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Abstract

Feature trajectories have shown to be efficient for rep-

resenting videos. Typically, they are extracted using the

KLT tracker or matching SIFT descriptors between frames.

However, the quality as well as quantity of these trajecto-

ries is often not sufficient. Inspired by the recent success

of dense sampling in image classification, we propose an

approach to describe videos by dense trajectories. We sam-

ple dense points from each frame and track them based on

displacement information from a dense optical flow field.

Given a state-of-the-art optical flow algorithm, our trajec-

tories are robust to fast irregular motions as well as shot

boundaries. Additionally, dense trajectories cover the mo-

tion information in videos well.

We, also, investigate how to design descriptors to encode

the trajectory information. We introduce a novel descriptor

based on motion boundary histograms, which is robust to

camera motion. This descriptor consistently outperforms

other state-of-the-art descriptors, in particular in uncon-

trolled realistic videos. We evaluate our video description

in the context of action classification with a bag-of-features

approach. Experimental results show a significant improve-

ment over the state of the art on four datasets of varying

difficulty, i.e. KTH, YouTube, Hollywood2 and UCF sports.

1. Introduction

Local features are a popular way for representing videos.

They achieve state-of-the-art results for action classification

when combined with a bag-of-features representation. Re-

cently, interest point detectors and local descriptors have

been extended from images to videos. Laptev and Linde-

berg [13] introduced space-time interest points by extend-

ing the Harris detector. Other interest point detectors in-

clude detectors based on Gabor filters [1, 5] or on the de-

terminant of the spatio-temporal Hessian matrix [33]. Fea-

ture descriptors range from higher order derivatives (local

jets), gradient information, optical flow, and brightness in-

formation [5, 14, 24] to spatio-temporal extensions of image

KLT Dense trajectories

Figure 1. A comparison of the KLT tracker and dense trajectories.

Red dots indicate the point positions in the current frame. Dense

trajectories are more robust to irregular abrupt motions, in partic-

ular at shot boundaries (second row), and capture more accurately

complex motion patterns.

descriptors, such as 3D-SIFT [25], HOG3D [11], extended

SURF [33], or Local Trinary Patterns [34].

However, the 2D space domain and 1D time domain in

videos have very different characteristics. It is, therefore,

intuitive to handle them in a different manner than via in-

terest point detection in a joint 3D space. Tracking interest

points through video sequences is a straightforward choice.

Some recent methods [20, 21, 27] show impressive results

for action recognition by leveraging the motion information

of trajectories. Messing et al. [21] extracted feature trajecto-

ries by tracking Harris3D interest points [13] with the KLT

tracker [18]. Trajectories are represented as sequences of

log-polar quantized velocities. Matikainen et al. [20] used
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Figure 2. Illustration of our dense trajectory description. Left: Feature points are sampled densely for multiple spatial scales. Middle:

Tracking is performed in the corresponding spatial scale over L frames. Right: Trajectory descriptors are based on its shape represented by

relative point coordinates as well as appearance and motion information over a local neighborhood of N × N pixels along the trajectory.

In order to capture the structure information, the trajectory neighborhood is divided into a spatio-temporal grid of size nσ × nσ × nτ .

a standard KLT tracker. Trajectories in a video are clus-

tered, and an affine transformation matrix is computed for

each cluster center. The elements of the matrix are used to

represent the trajectories. Sun et al. [27] extracted trajecto-

ries by matching SIFT descriptors between two consecutive

frames. They imposed a unique-match constraint among the

descriptors and discarded matches that are too far apart.

Dense sampling has shown to improve results over

sparse interest points for image classification [7, 22]. The

same has been observed for action recognition in a recent

evaluation by Wang et al. [32], where dense sampling at reg-

ular positions in space and time outperforms state-of-the-art

space-time interest point detectors. In contrast, trajectories

are often obtained by the KLT tracker, which is designed to

track sparse interest points [18]. Matching dense SIFT de-

scriptors is computationally very expensive [15] and, thus,

infeasible for large video datasets.

In this paper, we propose an efficient way to extract

dense trajectories. The trajectories are obtained by tracking

densely sampled points using optical flow fields. The num-

ber of tracked points can be scaled up easily, as dense flow

fields are already computed. Furthermore, global smooth-

ness constraints are imposed among the points in dense opti-

cal flow fields, which results in more robust trajectories than

tracking or matching points separately, see Figure 1. Dense

trajectories have not been employed previously for action

recognition. Sundaram et al. [28] accelerated dense trajec-

tories computation on a GPU. Brox et al. [2] segmented ob-

jects by clustering dense trajectories. A similar approach is

used in [17] for video object extraction.

