., MSRC-12 Kinect ges-

ture dataset (MSRC-12), G3D dataset and UTD multimodal human

action dataset (UTD-MHAD) and achieved the state-of-the-art re-

sults.

Keywords

Action Recognition, Convolutional Neural Networks, Skeleton, Tra-

jectory

1. INTRODUCTION
Recognition of human actions from RGB-D (Red, Green, Blue

and Depth) data has attracted increasing attention in multimedia

signal processing in recent years due to the advantages of depth in-

formation over conventional RGB video, e.g. being insensitive to

illumination changes. Since the first work of such a type [9] re-

ported in 2010, many methods [17, 12, 23, 10] have been proposed

based on specific hand-crafted feature descriptors extracted from

depth. With the recent development of deep learning, a few meth-

ods [18, 19] have been developed based on Convolutional Neural

Networks (ConvNets). A common and intuitive method to repre-

sent human motion is to use a sequence of skeletons. With the

development of the cost-effective depth cameras and algorithms

for real-time pose estimation [14], skeleton extraction has become

more robust and many hand-designed skeleton features [22, 24, 5,

∗Both authors contributed equally to this work
†Corresponding author

20, 16] for action recognition have been proposed. Recently, Re-

current Neural Networks (RNNs) [3, 15, 28, 13] have also been

adopted for action recognition from skeleton data. The hand-crafted

features are always shallow and dataset-dependent. RNNs tend to

overemphasize the temporal information especially when the train-

ing data is not sufficient, leading to overfitting. In this paper, we

present a compact, effective yet simple method that encodes the

joint trajectories into texture images, referred to as Joint Trajectory

Maps (JTM), as the input of ConvNets for action recognition. In

this way, the capability of the ConvNets in learning discriminative

features can be fully exploited [25].

One of the challenges in action recognition is how to properly

model and use the spatio-temporal information. The commonly

used bag-of-words model tends to overemphasize the spatial in-

formation. On the other hand, Hidden Markov Model (HMM) or

RNN based methods are likely to overstress the temporal informa-

tion. The proposed method addresses this challenge in a different

way by encoding as much the spatio-temporal information as pos-

sible (without a need to decide which one is important and how

important it is) into images and letting the CNNs to learn the dis-

criminative one. This is the key reason that the proposed method

outperformed previous ones. In addition, the proposed encoding

method can be extended to online recognition due to the accumula-

tive nature of the encoding process. Furthermore, such encoding of

spatio-temporal information into images allows us to leverage the

advanced methods developed for image recognition.

2. THE PROPOSED METHOD
The proposed method consists of two major components, as il-

lustrated in Fig. 1, three ConvNets and the construction of three

JTMs as the input of the ConvNets in three orthogonal planes from

the skeleton sequences. Final classification of a given test skeleton

sequence is obtained through a late fusion of the three ConvNets.

The main contribution of this paper is on the construction of suit-

able JTMs for the ConvNets to learn discriminative features.

We argue that an effective JTM should have the following prop-

erties to keep sufficient spatial-temporal information of an action:

• The joints or group of joints should be distinct in the JTM

such that the spatial information of the joints is well reserved.

• The JTM should encode effectively the temporal evolution,

i.e. trajectories of the joints, including the direction and

speed of joint motions.

• The JTM should be able to encode the difference in motion

among the different joints or parts of the body to reflect how

the joints are synchronized during the action.



Figure 1: The framework of the proposed method.

Specifically, JTM can be recursively defined as follows

JTMi = JTMi−1 + f(i) (1)

where f(i) is a function encoding the spatial-temporal information

at frame or time-stamp i. Since JTM is accumulated over the pe-

riod of an action, f(i) has to be carefully defined such that the

JTM for an action sample has the required properties and the accu-

mulation over time has little adverse impact on the spatial-temporal

information encoded in the JTM. We propose in this paper to use

hue, saturation and brightness to encode the spatial-temporal mo-

tion patterns.

