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Abstract

In this paper, we address the problem of learning com-
pact, view-independent, realistic 3D models of human ac-
tions recorded with multiple cameras, for the purpose of
recognizing those same actions from a single or few cam-
eras, without prior knowledge about the relative orienta-
tions between the cameras and the subjects. To this aim,
we propose a new framework where we model actions us-
ing three dimensional occupancy grids, built from multiple
viewpoints, in an exemplar-based HMM. The novelty is, that
a 3D reconstruction is not required during the recognition
phase, instead learned 3D exemplars are used to produce
2D image information that is compared to the observations.
Parameters that describe image projections are added as
latent variables in the recognition process. In addition,
the temporal Markov dependency applied to view param-
eters allows them to evolve during recognition as with a
smoothly moving camera. The effectiveness of the frame-
work is demonstrated with experiments on real datasets and
with challenging recognition scenarios.

1. Introduction

We consider the problem of recognizing actions using a
priori unknown camera configurations. Action recognition

has received considerable attention over the past decades,

as a result of the growing interest for automatic and ad-

vanced scene interpretations shown in several applications

domains, e.g. video-surveillance or human machine interac-

tions. In this field, two main directions have been followed.

Model based approaches, e.g. [6, 20] assume a known para-

metric model, typically a kinematic model, and represent

actions in a joint or parameter space. Unfortunately, recov-

ering the parameters, e.g. the pose, of the model appears

to be a difficult intermediate task without the help of land-

marks.

∗D. Weinland is supported by a grant from the European Community

under the EST Marie-Curie Project Visitor.

In contrast, template based or holistic approaches,

e.g. [3, 7, 2, 19], do not use such an intermediate represen-

tation and directly model actions using image information,

silhouettes or optical flow for instance. Action templates are

then spatio-temporal shapes either in a three-dimensional

space, when a single camera is considered, or in a four di-

mensional space when multiple calibrated cameras are con-

sidered. In both cases, action recognition is achieved by

comparing a motion template, built from observations, with

learned models of the same type. This limits recognition to

situations where observed and learned models are obtained

using similar camera configurations.

In this work, we propose an approach that takes advan-

tage of the template based methods but that does not con-

strain camera configurations during recognition. Instead,

actions can be observed with any camera configuration,

from single to multiple cameras, and from any viewpoint.

Our main motivation is to be able to cope with unknown

recognition scenarios without learning multiple and specific

databases. This has particularly clear applications in video-

surveillance where actions are often observed from a single

and arbitrary viewpoint.

To this purpose, we propose an exemplar-based hidden

Markov model (HMM) inspired by the works of Frey and

Jojic [9] and Toyama and Blake [18]. This model accounts

for dependencies between three dimensional exemplars, i.e.

representative pose instances, and image cues, this over

time sequences. Inference is then used to identify the ac-

tion sequence that best explains the image observations. In

particular, a nice feature is that observations from any cal-

ibrated view can be incorporated. In addition, explicitly

modeling the transformation between exemplars and image

cues allows such transformation to change over time during

recognition.

The paper proceeds as follows. In Section 2 we review

the state of the art in view-independent action recognition.

In Section 3 we present an overview of the proposed ap-

proach. Details on the exemplar-based HMM design are

given in Section 4. In Section 5 the exemplar selection and

the model learning are explained. Section 6 details recogni-
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tion. Experiments using a challenging dataset of 11 actions

are presented in Section 7.

2. Related Work

In order to allow actions to be learned and recognized

using different camera configurations, action descriptions

must exhibit some view invariance. Campbell [5] describes

3D hand and head trajectories using view invariant coor-

dinate representations. Fundamental matrices can also be

used to compare 2D action representations from different

views, as joint trajectories in [16, 20] or silhouettes in [17].

To achieve similar comparisons, Parameswaran and Chel-

lappa [14] use projective invariants of coplanar landmark

points on a human body. In a previous work [19] we

compare 3D action representations based on visual hulls

and propose invariant Fourier-descriptors that are computed

from multiple-view reconstructions. These approaches have

focused on representations in which view dependent infor-

mation is removed, often at the cost of an impoverished

action model and without adding full flexibility in camera

configurations. This motivates the search for another solu-

tion.

In a different context, Frey and Jojic [9] show how to

account for view transformations in a dynamic probabilis-

tic model. In the same spirit, Toyama and Blake [18] ex-

tend the idea for tracking with powerful image distances,

and Elgammal et al. [8] propose a nonparametric mixture

extension that, however, applies to view-dependent action

recognition. Our approach builds on a similar model and

incorporates geometric transformations into the probabilis-

tic modeling of an action.