Motion is the most informative cue for action recogni-

tion. It can be due to the action of interest, but also be

caused by background or the camera motion. This is in-

evitable when dealing with realistic actions in uncontrolled

settings. How to separate action motion from irrelevant mo-

tion is still an open problem. Ikizler-Cinbis et al. [9] applied

video stabilization via a motion compensation procedure,

where most camera motion is removed. Uemura et al. [30]

segmented feature tracks to separate the motion character-

izing the actions from the dominant camera motion.

To overcome the problem of camera motion, we intro-

duce a local descriptor that focuses on foreground motion.

Our descriptor extends the motion coding scheme based

on motion boundaries developed in the context of human

detection [4] to dense trajectories. We show that motion

boundaries encoded along the trajectories significantly out-

perform state-of-the-art descriptors.

This paper is organized as follows. In section 2, we in-

troduce the approach for extracting dense trajectories. We,

then, show how to encode feature descriptors along the tra-

jectories in section 3. Finally, we present the experimental

setup and discuss the results in sections 4 and 5 respectively.

The code to compute dense trajectories and their description

is available online1.

2. Dense trajectories

Dense trajectories are extracted for multiple spatial

scales, see Figure 2. Feature points are sampled on a grid

spaced by W pixels and tracked in each scale separately.

Experimentally, we observed that a sampling step size of

W = 5 is dense enough to give good results. We used

8 spatial scales spaced by a factor of 1/
√

2. Each point

Pt = (xt, yt) at frame t is tracked to the next frame t+1 by

median filtering in a dense optical flow field ω = (ut, vt).

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ω)|(x̄t,ȳt), (1)

where M is the median filtering kernel, and (x̄t, ȳt) is the

rounded position of (xt, yt). This is more robust than bi-

linear interpolation used in [28], especially for points near

motion boundaries. Once the dense optical flow field is

computed, points can be tracked very densely without ad-

ditional cost. Points of subsequent frames are concatenated

to form a trajectory: (Pt, Pt+1, Pt+2, . . .). To extract dense

1http://lear.inrialpes.fr/software
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Figure 3. Illustration of the information captured by HOG, HOF, and MBH descriptors. For each image, gradient/flow orientation is

indicated by color (hue) and magnitude by saturation. Motion boundaries are computed as gradients of the x and y optical flow components

separately. Compared to optical flow, motion boundaries suppress most camera motion in the background and highlight the foreground

motion. Unlike gradient information, motion boundaries eliminate most texture information from the static background.

optical flow, we use the algorithm by Färneback [6] as im-

plemented in the OpenCV library2. We found this algorithm

to be a good compromise between accuracy and speed.

A common problem in tracking is drifting. Trajectories

tend to drift from their initial location during tracking. To

avoid this problem, we limit the length of a trajectory to L
frames. As soon as a trajectory exceeds length L, it is re-

moved from the tracking process, see Figure 2 (middle). To

assure a dense coverage of the video, we verify the presence

of a track on our dense grid in every frame. If no tracked

point is found in a W ×W neighborhood, this feature point

is sampled and added to the tracking process. Experimen-

tally, we chose a trajectory length of L = 15 frames.

In homogeneous image areas without any structure, it is

impossible to track points. Here, we use the same criterion

as Shi and Tomasi [26]. When a feature point is sampled,

we check the smaller eigenvalue of its autocorrelation ma-

trix. If it is below a threshold, this point will not be included

in the tracking process. Since for action recognition we are

mainly interested in dynamic information, static trajectories

are pruned in a pre-processing stage. Trajectories with sud-

den large displacements, most likely to be erroneous, are

also removed. Figure 1 compares dense and KLT trajecto-

ries. We can observe that dense trajectories are more robust

and denser than the trajectories obtained by the KLT tracker.

The shape of a trajectory encodes local motion patterns.

Given a trajectory of length L, we describe its shape by a

sequence S = (∆Pt, . . . ,∆Pt+L−1) of displacement vec-

tors ∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt). The

resulting vector is normalized by the sum of the magnitudes

2http://opencv.willowgarage.com/wiki/

of the displacement vectors:

S′ =
(∆Pt, . . . ,∆Pt+L−1)∑t+L−1

j=t ||∆Pj ||
. (2)

We refer to this vector by trajectory descriptor. We have

also evaluated representing trajectories at multiple temporal

scales, in order to recognize actions with different speeds.