2.1 Joint Trajectory Maps
Assume an action H has n frames of skeletons and each skeleton

consists of m joints. The skeleton sequence is denoted as H =
{F1, F2, ..., Fn}, where Fi = {P i

1 , P
i
2 , ..., P

i
m} is a vector of the

joint coordinates at frame i, and P i
j is the 3D coordinates of the

jth joint in frame i. The skeleton trajectory T for an action of n

frames consists of the trajectories of all joints and is defined as:

T = {T1, T2, · · · , Ti, · · · , Tn−1} (2)

where Ti = {ti1, t
i
2, ..., t

i
m} = Fi+1 − Fi and the kth joint trajec-

tory is tik = P i+1

k −P i
k. At this stage, the function f(i) is the same

as Ti, that is,

f(i) = Ti = {ti1, t
i
2, ..., t

i
m}. (3)

The skeleton trajectory is projected to the three orthogonal planes,

i.e. three Cartesian planes, to form three JTMs. Fig. 2 shows the

three projected trajectories of the right hand joint for action “right

hand draw circle (clockwise)" in the UTD-MHAD dataset. From

these JTMs, it can be seen that the spatial information of this joint

is preserved but the direction of the motion is lost.

2.2 Encoding Joint Motion Direction
To capture the motion information in the JTM, it is proposed

to use hue to represent the motion direction. Different kinds of

colormaps can be chosen. In this paper, the jet colormap, ranging

from blue to red, and passing through the colors cyan, yellow, and

orange, was adopted. Assume the color of a joint trajectory is C

and the length of the trajectory L, and let Cl, l ∈ (0, L) be the

color at position l. For the qth trajectory Tq from 1 to n−1, a color

Cl, where l = q

n−1
× L is specified to the joint trajectory, making

different trajectories have their own color corresponding to their

temporal positions in the sequence as illustrated in Fig. 3. Herein,

Figure 2: The trajectories projected onto three Cartesian planes for

action “right hand draw circle (clockwise)" in UTD-MHAD [2]:

(1) the front plane; (2) the top plane; (3) the side plane.

the trajectory with color is denoted as C_tik and the function f(i)
is updated to:

f(i) = {C_t
i
1, C_t

i
2, ..., C_t

i
m}. (4)

This ensures that different actions are encoded to a same length

colormap. The effects can be seen in Fig. 4, sub-figures (1) to (2).

Even though the same actions with different number of cycles will

be encoded into different color shapes, the direction can still be

reflected in color variation and the differences between actions can

still be captured due to the different spatial information.

Figure 3: The trajectories of different body parts have their differ-

ent colors reflecting the temporal orders.

2.3 Encoding Body Parts
To distinguish different body parts, multiple colormaps are em-

ployed. There are many ways to achieve this. For example, each

joint is assigned to one colormap, or several groups of joints are

assigned to different colormaps randomly. Considering arms and

legs often have more motion than other body parts, we empirically

generate three colormaps (C1, C2, C3) to encode three body parts.

C1 is used for the left body part (consisting of left shoulder, left

elbow, left wrist, left hand, left hip, left knee, left ankle and left

foot), C2 for the right body part ( consisting of right shoulder, right

elbow, right wrist, right hand, right hip, right knee, right ankle and

right foot), and C3 for the middle body part (consisting of head,

neck, torso and hip center). C1 is the same as C, i.e. the jet col-

ormap, C2 is a reversed colormap of C1, and C3 is a colormap

ranging from light gray to black. Here, the trajectory encoded by

multiple colormaps is denoted as MC_tik, and the function f(i) is

formulated as:

f(i) = {MC_t
i
1,MC_t

i
2, ...,MC_t

i
m}. (5)

The effects can be seen in Fig. 4, sub-figures (2) to (3).



2.4 Encoding Motion Magnitude
Motion magnitude is one of the most important factors in human

motion. For one action, large magnitude of motion usually indi-

cates more motion information. In this paper, it is proposed to en-

code the motion magnitude of joints into the saturation and bright-

ness components, so that such encoding not only encodes the mo-

tion but also enriches the texture of trajectories which are expected

to be beneficial for ConvNets to learn discriminative features. For

joints with high motion magnitude or speed, high saturation will

be assigned as high motion usually carries more discriminative in-

formation. Specifically, the saturation is set to range from smin to

smax. Given a trajectory, its saturation Si
j in HSV color space

could be calculated as

S
i
j =

vij

max{v}
× (smax − smin) + smin (6)

where vij is the jth joint speed at the ith frame.

v
i
j = ‖P i+1

j − P
i
j ‖2 (7)

The trajectory adjusted by saturation is denoted as MCs_tik and

the function f(i) is refined as:

f(i) = {MCs_t
i
1,MCs_t

i
2, ...,MCs_t

i
m} (8)

The encoding effect can be seen in Figure 4, sub-figures (3) to (4),

where the slow motion becomes diluted (e.g. trajectory of knees

and ankles) while the fast motion becomes saturated (e.g. the green

part of the circle).

