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Abstract

In recent years, action recognition based on RGB-D data has attracted increasing

attention. Different from traditional 2D action recognition, RGB-D data contains

extra depth and skeleton modalities. Different modalities have their own charac-

teristics. This thesis presents seven novel methods to take advantages of the three

modalities for action recognition.

First, effective handcrafted features are designed and frequent pattern min-

ing method is employed to mine the most discriminative, representative and non-

redundant features for skeleton-based action recognition. Second, to take advantages

of powerful Convolutional Neural Networks (ConvNets), it is proposed to represent

spatio-temporal information carried in 3D skeleton sequences in three 2D images

by encoding the joint trajectories and their dynamics into color distribution in the

images, and ConvNets are adopted to learn the discriminative features for human ac-

tion recognition. Third, for depth-based action recognition, three strategies of data

augmentation are proposed to apply ConvNets to small training datasets. Forth,

to take full advantage of the 3D structural information offered in the depth modal-

ity and its being insensitive to illumination variations, three simple, compact yet

effective images-based representations are proposed and ConvNets are adopted for

feature extraction and classification. However, both of previous two methods are

sensitive to noise and could not differentiate well fine-grained actions. Fifth, it is

proposed to represent a depth map sequence into three pairs of structured dynamic

images at body, part and joint levels respectively through bidirectional rank pooling

to deal with the issue. The structured dynamic image preserves the spatial-temporal

information, enhances the structure information across both body parts/joints and

different temporal scales, and takes advantages of ConvNets for action recognition.

Sixth, it is proposed to extract and use scene flow for action recognition from RGB

and depth data. Last, to exploit the joint information in multi-modal features aris-

ing from heterogeneous sources (RGB, depth), it is proposed to cooperatively train a

single ConvNet (referred to as c-ConvNet) on both RGB features and depth features,

and deeply aggregate the two modalities to achieve robust action recognition.
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Chapter 1

Introduction

Among the several human-centered research domains (human detection, tracking,

pose estimation and motion recognition) in computer vision, human motion recog-

nition is particularly important due to its wide applicability in video surveillance,

human computer interfaces, ambient assisted living, human-robot interaction, intelli-

gent driving, etc. The task of motion recognition entails the automatic identification

of human behaviors from images or video sequences. Depending on the complexity

and duration of the motion, it can be broadly categorized into four kinds: gesture,

action, interaction and group activity. Specifically, gesture is defined as the basic

movement or position of the hand, arm, body, or head that is expressive of an idea,

opinion, emotion, etc. “Hand waving” and “nodding” are some typical examples

of gestures. Usually, a gesture has relatively short duration and the complexity is

low. Action is considered as a type of activity that is performed by a single person

and involves multiple body parts. Generally it is a combination of multiple gestures,

such as “walking” and “punching”. Interaction is a type of activity performed by two

actors; one actor is a human while the other is a human or an object. This implies

that the interaction entails human-human or human-object interaction. “Hugging

each other” and “playing guitar” are examples of these two kinds of interaction,

respectively. Group activity is the most complex type of activity, and it may com-

bine gestures, actions and interactions. It involves more than two humans and a

single or multiple objects. “Two teams playing basketball” and “group meeting” are

examples of group activities.

Since the 1980s, researchers have been working on human motion recognition

from 2D images or videos [AC99, WHT03, TCSU08, Pop10, GL14, ZSXF16]. Most

of the early research efforts used color and texture cues in 2D images for recog-

nition. However, due to problems such as background clutter, partial occlusion,

view-point, lighting changes, execution rate and biometric variation, motion analy-

sis from 2D images and videos is still a challenging task even for current deep learning

approaches [HHP17, HAS+17]. With the development of cost-effective RGB-D sen-

sors, such as Microsoft Kinect TMand Asus Xtion, RGB-D-based motion recognition

has attracted much attention in recent years. Depth is insensitive to illumination

changes and includes rich 3D structural information of the scene; 3D positions of

body joints can be estimated from depth maps [SFC+11]. As a consequence, RGB-D-

based human motion recognition has attracted more and more attention and shown

a promising direction for human motion analysis.

1
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RGB-D data for human motion analysis comprises three modalities: RGB, depth

and skeleton. The main characteristics of RGB data is its shape, color and texture

which brings the benefits of detecting interesting points and extracting optical flows.

Compared to RGB videos, the ideal depth modality is insensitive to illumination

variations, invariant to color and texture changes, reliable for estimating body sil-

houette and skeleton, and provides rich 3D structural information of the scene.

Different from RGB and depth, skeleton data which consists of the positions of

body joints, is a relatively high-level feature for motion recognition. It is robust

to scale and illumination changes, and can be invariant to camera view as well as

body rotation. In many state-of-the-art datasets, skeleton is computed from depth

map. Many different methods have been proposed in the past decade to exploit the

properties of the three modalities. These methods can be broadly classified into

handcrafted and deeply learned representations. This thesis presents an extensive

study on analyzing human motion from RGB-D modalities. The study ranges from

hand-crafted features to deep-learning methods for segmented action recognition by

addressing a number of challenging questions.

1.1 Research Questions

The main research questions addressed in this thesis are:

1. How to effectively mine the most frequent and relevant (discriminative, represen-

tative and non-redundant) features from skeleton data for action recognition?

2. How to effectively represent skeleton sequences for ConvNets-based recognition?

3. How to adopt ConvNets for depth-based recognition on small training data?

4. How to take full advantages of depth modality for large-scale action recognition

based on ConvNets?

5. How to apply ConvNets to fine-grained action recognition using noisy depth

modality?

6. How to fuse RGB and depth modalities at data-level for action recognition using

ConvNets?

7. How to cooperatively train a single network using two heterogeneous input modal-

ities (e.g. RGB and depth)?
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1.2 Thesis Organization

The thesis is organized as follows:

Chapter 2 provides a review of the relevant literature. In this chapter, both

hand-crafted features and deep learning methods for RGB, depth, skeleton and

multi-modal-based action recognition are reviewed. Performance evaluation includ-

ing benchmark datasets and evaluation metrics are also reviewed.

Chapter 3 addresses the first two research questions by presenting two methods

for skeleton-based action recognition using hand-crafted features and a deep learning

method, respectively.

Chapter 4 presents three methods to address the research questions 3-5. These

methods adopt depth modality as input and take advantages of pre-trained deep

learning models over ImageNet for action recognition.

Chapter 5 studies the research questions 6-7 and introduces two methods for

RGB and depth based action recognition. The first method is based on extrac-

tion and use of scene flow for action recognition from RGB-D data. The second

method introduces a concept of cooperatively training that takes two heterogeneous

inputs and trains a single network for both homogeneous and heterogeneous action

recognition.

The thesis is concluded with future research directions in Chapter 6.



Chapter 2

Literature Review

This chapter reviews key literature related to hand-crafted feature based and deeply

learned feature based action recognition. Performance indicators and commonly

used benchmark datasets are also reviewed.

2.1 Hand-crafted Features for Action Recognition

The process of action recognition based on hand-crafted features can be generally

divided into two main steps, action representation and action classification. Action

representation consists of feature extraction and feature selection. Features can be

extracted from input sources such as depth maps, skeleton and/or RGB images.

Regardless of the input source, there are two main approaches, space-time approach

and sequential approach, to the representation of actions. The space-time approach

usually extracts local or holistic features from space-time volume, without explicit

modeling of temporal dynamics. By contrast, the sequential approach normally ex-

tracts local features from each frame of the input source and models the dynamics

explicitly. Action classification is the step of learning a classifier based on action

representation and classifying any new observations using the classifier. For space-

time approaches, discriminative classifier, such as Support Vector Machine (SVM),

is often used for classification. For the sequential approach, generative statistical

models, such as Hidden Markov Model (HMM), are commonly used. In this litera-

ture review, we first give a brief review on RGB-based approach and then introduce

the skeleton-based approach, depth-based approach, and the approach that fuses

them together.

2.1.1 RGB-based Approach

The RGB-based methods rely on sequential RGB images, whether based on local

representations or global representations. This approach enjoys a rich history but it

is still very challenging for action recognition in the wild due to the difficulties such

as great intra-class variance, scaling, occlusion and clutter. In this section, we only

give a brief review, listing the typical works in corresponding modules. For more

comprehensive review, survey papers [ZSXF16, HHP17] are recommended to read.

In the following two sub-sections, we will first review space-time based approach

and then sequential approach.

4
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2.1.1.1 RGB-based Space-Time Methods

The space-time approach represents actions in volume, trajectories, and set of fea-

tures and trains models for each kind of representation. For space time volume,

Bobick and Davis [BD01a] proposed to recognize actions by using two components

of vector images, namely, Motion Energy Images (MEI) and Motion History Images

(MHI). It worked well in static background where the motion of object movement

can be separated easily. Blank et al. [BGS+05] represented actions as space-time

shapes, which contained both spatial and dynamic information. This method worked

fast and did not need prior video alignment.

For trajectories, Campbell and Bobick [CB95] proposed to recognise nine atomic

movements of a ballet dancer by tracking trajectories of joint positions in a 3-D XYT

plane. Recently, Wang et al. [WKSL13] proposed a video representation based on

dense trajectories and motion boundary descriptors, in which optical flow algorithm

was used to extract trajectories. Their approach achieved promising results in several

benchmark datasets but it was very time-consuming to calculate the dense optical

flow and corresponding features along the flows.

For space-time features, extensive works have been done. To extract local spatio-

temporal features, two main steps are: feature detection and feature description.

The feature detector aims to detect locations of representative interest points with

various scales. The shape and motion characteristics of the detected 3D patches (or

interest regions surrounding the detected interest points) can be further described by

feature descriptors. Many feature detectors have been proposed in the past years.

For example, Laptev and Lindeberg [Lap05] proposed a generalization of Harris

and Forstner interest point detector to localize the compact representation of the

event; Gilber et al. [GIB09] used a 2D Harris corner detection and data mining

approach to localize multiple actions in real-time. Dollar et al. [DRCB05] proposed

a spatio-temporal feature as the cuboids prototype for the recognition of human

actions. Other feature detectors, such as 3D-Hessian by Willems et al. [WTVG08],

Dense Sampling by Fei-Fei and Perona [FFP05], Spatio-Temporal Regularity Based

Feature (STRF) by Goodhart et al. [GYS08] also been proposed. And many STIP

feature descriptors are also proposed, for example, HOG/HOF [Lap05], HOG3D

[KMS08], Extended SURF [WTVG08] and MoSIFT [CH09]. The combinations of

these feature detectors and feature descriptors have been used in many papers.

2.1.1.2 RGB-based Sequential Methods

For RGB-based sequential approach, Darrell and Pentland [DP93] proposed a Dy-

namic Time Warping (DTW) algorithm and used a view model to recognize gesture

actions and effectively handle a variation in the execution of actions. Yamato et al.
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[YOI92] adopted a HMM to represent and recognize the actions. Park and Aggar-

wal [PA04] proposed to estimate human body gestures using Bayesian networks and

modelled the evolution of two persons interactions by Dynamic Bayesian Networks

(DBN). Gupta and Davis [GD07] proposed a probabilistic model that exploit con-

textual information for visual action analysis to improve object recognition as well

as action recognition. Ivanov and Bobick [IB00] suggested using stochastic context-

free grammars (SCFGs) to model visual activities and used it on an upper layer

to compute the probability of temporally consistent sequences of primitive actions.

Many improved works have been done following above papers, which can be seen in

the survey [VA13].

2.1.2 Skeleton-based Approach

The study of skeleton-based action recognition can date back to the pioneering

work by Johansson [Joh75], which demonstrated that a large set of actions can

be recognized solely from the joint positions. This idea has been followed and

extensively explored ever since. However, the 3D joint positions extracted by the

skeleton tracker [SFC+11] are much noisy due to the possible failure caused by

noisy depth maps or occlusions, which makes the design of an effective and efficient

system not accurate enough. In the following two subsections, we also first review

space-time approach, followed by sequential approach. Works [PLC16, HRHZ17]

are referred to read for more comprehensive reviews.

2.1.2.1 Skeleton-based Space-Time Methods

For the skeleton-based space-time volume approach, Yang et al. [YT12] proposed a

new feature descriptor called EigenJoints features which contained posture features,

motion features and offset features. The pair-wise joint differences in current frames

and their consecutive frames were used to encode the spatial and temporal infor-

mation, which were called posture features and motion features, respectively. The

difference of a pose with respect to the initial pose was called offset features. The

initial pose was generally assumed as a neutral pose. The three channels were nor-

malized and PCA was applied to reduce redundancy and noise to obtain the Eigen-

Joints descriptor. A Naive-Bayes-Nearest-Neighbor (NBNN) classifier was adopted

to recognize actions. Gowayyed et al. [GTHES13] proposed a new descriptor called

Histograms of Oriented Displacements (HOD) to recognize actions. The displace-

ment of each joint voted with its length in a histogram of oriented angles. Each

3D trajectory was represented by the HOD of its three 2D projection. In order to

preserve temporal information, a temporal pyramid was proposed, where trajecto-

ries were considered as a whole, halves and quarters and then all the descriptors in
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these three levels were concatenated to form the final descriptor. A linear SVM was

used to classify actions based on the histograms. Similar to this work, Hussein et

al. [HTGES13] proposed a descriptor called Covariance of 3D Joints (Cov3DJ) for

human action recognition. This descriptor used covariance matrix to capture the

dependence of locations of different joints on one another during an action. In order

to capture the order of motion in time, a hierarchy of Cov3DJs was used, similarly

to the work in [GTHES13].

Zanfir et al. [ZLS13] proposed a descriptor called moving pose which was formed

by the position, velocity and acceleration of skeleton joints within a short time win-

dow around the current fame. To learn discriminative pose, a modified k-Nearest

Neighbours (kNN) classifier was used that considered both the temporal location of

a particular frame within the action sequence as well as the discrimination power of

its moving pose descriptor compared to other frames in the training set. Wang et

al. [WWY13] first estimated human joints positions from videos and then grouped

the estimated joints into five parts. Each action was represented by computing sets

of co-occurring spatial and temporal configurations of body parts. They used a

bag of words method with the extracted features for classification. Ohn-Bar and

Trivedi [OBT13a] tracked the joint angles and built a descriptor based on similar-

ities between angle trajectories. This feature was further combined with a double-

HOG descriptor that accounted for the spatio-temporal distribution of depth values

around the joints. Theodorakopoulos et al. [TKEF14] initially processed the skele-

ton data from sensor coordinate to torso PCA frame in order to gain robust and

invariant pose representation. Sparse coding in dissimilarity space was utilized to

sparsely represent the actions. Chaaraoui et al. [CPLCPFR14] proposed to use an

evolutionary algorithm to determine the optimal subset of skeleton joints, taking

into account the topological structure of the skeleton. Vemulapalli et al. [VAC14]

explicitly modelled the 3D geometric relationships between various body parts using

rotations and translations in 3D space. Human actions were modelled as curves in

Lie group and then they mapped the action curves from the Lie group to its Lie

algebra. Following, they used DTW to handle rate variations and Fourier Tempo-

ral Pyramid (FTP) [WLWY14] representation to handle the temporal misalignment

and noise issues.

2.1.2.2 Skeleton-based Sequential Methods

For the skeleton-based sequential approach, Xia et al. [XCA12] proposed a feature

called Histograms of 3D Joint Locations (HOJ3D) as a representation of postures.