However, this did not improve the results in practice. There-

fore, we use trajectories with a fixed length L in our exper-

iments.

3. Trajectory-aligned descriptors

Local descriptors computed in a 3D video volume

around interest points have become a popular way for video

representation [5, 11, 14, 25, 33]. To leverage the motion

information in our dense trajectories, we compute descrip-

tors within a space-time volume around the trajectory, see

Figure 2 (right). The size of the volume is N×N pixels and

L frames. To embed structure information in the represen-

tation, the volume is subdivided into a spatio-temporal grid

of size nσ ×nσ ×nτ . The default parameters for our exper-

iments are N = 32, nσ = 2, nτ = 3 , which has shown to

be optimal based on cross validation on the training set of

the Hollywood2. We give results using different parameter

settings in section 5.3.

Among the existing descriptors for action recognition,

HOGHOF [14] has shown to give excellent results on a va-

riety of datasets [32]. HOG (histograms of oriented gradi-

ents) [3] focuses on static appearance information, whereas

HOF (histograms of optical flow) captures the local motion

information. We compute HOGHOF along our dense trajec-

tories. For both HOG and HOF, orientations are quantized

into 8 bins using full orientations, with an additional zero
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Walking Jogging Running Boxing Waving Clapping

Biking Shooting Spiking Swinging Walking dog

AnswerPhone GetOutCar HandShake HugPerson Kiss

Diving Kicking Walking Skateboarding High-Bar-Swinging

Figure 4. Sample frames from video sequences of KTH (first row), YouTube (second row), Hollywood2 (third row) and UCF sports (last

row) action datasets.

bin for HOF (i.e., in total 9 bins). Both descriptors are nor-

malized with their L2 norm. Figure 3 shows a visualization

of HOGHOF.

Optical flow computes the absolute motion, which in-

evitably includes camera motion [9]. Dalal et al. [4] pro-

posed the MBH (motion boundary histogram) descriptor

for human detection, where derivatives are computed sep-

arately for the horizontal and vertical components of the

optical flow. This descriptor encodes the relative motion

between pixels, as shown in Figure 3. Here we use MBH to

describe our dense trajectories.

The MBH descriptor separates the optical flow field

Iω = (Ix, Iy) into its x and y component. Spatial deriva-

tives are computed for each of them and orientation infor-

mation is quantized into histograms, similarly to the HOG

descriptor. We obtain an 8-bin histogram for each com-

ponent, and normalize them separately with the L2 norm.

Since MBH represents the gradient of the optical flow, con-

stant motion information is suppressed and only informa-

tion about changes in the flow field (i.e., motion boundaries)

is kept. Compared to video stabilization [9] and motion

compensation [30], this is a simple way to eliminate noise

due to background motion. This descriptor yields excel-

lent results when combined with our dense trajectories. For

instance, on the YouTube dataset [16], MBH significantly

outperforms HOF, see section 5.

For both HOF and MBH descriptors, we reuse the dense

optical flow that is already computed to extract dense tra-

jectories. This makes our feature computation process very

efficient.

4. Experimental setup

In this section, we first describe the datasets used for

action recognition. We, then, briefly present the bag-of-

features model used for evaluating our dense trajectory fea-

tures as well as the KTL tracking baseline.

4.1. Datasets

Our dense trajectories are extensively evaluated on four

standard action datasets: KTH, YouTube, Hollywood2, and

UCF sports, see Figure 4. These datasets are very di-

verse. The KTH dataset views actions in front of a uniform

background, whereas the Hollywood2 dataset contains real

movies with significant background clutter. The YouTube

videos are low quality, whereas UCF sport videos are high

resolution.

The KTH dataset [24]3 consists of six human action

classes: walking, jogging, running, boxing, waving and

clapping. Each action is performed several times by 25 sub-

jects. The sequences were recorded in four different scenar-

ios: outdoors, outdoors with scale variation, outdoors with

different clothes and indoors. The background is homoge-

neous and static in most sequences. In total, the data con-

sists of 2391 video samples. We follow the original experi-

mental setup of the authors, e.g., divide the samples into test

set (9 subjects: 2, 3, 5, 6, 7, 8, 9, 10, and 22) and training set

(the remaining 16 subjects). As in the initial paper [24], we

train and evaluate a multi-class classifier and report average

accuracy over all classes as performance measure.