To further enhance the motion patterns in the JTM, the bright-

ness is modulated by the speed of joints so that motion information

is enhance in the JTM by rapidly changing the brightness accord-

ing to the joint speed. In particular, the brightness is set to range

from bmin to bmax. Given a trajectory tij whose speed is vij , its

brightness Bi
j in the HSV color space is calculated as

B
i
j =

vij

max{v}
× (bmax − bmin) + bmin (9)

The trajectory adjusted by brightness is denoted as MCb_tik and

the function f(i) is updated to:

f(i) = {MCb_t
i
1,MCb_t

i
2, ...,MCb_t

i
m}. (10)

The effect can be seen in Fig 4, sub-figures (3) to (5), where texture

becomes apparent (e.g. the yellow parts of the circle). Finally, mo-

tion magnitude is encoded with saturation and brightness together.

The trajectory is denoted as MCsb_tik and the function f(i) is re-

fined as:

f(i) = {MCsb_t
i
1,MCsb_t

i
2, ...,MCsb_t

i
m}. (11)

As illustrated in Fig. 4, sub-figures(3) to (6), it not only enriches

the texture information but also highlights the faster motion.

2.5 Training and Recognition
In the experiments, the layer configuration of the three Con-

vNets was same as the one in [8]. The implementation was de-

rived from the publicly available Caffe toolbox [7] based on one

NVIDIA GeForce GTX TITAN X card and the pre-trained mod-

els over ImageNet [8] were used for initialization in training. The

network weights are learned using the mini-batch stochastic gradi-

ent descent with the momentum being set to 0.9 and weight decay

being set to 0.0005. At each iteration, a mini-batch of 256 sam-

ples is constructed by sampling 256 shuffled training JTMs. All

JTMs are resized to 256 × 256. The learning rate is to 10−3 for

Figure 4: Illustration of visual differences for different techniques

in JTM.

fine-tuning and then it is decreased according to a fixed schedule,

which is kept the same for all training sets. For each ConvNet the

training undergoes 100 cycles and the learning rate decreases every

20 cycles. For all experiments, the dropout regularisation ratio was

set to 0.5 in order to reduce complex co-adaptations of neurons in

nets. Three ConvNets are trained on the JTMs in the three Carte-

sian planes and the final score for a test sample are the averages of

the outputs from the three ConvNets. The testing process can easily

achieved real-time speed (average 0.36 seconds/sample).

3. EXPERIMENTAL RESULTS
The proposed method was evaluated on three public benchmark

datasets: MSRC-12 Kinect Gesture Dataset [4], G3D [1] and UTD-

MHAD [2]. These three datasets have different varieties of con-

texts [26]. Experiments were conducted to evaluate the effective-

ness of each encoding scheme in the proposed method and the fi-

nal results were compared with the state-of-the-art reported on the

same datasets. In all experiments, the saturation and brightness

covers the full range (from 0% ∼ 100% mapped to 0 ∼ 255) in

HSV color space.

3.1 Evaluation of Different Encoding Schemes
The effectiveness of different encoding schemes (corresponding

to the sub-figures in Fig. 4) was evaluated on the G3D dataset using

the front JTM and the recognition accuracies are listed in Table 1.

Techniques Accuracy (%)

Trajectory: ti1 63.64%

Trajectory: C_ti1 74.24%

Trajectory: MC_ti1 78.48%

Trajectory: MCs_ti1 81.82%

Trajectory: MCb_ti1 82.12%

Trajectory: MCsb_ti1 85.45%

Table 1: Comparisons of the different encoding schemes on the

G3D dataset using the JTM projected to the front plane alone.