The HOJ3D essentially encoded spatial occupancy information relative to the root

joint, e.g. hip center. A modified spherical coordinate system was defined on the

root joint and the 3D space was divided into N bins. The HOJ3D was reprojected



CHAPTER 2. LITERATURE REVIEW 8

using LDA to reduce dimensionality and then clustered into K posture visual words

which represented the prototypical poses of actions. HMMs were adopted to model

the visual words and recognize actions. Radial distance was adopted in this spherical

coordinate system which made the method to some extend view-invariant.

Koppula et al. [KGS13] explicitly modelled the motion hierarchy to enable their

method to handle simple human-object interactions. The human activities and ob-

ject affordances were jointly modelled as a Markov Random Field (MRF) where

the nodes represented objects and sub-activities, and the edges represented the re-

lationships between object affordances, their relations with sub-activities, and their

evolution over time. Feature vectors that represented the object’s location and the

changing information in the scene were defined by training a Structural Support

Vector Machine (SSVM). Similar to this approach, Sung et al. [SPSS12] proposed a

hierarchical two-layer Maximum Entropy Markov Model (MEMM) to represent an

activity. The lower layer nodes represented sub-activities while higher level nodes

described more complex activities, for example, “lifting left hand” and “pouring wa-

ter” could be described as a sub-activity and a complex activity, respectively. With

the development of deep learning, Wu and Shao [WS14b] proposed a hierarchical

dynamic framework that first extracted high level skeletal joints features and then

used the learned representation for estimating emission probability to infer action

sequences. They replaced Gaussian mixture models with deep neural networks that

contained many layers of features to predict probability distribution over states of

HMM, which achieved better results.

2.1.3 Depth-based Approach

The depth-based methods rely mainly on features, either local or global, extracted

from the space time volume. Compared to visual data, depth maps provide geomet-

ric measurements that are invariant to lighting. However, it is still a challenging

task using depth maps to design a system for action recognition which are both

effective and efficient, even though depth can make segmentation of foreground and

background easier. The reasons are three folds. First of all, depth sequence may

contain serious occlusions, which makes the global features unstable. Secondly, the

depth maps may have many “holes” due to no estimation of depth obtained in case

of specific material, reflection, interference or fast motion. In addition, the depth

maps do not have as much texture as color images do, and they are usually too noisy

to apply local differential operators such as gradients. These challenges motivate

researchers to develop features that are semi-local, highly discriminative and robust

against occlusion. The majority of depth-based methods rely on space-time volume

features, and we will review the literature space-time approach first, followed by
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sequential approach.

2.1.3.1 Depth-based Space-Time Methods

For depth-based space-time approaches, Li et al. [LZL10] proposed a bag-of-points

feature representation for activity recognition from depth map sequences, where

the 3D points were sampled from the silhouettes of the depth maps. They used

an action graph as their classification framework, where each action was encoded

in one or multiple paths in the action graph. Each node of the action graph de-

noted a salient postures. One limitation of this approach was the loss of spatial

context information between interest points. In addition, this approach was view-

dependent, and this made it very difficult robustly sample the interest points in

different views. To address these issues, Vieira et al. [VNO+12] proposed a feature

descriptor called Space-Time Occupancy Patterns (STOP), in which the depth se-

quence was represented in a 4D space-time grid by dividing space and time axes into

multiple segments. In this way, the descriptor could preserve spatial and temporal

contextual information between space-time cells and be flexible to accommodate

intra-action variations.

Yang et al. [YZT12] projected depth maps onto three orthogonal planes and

accumulate global activities through entire video sequences to generate the Depth

Motion Maps (DMM). Histograms of Oriented Gradients (HOG) were then com-

puted from DMM as the representation of an action video. Oreifej and Liu [OL13]

presented a new descriptor called histogram of oriented 4d surface normals (HON4D)

to capture the complex joint shape-motion cues at pixel-level. The histogram could

capture the distribution of the surface normal orientation in the 4d volume of time,

depth and spatial coordinates. Wang et al. [WLC+12] treated a three-dimensional

action sequence as a 4d shape and propose a semi-local features called random oc-

cupancy pattern (ROP) features. The ROP features were extracted from randomly

sampled 4d sub-volumes with different sizes and at different locations.

Xia and Aggarwal [XA13] proposed a filtering scheme to find local spatio-

temporal interest points (STIPs) from depth videos with noise suppression func-

tions to deal with the noisy data and missing values in depth maps. They also

proposed a self-similarity depth cuboid feature (DCSF) as the descriptor for a spatio-

temporal depth cuboid which further handled the noisy measurements and missing

values. Liu and Shao [LS13a] presented a Genetic Programming (GP) learning

method to select discriminative spatio-temporal features from RGB-D sensors for

action recognition. They proposed a restricted graph-based genetic programming

(RGGP) method which assembled 3D operators as graph-based combinations, and

then evolved generation by generation by evaluating the average error rate of the

classification accuracy, finally obtained the discriminative representation of RGB
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and depth information. Luo et al. [LWQ14] proposed a framework using both RGB

videos and depth maps to action recognition. They proposed a sparse coding-based

temporal pyramid structure matching approach (ScTPM) for feature representation,

keeping the temporal information and reducing the approximation error compared to

bag-of-words model and k-means, respectively. They proposed a center-symmetric

motion local ternary pattern (CS-Mltp) descriptor to capture the spatial-temporal

features from RGB videos. Then they fused the features captured from both depth

maps and RGB videos to recognize actions.

Song et al. [STLY14] proposed a new depth descriptor called Body Surface

Context (BSC) by utilizing 3D point cloud which contained points in the 3D real-

world coordinate system to represent the external surface of human body. This

descriptor described the distribution of relative locations of the neighbors for a

reference point in the point cloud by encoding the cylindrical angular of the difference

vector between the target point and the reference point. This descriptor was some

kind of object-centered feature and robust to translations and rotations. Lu et al.

[LJT14] proposed a binary range-sample feature in depth through τ tests. They

developed six pixel pairs, Back-Both, Act-Both, Occ-Both, Back-Act, Back-Occ

and Occ-Act. Their τ test only sampled pixel pairs Act-Both and Back-Act where

they recognised Back-Act mostly describing the human body outline which was

useful in recognition tasks. This descriptor worked in a high speed due to its binary

property. Yang and Tian [YT14] clustered hypersurface normals in a depth sequence

to form the polynormal which was used to jointly characterize the local motion and

shape information. An adaptive spatio-temporal pyramid was introduced which

subdivided a depth video into a set of space-time grids to globally capture the

spatial and temporal orders. They then aggregated the low-level polynormals into

the super normal vector (SNV) which was a simplified version of the Fisher kernel

representation. Rahmani et al. [RMHM14] proposed a new descriptor and keypoint

detection algorithm by directly processing process the pointclouds. The proposed

descriptor was extracted at a point by encoding the Histogram of Oriented Principal

Components (HOPC) within an adaptive spatio-temporal support volume around

the point. By directly processing the pointclouds, their algorithm could handle

view-point variations to some extent.

2.1.3.2 Depth-based Sequential Methods

For pure depth-based sequential approaches, there are few approaches to explore the

possibility of explicitly modeling temporal dynamics from depth maps due to the

difficulties in extracting reliable temporal correspondences, because local differential

operators are not suitable for extracting features from depth maps. However, re-

searchers try to design temporal motion features that are between pure depth-based
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methods and skeleton-based methods, for skeletons are one of the most natural

features that embed such motion information.

Inspired by the success of silhouette based methods developed for visual data,

Jalal et al. [JUKK11] extracted depth silhouettes to construct feature vectors. They

applied R transform on the depth silhouette to obtain compact shape representation

reflecting time-sequential profiles of the activities. Principal Component Analysis

(PCA) was then used to reduce feature dimension. Linear Discriminant Analysis

(LDA) was adopted to extract most discriminant vectors and HMM was utilized for

recognition.

2.1.4 Multi-modal-based Approach

Although skeleton extraction has become much easier thanks to the skeleton tracker

[SFC+11], only the estimated 3D joint positions are still not sufficient to design a

system for effective action recognition. One reason is that the estimated joint po-

sitions are very noisy and often incorrect when there are occlusions among human

limbs such as two limbs crossing each other. Furthermore, the motion of 3D joint

positions is insufficient to distinguish similar activities that involve interactions be-

tween objects and subjects. Consequently, some researchers start to explore fusion

techniques that can be used to enhance the classification performance of human

action recognition.

To fuse depth-based features with skeleton-based features, Althloothi et al.

[AMZV14] presented two sets of features, features for shape representation extracted

from depth data by using a spherical harmonics representation and features for kine-

matic structure extracted from skeleton data by estimating 3D joint positions. The

shape features were used to describe the 3D silhouette structure while the kinematic

features were used to describe the movement of the human body. Both sets of fea-

tures were fused at the kernel level for action recognition by using Multiple Kernel

Learning (MKL) technique. Similar to this direction, Chaaraoui et al. [CPLFR13]

proposed a fusion method to combine skeleton and silhouette-based features. The

skeletal features were obtained by normalizing the 3D position of original skeleton

data while the silhouette-based features were generated by extracting contour points

of the silhouette. After feature fusion, a model called bag of key poses was employed

for action recognition. The key poses were obtained by K-means clustering algo-

rithm and the words were made up of key poses. In recognition stage, unknown

video sequences were classified based on sequence matching.

Rahmani et al. [RMMH14] proposed an algorithm combining the discriminative

information from depth maps as well as from 3D joints positions for action recogni-

tion. To avoid the suppression of subtle discriminative information, local information
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integration and normalization were performed. Joint importance was encoded by

using joint motion volume. Random Decision Forest (RDF) was trained to select

the discriminant features. Because of the low dimensionality of their features, their

method turned to be efficient. Wang et al. [WLWY14] proposed a Local Occupancy

Patterns (LOP) feature calculated from the 3D point cloud around a particular joint

to discriminate different types of interactions and Fourier Temporal Pyramid (FTP)

to represent the temporal structure. Based on above two types of features, a model

called Actionlet Ensemble Model (AEM) was proposed which was a combination of

the features for a subset of the joints. Due to the numerous actionlets, data mining

technique was used to discover discriminative actionlets. Both skeleton and point

cloud information were utilized to recognize human-objects interactions. To rep-

resent dynamics and appearance of parts, Shahroudy et al. [SNYW16] employed a

heterogeneous set of depth and skeleton based features, and proposed a joint struc-

tured sparsity regression based learning method which integrated part selection into

the learning process considering the heterogeneity of features for each joint.

2.2 Deep Learning for Action Recognitoin

In this section, we first review the basic concepts of deep learning and then present

RGB-based, skeleton-based, depth-based and multi-modal-based methods with deep

learning for action recognition.

2.2.1 Commonly-used Networks

In this section, we introduce the deep learning concepts and architectures that are

relevant or have been applied to RGB-D-based motion recognition. Readers who

are interested in more background and techniques are referred to [GBC16].

2.2.1.1 Neural Networks

Neural networks are the basis of most deep architectures, and it is a generation

of linear or logistic regression. The activation a of each neuron denotes a linear

combination of several input x and a set of learned parameters, w and b, followed

by an element-wise non-linear activation function σ(·):

a = σ(wT x + b) (2.1)

A neural network consists of L layers of stacked neurons through which a signal

is propagated as σ(wT
L(σ(wT

L−1...)). When multiple, feed-forward layers are stacked

in such a way, multi-layered perceptron (MLP) is constructed, where the intermedi-
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ate layers are typically known as hidden layers. Deep neural network (DNN) is one

kind of neural networks that contains many layers. Presently, there are various deep

learning architectures and this research topic is fast-growing. In the following sub-

sections, four main basic deep architectures including Stacked Auto-encoders (SAE),

Restricted Boltzmann Machines (RBM), Convolutional Neural Networks (ConvNet)

and Recurrent Neural Networks (RNN) and their corresponding variants are re-

viewed.

2.2.1.2 Auto-encoders (AE) and Its Variants

As a feed-forward neural network, auto-encoder (AE) consists of two phases includ-

ing encoder and decoder. Encoder takes an input x and transforms it to a hidden

representation h via a non-linear mapping as follows:

h = σ(W x + b) (2.2)

The decoder maps the hidden representation back to the original representation in

a similar way:

z = σ(W
′

h + b
′

) (2.3)

Model parameters (W , b,W
′

, b
′

) are learned by minimizing the reconstruction error

between z and x. It is clearly shown that AE can be trained in an unsupervised

way. And the hidden representation h can be regarded as a more abstract and

meaningful representation for data sample x. SAE is formed by placing AE on top

of each other, and it can be used to learn high-level representations. Since SAE

can be trained in an unsupervised way, it provides an effective pre-training solution

via initialization of the weights of deep neural network (DNN) to train the model.

Once initialized, supervised fine-tuning is performed to minimize prediction error

on a labeled training data. Usually, a softmax/regression layer is added on top of

the network to map the output of the last layer in AE to targets. The pre-training

protocol based on SAE can make DNN models have better convergence property

compared to arbitrary random initialization. Denoising AE (DAE) [VLL+10] is one

commonly used and improved AE which takes a corrupted version of data as input

and is trained to reconstruct/denoise the clean input x from its corrupted sample.

DAE can learn more robust representation and prevent the learning of the identity

transformation.

2.2.1.3 Restricted Boltzmann Machines (RBM) and Its Variants

As a special type of Markov Random Field (MRF), RBM [Hin10] consists of an input

layer (visible layer) x = (x1, x2, . . . , xN) and a hidden layer h = (h1, h2, . . . , hM).
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The bidirectional connections between the two layers reveal it is a generative model;

the latent feature representation h can be obtained by giving an input vector x, and

vice versa. Given the model parameters (W , b,a), the energy function is formulated

as:

E(x,h) = hT W x − bT x − aT h (2.4)

The joint distribution over all the neurons is calculated based on the energy function

as:

p(x,h) =
1

Z
exp{−E(x,h)} (2.5)

where Z = Σx,hexp(−E(x,h)) is the partition function and computing it is generally

intractable. However, computing h conditioned on x or vice versa is tractable by

conditional inference and it can be derived into a simple formula as:

P (hj|x) =
1

1 + exp{−aj − W jx}
(2.6)

Since this network is bidirectional and symmetric, a similar expression holds for

P (xi|h). RBM is trained to maximize the joint probability and the learning of W

is conducted through the contrastive divergence method [Hin02].

Deep belief networks (DBN) [Hin09] are essentially SAEs where the AE layers

are replaced by RBMs. Hence, it can be constructed by stacking multiple RBMs.

Similarly to SAE, DBN can be trained in a greedy layer-wise unsupervised manner.

Final fine-tuning is performed by adding a linear classifier to the top layer of the

DBN and performing a supervised optimization.

2.2.1.4 Convolutional Neural Networks (ConvNet) and Its Variants

ConvNet was proposed by [LBD+90] and is renowned for image-based recognition.