3http://www.nada.kth.se/cvap/actions/
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The YouTube dataset [16]4 contains 11 action cate-

gories: basketball shooting, biking/cycling, diving, golf

swinging, horse back riding, soccer juggling, swinging, ten-

nis swinging, trampoline jumping, volleyball spiking, and

walking with a dog. This dataset is challenging due to large

variations in camera motion, object appearance and pose,

object scale, viewpoint, cluttered background and illumi-

nation conditions. The dataset contains a total of 1168 se-

quences. We follow the original setup [16] using leave one

out cross validation for a pre-defined set of 25 folds. Av-

erage accuracy over all classes is reported as performance

measure.

The Hollywood2 dataset [19]5 has been collected from

69 different Hollywood movies. There are 12 action classes:

answering the phone, driving car, eating, fighting, getting

out of car, hand shaking, hugging, kissing, running, sitting

down, sitting up, and standing up. In our experiments, we

used the clean training dataset. In total, there are 1707 ac-

tion samples divided into a training set (823 sequences) and

a test set (884 sequences). Train and test sequences come

from different movies. The performance is evaluated by

computing the average precision (AP) for each of the action

classes and reporting the mean AP over all classes (mAP)

as in [19].

The UCF sport dataset [23]6 contains ten human ac-

tions: swinging (on the pommel horse and on the floor),

diving, kicking (a ball), weight-lifting, horse-riding, run-

ning, skateboarding, swinging (at the high bar), golf swing-

ing and walking. The dataset consists of 150 video samples

which show a large intra-class variability. To increase the

amount of data samples, we extend the dataset by adding a

horizontally flipped version of each sequence to the dataset.

Similar to the KTH actions dataset, we train a multi-class

classifier and report the average accuracy over all classes.

We use a leave-one-out setup and test on each original se-

quence while training on all other sequences together with

their flipped versions (i.e., the flipped version of the tested

sequence is removed from the training set).

4.2. Bag of features

To evaluate the performance of our dense trajectories, we

use a standard bag-of-features approach. We first construct

a codebook for each descriptor (trajectory, HOG, HOF,

MBH) separately. We fix the number of visual words per de-

scriptor to 4000 which has shown to empirically give good

results for a wide range of datasets. To limit the complexity,

we cluster a subset of 100,000 randomly selected training

features using k-means. To increase precision, we initialize

k-means 8 times and keep the result with the lowest error.

4http://www.cs.ucf.edu/˜liujg/YouTube\_Action\

_dataset.html
5http://lear.inrialpes.fr/data
6http://www.cs.ucf.edu/vision/public_html/

Descriptors are assigned to their closest vocabulary word

using Euclidean distance. The resulting histograms of vi-

sual word occurrences are used as video descriptors.

For classification we use a non-linear SVM with a χ2-

kernel [14]. Different descriptors are combined in a multi-

channel approach as in [31]:

K(xi, xj) = exp(−
∑

c

1

Ac
D(xc

i , x
c
j)), (3)

where D(xc
i , x

c
j) is the χ2 distance between video xi and

xj with respect to the c-th channel. Ac is the mean value

of χ2 distances between the training samples for the c-th

channel [36]. In the case of multi-class classification, we

use a one-against-rest approach and select the class with

the highest score.

4.3. Baseline KLT trajectories

To compare our dense trajectories with the standard KLT

tracker [18], we use the implementation of the KLT tracker

from OpenCV. In each frame 100 interest points are de-

tected, and added to the tracker, which is somewhat denser

than space-time interest points [32]. Interest points are

tracked through the video for L frames. This is identical to

the procedure used for our dense trajectories. We also use

the same descriptors for the KLT trajectories, e.g. the trajec-

tory shape is represented by normalized relative point co-

ordinates, and HOG, HOF, MBH descriptors are extracted

around the trajectories.

5. Experimental results

In this section, we evaluate the performance of our de-

scription and compare to state-of-the-art methods. We also

determine the influence of different parameter settings.

5.1. Evaluation of our dense trajectory descriptors

In this section we compare dense and KLT trajectories

as well as the different descriptors. We use our default pa-

rameters for this comparison. To compute the descriptors,

we set N = 32, nσ = 2, nτ = 3 for both baseline KLT and

dense trajectories. We fix the trajectory length to L = 15,

and the dense sampling step size to W = 5.

Results for the four datasets are presented in Table 1.

Overall, our dense trajectories outperform the KLT trajec-

tories by 2% to 6%. Since the descriptors are identical, this

demonstrates that our dense trajectories describe the video

structures more accurately.