It is worth to mention also the work of Brand[4] that uses

HMMs and a direct mapping between a three dimensional

joint space and silhouette observations for pose estimation.

It shares some similarities with our approach since we also

use HMMs to model temporal sequences of exemplars.

A very recent and interesting work is that of Lv and

Nevatia [12]. Developed in parallel to our method, it shares

the idea of projecting a set of learned 3D exemplars/key-

poses into 2D to infer actions from arbitrary view. However

we use a probabilistic model instead of the deterministic

linked action graph introduced in [12], allowing therefore to

naturally handle uncertainties inherent to actions performed

by different people and with different styles.

3. Overview

We model an action as a sequence over a set of key-

poses, the exemplars. Figure 1 shows two examples of ob-

servation sequences and the corresponding best matching

exemplar sequences computed with our model.

Exemplars are represented in 3D as visual hulls that have

been computed using a system of 5 calibrated cameras. The

model does thus not rely on motion capture data, which is

generally difficult to obtain.

The observation sequence comes in this example from

a single camera and is represented trough silhouettes ob-

tained from background subtraction. To match observation

and exemplars, the visual hulls are projected into 2D and a

match between the resulting silhouettes is computed. The

recognition phase thus generates 2D from 3D and never has

to infer 3D from a single view observation.

Modeling actions and views The matching between

model and observation is represented in a probabilistic

framework (Section 4). Consequently, and crucially, that

neither the best matching exemplar sequence, nor the exact

projection parameters need to be known. Instead a proba-

bility of all potential exemplar sequence and projection is

computed. Using the classical HMM algorithms [15], such

a probability can be efficiently computed under the follow-

ing conditions: First, we use a small set of exemplars that

is shared by all models. As we show in Section 5.1, a small

set of exemplars is sufficient to describe a large variety of

actions, if the exemplars are discriminative with respect to

these actions. Second, we make a few reasonable assump-

tions on the parameters of the projective transformation, i.e.

the camera calibration and position of a person can be ro-

bustly observed during recognition and only the orientation

of a person around the vertical axis is unknown.

Exemplar selection and model learning Learning an ac-

tion model consists of two steps: A set of exemplars is se-

lected and shared by all actions models (Section 5.1); prob-

abilities over these exemplars are learned individually for

each action (Section 5.2).

When selecting the exemplars, we are interested in find-

ing the subset of poses from the training sequences, that

bests discriminates actions. To this purpose, we present in

Section 5.1 a novel solution based on a method for feature

subset selection, a wrapper [11].

Given a set of exemplars, the action specific probabilities

are estimated using standard probability estimation tech-

niques for HMMs, as described in Section 5.2. Interest-

ingly, the learning of dynamics over a set of selected 3D ex-

emplars can be performed either on 3D sequences of aligned

visually hulls (Section 5.2.1), thus under ideal conditions,

or simply from single view observations (Section 5.2.2).

Hence 3D information is not mandatory for that step.

Classification Classification is performed using standard

HMM algorithms, as described in Section 6.
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Figure 1. 2D observation sequences yt (“walk in cycle” and “punch”), observed from different viewpoints and with unknown orientation of

the persons, are explained trough 3D action models. The best matching exemplar sequence xt and the best matching 2D projection P
l̂l̃
(xi),

as generated by the models, are displayed. Both models share a small set of exemplars (labeled on top).

qt−1

xt−1
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l̂t−1

l̃t−1

qt

xt

yt

l̂t

l̃t

Motion States

Exemplars

Body Orientations
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Figure 2. Probabilistic dependencies of actions: an action is mod-

eled as a hidden state sequence Q, e.g. a motion sequence in a

pose space. At each time step t, a 3D exemplar xt, i.e. a visual

hull, is drawn from the motion sequence Q. Observations yt, i.e.

silhouettes, result then from a geometric transformation of exem-

plars that is defined by 2 sets of parameters l̂ and l̃. l̂ are observed

parameters, e.g. camera parameters determined in a preliminary

step, and l̃ are latent parameters, e.g. body orientation determined

during recognition. Shaded nodes in the graph correspond to ob-

served variables.