Convolution is the basic operation used to model a neuron to both learn and detect

features, using a kernel convolved against an input window of pixels. Convolutions

are used in a fashion akin to correlation template or feature detector. The output of

each convolutional filter is assembled into an output image called feature map, which

is sent along as input to the next layer. One output image is created for each filter,

and there are usually tens of filters per layer. Each convolutional filter acts as both

a feature detector and a filter. The process can be formulated as follows. Suppose at

each layer the input image is convolved with a set of K kernels (W 1,W 2, ...,W K)

and subsequently bias (b1, b2, ..., bK) are added, each generating a new feature map

Xk. These features are subjected to an element-wise non-linear transform σ(·) and

the same process is repeated for every convolutional layer l:

X l
k = σ(W l−1

k ⊗ X l−1 + bl−1
k ) (2.7)
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where ⊗ denotes the convolutional operation. Convolutional layers are typically

alternated with pooling layers where pixel values of neighborhoods are aggregated

using some permutation invariant function, typically the max or mean operations,

which induce a certain amount of translation invariance and further minimize the

number of model parameters. The strength of ConvNet lies in its weight sharing of

kernels, exploiting the intuition that similar structures occur in different locations

in an image. This drastically reduces the amount of parameters that need to be

learned, and renders the network equivalent with respect to translations of the input.

Analyzing filters learned by ConvNet suggests that the very first layers learn low level

features (e.g., Gabor-like filters) while top layers learn high level semantics [ZF14].

At the end of the convolutional stream of the network, fully-connected layers are

usually added to act as classification or regression layers, where weights are no longer

shared. Differently to SAE and DBN, ConvNet is typically trained end-to-end (as

opposed to layer-by-layer) in a supervised manner.

Till now, there are several classical ConvNet architectures: LeNet [LBBH98],

AlexNet [KSH12], VGG [SZ14b], GoogLeNet [SLJ+15] and ResNet [HZRS16]. Based

on these classical architectures, several commonly used variants are proposed for

video-based recognition, such as siamese networks [CHL05] for feature learning

from egomotion [ACM15], Generative Adversarial Net (GAN) [GPAM+14] to model

scene dynamic for video segmentation and generation tasks [VPT16b], and attention

model for video face recognition [YRZ+17].

2.2.1.5 Recurrent Neural Networks (RNN) and Its Variants

RNN [WZ89] is a class of dynamic, nonlinear systems for mapping sequences to

sequences using the concept of virtual time. It uses an internal state space composed

from a trace of the inputs seen so far. RNN also implements a form of memory via

the recurrent inputs, which is useful for modeling sequences composed of current

and past states. Compared to other finite state models such as Hidden Markov

Model (HMM) [RJ86], RNN is trainable, and much more efficient and compact for

sequence representation and prediction, distributing the memory states across the

network in uniform memory cells, rather than forcing each state of the model to

store all possible state transitions. The plain RNN maintains a latent or hidden

state h at time t that is some non-linear mapping from its input xt and previous

state ht−1:

ht = σ(W xt + V ht−1 + b) (2.8)

where weights matrices W and V are shared over time. For classification, some fully

connected layers are typically added followed by a softmax to map the sequence to

a posterior over the classes.
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An RNN can be remapped as a flow graph over a sequence of inputs, and then

the flow graph can be unfolded into a feed-forward network (FNN). Unfolding al-

lows the forward pass and backward pass through the RNN to be visualized, and

also enables back-propagation through time (BPTT [Wer88]). Weight sharing is an

artifact of RNN unfolding into an FNN where the weights W and V are implicitly

shared at each time step. The idea of sharing weights allows for generalization to

new sequences similar to the learned sequences. But in this respect, weight sharing

provides for a statistical modeling capability that allows generalization and approx-

imation. Contrast this with an exhaustive, logical exact-match modeling capability

that requires a larger memory system containing all known sequences to match

against. Generalization and weight sharing for sequences and subsequences implies

variable precision. The final effect of weight sharing is that the sequence matching is

not precise, but rather approximated, so an appropriate distance function must be

used to predict the match probability. Therefore the final classification and match-

ing is similar to pooling each RNN cell in the sequence, and then combining the

strength of the activations of each cell into the final match probability for a given

sequence.

During the training process, gradient needs to be back-propagated from the

output through time. RNN is inherently deep in time and consequently suffer from

the problems of gradient fading or exploding [BSF94]. To this end, several variants

have been developed. Long Short Term Memory (LSTM) [HS97] is a commonly

used variant. For all the LSTM neurons in some layer, at time t, the recursive

computation of activations of the units is:
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ct = it ◦ ut + f t ◦ ct−1 (2.10)

ht = ot ◦ tanh(ct) (2.11)

where it, f t, ot, ut, ht, ct are input gate, forget gate, output gate, input modulation

gate, output state and internal memory cell state respectively. Operator ◦ indicates

element-wise product. The input gate and forget gate govern the information flow

into and out of the cell. The output gate controls how much information from the

cell is passed to the output ht. The memory cell has a self-connected recurrent edge

of weight 1, ensuring that the gradient can pass across many time steps without
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vanishing or exploding. Therefore, it overcomes the difficulties in training the RNN

model caused by the vanishing gradient effect.

A recent variation of the LSTM is the Gated Recurrent Unit

(GRU) [CVMG+14], which used only two control gates: the input gate and

the dynamic gate, providing a simpler model for back-propagation tuning. If

considering the current cell value and the new input value as two inputs to the

GRU neural function, then the GRU dynamic gate allows for weight combinations

of current value and input value.

2.2.2 RGB-based Approach

RGB is one important channel of RGB-D data. Compared with depth and skeleton

modalities, the main characteristics of RGB data are its shape, color and texture

which bring the benefits of extracting interesting points and optical flows [WKSL13].

These properties also make it effective to directly use texture-driven feature extrac-

tion networks, such as 2D CNN [KSH12, SZ14b, HZRS16] to extract frame-level

spatial information. Generally speaking, we define three categories, CNN-based,

RNN-based and other-architecture-based approaches.

2.2.2.1 CNN-based Approach

For CNN-based approach, currently there are mainly four approaches to encode

spatial-temporal-structural information.

The first approach applies CNN to extract features from individual frames and

fuse the temporal information later. For example [KTS+14] investigated four tem-

poral fusion methods, and proposed the concept of slow fusion where higher layers

get access to progressively more global information in both spatial and temporal di-

mensions. The implementation extends the connectivity of all convolutional layers

in time and carry out temporal convolutions. [NHV+15] explored several tempo-

ral pooling methods and concluded that max pooling in the temporal domain is

preferable.

The second approach is to extend convolutional operation into temporal domain.

In one such implementation, [JXYY13] proposed 3D-convolutional networks using

3D kernels (filters extended along the time axis) to extract features from both spatial

and temporal dimensions. This work empirically showed that the 3D-convolutional

networks outperform the 2D frame-based counterparts. With modern deep archi-

tectures, such as VGG [SZ14b], and large-scale supervised training datasets, such

as Sports-1M [KTS+14], [TBF+15] extended the work [JXYY13] by inclusion of 3D

pooling layers, and proposed a generic descriptor called C3D by averaging the out-

puts of the first fully connected layer of the networks. However, both of these works
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break the video sequence into short clips and aggregate video-level information by

late score fusion. This is likely to be suboptimal when considering some long action

sequence, such as walking or swimming that lasts several seconds and spans tens or

hundreds of video frames. To handle this problem, [VLS16] investigated the learning

of long-term video representations and proposed Long-term Temporal Convolutions

(LTC) at the expense of decreasing spatial resolution to keep the complexity of net-

works tractable. Even straightforward and mainstreamed, extending spatial kernels

to 3D spatial-temporal ones inevitably increases the number of parameters of the

network. To relieve the drawbacks of 3D kernels, [SJYS15] factorized a 3D filter

into a combination of 2D and 1D filters.

The third approach is to encode the video into dynamic images that contain

the spatial-temporal information and then apply CNN for image-based recognition.

[BFG+16] proposed to adopt rank pooling [FGM+16] to encode the video into one

dynamic set of images and used pre-trained models over ImageNet [KSH12] for

fine-tuning. The end-to-end learning methods with rank pooling is also proposed

in [BFG+16, FG16]. Hierarchical rank pooling [FAHG16] was proposed to learn

higher order and non-linear representations compared to the original work. Gener-

alized rank pooling [CFHG17] was introduced to improve the original method via a

quadratic ranking function which jointly provided a low-rank approximation to the

input data and preserved their temporal order in a subspace.

Besides the above works that aim to adopt one network to exploit both spatial-

temporal information contained in the video, the fourth approach is to separate

the two factors and adopt multiple stream networks. [SZ14a] proposed one spatial

stream network fed with raw video frames, and one temporal stream network ac-

cepting optical flow fields as input, and the two streams were fused together using

the softmax scores. [WQT15] extended the two-stream networks by integrating im-

proved trajectories [WKSL13], where trajectory-constrained sampling and pooling

were used to encode deep features learned from deep CNN architecture, into effective

descriptors. To incorporate long-range temporal structure using the two-stream net-

works, [WXW+16] devised a temporal segment network (TSN) that used a sparse

sampling scheme to extract short snippets over a long video sequence. With the

removal of redundancy from consecutive frames and a segmental structure, aggre-

gated information was obtained from the sampled snippets. To reduce the expen-

sive calculation of optical flow, [ZWW+16] accelerated this two stream structure

by replacing optical flow with motion vector which could be obtained directly from

compressed videos without extra calculation. [WSW+16] leveraged semantic cues in

video by using a two-stream semantic region-based CNNs (SR-CNNs) to incorporate

human/object detection results into the framework. In their work, [CLS15] exploited

spatial structure of the human pose and extracted a pose-based convolutional neural
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network (P-CNN) feature from both RGB frames and optical flow for fine-grained

action recognition. [WFG16] formulated the problem of action recognition from a

new perspective and modelled an action as a transformation which changed the state

of the environment before the action to the state after the action. They designed

a Siamese network which modelled the action as a transformation on a high-level

feature space based on the two-stream model. Based on the two-stream framework,

[ZHS+16] proposed a key volume mining deep framework for action recognition,

where they identified key volumes and conducted classification simultaneously. In-

spired by the success of Residual Networks (ResNets) [HZRS16], [FPW16] injected

residual connections between the two streams to allow spatial-temporal interaction

between them. Instead of using optical flow for temporal stream, [LRVH16] adopted

Motion History Image (MHI) [BD01b] as the motion clue. The MHI was combined

with RGB frames in a spatio-temporal CNN for fined grained action recognition.

However, all the methods reviewed above incorporated the two streams from sepa-

rate training regimes; any registration of the two streams was neglected. In order to

address this gap and propose a new architecture for spatial-temporal fusion of the

two streams [FPZ16] investigated three aspects of fusion for the two streams: (i)

how to fuse the two networks with consideration for spatial registration, (ii) where

to fuse the two networks and, (iii) how to fuse the networks temporally.

2.2.2.2 RNN-based Approach

For RNN-based approach, [BMW+11] tackled the problem of action recognition

through a cascade of 3D CNN and LSTM, where the two networks were trained sep-

arately. Differently from the separate training, [DAHG+15] proposed one Long-term

Recurrent Convolutional Network (LRCN) to exploit end-to-end training of the two

networks. To take full advantages of both CNN and RNN, [NHV+15] aggregated

CNN features with both temporal pooling and LSTM for temporal exploitation,

and fused the output scores from the feature pooling and LSTM network to con-

duct final action recognition. [PVDOD+16] proposed an end-to-end trainable neural

network architecture incorporating temporal convolutions and bidirectional LSTM

for gesture recognition. This provided opportunity to mine temporal information

that was much discriminative for gesture recognition. [SKS16] proposed a soft at-

tention model for action recognition based on LSTM. The attention model learns

which parted in the frames were relevant for the task at hand and attached higher

importance to them. To take advantages of both Fisher Vector [SPMV13] and RNN,

[LSKW16] introduced a Recurrent Neural Network Fisher Vector (RNN-FV) where

the GMM probabilistic model in the fisher vector was replaced by a RNN and thus

avoided the need for the assumptions of data distribution in the GMM. Even though

RNN was remarkably capable of modeling temporal dependences, it lacked an intu-
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itive high-level spatial-temporal structure. To mine the spatio-temporal-structural

information, [JZSS16] combined the power of spatio-temporal graphs and RNN for

action recognition.

2.2.2.3 Other-architecture-based Approach

Besides the commonly used CNN- and RNN-based methods for motion recognition

from RGB modality, there are several other architectures that have been adopted

for this task. [JSWP07] used a feedforward hierarchical template matching archi-

tecture for action recognition with pre-defined spatio-temporal filters in the first

layer. [Che10] adopted the convolutional RBM (CRBM) as the basic processing

unit and proposed the so-called space-time Deep Belief Network (ST-DBN) that

alternated the aggregation of spatial and temporal information so that higher layers

captured longer range statistical dependencies in both space and time. [TFLB10]

extended the Gated RBM (GRBM) [MH07] to convolutional GRBM (convGRBM)

that shared weights at all locations in an image and inference was performed through

convolution. [LZYN11] presented an extension of the independent subspace analysis

algorithm [The07] to learn invariant spatio-temporal features from unlabeled video

data. They scaled up the original ISA to larger input data by employing two im-

portant ideas from convolutional neural networks: convolution and stacking. This

convolutional stacking idea enabled the algorithm to learn a hierarchical represen-

tation of the data suitable for recognition. [YCSC14] proposed Dynencoder, a three

layer auto-encoder, to capture video dynamics. Dynencoder was shown to be suc-

cessful in synthesizing dynamic textures, and one can think of a Dynencoder as a

compact way of representing the spatio-temporal information of a video. Similarly,

[SMS15] introduced a LSTM autoencoder model. The LSTM autoencoder model

consisted of two RNNs, namely, the encoder LSTM and the decoder LSTM. The

encoder LSTM accepted a sequence as input and learned the corresponding com-

pact representation. The states of the encoder LSTM contained the appearance and

dynamics of the sequence. The decoder LSTM received the learned representation

to reconstruct the input sequence. Inspired by the Generative Adversarial Net-

works (GAN) [GPAM+14], [MCL16] adopted the adversarial mechanism to train

a multi-scale convolutional network to generate future frames given an input se-

quence. To deal with the inherently blurry predictions obtained from the standard

Mean Squared Error (MSE) loss function, they proposed three different and com-

plementary feature learning strategies: a multi-scale architecture, an adversarial

training method, and an image gradient difference loss function.



CHAPTER 2. LITERATURE REVIEW 21

2.2.3 Skeleton-based Approach

Differently from RGB and depth, skeleton data contains the positions of human

joints, which can be considered relatively high-level features for motion recognition.

Skeleton data is robust to scale and illumination changes, and can be invariant to

camera view as well as human body rotation and motion speed. Currently, there are

mainly three approaches to skeleton-based motion recognition using deep learning:

(i) RNN-based, (ii) CNN-based, (iii) other-architecture-based approaches.

2.2.3.1 CNN-based Approach

The main step in this approach is to convert the skeleton sequences into images

where the spatio-temporal information is reflected in the image properties includ-

ing color and texture. [DFW15] represented a skeleton sequence as a matrix by

concatenating the joint coordinates at each instant and arranging the vector repre-

sentations in a chronological order. The matrix was then quantified into an image

and normalized to handle the variable-length problem. The final image was fed into

a CNN model for feature extraction and recognition. [WLHL16] proposed to en-

code spatio-temporal information contained in the skeleton sequence into multiple

texture images, namely, Joint Trajectory Maps (JTM), by mapping the trajectories

into HSV (hue, saturation, value) space. Pre-trained models over Imagenet was

adopted for fine-tuning over the JTMs to extract features and recognize actions.