Trajectory descriptors, which only describe the motion

of the trajectories, give surprisingly good results by them-

selves, e.g. 90.2% on KTH and 47.7% on Hollywood2 for

dense trajectories. This confirms the importance of mo-

tion information contained in the local trajectory patterns.

We report only 67.2% on YouTube because the trajectory
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KTH YouTube Hollywood2 UCF sports

KLT Dense trajectories KLT Dense trajectories KLT Dense trajectories KLT Dense trajectories

Trajectory 88.4% 90.2% 58.2% 67.2% 46.2% 47.7% 72.8% 75.2%

HOG 84.0% 86.5% 71.0% 74.5% 41.0% 41.5% 80.2% 83.8%

HOF 92.4% 93.2% 64.1% 72.8% 48.4% 50.8% 72.7% 77.6%

MBH 93.4% 95.0% 72.9% 83.9% 48.6% 54.2% 78.4% 84.8%

Combined 93.4% 94.2% 79.9% 84.2% 54.6% 58.3% 82.1% 88.2%

Table 1. Comparison of KLT and dense trajectories as well as different descriptors on KTH, YouTube, Hollywood2 and UCF sports. We

report average accuracy over all classes for KTH, YouTube and UCF sports and mean AP over all classes for Hollywood2.

KTH YouTube Hollywood2 UCF sports

Laptev et al. [14] 91.8% Liu et al. [16] 71.2% Wang et al. [32] 47.7% Wang et al. [32] 85.6%

Yuan et al. [35] 93.3% Ikizler-Cinbis et al. [9] 75.21% Gilbert et al. [8] 50.9% Kovashka et al. [12] 87.27%

Gilbert et al. [8] 94.5% Ullah et al. [31] 53.2% Kläser et al. [10] 86.7%

Kovashka et al. [12] 94.53% Taylor et al. [29] 46.6%

Our method 94.2% Our method 84.2% Our method 58.3% Our method 88.2%

Table 2. Comparison of our dense trajectories characterized by our combined descriptor (Trajectory+HOG+HOF+MBH) with state-of-the-

art methods in the literature.

descriptors capture lots of motions from camera. Gener-

ally, HOF outperforms HOG as motion is more discrimi-

native than static appearance for action recognition. How-

ever, HOG gets better results both on YouTube and UCF

sports. The HOF descriptors computed on YouTube videos

are heavily polluted by camera motions, since many videos

are collected by hand-held cameras. Static scene context is

very important for UCF sports actions which often involve

specific equipment and scene types. MBH consistently out-

performs the other descriptors on all four datasets. The im-

provement is most significant on the uncontrolled realistic

datasets YouTube and Hollywood2. For instance, MBH is

11.1% better than HOF on YouTube. This confirms the ad-

vantage of suppressing background motion when dealing

with optical flow.

5.2. Comparison to the state of the art

Table 2 compares our results to state of the art. On KTH,

we obtain 94.2% which is comparable to the state of the

art, i.e., 94.53% [12]. Note that on this dataset several au-

thors use a leave-one-out cross-validation setting. Here, we

only compare to those using the standard setting [24]. Inter-

estingly, MBH alone obtains a slightly better performance

on KTH, i.e., 95.0%, than combining all the descriptors

together. Ullah et al. [31] also found that a combination

of descriptors performed worse than a subset of them. On

YouTube, we significantly outperform the current state-of-

the-art method [9] by 9%, where video stabilization is used

to remove camera motion. We report 58.3% on Hollywood2

which is an improvement of 5% over [31]. Note that Ullah

et al. [31] achieved better results by using additional images

collected from Internet. The difference between all methods

is rather small on UCF sports, which is largely due to the

leave-one-out setting, e.g. 149 videos are used for training

and only one for testing. Nevertheless, we outperform the

state of the art [12] by 1%.

We also compare the results per action class for YouTube

and Hollywood2. On YouTube, our dense trajectories give

best results for 8 out of 11 action classes when compare

with the KLT baseline and the approach of [9], see Table 3.

On Hollywood2, we compare the AP of each action class

with the KLT baseline and the approach of [31], i.e., a com-

bination of 24 spatio-temporal grids, see Table 4. Our dense

trajectories yield best results for 8 out of 12 action classes.