4. Probabilistic Model of Actions and Views

Our representation for human action is a product of two

independent random processes, one for the orientation of

the subject relative to the camera, and the other for the view-

independent, body-centered poses taken by the performer

during the various stages of the action. The two processes

are modeled in an exemplar based Markov model, shown in

Figure 2, in the spirit of [9] and [18].

Hidden Motion States Dynamics in exemplar space are

represented by a discrete N -state latent variable q that

follows a first order Markov chain over time. Thus:

p(qt|qt−1, . . . , q1) = p(qt|qt−1), with t ∈ [1 . . . T ], and

with the prior p(q1) at time t = 1. Though generally hid-

den, q can intuitively be interpreted as a quantization of the

joint motion space into action-characteristic configurations.

Exemplars At each time t, a three dimensional body tem-

plate xt is drawn from p(xt|qt). A crucial remark here is

that these templates do not result from body models and

joint configurations but are instead represented by a set of

M exemplars: X = {xi∈[1...M ]}, learned from three dimen-

sional training sequences.

Note here that p(xt = xi|qt) models the non-

deterministic dependencies between motion states and body

configuration. Thus motion states q are not deterministi-

cally linked to exemplars as in [12, 18], allowing therefore

a single motion state q to be represented with different ex-

emplars, to account for different body proportions, style, or

clothes.

View Transformation and Observation To ensure inde-

pendence with respect to the view projection onto the im-

age plane: P
l̂l̃
(x) = P̂ [Rθ, u]x, we condition observations

y on parameters that represent this transformation. We dif-

ferentiate view transformation parameters {l̂t} that can be

robustly observed (i.e. the camera matrix P̂ and position u),

and body pose parameters {l̃t} that are latent (i.e. the orien-

tation around the vertical axis θ).

The resulting density p(yt|xt, l̂t, l̃t) is represented in

form of a kernel function centered on the transformed ex-

emplars P
l̂l̃
(xi):

p(yt|xt = xi, l̂t, l̃t) ∝
1

Z
exp

(

− d(yt, Pl̂l̃
(xi))/σ2

)

, (1)

where d is a distance function between between the result-

ing silhouettes, e.g. the Euclidean distance (i.e. the number

of pixels which are different), or a more specialized distance

such as the chamfer distance [10]. (Note that both were giv-

ing similar results in our experiments.)

The temporal evolution of the latent transformation vari-

ables is modeled as a Markov process with transitions prob-

abilities p(l̃t|l̃t−1), and a prior p(l̃1). This is equivalent to a

temporal filtering of the transformation parameters where,

interestingly, various assumptions could be made on the dy-

namic of these parameters: a static model or an autoregres-
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sive model, or even a model taking into account dependen-

cies between an action and view changes.

In our implementation all variables {l̃, l̂} are discretized.

For instance, the orientation θ is discretized into L equally

spaced angles within [0, 2π] and u is discretized into a

set of discrete positions. The temporal evolution of θ is

modeled using a von Mises distribution: p(θt|θt−1) ∝
exp(κ cos(θt−θt−1)), that can be seen as the circular equiv-

alent of a normal distribution, and a uniform prior p(θ1).

5. Learning

We learn separate action models λc for each action

class c ∈ {1, . . . , C}. A sequence of observations Y =
{y1, . . . , yT } is then classified with respect to the maximum

a posteriori (MAP) estimate:

g(Y ) = argmax
c

p(Y |λc)p(λc). (2)

The set λc is composed of the probability transition matri-

ces p(qt|qt−1, c), p(q1|c) and p(xt|qt, c), which are specific

to the action c, as they represent the action’s dynamics. In

contrast, the observation probabilities p(yt|xt, l̂t, l̃t) are tied

between classes, meaning that all actions {c = 1..C} share

a common exemplar set, i.e. Xc = X, and a unique variance

σ2
c = σ2. In the context of HMMs, such an architecture is

known as a tied-mixture or semi-continuous HMM[1]. This

architecture is particularly well adapted to action recogni-

tion since different actions naturally share similar poses.

For example, many actions share a neutral rest position and

some actions only differ by the sequential order of poses

that composed them. In addition, sharing parameters dra-

matically reduces complexity during recognition, when ev-

ery exemplar must be projected with respect to numerous

latent orientations.

Learning consists then in two main operations: selecting

the exemplar set that is shared by all models; learning the

action specific probabilities. As we will see in the follow-

ing, the two operations are tightly coupled. Selection uses

learning to evaluate the discriminant quality of an candidate

exemplar set, and learning probabilities relies on a selected

set of exemplars. Both operations are detailed below.