Similarly, [HLWL16] drew the skeleton joints with a specific pen to three orthogo-

nal canvases, and encoded the dynamic information in the skeleton sequences with

color encoding. [LHWL17] proposed to encode the pair-wise distances of skeleton

joints of single or multiple subjects into texture images, namely, Joint Distance

Maps (JDM), as the input of CNN for action recognition. Compared with the

works reported by [WLHL16] and [HLWL16], JDM was less sensitive to view vari-

ations. [LLC17] introduced an enhanced skeleton visualization method to represent

a skeleton sequence as a series of visual and motion enhanced color images. They

proposed a sequence-based view invariant transform to deal with the view variation

problem, and multi-stream CNN fusion method was adopted to conduct recognition.

[KAB+17] designed vector-based features for each body part of human skeleton se-

quences, which were translation, scale and rotation invariant, and transformed the

features into images to feed into CNN for learning high level and discriminative rep-

resentation. [KBA+17] represented the sequence as a clip with several gray images

for each channel of the 3D coordinates, which reflected multiple spatial structural

information of the joints. The images were fed to a deep CNN to learn high-level

features, and the CNN features of all the three clips at the same time-step were

concatenated in a feature vector. Each feature vector represented the temporal in-
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formation of the entire skeleton sequence and one particular spatial relationship of

the joints. A Multi-Task Learning Network (MTLN) was adopted to jointly process

the feature vectors of all time-steps in parallel for action recognition. [KR17] ap-

proached the problem differently and proposed to use the Temporal Convolutional

Neural Networks (TCN) [LFV+17] for skeleton based action recognition. They re-

designed the original TCN into Res-TCN by factoring out the deeper layers into

additive residual terms that yielded both interpretable hidden representations and

model parameters.

2.2.3.2 RNN-based Approach

In this class of approaches, skeleton features are input to a RNN in order to exploit

the temporal evolution. For instance, [DWW15, DFW16] divided the whole skeleton

sequence into five parts according to the human physical structure, and separately

fed them into five bidirectional RNNs/LSTMs. As the number of layers increased,

the representations extracted by the subnets were hierarchically fused to build a

higher-level representation. This method explicitly encoded the spatio-temporal-

structural information into high level representation. [VZQ15] proposed a differ-

ential gating scheme for the LSTM neural network, which emphasized the change

in information gain caused by the salient motions between the successive frames.

This work was one of the first aimed at demonstrating the potential of learning

complex time-series representations via high-order derivatives of states. [ZLX+16]

designed two types of regularizations to learn effective features and motion dynam-

ics. In the fully connected layers, they introduced regularization to drive the model

to learn co-occurrence features of the joints at different layers. Furthermore, they

derived a new dropout and applied it to the LSTM neurons in the last LSTM layer,

which helped the network to learn complex motion dynamics. Instead of keeping

a long-term memory of the entire body’s motion in the cell, [SLNW16] proposed

a part-aware LSTM human action learning model (P-LSTM) wherein memory was

split across part-based cells. It was argued that keeping the context of each body

part independent and representing the output of the P-LSTM unit as a combina-

tion of independent body part context information was more efficient. Previous

RNN-based 3D-action recognition methods have adopted RNN to model the long-

term contextual information in the temporal domain for motion-based dynamics

representation. However, there was also strong dependency between joints in the

spatial domain. In addition the spatial configuration of joints in video frames can

be highly discriminative for 3D-action recognition task. To exploit this dependency,

[LSXW16] proposed a spatio-temporal LSTM (ST-LSTM) network which extended

the traditional LSTM-based learning to both temporal and spatial domains. Rather

than concatenate the joint-based input features, ST-LSTM explicitly modelled the
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dependencies between the joints and applied recurrent analysis over spatial and

temporal domains concurrently. Besides, they introduced a trust gate mechanism

to make LSTM robust to noisy input data. [SLX+17] proposed a spatio-temporal at-

tention model with LSTM to automatically mine the discriminative joints and learn

the respective and different attentions of each frame along the temporal axis. Simi-

larly, [LWH+17] proposed a Global Context-Aware Attention LSTM (GCA-LSTM)

to selectively focus on the informative joints in the action sequence with the assis-

tance of global context information. Differently from previous works that adopted

the coordinates of joints as input, [ZLX17] investigated a set of simple geometric

features of skeleton using 3-layer LSTM framework, and showed that using joint-line

distances as input requires less data for training.

2.2.3.3 Other-architecture-based Approach

Besides the RNN- and CNN-based approaches, there are several other deep learning-

based methods. [STT13] proposed a new compositional learning architecture that in-

tegrated deep learning models with structured hierarchical Bayesian models. Specif-

ically, this method learned a hierarchical Dirichlet process (HDP) [TJBB04] prior

over the activities of the top-level features in a deep Boltzmann machine (DBM).

This compound HDP-DBM model learned novel concepts from very few training

examples by learning: (i) low-level generic features, (ii) high-level features that cap-

tured correlations among low-level features and, (iii) a category hierarchy for sharing

priors over the high-level features that were typical of different kinds of concepts.

[WS14a] adopted deep belief networks (DBN) to model the distribution of skeleton

joint locations and extract high-level features to represent humans at each frame in

3D space. [I+16] adopted stacked auto encoder to learn the underlying features of

input skeleton data. [HWPVG17] incorporated the Lie group structure into a deep

learning architecture to learn more appropriate Lie group features for skeleton based

action recognition.

2.2.4 Depth-based Approach

Compared with RGB videos, the depth modality is insensitive to illumination varia-

tions, invariant to color and texture changes, reliable for estimating body silhouette

and skeleton, and provides rich 3D structural information of the scene. However,

there are only few published results on depth based action recognition using deep

learning methods. Two reasons can be adduced for this situation. First, the absence

of color and texture in depth maps weakens the discriminative representation power

of CNN models which are texture-driven feature extractor and classifier [LZT16].

Second, existing depth data is relatively small-scale. The conventional pipelines are
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purely data-driven and learn representation directly from the pixels. Such model is

likely to be at risk of overfitting when the network is optimized on limited train-

ing data. Currently, there are only CNN-based methods for depth-based motion

recognition.

2.2.4.1 CNN-based Approach

[WLG+15, WLG+16] took advantage of the representation power of CNN on texture

images and at the same time enlarge available training data by encoding depth

map sequences into texture color images using the concepts of Depth Motion Maps

(DMM) [YZT12] and pseudo-coloring; training data was enlarged by scene rotation

on the 3D point cloud. Inspired by the promising results achieved by rank pooling

method [BFG+16] on RGB data, [WLL+16b] encoded the depth map sequences into

three kinds of dynamic images with rank pooling: Dynamic Depth Images (DDI),

Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images

(DDMNI). These three representations captured the posture and motion information

from three different levels for gesture recognition. Differently from the above texture

image encoding method, [RM16] proposed a cross-view action recognition based on

depth sequence. Their method comprised two steps: (i) learning a general view-

invariant human pose model from synthetic depth images and, (ii) modelling the

temporal action variations. To enlarge the training data for CNN, they generated

the training data synthetically by fitting realistic synthetic 3D human models to real

mocap data and then rendering each pose from a large number of viewpoints. For

spatio-temporal representation, they used group sparse Fourier Temporal Pyramid

which encodes the action-specific discriminative output features of the proposed

human pose model.

2.2.5 Multi-modal-based Approach

As discussed in previous sections, RGB, depth and skeleton modalities have their

own specific properties, and how to combine the strengths of these modalities with

deep learning approach is a vital issue. To address this problem, several methods

have been proposed. In general, these methods can be categorized as (i) CNN-based,

(ii) RNN-based and (iii) other-architecture-based approaches.

2.2.5.1 CNN-based Approach

[ZZM+16a] fused RGB and depth in a pyramidal 3D convolutional network based on

C3D [TBF+15] for gesture recognition. They designed pyramid input and pyramid

fusion for each modality and late score fusion was adopted for final recognition.

[DZW+16] proposed a convolutional two-stream consensus voting network (2SCVN)
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which explicitly modelled both the short-term and long-term structure of the RGB

sequences. To alleviate distractions from background, a 3D depth-saliency ConvNet

stream (3DDSN) was aggregated in parallel to identify subtle motion characteristics.

Later score fusion was adopted for final recognition. The methods described so far

considered RGB and depth as separate channels and fused them later. [WLG+17]

took a different approach and adopted scene flow to extract features that fused the

RGB and depth from the onset. The new representation based on CNN and named

Scene Flow to Action Map (SFAM) was used for motion recognition.

2.2.5.2 RNN-based Approach

For RGB and depth fusion, [PVDOD+16] directly considered the depth as the fourth

channel and CNN was adopted to extract frame-based appearance features. Tem-

poral convolutions and RNN were combined to capture the temporal information.

[LMT+16a] adopted C3D [TBF+15] to extract features separately from RGB and

depth modalities, and used the concatenated for SVM classifier. [ZZSS17] presented

a gesture recognition method using C3D [TBF+15] and convolutional LSTM (con-

vLSTM) [XCW+15] based on depth and RGB modalities. The major drawback of

traditional LSTM in handling spatio-temporal data was its usage of full connections

in input-to-state and state-to-state transitions in which no spatial information was

encoded. The ConvLSTM determined the future state of a certain cell in the grid by

the inputs and past states of its local neighbors. Average score fusion was adopted to

fuse the two separate channel networks for the two modalities. [LPH+17] proposed

to use a RNN-based encoder-decoder framework to learn a video representation by

predicting a sequence of basic motions described as atomic 3D flows. The learned

representation was then extracted from the generated model to recognize activities.

[SK17] fused depth and skeleton in a so-called privileged information (PI)-based

RNN (PRNN) that exploited additional knowledge of skeleton sequences to obtain a

better estimate of network parameters from depth map sequences. A bridging matrix

was defined to connect softmax classification loss and regression loss by discovering

latent PI in the refinement step.

For RGB and skeleton fusion, [MT16] presented a regularization of LSTM learn-

ing where the output of another encoder LSTM (eLSTM) grounded on 3D human-

skeleton training data was used as the regularization. This regularization rested on

the hypothesis that since videos and skeleton sequences were about human motions

their respective feature representations should be similar. The skeleton sequences,

being view-independent and devoid of background clutter, were expected to facilitate

capturing important motion patterns of human-body joints in 3D space.
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2.2.5.3 Other-architecture-based Approach

[SNGW17] extracted hand-crafted features which were neither independent nor fully

correlated from RGB and depth, and embedded the input feature into a space of

factorized common and modality-specific components. The combination of shared

and specific components in input features could be very complex and highly non-

linear. In order to disentangle them, they stacked layers of non-linear auto encoder-

based component factorization to form a deep shared-specific analysis network.

In a RGB, depth and skeleton fusion method, [WPK+16b] adopted Gaussian-

Bernouilli Deep Belief Network(DBN) to extract high-level skeletal joint features

and the learned representation is used to estimate the emission probability needed

to infer gesture sequences. A 3D Convolutional Neural Network (3DCNN) was used

to extract features from 2D multiple channel inputs such as depth and RGB images

stacked along the 1D temporal domain. In addition, intermediate and late fusion

strategies were investigated in combination with the temporal modeling. The result

of both mechanisms indicates that multiple-channel fusion can outperform individual

modules.

2.3 Performance Evaluation

2.3.1 Benchmark Datasets

In the past a few years, a large number of RGB-D-based benchmark datasets were

collected and made public, containing either RGB, depth, skeleton or their com-

binations [CYL16, ZLO+16a]. Generally speaking, these datasets were collected

mainly from three types of devices [CWF13, CYL16, HRHZ17]: Motion capture

(Mocap) system, structured-light cameras (e.g. Kinect v1) and time-of-flight (ToF)

cameras (e.g. Kinect v2). This thesis summaries the commonly adopted datasets

for evaluation.

2.3.1.1 CMU Mocap

CMU Graphics Lab Motion Capture Database (CMU Mocap) [CMU01](http://

mocap.cs.cmu.edu/) is one of the earliest resources that consists of wide variety

of human actions, including interaction between two subjects, human locomotion,

interaction with uneven terrain, sports, and other human actions. It is capable of

recording 120 Hz with images of 4 megapixel resolution. This dataset provides RGB

and skeleton data.

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
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2.3.1.2 HDM05

Motion Capture Database HDM05 [MRC+07] (http://resources.mpi-inf.mpg.

de/HDM05/) was captured by an optical marker-based technology with the frequency

of 120 Hz, which contains 2337 sequences for 130 actions performed by 5 non-

professional actors, and 31 joints in each frame. Besides skeleton data, this dataset

also provides RGB data.

2.3.1.3 MSR-Action3D

MSR-Action3D [LZL10] (http://www.uow.edu.au/˜wanqing/

#MSRAction3DDatasets) is the first public benchmark RGB-D action dataset

collected using Kinect TMsensor by Microsoft Research, Redmond and University

of Wollongong in 2010. The dataset contains 20 actions: high arm wave, horizontal

arm wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw

circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging,

tennis serve, golf swing, pickup and throw.

Ten subjects performed these actions three times. All the videos were recorded

from a fixed point of view and the subjects were facing the camera while performing

the actions. The background of the dataset was removed by some post-processing.

Specifically, if an action needs to be performed with one arm or one leg, the actors

were required to perform it using right arm or leg.

2.3.1.4 MSRC-12

MSRC-12 dataset [FMNK12](http://research.microsoft.com/en-us/um/

cambridge/projects/msrc12/) was collected by Microsoft Research Cambridge

and University of Cambridge in 2012. So, there are two types of gestures: Iconic

gestures (Crouch or hide, Shoot a pistol, Throw an object, Change weapon, Kick,

and Put on night vision goggles) and Metaphoric gestures (Start Music/Raise

Volume (of music), Navigate to next menu, Wind up the music, Take a bow to

end music session, Protest the music, and Move up the tempo of the song). The

authors provided three familiar and easy to prepare instruction modalities and

their combinations to the participants. The modalities are (1) descriptive text

breaking down the performance kinematics, (2) an ordered series of static images

of a person performing the gesture with arrows annotating as appropriate, and (3)

video (dynamic images) of a person performing the gesture.

There are 30 participants in total and for each gesture, the data were collected as:

Text (10 people), Images (10 people), Video (10 people), Video with text (10 people),

Images with text (10 people). The dataset was captured using one Kinect TMsensor

and only the skeleton data are made available.

http://resources.mpi-inf.mpg.de/HDM05/
http://resources.mpi-inf.mpg.de/HDM05/
http://www.uow.edu.au/~wanqing/#MSRAction3DDatasets
http://www.uow.edu.au/~wanqing/#MSRAction3DDatasets
 http://research.microsoft.com/en-us/um/cambridge/projects/msrc12/
 http://research.microsoft.com/en-us/um/cambridge/projects/msrc12/
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2.3.1.5 MSRDailyActivity3D

MSRDailyActivity3D Dataset [WLWY12](http://www.uow.edu.au/˜wanqing/

#MSRAction3DDatasets) was collected by Microsoft and the Northwestern Univer-

sity in 2012 and focused on daily activities. The motivation was to cover human

daily activities in the living room. There are 16 activity types: drink, eat, read book,

call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer up, sit still,

toss paper, play game, lay down on sofa, walk, play guitar, stand up, sit down.