KLT Dense trajectories Ikizler-Cinbis [9]

b shoot 34.0% 43.0% 48.48%

bike 87.6% 91.7% 75.17%

dive 99.0% 99.0% 95.0%

golf 95.0% 97.0% 95.0%

h ride 76.0% 85.0% 73.0%

s juggle 65.0% 76.0% 53.0%

swing 86.0% 88.0% 66.0%

t swing 71.0% 71.0% 77.0%

t jump 93.0% 94.0% 93.0%

v spike 96.0% 95.0% 85.0%

walk 76.4% 87.0% 66.67%

Accuracy 79.9% 84.2% 75.21%

Table 3. Accuracy per action class for the YouTube dataset. We

compare with the results reported in [9].

KLT Dense trajectories Ullah [31]

AnswerPhone 18.3% 32.6% 25.9%

DriveCar 88.8% 88.0% 85.9%

Eat 73.4% 65.2% 56.4%

FightPerson 74.2% 81.4% 74.9%

GetOutCar 47.9% 52.7% 44.0%

HandShake 18.4% 29.6% 29.7%

HugPerson 42.6% 54.2% 46.1%

Kiss 65.0% 65.8% 55.0%

Run 76.3% 82.1% 69.4%

SitDown 59.0% 62.5% 58.9%

SitUp 27.7% 20.0% 18.4%

StandUp 63.4% 65.2% 57.4%

mAP 54.6 58.3% 51.8%

Table 4. Average precision per action class for the Hollywood2

dataset. We compare with the results reported in [31].
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Figure 5. Results for different parameter settings on the Hollywood2 and YouTube datasets.

5.3. Evaluation of trajectory parameters

To evaluate the different parameter settings for dense tra-

jectories, we report results on YouTube and Hollywood2, as

they are larger and more challenging than the other two. We

study the impact of the trajectory length, sampling step size,

neighborhood size and cell grid structure. We evaluate the

performance for a parameter at the time. The other param-

eters are fixed to the default values, i.e., trajectory length

L = 15, sampling step size W = 5, neighborhood size

N = 32 and cell grid structure nσ = 2, nτ = 3.

Figure 5 (top, left) evaluates the impact of the trajectory

length L. For both datasets an increase of length L improves

performance up to a certain point (L=15 or 20), and then

decreases slightly, since longer trajectories have a higher

chance to drift from the initial position. We achieve the best

results with a trajectory length of 15 or 20 frames.

With respect to the sampling step size W , Figure 5 (top,

right) shows that dense sampling improves the results as the

step size decreases. This is consistent with dense sampling

at regular positions [32], where more features in general im-

prove the results. We report 58.9% (58.3%) on Hollywood2

and 84.4% (84.2%) on YouTube for a step size of 2 (5) pix-

els. A sampling step of 2 pixels is extremely dense, i.e.,

every other pixel is sampled, and does not justify the minor

gain obtained.

The results are relatively stable with regard to the neigh-

borhood size N , see Figure 5 (bottom left). On Holly-

wood2, results are almost the same when N changes from

24 pixels to 48 pixels. The best result on YouTube is 84.7%
with a neighborhood size of 40 pixels. Dividing the video

volume into cells improves the results on both Hollywood2

and YouTube. In particular, the performance increases sig-

nificantly when the spatial cell grid nσ is increased from 1

to 2, see Figure 5 (bottom right). However, further increas-

ing the number of cells, i.e., beyond nσ = 2, nτ = 3, does

not improve the results.

6. Conclusions

This paper has introduced an approach to model videos

by combining dense sampling with feature tracking. Our

dense trajectories are more robust than previous video de-

scriptions. They capture the motion information in the

videos efficiently and show improved performance over

state-of-the-art approaches for action classification. We
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have also introduced an efficient solution to remove camera

motion by computing motion boundaries descriptors along

the dense trajectories. This successfully segments the rele-

vant motion from background motion, and outperforms pre-

vious video stabilization methods. Our descriptors combine

trajectory shape, appearance, and motion information. Such

a representation has shown to be efficient for action classifi-

cation, but could also be used in other areas, such as action

localization and video retrieval.
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Evaluation of local spatio-temporal features for action recog-

nition. In BMVC, 2009.

[33] G. Willems, T. Tuytelaars, and L. V. Gool. An efficient dense

and scale-invariant spatio-temporal interest point detector. In

ECCV, 2008.

[34] L. Yeffet and L. Wolf. Local trinary patterns for human ac-

tion recognition. In ICCV, 2009.

[35] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search

for efficient action detection. In CVPR, 2009.

[36] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local

features and kernels for classification of texture and object

categories: A comprehensive study. IJCV, 73(2):213–238,

2007.

3176