5.1. Exemplar Selection

Identifying discriminative exemplars is an essential step

of the learning process. Previous works use motion en-

ergy minima and maxima [12, 13], or k-means clustering

(adapted to return exemplars) [18] to this end. However,

there is no apparent relationship between such criteria and

the action discriminant quality of the selected exemplars.

In particular for the adapted k-means clustering [18] we ob-

served experimentally, that clusters tend to consist of dif-

ferent poses performed by similar actors rather than similar

poses performed by different actors. Consequently, select-

ing exemplars as poses with minimum within-cluster dis-

tance often leads to neutral and therefore non-discriminative

poses.

In light of this, we propose a novel approach for exem-

plar selection, to better link the discriminant quality of ex-

emplars and the selection. We therefore use a wrapper [11],

a technique for discriminant feature subset selection. The

idea behind a wrapper is to use the trained classifier (2) it-

self to evaluate how discriminative a candidate set of exem-

plars is. Thus a wrapper performs a greedy search over the

full set of exemplars, where in each iteration classifiers are

learned and evaluated for each possible subset considered.

The wrapper method we use is called “forward selection”

[11], and proceeds as follows: Let Y denote a set of 3D

visual hulls. Assume training sequences and test sequences

for all actions c ∈ {1, . . . , C} are given.

1. Set X = ∅.

2. Find y∗ ∈ {Y \ X}, where a classifier g (trained on all

actions) using exemplar set {X∪ y∗} has best recogni-

tion performance on the test-set. Add y∗ to X.

3. Repeat step 2 until M visual hulls from Y have been

added to X.

Note that the above procedure can only work when the

exemplar set is shared by all action models. The selection

thus starts by training a classifier for each singleton exem-

plar. The exemplar for which the classifier has best evalua-

tion performance is selected, and the procedure is repeated

for couples of exemplars, triples, etc., until M exemplars

have been selected. Note that training and evaluation of the

classifier can be performed in 3D or 2D, as detailed in Sec-

tion 5.2. In case that the training sequences are 3D, Y can

simply be the training-set.

The approach is illustrated in Figures 3 and 4 where ex-

emplars and the associated classification rates are shown.

Figure 3 shows that the selected poses naturally represent

key-frames or characteristic frames of an action.

5.2. Learning Dynamics

Given a set of exemplars, the action parameters

λc∈{1,...,C}: probabilities p(qt|qt−1, c), p(q1|c) and

p(xt|qt, c), can be learned. Various strategies can be consid-

ered for that purpose. In the following, we sketch 2 of them:

learning from 3D observations (sequences of visual hulls),

and learning from 2D observations (image sequences). Note

that in both cases, motion is learned in 3D over the set of 3D

exemplars, obtained as described in section 5.1.
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Figure 3. Selected exemplars: first 24 discriminative exemplars as returned by the forward selection. The dataset is composed of 11 actions

performed by 10 actors. Recognition rates are shown in Figure 4.
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Figure 4. Recognition rate vs. number of selected exemplars.

5.2.1 Learning from 3D Observations

In this training scenario, several calibrated viewpoints are

available, leading therefore to 3D visual hull sequences,

and all actions are performed with the same orientation. In

that case, motion dynamics are learned independently from

any viewing transformation, thus p(yt|xt, l̂t, l̃t) = p(yt|xt)
with y being 3D. Transformation parameters appear later

during the recognition phase where both dynamics and

viewing process are joined into a single model.

Each model λc is learned through a forward-backward

algorithm that is similar to the standard algorithm for Gaus-

sian mixture HMMs [15], except that the kernel parameters,

that correspond to mean and variance of the Gaussians (i.e.

X and σ), are not updated. Note that a similar forward-

backward algorithm was already proposed in the context of

exemplar based HMMs [8].

5.2.2 Learning from 2D Observations

In this scenario, dynamics in the exemplar 3D space are

learned using 2D cues only. In that case, the situation is

similar when either learning or recognizing. A nice feature

here is that only a valid set of 3D exemplars is required, but

no additional 3D reconstruction. This is particularly useful

when large amounts of 2D observations are available but no

3D inference capabilities (e.g. 3D exemplars can be synthe-

sized using a modeling software; the dynamics over these

exemplars are learned form real observations).

View observations are not aligned and so the orientation

variable l̃ is latent. Nevertheless, the number of latent states

remains in practice small, (i.e. L×N , with L being the num-

ber of discrete orientations l̃ and N the number of states q).