The actions were performed by 10 actors while sitting on the sofa or standing

close to the sofa. The camera was fixed in front of the sofa. In addition to depth

data, skeleton data are also recorded, but the joint positions extracted by the tracker

are very noisy due to the actors being either sitting on or standing close to the sofa.

2.3.1.6 MSR ActionPairs3D

The MSR ActionPairs3D dataset [OL13] (http://www.cs.ucf.edu/˜oreifej/

HON4D.html) is a paired-activity dataset captured by a Kinect camera. This dataset

contains 12 activities (i.e. six pairs) of 10 subjects with each subject performing

each activity 3 times. The pair actions are: Pick up a box/Put down a box, Lift

a box/Place a box, Push a chair/Pull a chair, Wear a hat/Take off hat, Put on a

backpack/Take off a backpack, Stick a poster/Remove a poster.

2.3.1.7 UTKinect

UTKinect dataset [XCA12](http://cvrc.ece.utexas.edu/KinectDatasets/

HOJ3D.html) was collected by the University of Texas at Austin in 2012. Ten types

of human actions were performed twice by 10 subjects. The actions include walk,

sit down, stand up, pick up, carry, throw, push, pull, wave, clap hands.

The subjects performed the actions from a variety of views. One challenge of the

dataset is due to the actions being performed with high actor-dependent variability.

Furthermore, human-object occlusions and body parts being out of the field of view

have further increased the difficulty of the dataset. Ground truth in terms of action

labels and segmentation of sequences are provided.

2.3.1.8 G3D

Gaming 3D dataset (G3D) [BMA12](http://dipersec.king.ac.uk/G3D/) cap-

tured by Kingston University in 2012 focuses on real-time action recognition in

gaming scenario. It contains 10 subjects performing 20 gaming actions: punch right,

punch left, kick right, kick left, defend, golf swing, tennis serve, throw bowling ball,

aim and fire gun, walk, run, jump, climb, crouch, steer a car, wave, flap, and clap.

 http://www.uow.edu.au/~wanqing/#MSRAction3DDatasets
 http://www.uow.edu.au/~wanqing/#MSRAction3DDatasets
 http://www.cs.ucf.edu/~oreifej/HON4D.html
 http://www.cs.ucf.edu/~oreifej/HON4D.html
 http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
 http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
http://dipersec.king.ac.uk/G3D/
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Each subject performed these actions thrice. Two kinds of labels were provided as

ground truth: the onset and offset of each action and the peak frame of each action.

2.3.1.9 SBU Kinect Interaction Dataset

SBU Kinect Interaction Dataset [YHC+12](http://www3.cs.stonybrook.edu/

˜kyun/research/kinect_interaction/index.html ) was collected by Stony

Brook University in 2012. It contains eight types of interactions, including: ap-

proaching, departing, pushing, kicking, punching, exchanging objects, hugging, and

shaking hands.

All videos were recorded with the same indoor background. Seven participants

were involved in performing the activities which have interactions between two ac-

tors. The dataset is segmented into 21 sets and each set contains one or two se-

quences of each action category. Two kinds of ground truth information are pro-

vided: action labels of each segmented video and identification of “active” actor and

“inactive” actor.

2.3.1.10 RGBD-HuDaAct

RGBD-HuDaAct [NWM13] (http://adsc.illinois.edu/sites/default/files/

files/ADSC-RGBD-dataset-download-instructions.pdf) was collected by Ad-

vanced Digital Sciences Center Singapore in 2011. Compared to MSR-Action3D

dataset, this dataset consists of fewer actions (12 actions) and performed by more

subjects (30 subjects). The action types are also different from MSR-Action3D

dataset. This dataset focuses on human daily activities, such as make a phone call,

mop the floor, enter the room, exit the room, go to bed, get up, eat meal, drink water,

sit down, stand up, take off the jacket, and put on the jacket. Each actor performed

2-4 repetitions of each action. The background is also fixed as the camera was fixed

when recording. However, there was no restriction on which leg or hand was used

in the actions and the dataset contains human-object interaction.

2.3.1.11 Berkeley MHAD

Berkeley Multimodal Human Action Database (Berkeley MHAD) [OCK+13](http:

//tele-immersion.citris-uc.org/berkeley_mhad#dl), collected by University

of California at Berkeley and Johns Hopkins University in 2013, was captured in five

different modalities to expand the fields of application. The modalities are derived

from: optical mocap system, four multi-view stereo vision cameras, two Microsoft

Kinect v1 cameras, six wireless accelerometers and four microphones. Twelve sub-

jects performed 11 actions, five times each. Three categories of actions are included:

(1) actions with movement in full body parts, e.g., jumping in place, jumping jacks,

http://www3.cs.stonybrook.edu/~kyun/research/kinect_interaction/index.html
http://www3.cs.stonybrook.edu/~kyun/research/kinect_interaction/index.html
http://adsc.illinois.edu/sites/default/files/files/ADSC-RGBD-dataset-download-instructions.pdf
http://adsc.illinois.edu/sites/default/files/files/ADSC-RGBD-dataset-download-instructions.pdf
http://tele-immersion.citris-uc.org/berkeley_mhad#dl
http://tele-immersion.citris-uc.org/berkeley_mhad#dl
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throwing, etc., (2) actions with high dynamics in upper extremities, e.g., waving

hands, clapping hands, etc. and (3) actions with high dynamics in lower extremities,

e.g., sit down, stand up. The actions were executed with style and speed varia-

tions. This dataset can be used in the development and evaluation of multimodal

algorithms.

2.3.1.12 Northwestern-UCLA Multiview Action 3D

Northwestern-UCLA Multiview Action 3D [WNX+14](http://users.eecs.

northwestern.edu/˜jwa368/my_data.html) was collected by Northwestern Uni-

versity and University of California at Los Angles in 2014. This dataset contains

data taken from a variety of viewpoints. The actions were performed by 10 actors

and captured by three simultaneous KinectTMv1 cameras. There are 10 action cat-

egories: pick up with one hand, pick up with two hands, drop trash, walk around, sit

down, stand up, donning, doffing, throw, carry.

2.3.1.13 UTD-MHAD

UTD Multimodal Human Action Dataset (UTD-MHAD) [CJK15](http://www.

utdallas.edu/˜cxc123730/UTD-MHAD.html) was collected by University of Texas

at Dallas in 2015. Eight subjects performed 27 actions four times. The 27 actions

are: right arm swipe to the left, right arm swipe to the right, right hand wave, two

hand front clap, right arm throw, cross arms in the chest, basketball shoot, right

hand draw x, right hand draw circle (clockwise), right hand draw circle (counter

clockwise), draw triangle, bowling (right hand), front boxing, baseball swing from

right, tennis right hand forehand swing, arm curl (two arms), tennis serve, two

hand push, right hand knock on door, right hand catch an object, right hand pick

up and throw, jogging in place, walking in place, sit to stand, stand to sit, forward

lunge (left foot forward), and squat (two arms stretch out). All the actions were

performed in a fixed background. An inertial sensor was worn on the subject’s right

wrist for action 1 to 21, and on the right thigh for action 22 to 27. Hence, four types

of data modalities were captured, namely RGB videos, depth videos, skeleton joint

positions, and the inertial sensor signals.

2.3.1.14 M2I Dataset

Multi-modal & Multi-view & Interactive (M2I) Dataset [LXN+16] (http://media.

tju.edu.cn/m2i.html) provides person-person interaction actions and person-

object interaction actions. It contains both the front and side views; denoted as

Front View (FV) and Side View (SV). It consists of 22 action categories and a to-

tal of 22 unique individuals. Each action was performed twice by 20 groups (two

 http://users.eecs.northwestern.edu/~jwa368/my_data.html
 http://users.eecs.northwestern.edu/~jwa368/my_data.html
http://www.utdallas.edu/~cxc123730/UTD-MHAD.html
http://www.utdallas.edu/~cxc123730/UTD-MHAD.html
http://media.tju.edu.cn/m2i.html
http://media.tju.edu.cn/m2i.html
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persons in a group). In total, M2I dataset contains 1760 samples (22 actions × 20

groups × 2 views × 2 run).

2.3.1.15 SYSU 3D HOI Dataset

The SYSU 3D Human-Object Interaction Dataset (SYSU 3D HOI

Dataset) [HZLZ15] (https://sites.google.com/site/jianfanghusysuntu/)

was collected to focus on human-object interactions. There are 40 subjects

performing 12 different activities. For each activity, each participants manipulate

one of the six different objects: phone, chair, bag, wallet, mop and besom.

2.3.1.16 ChaLearn LAP IsoGD

ChaLearn LAP IsoGD Dataset [WLZ+16] (http://www.cbsr.ia.ac.cn/users/

jwan/database/isogd.html) is a large RGB-D dataset for segmented gesture recog-

nition, and it was collected by Kinect v1 camera. It includes 47933 RGB-D depth

sequences, each RGB-D video representing one gesture instance. There are 249 ges-

tures performed by 21 different individuals. The dataset is divided into training,

validation and test sets. All three sets consist of samples of different subjects to en-

sure that the gestures of one subject in the validation and test sets will not appear

in the training set.

2.3.1.17 NTU RGB+D

NTU RGB+D Dataset [SLNW16](https://github.com/shahroudy/NTURGB-D) is

currently the largest action recognition dataset in terms of the number of samples per

action. The RGB-D data is captured by Kinect v2 cameras. The dataset has more

than 56 thousand sequences and 4 million frames, containing 60 actions performed

by 40 subjects aging between 10 and 35. It consists of front view, two side views

and left, right 45 degree views.

2.3.1.18 ChaLearn LAP ConGD

The ChaLearn LAP ConGD Dataset [WLZ+16] (http://www.cbsr.ia.ac.cn/

users/jwan/database/congd.html) is a large RGB-D dataset for continuous ges-

ture recognition. It was collected by Kinect v1 sensor and includes 47933 RGB-D

gesture instances in 22535 RGB-D gesture videos. Each RGB-D video may contain

one or more gestures. There are 249 gestures performed by 21 different individuals.

The dataset is divided into training, validation and test sets. All three sets consist

of samples of different subjects to ensure that the gestures of one subject in the

validation and test sets will not appear in the training set.

https://sites.google.com/site/jianfanghusysuntu/
http://www.cbsr.ia.ac.cn/users/jwan/database/isogd.html
http://www.cbsr.ia.ac.cn/users/jwan/database/isogd.html
https://github.com/shahroudy/NTURGB-D 
http://www.cbsr.ia.ac.cn/users/jwan/database/congd.html
http://www.cbsr.ia.ac.cn/users/jwan/database/congd.html
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2.3.1.19 PKU-MMD

PKU-MMD [CYY+17] (http://www.icst.pku.edu.cn/struct/Projects/

PKUMMD.html) is a large scale dataset for continuous multi-modality 3D human

action understanding and covers a wide range of complex human activities with

well annotated information. It was captured via the Kinect v2 sensor. PKU-MMD

contains 1076 long video sequences in 51 action categories, performed by 66 subjects

in three camera views. It contains almost 20,000 action instances and 5.4 million

frames in total. It provides multi-modality data sources, including RGB, depth,

Infrared Radiation and Skeleton.

2.3.2 Evaluation Metric

The performance is evaluated using accuracy for segmented motion recognition, and

Jaccard Index is added as another criteria for continuous motion recognition. The

accuracy is calculated as:

r =
1

n
δ(pl(i), tl(i)) (2.12)

where n is the number of samples; pl is the predicted label; tl is the ground truth;

δ(j1, j2) = 1, if j1 = j2, otherwise δ(j1, j2) = 0. The Jaccard index measures the

average relative overlap between true and predicted sequences of frames for a given

gesture/action. For a sequence s, let Gs,i and Ps,i be binary indicator vectors for

which 1-values correspond to frames in which the ith gesture/action label is being

performed. The Jaccard Index for the ith class is defined for the sequence s as:

Js,i =
Gs,i

⋂

Ps,i

Gs,i

⋃

Ps,i

, (2.13)

where Gs,i is the ground truth of the ith gesture/action label in sequence s, and Ps,i

is the prediction for the ith label in sequence s. When Gs,i and Ps,i are empty, J(s,i)

is defined to be 0. Then for the sequence s with ls true labels, the Jaccard Index Js

is calculated as:

Js =
1

ls

L
∑

i=1

Js,i. (2.14)

For all test sequences S = s1, ..., sn with n gestures/actions, the mean Jaccard Index

JS is used as the evaluation criteria and calculated as:

JS =
1

n

n
∑

j=1

Jsj
. (2.15)

http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
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Skeleton-based Action Recognition

A common and intuitive method to represent human motion is to use a sequence of

skeletons. With the development of the cost-effective depth cameras and algorithms

for real-time pose estimation [SFC+11], skeleton extraction has become more and

more robust and skeleton-based action representation is becoming one of the most

practical and promising approaches. In this chapter, we mainly study the research

questions 1 and 2 (Section 1.2) and present two methods for action recognition from

skeleton data.

3.1 Mining Frequent and Relevant Features

3.1.1 Prior Works and Our Contributions

For hand-crafted skeleton feature based action recognition, the process can be gen-

erally divided into two main steps, action representation and action classification,

as described in section 2.1. Several works [YT12, XCA12, GTHES13, HTGES13,

ZLS13, WWY13] have been proposed to address skeleton-based action recognition.

However, in previous methods, most of them are based low-level features and need

the whole skeletal description which leads to their weak adaptation to noise. In

addition, most of them need to explore the spatial and temporal information, sep-

arately, and then combine them together. Besides, most of the methods used to

explore temporal information are subject to the neural poses, which are shared by

all actions. Inspired by the mid-level features mining techniques [FFT14] for image

classification, we propose a new scheme applying pattern mining to obtain the most

relevant combinations of parts in several continuous frames for action recognition

rather than to utilize all the joints as most previous works did. In particular, a

new descriptor called bag-of-FLPs is proposed to describe an action as illustrated in

Fig. 3.1. The overall process of our method can be divided into four steps: feature

extraction, building transactions, mining & selecting relevant patterns and build-

ing Bag-of-FLPs & classification. We first compute the orientations of limbs, i.e.

connected joints, and then encode each orientation into one of the 27 states indi-

cating the spatial relationship of the joints. Limbs are combined into parts and

limb’s states are mapped to part states. Local temporal information is included

by combining part states of several, say, 5, continuous frames into one transaction

for mining, with each state as one item. In order to keep motion information after

33
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frequent pattern mining, the unique states of parts of the continuous frames are

reserved, removing the repeated ones, ensuring the pose information and motion

information be included in each transaction. The most relevant patterns, which we

referred to FLPs, are mined and selected o represent frames and build bag-of-FLPs

as new representation for a whole action. The new representation is much robust to

the errors in the features, because the errors are usually not frequent patterns.

Our main contributions include the following four aspects. First, an effective and

efficient method is proposed to extract skeleton features. Second, a novel method

is developed to explore spatial and temporal information in skeleton data, simul-

taneously. Third, an effective scheme is proposed for applying pattern mining to

action recognition by adapting the generic pattern mining tools to the features of

skeleton. Our scheme is much robust to noise as most noisy data does not form

frequent patterns. In addition, our scheme has achieved the state-of-the-art results

on several benchmark datasets.