From this Table it can be seen that the proposed encoding tech-

niques effectively captures the spatio-temporal information and the

ConvNets are able to learn the discriminative features from the JTM

for action recognition.
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Figure 5: The confusion matrices of proposed method for MSRC-12, G3D and UTD-MHAD datasets.

Table 2: Recognition accuracies of the exiting methods and pro-

posed methods on the three datasets.

Methods

Datasets

MSRC-12 G3D
UTD-

MHAD

HGM [21] 66.25% - -

ELC-KSVD [27] 90.22% - -

Cov3DJ [6] 91.70% - -

LRBM [11] - 90.50% -

Kinect & Inertial [2] - - 79.10%

Ours 93.12% 94.24% 85.81%

3.2 MSRC-12 Kinect Gesture Dataset
MSRC-12 [4] is a relatively large dataset for gesture/action recog-

nition from 3D skeleton data captured by a Kinect sensor. The

dataset has 594 sequences, containing 12 gestures by 30 subjects,

6244 gesture instances in total. For this dataset, cross-subjects pro-

tocol is adopted, that is odd subjects for training and even subjects

for testing. Table 2 lists the performance of the proposed method

and the results reported before.

The confusion matrix is shown in Fig. 5(a). From the confusion

matrix we can see that the proposed method distinguishes most of

actions very well, but it is not very effective to distinguish “gog-

gles" and “had enough" which shares the similar appearance of

JTM probably caused by 3D to 2D projection.

3.3 G3D Dataset
Gaming 3D Dataset (G3D) [1] focuses on real-time action recog-

nition in gaming scenario. It contains 10 subjects performing 20

gaming actions. For this dataset, the first 4 subjects were used for

training, the fifth for validation and the remaining 5 subjects for

testing as configured in [11]. Table 2 compared the performance of

the proposed method and that reported in [11].

The confusion matrix is shown in Fig. 5(b). From the confu-

sion matrix we can see that the proposed method recognizes most

of actions well. Compared with LRBM, our proposed method out-

performs LRBM in spatial information mining. LRBM confused

mostly the actions between “tennis swing forehand" and “bowl-

ing", “golf" and “tennis swing backhand", “aim and fire gun" and

“wave", “jump" and “walk", however, these actions were quite well

distinguished in our method because of the good spatial informa-

tion exploitation in our method. As for “aim and fire gun" and

“wave", our method could not distinguish them well before encod-

ing the motion magnitude, which means the temporal information

enhancement procedure is effective. However, in our method, “ten-

nis swing forehand" and “tennis swing backhand" are confused. It’s

probably because the body shapes in the front and side projections

of the two actions are too similar, and scores fusion is not very

effective to improve the recognition.

3.4 UTD-MHAD
UTD-MHAD [2] is a multimodal action dataset, captured by one

Microsoft Kinect camera and one wearable inertial sensor. This

dataset contains 27 actions performed by 8 subjects (4 females and

4 males) with each subject perform each action 4 times. For this

dataset, cross-subjects protocol is adopted as in [2], namely, the

data from the subject numbers 1, 3, 5, 7 used for training while 2,

4, 6, 8 used for testing. Table 2 compared the performance of the

proposed method and that reported in [2]. Please notice that the

method used in [2] is based on Depth and Inertial sensor data, not

skeleton data alone.

The confusion matrix is shown in Fig. 5(c). This dataset is much

more challenging compared to previous two datasets. From the

confusion matrix we can see that the proposed method can not

distinguish some actions well, for example, “jog" and “walk". A

probable reason is that the proposed encoding process is also a nor-

malization process along temporal axis (Section 3.2). The actions

“jog" and “walk" will be normalized to have a very similar JTM

after the encoding.

4. CONCLUSION
This paper addressed the problem of human action recognition

by applying ConvNets to skeleton sequences. We proposed a com-

pact, effective yet simple method to encode the joints trajectories

to JTM where the motion information is converted into texture

patterns. ConvNets learn discriminative features from these maps

for real-time human action recognition. The experimental results

showed that the proposed method worked effectively. The proposed

method can benefit from effective data augmentation process and

be extended to online action recognition.
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