The model can be learned by introducing a new variable

q́ = (q, l̃) of size L × N that encodes both state and orien-

tation. Probabilities of this extended states are then simply

defined as Cartesian products of the transition probabilities

for q and l̃. Loops in the model are thus eliminated, and

learning can be performed via the forward-backward algo-

rithm introduced in 5.2.1.

6. Action Recognition from 2D Cues

A sequence of observations Y is classified using the

MAP estimate (2). Such a probability can now be com-

puted using the classical forward variable α(q́t|λc) =
p(y1, . . . , yt, q́t|λc) as explained in [15], where q́ = (q, l̃)
is a variable encoding state and orientation as explained in

Section 5.2.2

Arbitrary viewpoints do not share similar parameters; in

particular scales and metrics can be different. However,

the kernel parameter σ2 is uniquely defined, with the con-

sequence that distances computed in equation (1) can be

inconsistent when changing the viewpoint. To adjust σ2

with respect to changes in these parameters, we introduce

σ2
l̃

= sl̃σ
2. Ideally, σ2

l̃
should be estimated using test data.

In practice, the following simple approximation of σ2
l̃

ap-

pears to give satisfactory results with the distance functions

we are considering:

s
l̂
=

1

M

M
∑

i=1

1
L

∑L

l̃=1 ||Pl̂l̃
(xi)||2

||xi||2
. (3)

Another remark is that observations from multiple cali-

brated cameras can easily be incorporated. Assuming multi-

ple view observations {y1
t , . . . , y

K
t } at time t, we can write

their joint conditional probability as:

p(y1
t , . . . , yK

t |xt, l̂t, l̃t) ∝
K
∏

yk

t

p(yk
t |xt, l̂t, l̃t). (4)
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Figure 5. Camera setup and extracted silhouettes: (Top) the action “watch clock” from the 5 different camera views. (Middle and bottom)

sample actions: “cross arms”, “scratch head”, “sit down”, “get up”, “turn”, “walk”, “wave”, “punch”, “kick”, and “pick up”. Volumetric

exemplars are mapped onto the estimated interest regions indicated by blue box.

7. Experiments

Experiments were conducted on our publicly available

dataset1, the IXMAS dataset. We choose 11 actions, per-

formed by 10 actors, each 3 times, and viewed by 5 cal-

ibrated cameras (see Figure 5). In this dataset, actor ori-

entations are arbitrary since no specific instruction was

given during the acquisition. The 3D sequences are seg-

mented into elementary segments using our approach pro-

posed in [19].

Note, that the same dataset was used in [12] in a simi-

lar context. However, results are reported only for a single

sequence (out of three) per actor. This sequence has been

selected to give best results, thus making a direct compari-

son difficult.

Our experimental scheme is as follows: 9 of the actors

are used for exemplar selection and model learning, the re-

maining actor is then used for testing. We repeat this pro-

cedure by permuting the test-actor and compute the average

recognition rate. Examplar selection is performed on sub-

sampled sequences (i.e. 2.5 frames/s) to save computational

costs. Example results for exemplars are shown in Figure 3.

The number M of examplars was empirically set to 52 . Pa-

rameter learning and testing is performed using all frames

in the database. Action are modeled with 2 states, which

appears to be adequate since most segmented actions cover

short time periods. Voxel grids are of size: 64×64×64 and

image ROIs: 64 × 64. The rotation around the vertical axis

is discretized into 64 equally spaced values. Consequently,

each frame is matched to 52×64 exemplar projections. The

ground plane is clustered into 4 positions.

7.1. Learning in 3D

In these experiments, learning is performed in 3D (as

explained in 5.2.1). Recognition is then performed on 2D

views with arbitrary actor orientations. Recognition rates

1The data-set is available on the Perception website

http://perception.inrialpes.fr in the “Data” section.

cameras 2 4 3 5 1 3 5 1 2 3 5 1 2 3 4

% 81.3 61.6 70.2 75.9 81.3

Table 1. Recognition rates with camera combinations. For com-

parisons, a full 3D recognition considering 3D manually aligned

models as observations, instead of 2D silhouettes, yields 91.11%.

per camera are given in Figure 6(a), the corresponding

views are shown in Figure 5.