3.1.2 The Proposed Methods

The overall process of the proposed method is illustrated in Fig. 3.1. It can be

divided into four steps: feature extraction, building transactions, mining & selecting

relevant patterns and building Bag-of-FLPs & classification.

3.1.2.1 Feature Extraction

In our method, the orientations of human body limbs are considered as low-level

features and they can be calculated from the two joints of the limbs. For Kinect

skeleton data, 20 joint positions, as shown in Fig. 3.2, are tracked [SFC+11]. The

skeleton data is first normalized using Algorithm 1 in [ZLS13] to suppress noise

in the original skeleton data and to compensate for length variations across differ-

ent subjects and different body parts. Each joint i has 3 coordinates, denoted as

(xi, yi, zi) after normalization.

For Kinect skeleton, it is found that the correct positions of Hand Left, Hand

Right, Foot Left, Foot Right, and Spine joints are highly correlated with their neigh-

bouring joints and dropping them will not lead to any loss of information, hence

they are not used in our method. Thus, there are 15 joints 14 limbs (the connection

between two adjacent joints). The joint Head is considered as the origin of the 15

points. For each limb, we compute a unit difference vector between its two joints:

(∆xij,∆yij,∆zij) =
(xi, yi, zi) − (xj, yj, zj)

dij

(3.1)

where i and j represent the current joint and reference joint, respectively; dij is
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Figure 3.1: The general framework of the proposed method to mine frequent
and relevant features for action recognition.
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Figure 3.2: The human joints tracked with the skeleton tracker [SFC+11].

the Euclidean distance between the two joints. This representation is much robust

against body/camera-view rotation as the difference between joints is not so sensitive
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to rotation compared with the joint positions themselves. For example, as illustrated

in Fig. 3.1, to compute the orientation of the limb between joint Hand Right and

Wrist Right (highlighted in red), the Wrist Right joint is regarded as the sphere

center and Eq. 3.1 is used to compute the unit difference vector.

Each element of the unit difference vector is quantized into three states: −1, 0

and 1. If |∆xij| ≤ threshold then q(∆xij) = 0; if ∆xij > threshold then q(∆xij) = 1;

else q(∆xij) = −1. Thus, there are 27 possible states for each unit difference vector,

and each state is encoded as one element of a feature vector, so the dimension of the

feature vector for each pose is 14×27 = 378 after concatenating all feature vectors of

the 14 limbs. For each element of the feature vector, if the corresponding orientation

between two joints is bid to one state, then the relative position is labelled to 1,

otherwise, it is 0. Therefore, the feature vectors are very sparse, only 14 positions

in each feature vector are 1 (not zeros). The threshold is an empirical value which

is dependent on the noise characteristics of the skeleton data.

For each frame of skeleton, a quantized 378 dimensional feature vector is cal-

culated as described above. This feature vector is reduced to a 14 dimensional

feature vector with each element being the index to a non-zero element of the 378-

dimensional feature vector.

To extract mid-level features for action representation, the 14 limbs are com-

bined into 7 body parts. As illustrated in Fig. 3.1, the dotted line contains joints

Hand Right, Wrist Right and Elbow Right, and these three limbs form one part.

In this way, seven body parts are formed, namely, Head-Shoulder Center, Should

Center-Shoulder Left-Elbow Left-Wrist Left, Shoulder Center-Shoulder Right-Elbow

Right-Wrist Right, Shoulder Center-Hip Center-Hip Left, Hip Left-Knee Left-Angle

Left,Shoulder Center-Hip Center-Hip Right and Hip-Right-Knee Right-Angle Right.

According to the Degree of Freedom (DoF) of joints [Zat98], each body part is en-

coded with different number of states and the total number of states is denoted as

NDF , which is currently an empirical parameter. It should be adjusted according

to the complexity of the actions to be recognized and noise level of the dataset.

To explore temporal information and keep motion information at the same time

after frequent data mining (generally, frequent data mining can only mine the most

frequent pattens which can not be guaranteed as discriminative patterns), a novel

way is proposed. Seven states for each frame will be obtained after combination, and

the unique states of continuous C frames, as illustrated in Fig. 3.1, where C = 3,

are counted and form a new mid-level feature vector, denoted as {fi|i = 1, ..., nA}.

This new feature vector contains both pose information of the current frame and

the motion information in the continuous C frames, because the repeated states in

the continuous frames can be regarded as static pose information and the different

ones with other frames can capture the motion information. This feature vector is
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used to build transactions described in the next section. The pattens after mining

can be the combinations of several body parts in different frames, thus the temporal

order information can be easily maintained.

3.1.2.2 Building Transactions

Each instance of action A is represented by a set of above mid-level features {fi|i =

1, ..., nA} and a class label c, c ∈ {1...C}. The set of features for all the action

samples is denoted by Ω. The dimensionality of the feature vector is denoted as W

and in our case |W| ≥ 7.

Items, Transactions and Frequencies

Each element in a feature vector for continuous C poses is defined as an item, and

an item is denoted as ω, where ω ∈ (0, NDF ] and ω ∈ N.

The set of transactions X from the set Ω is created next. For each x ∈ Ω there

is one transaction x (i.e. a set of items). This transaction x contains all the items

ωj. A local pattern is an itemset t ⊆ Γ, where Γ represents the set of all possible

items. For a local pattern t, the set of transactions that include the pattern t is

defined as: X(t) = {x ∈ X|t ⊆ x}. The frequency of t is |X(t)|, also known as the

support of the pattern t or supp(t).

Frequent Local Part

For a given constant T , also known as the minimum support threshold, a local

pattern t is frequent if supp(t) ≥ T . A pattern t is said to be closed if there exists

no pattern t
′

that t ⊂ t
′

and supp(t) = supp(t
′

). The set of frequent closed patterns

is a compact representation of the frequent patterns, and such a frequent and closed

local part pattern is referred to as Frequent Local Part of FLP.

3.1.2.3 Mining & Selecting Relevant FLPs

FLPs Mining

Given the set of transaction X, any existing frequent mining algorithm can be used

to find the set of FLPs Υ. In our work, the optimised LCM algorithm [UAUA03] is

used as in [FFT14]. LCM uses a prefix preserving closure extension to completely

enumerate closed itemsets.

Encoding a New Action with FLPs

Given a new action, the features can be extracted according to the section A and

each feature vector can be converted into a transaction x and for each FLP pattern
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t ∈ Υ it can be checked whether t ⊆ x. If t ⊆ x is true, then x is an instance of the

FLP pattern t. The frequency of a pattern t in a given action Aj (i.e. the number

of instances of t in Aj) is denoted as F (t|Aj).

Selecting the Best FLPs for Action Recognition

The FLPs set Υ is considered as a candidate set of mid-level features to represent

an action. Therefore, the most useful FLP patterns from Υ is needed to be selected

because i) the number of generated FLP patterns is huge and ii) not all discovered

FLP patterns are equally important to the action recognition task. Usually, rele-

vant patterns are those discriminative and non-redundant. On top of that, a new

criterion, representativity is also used. As a result, some patterns may be frequent

and appear to be discriminative but they may occur in very few actions (e.g. noise

pose). Such features are not representative and therefore not the best choice for

action recognition. A good FLP pattern should be at the same time discriminative,

representative and non-redundant. In this section, how to select such patterns is

discussed.

The methods used in [FFT14] are followed to find the most suitable pattern

subset χ, where χ ⊂ Υ, for action recognition. To do this the gain of a pattern t is

denoted by G(t) (s.t. t 6∈ χ and t ∈ Υ) and defined as follows:

G(t) = S(t) − max
s∈χ

{R(s, t) · min(S(t), S(s))} (3.2)

where S(t) is the overall relevance of a pattern t and R(s, t) is the redundancy

between two patterns s, t. In Eq 3.2, a pattern t has a higher gain G(t) if it has a

higher relevance S(t) (i.e. it is discriminative and representative) and if the pattern

t is non redundant with any pattern s in set χ (i.e. R(s, t) is small). S(t) is defined

as:

S(t) = D(t) ×O(t), (3.3)

and R(s, t) is defined as:

R(s, t) = exp{−[p(t) ·DKL(p(A|t)||p(A|{t, s}))

+ p(s) ·DKL(p(A|s)||p(A|{t, s}))]}.
(3.4)

Following a similar approach in [YCHX05] to find affinity between patterns, two

patterns t and s ∈ Υ are redundant if they follow similar document distributions,

i.e. if p(A|t) ≈ p(A|s) ≈ p(A|{t, s}) where p(A|{t, s}) is the document distribution

given both patterns {t, s}.

In Eq. 3.3, D(t) is the discriminability score. Following the entropy-based ap-

proach in [CYHH07], and a high value of D(t) implies that the pattern t occurs
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only in very few actions; O(t) is the representativity score for a pattern t and it

considers the divergence between the optimal distribution for class c p(A|t∗c) and

the distribution for pattern t p(A|t), and then takes the best match over all classes.

The optimal distribution is such that i) the pattern occurs only in actions of class

c, i.e. p(c|t∗c) = 1 (giving also a discriminability score of 1), and ii) the pattern

instances are equally distributed among all the actions of class c, i.e. ∀Aj, Ak in

class c, p(Aj|t
∗
c) = p(Ak|t∗c) = (1/Nc) where Nc is the number of samples of class

c. An optimal pattern, denoted by t∗c for class c, is a pattern which has above two

properties.

The discriminability score and representativity score are defined as:

D(t) = 1 +
∑

c p(c|t) · log p(c|t)

logC
, (3.5)

O(t) = max
c

(exp{−[DKL(p(A|t∗c)||p(A|t))]}) (3.6)

where p(c|t) is the probability of class c given the pattern t, computed as follows:

p(c|t) =

∑N
j=1 F (t|Aj) · p(c|Aj)

∑N
j=1 F (t|Aj)

; (3.7)

DKL(.||.) is the Kullback-Leibler divergence between two distributions; p(A|t) is

computed empirically from the frequencies F (t|Aj) of the pattern t:

p(A|t) =
F (t|A)

∑

j F (t|Aj)
(3.8)

Here, Aj is the jth action and N is the total number of actions in the dataset.

p(c|A) = 1 if the class label of Aj is c and 0 otherwise; p(c|t∗c) is the optimal

distribution with respect to a class c.

In Eq. 3.4, p(t) is the probability of pattern t and it is defined as:

p(t) =

∑

Aj
F (t|Aj)

∑

tj∈Υ

∑

Aj
F (tj|Aj)

(3.9)

while p(A|{t, s}) is the document distribution given both patterns {t, s} and it is

defined as:

p(A|{t, s}) =
F (t|A) + F (s|A)

∑

j F (t|Aj) + F (s|Aj)
(3.10)

To find the best K patterns the following greedy process is used. First the most

relevant pattern is added to the relevant pattern set χ. Then the pattern with the

highest gain (non redundant but relevant) is searched out and this pattern is added
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into the set χ until K patterns are added (or until no more relevant patterns can be

found). For more detailed discussions, [FFT14] is recommended to refer to.

3.1.2.4 Building Bag-of-FLPs & Classification

After computing the K most relevant and non-redundant FLPs, each action can be

represented by a new representation called bag-of-FLPs by counting the occurrences

of such FLPs in the action. Let L be such a bag-of-FLPs for action AL and M be

the bag-of-FLPs for action AM .

An SVM [CL11] is trained to classify the actions. The SVM uses the following

kernel to calculate the similarities between the bag-of-FLPs of L and M .

K(L,M) =
∑

i

min(
√

L(i),
√

M(i)) (3.11)

Here L(i) is the frequency of the ith selected pattern in histogram L. It is a standard

histogram intersection kernel with non-linear weighting. This reduces the impor-

tance of highly frequent patterns and is necessary since there is a large variability

in pattern frequencies.

3.1.3 Experimental Results

Two benchmark datasets, MSR-DailyActivity3D [WLWY12] and MSR-

ActionPairs3D [OL13], were used to evaluate the proposed method and the

results are compared with those reported in other papers on the same datasets and

under the same training and testing configuration.

3.1.3.1 Experimental Setup

In our method, there are several parameters that need to be tuned, the threshold

T , the number of states NDF , the number of relevant patterns K, the continuous

frames C, minimum support S and maximum support U . For different datasets,

different sets of parameters were learned through cross-validation to optimize the

performance. Specifically, two-third of the entire training dataset was used as train-

ing and the rest one-third was used for validation to tune the parameters. The

ranges of the parameters are empirical. In general, the threshold T is dependent

on the noise level of the dataset. The higher the noise the larger its value. This is

an important parameter because it affects the states of limbs computed from the

skeleton data. However, such sensitivity can be reduced by setting a large number,

NDF (i.e. over 600) of states. The number of relevant patterns K is dependent

on the complexity of the actions to be recognized, the more actions in the dataset,

the larger number it should be. The number of continuous frames C is affected
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by the complexity of required temporal information to encode the actions. If the

dataset has pair actions, for example, two actions of each pair are similar in motion

(have similar trajectories) and shape (have similar objects), the value of C should be

large. However, a large C leads to high memory and post-processing requirement.

The values of the minimum support S and maximum support U effect the number

of generated patterns before pattern selection. We observed that if S is large, U

should also be large; If S is small, U should also be small. Generally, S and U are

set to reduce the computational time for post-processing. In fact, there are many

combinations of these two parameters to get the best results. In the other words,

the performance of the proposed method is not much sensitive to the choice of S

and U .

3.1.3.2 MSR DailyActivity3D

The MSR DailyActivity3D dataset was adopted to evaluate the proposed method.

This dataset has large intra-class variations and involves human-object interactions,

which is challenging for recognition only by 3D joints. Experiments were performed

based on cross-subject test setting described in [ZLS13], i.e. five subjects (1, 2, 3,

4, 5) were used for training and the rest 5 subjects were used for testing. Table 3.1

shows the results of our methods compared with other published results.

Table 3.1: Comparison on MSR-DailyActivity dataset.

Methods Accuracy (%)
Dynamic Temporal Warping [MR06] 54.0

Moving Pose [ZLS13] 73.8
Actionlet Ensemble on Joint Features [WLWY14] 74.0

Proposed Method 78.8

For this dataset, T = 0.15, NDF = 600, K = 30000, C = 3, S = 15, U = 180.

As seen, although this dataset is quite challenging, our method obtained promising

results based only on skeleton data. The confusion matrix is illustrated in Fig. 3.3.

From the confusion matrix, it can be seen that activities such as “Drink”, “Cheer

Up”, “Sit Still”, “Toss Paper” are relatively easy to recognise, while “Eat” and “Use

laptop” are relatively difficult to recognise. The reason for the difficulties is that for

these human-object interactions, object information was not available from skeleton

data which makes these interactions are almost the same in terms of motion reflected

in the skeleton data.

3.1.3.3 MSR ActionPairs3D

The MSR ActionPairs3D dataset [OL13] was adopted to evaluate the proposed

method. This dataset is collected to investigate how the temporal order affects



CHAPTER 3. SKELETON-BASED ACTION RECOGNITION 42

1.00

0.40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.40

 

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

0.60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.60

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

0.20

 

0.60

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

0.10

0.10

0.30

0.20

 

 

 

1.00

 

 

 

 

 

 

0.10

 

0.10

0.10

0.10

0.10

0.50

0.10

 

 

1.00

0.30

0.10

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

0.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

0.10

 

 

0.10

0.90
Drink

Eat
Read Book

Call Cellphone

W
rite on Paper

Use laptop

Use Vaccum
 Clearner

Cheer Up

Sit Still

Toss Paper

Play G
am

e

Lay Down on Sofa

W
alking

Play G
uitar

Stand Up

Sit Down

Drink

Eat

Read Book

Call Cellphone

Write on Paper

Use laptop

Use Vaccum Clearner

Cheer Up

Sit Still

Toss Paper

Play Game

Lay Down on Sofa

Walking

Play Guitar

Stand Up

Sit Down

Figure 3.3: The confusion matrix of our proposed method for MSR-
DailyActivity3D.

activity recognition. Experiments were set to the same configuration as [OL13],

Table 3.2: Comparison on MSR-ActionPairs dataset.

Methods Accuracy (%)
Skeleton + LOP [WLWY12] 63.33
Depth Motion Maps [YZT12] 66.11

Proposed Method 75.56

namely, the first five actors are used for testing, and the rest for training. For this

dataset, T = 0.11, NDF = 1000, K = 10000, C = 4, S = 3, U = 100. We compare

our performance in this dataset with two methods whose results were reported in

[OL13]. Table 3.2 shows the comparisons with other methods tested on this dataset.

The confusion matrix is shown in Fig. 3.4. From the confusion matrix, it can
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Figure 3.4: The confusion matrix of our proposed method for MSR-
ActionPairs3D.

be seen that activities such as “Lift a box”, “Place a Box”, “Push a Chair”, “Stick a

Poster” are easy for our method to recognise, while “Pich up a Box” and “Take off

Hat” are relatively difficult to recognise. The results have verified that our method
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can distinguish temporal orders in actions, however, it still can be confused with

other actions which were not paired. One possible reason for causing the confusion

between some actions, for instance, “Pick up a Box” and “Push a Chair”, is the

3-state quantization of the unit different vectors. This issue can be addressed by

quantizing the vector into more states.

3.2 Joint Trajectory Maps with ConvNets

3.2.1 Prior Works and Our Contributions

As the extraction of skeletons from depth maps [SFC+11] has become increas-

ingly robust, more and more hand-designed skeleton features, such as skele-

ton joints based methods [YT12, XCA12, ZLS13, VAC16, VC16], group joints

based methods [WLO+14, COK+13, YDT+16] and joint dynamics based meth-

ods [GTHES13, VAC14, SL13, DWB+15], have been devised to capture spatial infor-

mation, and Dynamic Time Warpings (DTWs), Fourier Temporal Pyramid (FTP)

or Hidden Markov Models (HMMs) are employed to model temporal information.

However, these hand-crafted features are often either shallow, dataset-dependent, or

not learned in an end-to-end fashion [KTF16]. Recently, Recurrent Neural Networks

(RNNs) [DWW15, VZQ15, ZLX+16, SLNW16, LSXW16] have also been adopted for

action recognition from skeleton data. RNNs tend to overemphasize the temporal

information especially when the training data is not sufficient, leading to overfit-

ting. Up to date, it remains unclear how skeleton sequences could be effectively

represented and fed to deep neural networks for recognition. For example, one can

conventionally consider a skeleton sequence as a set of individual frames with some

form of temporal smoothness, or as a subspace of poses or pose features, or as the

output of a neural network encoder. Which one among these and other possibilities

would result in the best representation in the context of action recognition is not

well understood.

In proposed method, we present an effective yet simple method that represent

both spatial configuration and dynamics of joint trajectories into three texture im-

ages through color encoding, referred to as Joint Trajectory Maps (JTMs), as the

input of ConvNets for action recognition. Such image-based representation enables

us to fine-tune existing ConvNets models trained on ImageNet for classification of

skeleton sequences without training the whole deep networks afresh. The three JTMs

are complimentary to each other, and the final recognition accuracy is improved

largely by a late score fusion method. One of the challenges in action recognition

is how to properly model and use the spatio-temporal information. The commonly

used bag-of-words model often ignores temporal information. On the other hand,
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HMMs or RNNs based methods are likely to overstress the temporal information.

The proposed method addresses this challenge in a novel way by encoding as much

the spatio-temporal information as possible (without a need to decide which one

is important and how important it is) into images, and employing ConvNets to

learn the discriminative one. Consequently, the proposed method outperformed the

start-of-the-art methods on popular benchmark datasets. The main contributions

of proposed method include:

• A compact, effective yet simple image-based representation is proposed to rep-

resent the spatio-temporal information carried in the 3D skeleton sequences into

three 2D images by encoding the dynamics of joint trajectories into three com-

plementary Joint Trajectory Maps.

• To overcome the drawbacks of ConvNets not being rotation-invariant, and to make

the proposed method suitable for cross-view action recognition, it is proposed to

rotate the skeleton data to not only mimic the multiple views but also to augment

data effectively for training.

• The proposed method was evaluated on four popular public benchmark datasets,

namely, the large NTU RGB+D Dataset [SLNW16], MSRC-12 Kinect Gesture

Dataset (MSRC-12) [FMNK12], G3D Dataset [BMA12] and UTD Multimodal

Human Action Dataset (UTD-MHAD) [CJK15], and achieved the state-of-the-

art recognition results.

3.2.2 The Proposed Methods
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Figure 3.5: The framework of the proposed method.

The proposed method consists of four major components, as illustrated in

Fig. 3.5, rotation to mimic the multiple views, construction of three JTMs as the
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input of the ConvNets in three orthogonal planes from skeleton sequences, training

the three ConvNets to learn discriminative features, and product score fusion for

final classification. In the following sections, the four components are detailed.

3.2.2.1 Rotation

A skeleton is often represented by a set of joints in 3D space with respect to the

real-world coordinate system centered at the optical central of the RGB-D camera.

By rotating the skeleton data, it can 1) mimic multi-views for cross-view action

recognition; 2) enlarge the data for training and overcome the drawback of ConvNets

usually being not view-invariant.

The rotation was performed with a fixed step of 15◦ along the polar angle θ and

azimuthal angle ψ, in the range of [0◦, 45◦] for θ and [−45◦, 45◦] for ψ. The ranges

of θ and ψ would cover the possible views considering that the JTMs are generated

by projecting the trajectories onto the three orthogonal planes as detailed below.

Let Try be the transform around y axis (right-handed coordinate system) and

Trx be the transform around x axis. The coordinates (xr, yr, zr) of a joint at (x, y, z)

after rotation can be expressed as

[xr, yr, zr, 1]T = TryTrx

[

x, y, z, 1
]T

(3.12)

where

Try =





Ry(ψ) Ty(ψ)

0 1



 ; Trx =





Rx(θ) Tx(θ)

0 1



 , (3.13)

and

Ry(ψ) =







1 0 0

0 cos(ψ) − sin(ψ)

0 sin(ψ) cos(ψ)






Ty(ψ) =







0

z · sin(ψ)

z · (1 − cos(ψ))






; Rx(θ) =







cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)







Tx(θ) =







−z · sin(θ)

0

z · (1 − cos(θ))






.

3.2.2.2 Construction of JTMs

We argue that an effective JTM should have the following properties to keep the

spatial-temporal information of an action:

• The joints or group of joints should be distinct in the JTM such that the spatial

information of the joints is well reserved.

• The JTM should encode effectively the temporal evolution, i.e. trajectories of the

joints, including the direction and speed of joint motions.



CHAPTER 3. SKELETON-BASED ACTION RECOGNITION 46

• The JTM should be able to encode the difference in motion among the different

joints or parts of the body to reflect how the joints are synchronized during the

action.

Specifically, a JTM can be recursively defined as follows

JTMi = JTMi−1 + f(i), (3.14)

where f(i) is a function encoding the spatial-temporal information at frame or time-

stamp i. Since a JTM is accumulated over the period of an action, f(i) has to be

carefully defined such that the JTM for an action sample has the required proper-

ties discussed above and the accumulation over time has little adverse impact on

the spatial-temporal information that has already been encoded in the JTM. This

chapter proposes to use HSB(hue, saturation and brightness) color space to encode

the spatial-temporal motion patterns. There are two main reasons to choose HSB

color space in this chapter. First, unlike the widely used RGB color space, HSB

color space separates luminance (image intensity) from chrominance (color informa-

tion). This enables us to selectively encode the information into either luminance

or chrominance channels. For instance, anything subtle can be encoded into the

brightness component as texture. Second, HSB as a perceptual color space is more

intuitive and perceptually relevant than RGB color space or even YUV or YCrCb

color spaces though they also separate the luminance from the chominance.

Figure 3.6: The trajectories projected onto three Cartesian planes for action
“right hand draw circle (clockwise)” in UTD-MHAD [CJK15]: (1) front plane;
(2) top plane; (3) side plane.

Joint Trajectory Maps

Assume an action H has n frames of skeletons and each skeleton consists of m joints.

The skeleton sequence is denoted asH = {F1, F2, ..., Fn}, where Fi = {P i
1, P

i
2, ..., P

i
m}

is a vector of joint coordinates of frame i, and P i
j is the 3D coordinates of the jth

joint in frame i. The skeleton trajectory T for an action of n frames consists of the
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trajectories of all joints and is defined as:

T = {T1, T2, · · · , Ti, · · · , Tn−1}, (3.15)

where Ti = {ti1, t
i
2, ..., t

i
m} = Fi+1 −Fi, and the kth joint trajectory is tik = P i+1

k −P i
k.

A simple form of function f(i) would be Ti, that is,

f(i) = Ti = {ti1, t
i
2, ..., t

i
m}. (3.16)

The skeleton trajectory is projected to three orthogonal planes, i.e. three Carte-

sian planes of the real world coordinates of the camera, to form three JTMs. Fig. 3.6

shows the three projected trajectories of the right hand joint for action “right hand

draw circle (clockwise)” in the UTD-MHAD dataset. It can be seen that the spatial

information of this joint over the period of the action is well represented in the JTMs

but the direction of the motion is lost.

Encoding Joint Motion Direction

To capture the motion direction in the JTM, it is proposed to use hue to “color”

the joint trajectories over the action period. Different colormaps may be chosen. In

this chapter, the jet colormap, ranging from blue to red, and passing through the

colors cyan, yellow, and orange, is adopted. Let the color of a joint trajectory be C,

and the length of the trajectory be L, and Cl, l ∈ (0, L) be the color at position l of

a trajectory. For the qth trajectory Tq from 1 to n− 1, a color Cl, where l = q

n−1
×L

is assigned to location l of the joint trajectory, making the entire trajectory colored

over the period of the sequence as illustrated in Fig. 3.7. Herein, a trajectory with

color is denoted as C tik and the function f(i) becomes:

f(i) = {C ti1, C ti2, ..., C tim}. (3.17)

Fig. 3.8 shows the front JTM of action “right hand draw circle (clockwise)” in the

UTD-MHAD [CJK15] dataset. Sub-figure (1) is joint trajectories and sub-figure

(2) is the trajectories with motion direction being encoded with hue. The color

variations along the trajectories represent the motion direction.

Encoding Body Parts

Many actions, especially complex actions, often involve multiple body parts and

these body parts move in a coordinating manner. It is important to capture such

coordination in the JTMs. To distinguish different body parts, multiple colormaps

are employed. Body parts can be defined at different levels of granularity. For
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Figure 3.7: An example of colored coded joint trajectory with different colors
reflecting the temporal order.

example, each joint can be considered independently as a “part” and is assigned

to one colormap, or several groups of joints can be defined and all joints in each

group are assigned to the same colormap and colormaps are chosen randomly to

each group. Since arms and legs often move more than other body parts, a body

is divided into three parts in this chapter. According to the joint configuration for

Kinect V1 skeleton as shown in Fig. 3.2, the left body part consists of left shoulder,

left elbow, left wrist, left hand, left hip, left knee, left ankle and left foot, the right

body part consists of right shoulder, right elbow, right wrist, right hand, right hip,

right knee, right ankle and right foot and the middle part consists of head, neck,

torso and hip center. The three parts are assigned to three colormaps (C1, C2, C3)

respectively, where C1 is the same as C, i.e. the jet colormap, C2 is a colormap with

reversely-ordered colors of C1, and C3 is a gray-scale map ranging from light gray

to black. Let the trajectory encoded by multiple colormaps be MC tik. Function

f(i) can be expressed as:

f(i) = {MC ti1,MC ti2, ...,MC tim}. (3.18)

The effect of encoding body parts with different colors for action “right hand draw

circle (clockwise)” is illustrated in Fig. 3.8, sub-figure (3).

Encoding Motion Magnitude

Motion magnitude is one of the important factors in human motion. For an action,

large magnitude of motion is likely to carry discriminative information. This chapter

proposes to encode the motion magnitude of joints into saturation and brightness

so that the changes in motion would result in texture in the JMTs. Such texture is

expected to be beneficial for ConvNets to learn discriminative features. For joints

with high motion magnitude or speed, high saturation will be assigned. Specifically,
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the saturation is set to range from smin to smax. Given a trajectory, its saturation

Si
j along the path of the trajectory could be calculated as

Si
j =

vi
j

max{v}
× (smax − smin) + smin (3.19)

where vi
j is the speed of jth joint at the ith frame.

vi
j = ‖P i+1

j − P i
j ‖2 (3.20)

Let a trajectory modulated by saturation be MCs t
i
k, function f(i) is refined as:

f(i) = {MCs t
i
1,MCs t

i
2, ...,MCs t

i
m} (3.21)

To further enhance the motion patterns in the JTMs, the brightness is modu-

lated by the speed of joints. Given a trajectory tij whose speed is vi
j, its brightness

Bi
j is computed as

Bi
j =

vi
j

max{v}
× (bmax − bmin) + bmin (3.22)

where bmin and bmax represent the range of the brightness. Let MCb t
i
k be the

trajectory with brightness and function f(i) is then updated to:

f(i) = {MCb t
i
1,MCb t

i
2, ...,MCb t

i
m}. (3.23)

Finally, let MCsb t
i
k be the trajectory after encoding the motion magnitude into

both saturation and brightness. Function f(i) can be expressed as:

f(i) = {MCsb t
i
1,MCsb t

i
2, ...,MCsb t

i
m}. (3.24)

For the sample example in Fig. 3.8, the encoding effect can be seen in the sub-

figures (4), where the slow motion becomes diluted (e.g. trajectory of knees and

ankles) while the fast motion becomes saturated (e.g. the green part of the circle),

and the texture becomes apparent (e.g. the yellow parts of the circle).

3.2.2.3 ConvNets Training

After constructing the three JTMs on three orthogonal image planes, three Con-

vNets are fine-tuned individually, each ConvNet is initialized with the same

AlexNet [KSH12] network parameters with only change made to the last fully con-

nection layer by adjusting the the number of output to the number of classes of cur-

rent tasks. In this chapter, the network is fine-tuned on all the evaluated datasets.
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(1)Joint Trajectory Maps (2)Encoding Joint Motion Direction

(3)Encoding Body Parts (4)Encoding Motion Magnitude

Figure 3.8: Step-by-step illustration of the front JTM for action “right hand
draw circle (clockwise)” from the UTD-MHAD [CJK15] dataset. (1) Joint tra-
jectory map without encoding any motion direction and magnitude; (2) encoding
joint motion direction in hue, where color variations indicate motion direction;
(3) encoding body parts with different colormaps; (4) encoding motion magnitude
into saturation and brightness.