Unsurprisingly, the best recognition rates are obtained

with fronto-parallel views (cameras 2 and 4). The top cam-

era (camera 5) scores worst. For this camera, we observe

that: the silhouette information is not discriminative; the

perspective distortion results in strong bias in distances; es-

timating the position of the actor is difficult. All these hav-

ing a strong impact on the recognition performance.

In the next experiment, several views were used in con-

junction to test camera combinations. First, 2 view combi-

nations were experimented. Camera 2 and 4 give the best

recognition rate at 81.27%. Those 2 cameras are both ap-

proximately fronto-parallel and perpendicular one another.

Figure 6(b) shows the resulting confusion matrix for this

specific setup. Adding further cameras did not improve re-

sults. We also try other camera combinations (Table 1). For

instance, combining the two cameras with the worst recog-

nition results (camera 3 and 5) raises the recognition rate to

61.59%.

7.2. Learning from single views

In this experiment, learning is performed using single

cameras (as explained in Section 5.2.2). Observations dur-

ing learning and recognition are thus not aligned. The ex-

emplars considered are the same than in the previous sec-

tion. Learning from a single view is obviously prone to

ambiguities, especially when the number of training sam-

ples is limited. We thus restricted the experiments to the

3 best cameras with respect to the previous experiments.

Figure 6(c) shows the recognition results per action class

6



0

0.2

0.4

0.6

0.8

1

 

 

cam1 cam2 cam3 cam4 cam5

ch
ec

k
w
at

ch

cr
os

s ar
m

s

sc
ra

tc
h

he
ad

si
t do

w
n

ge
t u

p

tu
rn

ar
ou

nd
w
al

k

w
av

e
ha

nd

pu
nc

h
ki

ck

pi
ck

up

(a)

.86 .00 .00 .00 .00 .07 .03 .03 .00 .00 .00

.13 .73 .00 .00 .00 .03 .00 .03 .07 .00 .00

.00 .09 .68 .00 .00 .00 .00 .09 .09 .05 .00

.00 .00 .00 .93 .07 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .93 .07 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .97 .00 .03 .00 .00 .00

.00 .00 .00 .00 .00 .33 .67 .00 .00 .00 .00

.04 .04 .27 .04 .04 .00 .00 .50 .08 .00 .00

.00 .00 .00 .04 .00 .04 .00 .00 .82 .00 .11

.00 .00 .00 .00 .00 .07 .00 .00 .00 .90 .03

.00 .00 .00 .10 .00 .00 .00 .00 .03 .00 .87

check watch

ch
ec

k
w
at

ch

cross arms

cr
os

s ar
m

s

scratch head

sc
ra

tc
h

he
ad

sit down

si
t d

ow
n

get up

ge
t up

turn around

tu
rn

ar
ou

nd

walk

w
al

k

wave hand

w
av

e
ha

nd

punch

pu
nc

h

kick

ki
ck

pick up

pi
ck

up

(b)

0

0.2

0.4

0.6

0.8

1

 

 

cam1 cam2 cam4

ch
ec

k
w
at

ch

cr
os

s ar
m

s

sc
ra

tc
h

he
ad

si
t do

w
n

ge
t u

p

tu
rn

ar
ou

nd
w
al

k

w
av

e
ha

nd

pu
nc

h
ki

ck

pi
ck

up

(c)

Figure 6. (a) Recognition rates when learning in 3D and recognizing in 2D. The average rates per camera are {65.4, 70.0, 54.3, 66.0, 33.6}.

(b) Confusion matrix for recognition using cameras 2 and 4. Note that actions performed with the hand are confused, e.g. “wave” and

“scratch head” as well as “walk” and “turn”. (c) Recognition rates when learning and recognizing in 2D.

and per camera. Compared to the previous scenario, recog-

nition rates drop drastically, as a consequence of learning

from non-aligned data and single view observations. Sur-

prisingly, some of the actions, e.g. “cross arms”, “kick” still

get very acceptable recognition rates, as well as “sit down”

and “pick up” that would normally be confused. The aver-

age rate for camera 1 is 55.24%, 63.49% for camera 2 and

60.00% for camera 4.

8. Conclusion

This paper presented a new framework for view inde-
pendent action recognition. The main contribution is a
probabilistic 3D exemplar model that can generate arbitrary
2D view observations. It results in a versatile recognition
method that adapts to various camera configurations. The
approach was evaluated on a dataset of 11 actions and with
different challenging scenarios. The best results where ob-
tained with a pair of fronto-parallel perpendicular cameras,
validating the fact that actions can be recognized from view
arbitrary viewpoints.
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