In fine-tuning, the pre-trained models on ILSVRC-2012 (Large Scale Visual Recogni-

tion Challenge 2012, a version of ImageNet) are used for initialization. The network

weights are learned using the mini-batch stochastic gradient descent with the mo-

mentum being set to 0.9 and weight decay being set to 0.0005. All hidden weight

layers use the rectification (RELU) activation function. At each iteration, a mini-

batch of 256 samples is constructed by sampling 256 shuffled training samples. The

images are resized to 256 × 256. The learning rate is set to 10−2 for training from

scratch and set to 10−3 for fine-tuning with pre-trained models on ILSVRC-2012,

and then it is decreased according to a fixed schedule. For each ConvNet the train-

ing undergoes 100 epochs and the learning rate decreases every 30 epochs. For

all experiments, the dropout regularization ratio was set to 0.9 in order to reduce

complex co-adaptations of neurons in the nets for both networks.

3.2.2.4 Product Score Fusion

Given a testing skeleton sequence (sample), three JTMs are generated and fed into

the three ConvNets respectively. Product score fusion is used to combine the outputs

from the individual ConvNets. Specifically, the score vectors outputted by the three

ConvNets are multiplied in an element-wise way, and the max score in the resultant

vector is assigned as the probability of the test sequence. The index of this max

score corresponds to the recognized class label.
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3.2.3 Experimental Results

The proposed method was evaluated on four public benchmark datasets: the large

NTU RGB+D Dataset [SLNW16], MSRC-12 Kinect Gesture Dataset [FMNK12],

G3D [BMA12] and UTD-MHAD [CJK15]. Experiments were conducted on the

effectiveness of individual encoding scheme in the proposed method, the effectiveness

of rotation, the role of fine-tuning, and the product score fusion compared with the

max and average score fusion methods. The final recognition results were compared

with the state-of-the-art reported on the same datasets. In all experiments, the

saturation and brightness range from 0% ∼ 100% (mapped to 0 ∼ 255 in the JTM

images).

3.2.3.1 Evaluation of Key Design Factors

Different Encoding Schemes

The effectiveness of different encoding schemes was evaluated on the G3D dataset,

and the recognition accuracies are listed in Table 3.3.

Table 3.3: Comparison of the different encoding schemes on the G3D dataset in
terms of recognition accuracy.

Techniques Front Top Side Fusion
Trajectory: ti1 65.45% 72.18% 73.54% 80.58%

Trajectory: C ti1 76.12% 75.55% 76.56% 83.65%
Trajectory: MC ti1 79.98% 78.25% 79.40% 87.68%
Trajectory: MCs t

i
1 83.52% 81.32% 82.08% 89.98%

Trajectory: MCb t
i
1 84.46% 84.68% 85.60% 93.84%

Trajectory: MCsb t
i
1 86.25% 87.56% 86.54% 96.02%

From Table 3.3 we can see that the proposed encoding methods effectively cap-

ture spatio-temporal information. Each encoding method gradually amends more

information to the JTMs for the three ConvNets to learn the discriminative features

and improves the recognition. The three JTMs are complimentary to each other to

improve recognition significantly through fusion.

Rotation

Rotation is adopted to mimic multiple views, and this simple process makes the

proposed method capable of cross-view action recognition. At the same time, the ro-

tation enlarges the training data and enables the method to work on small datasets.

Table 3.4 shows the comparison of the proposed method with and without rotation

on the NTU RGB+D and G3D datasets. As expected, the rotation operation im-
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proves the performance of cross-view recognition largely (by almost 3.5 percentage

points).

Table 3.4: Comparison the proposed method with and without rotation on the
NTU RGB+D and G3D datasets in terms of recognition accuracy.

Dataset
Without
Rotation

With
Rotation

NTU RGB+D (Cross Subject) 75.30% 76.32%
NTU RGB+D (Cross View) 77.67% 81.08%

G3D 95.12% 96.02%

Fine-tuning vs. Training from Scratch

Even though the number of training samples per class is over 600 for the NTU

RGB+D Dataset, fine-tuning with available models from ImageNet is still preferred

in terms of recognition accuracy. Table 3.5 shows the results of two settings, fine-

tuning and training from scratch, on NTU RGB+D and G3D datasets. In both

settings, no rotation was performed. Notice that fine-tuning improved the recogni-

tion by 5 percentage point on the NTU RGB+D Dataset and almost doubled the

recognition accuracy on the small G3D Dataset compared to training from scratch.

Table 3.5: Comparisons of fine-tuning and tranining from scratch on the NTU
RGB+D and G3D datasets in terms of recognition accuracy.

Dataset Training from Scratch Fine-tuning
NTU RGB+D (Cross Subject) 72.50% 75.30%
NTU RGB+D (Cross View) 73.77% 77.67%

G3D 46.64% 94.65%

Comparison of Three Score Fusion Methods

There are two common used late score fusion methods, namely, average score fusion

method and max score fusion method. However, in this chapter, we propose to

adopt product score fusion which turns out to be more effective on the evaluated

datasets. The comparison of these three score fusion methods on the four datasets

for final recognition are listed in Table 3.6. From the Table we can see that on

the evaluated four datasets, the product score fusion consistently outperformed the

average and max score fusion methods. This verifies that the three JTMs are likely

to be statistically independent and provide complementary information.
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Table 3.6: Comparison of three score fusion methods on the four datasets in
terms of recognition accuracy.

Dataset Max Average Product
NTU RGB+D (Cross Subject) 73.56% 75.05% 76.32%
NTU RGB+D (Cross View) 78.43% 79.88% 81.08%

MSRC-12 91.70% 93.42% 94.86%
G3D 93.78% 94.65% 96.02%

UTD-MHAD 85.81% 86.42% 87.90%

3.2.3.2 NTU RGB+D Dataset

NTU RGB+D Dataset, which is the largest dataset to our best knowledge, was

adopted to evaluate the proposed method, and for fair comparison and evaluation,

the same protocol as that in [SLNW16] was used. It has both cross-subject and

cross-view evaluation. In the cross-subject evaluation, samples of subjects 1, 2, 4,

5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35 and 38 were used as training

and samples of the remaining subjects were reserved for testing. In the cross-view

evaluation, samples taken by cameras 2 and 3 were used as training, testing set

includes the samples of camera 1. Table 5.7 lists the performance of the proposed

method and those reported before.

Table 3.7: Comparative accuracies of the proposed method and previous meth-
ods on NTU RGB+D dataset.

Method Cross subject Cross view

Lie Group [VAC14] 50.08% 52.76%

Dynamic Skeletons [OBT13b] 60.23% 65.22%

HBRNN [DWW15] 59.07% 63.97%

ELC-KSVD [ZLZ+14] 60.04% 57.78%

2 Layer RNN [SLNW16] 56.29% 64.09%

2 Layer LSTM [SLNW16] 60.69% 67.29%

Part-aware LSTM [SLNW16] 62.93% 70.27%

ST-LSTM [LSXW16] 65.20% 76.10%

ST-LSTM + Trust Gate [LSXW16] 69.20% 77.70%

SOS + CNN [HLWL16] 72.36% 75.47%

JTM + CNN [WLHL16] 73.38% 75.20%

Proposed Method 76.32% 81.08%

From this Table we can see that our proposed method achieved the state-

of-the-art results compared with both hand-crafted features and deep learning

methods. The work [VAC14] focused only on single person action and could

not model multi-person interactions well. Dynamic Skeletons method [OBT13b]

performed better than some RNN-based methods verifying the weakness of the

RNNs [DWW15, SLNW16], which only mines the short-term dynamics and tends
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to overemphasize the temporal information even on large training data. LSTM and

its variants [SLNW16, LSXW16] performed better due to their ability to utilize

long-term context compared to conventional RNNs, but it is still weak in exploiting

spatial information. By conducting rotation and using proposed effective product

score fusion method, the proposed method achieved much better results than our

previous methods [WLHL16, HLWL16] in both cross-subject and cross-view evalu-

ation.

3.2.3.3 MSRC-12 Kinect Gesture Dataset

MSRC-12 [FMNK12] is a relatively large dataset for gesture/action recognition from

3D skeleton data captured by a Kinect sensor. For this dataset, cross-subjects

protocol was adopted, that is, odd subjects were used for training and even subjects

were for testing. Table 5.5 lists the performance of the proposed method and the

results reported before.

Table 3.8: Comparison of the proposed method with the existing methods on
the MSRC-12 Kinect Gesture dataset.

Method Accuracy (%)
HGM [YYHD14] 66.25%

Pose-Lexicon [ZLO16b] 85.86%
ELC-KSVD [ZLZ+14] 90.22%
Cov3DJ [HTGES13] 91.70%

JTM [WLHL16] 93.12%
SOS [HLWL16] 94.27%

Proposed Method 94.86%

The confusion matrix is shown in Fig. 3.9. From the confusion matrix we can

see that the proposed method distinguishes most of actions very well, but it is not

very effective to distinguish “goggles” and “had enough” which shares the similar

appearance of JTMs probably caused by 3D to 2D projection.

3.2.3.4 G3D Dataset

Gaming 3D Dataset (G3D) [BMA12] which focuses on real-time action recognition in

a gaming scenario, was adopted for evaluation. For this dataset, the first 4 subjects

were used for training, the fifth for validation and the remaining 5 subjects were

for testing as configured in [NWJ15]. Table 5.2 compared the performance of the

proposed method and previous reported results.

The confusion matrix is shown in figure 3.10. From the confusion matrix we

can see that the proposed method recognizes most of actions well. The proposed

method outperformed LRBM. LRBM confused the actions among “tennis swing
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Figure 3.9: The confusion matrix of the proposed method on the MSRC-12
Kinect gesture dataset.

Table 3.9: Comparison of the proposed method with previous methods on the
G3D dataset.

Method Accuracy (%)
Cov3DJ [HTGES13] 71.95%

ELC-KSVD [ZLZ+14] 82.37%
LRBM [NWJ15] 90.50%
JTM [WLHL16] 94.24%
SOS [HLWL16] 95.45%

Proposed Method 96.02%

forehand” and “bowling”, “golf” and “tennis swing backhand”, “aim and fire gun”

and “wave”, “jump” and “walk”, however, these actions are well distinguished by

the proposed method likely because of the quality spatial information encoded in

the JTMs. As for “aim and fire gun” and “wave”, the proposed method could not

distinguish them well without encoding the motion magnitude, but does well with

the encoding of motion magnitude. However, the proposed method, confused “tennis

swing forehand” and “tennis swing backhand”. It’s probably because the front and

side projections of body shape of the two actions are too similar.

3.2.3.5 UTD-MHAD

UTD-MHAD [CJK15] is a multimodal action dataset, captured by one Microsoft

Kinect camera and one wearable inertial sensor. For this dataset, cross-subjects

protocol was adopted as in [CJK15], namely, the data from the subjects numbered

1, 3, 5, 7 were used for training while subjects 2, 4, 6, 8 were used for testing.

Table 5.3 compares the performance of the proposed method and those reported

before.

Please notice that the method used in [CJK15] is based on Depth and Inertial

sensor data, not skeleton data alone.
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Figure 3.10: The confusion matrix of the proposed method on the G3D Dataset.

Table 3.10: Comparison of the proposed method with the previous methods on
UTD-MHAD dataset.

Method Accuracy (%)
ELC-KSVD [ZLZ+14] 76.19%

Kinect & Inertial [CJK15] 79.10%
Cov3DJ [HTGES13] 85.58%

JTM [WLHL16] 85.81%
SOS [HLWL16] 86.97%

Proposed Method 87.90%
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Figure 3.11: The confusion matrix of the proposed method on the UTD-MHAD
dataset.

The confusion matrix is shown in Fig. 3.11. This dataset is much more chal-

lenging compared to the previous two datasets. From the confusion matrix we can
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Persion01Repeat 3 times Persion04 Repeat 4 timesPersion05Repeat 2 times

Figure 3.12: The generated JTMs of action “waving hand” performed by differ-
ent persons and repeated different times from NTU RGB+D dataset [SLNW16].

see that the proposed method can not distinguish some actions well, for example,

“jog” and “walk”. A probable reason is that the proposed encoding process is also a

temporal normalization process. The actions “jog” and “walk” would be normalized

to have similar JTMs after the encoding.

3.2.3.6 Discussion

Optimal Orthogonal Planes

In this chapter, we adopt the three orthogonal planes of the natural real coordinates

of the camera. One question is whether there are some orthogonal planes better

than the natural ones. Generally speaking, there possibly exist three orthogonal

views which are better than the natural coordinates if the three views result in

less self-occlusion among the joints for all actions. Since only very sparse 20 joints

are used to represent the skeleton, the likelihood of such self-occlusion of the joints

would be very small. Consequently, no particular three orthogonal views would be

obviously superior to others. However, the depth camera only captures 21
2
D in the

natural coordinates and the skeleton is estimated from the 21
2
D. It is likely that the

natural coordinates could be slightly, but not significantly, better than other three

orthogonal views.

To validate this, we conducted the following experiments on the G3D Dataset.

Different three orthogonal views were generated by rotating the 3D points of joints

and projecting them to the three orthogonal planes. The rotation was performed

with a fixed step of 22.5◦ along the polar angle θ and azimuthal angle ψ, both in the

range of [−45◦, 45◦]. Note that this range effectively covers all possible views since

rotation beyond this range would result in swapping of views. Such swapping would

not affect the recognition accuracy after fusion. Table 3.11 shows the recognition

accuracies of different orthogonal views indicated by the values of θ and ψ.

The results in Table 3.11 have shown small and insignificant variation of the

recognition accuracy among the views and the natural coordinates produced the
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Table 3.11: The recognition accuracy (%) of different orthognal views.

ψ
θ

− 45◦ −22.5◦ 0◦ 22.5◦ 45◦

−45◦ 94.45 92.12 94.85 92.24 92.42
−22.5◦ 95.40 94.45 94.45 92.73 92.24

0◦ 94.45 95.05 95.12 94.85 94.15
22.5◦ 94.85 94.85 94.45 94.85 93.45
45◦ 92.24 95.00 94.85 94.15 94.15

best result.

In this chapter, we fuse three orthogonal image planes to improve the final ac-

curacy. Another questions is whether adding more views will lead to better recogni-

tion. Some experiments were conducted on the G3D dataset to answer this question.

Firstly, the views of the natural coordinates were fused with the views after rotating

the points by the specified angles in θ and ψ. Table 3.12 shows the results by fusing

two pairs of three orthogonal planes, one is the natural coordinates and the other

is specified by the rotation angles θ and ψ. The accuracies of all cases are almost

same.

Table 3.12: The results of fusing the original three orthogonal planes and rotated
three planes.

ψ
θ

− 45◦ −22.5◦ 0◦ 22.5◦ 45◦

−45◦ 94.45 93.45 94.85 95.15 95.12
−22.5◦ 94.85 94.54 95.15 95.12 94.85

0◦ 95.12 95.15 95.12 94.54 94.54
22.5◦ 94.85 94.24 95.15 95.15 94.85
45◦ 94.85 94.85 95.15 95.12 95.15

We also evaluated the performance by fusing all views of the 9 coordinates in-

cluding the natural ones, where θ ∈ {−22.5◦, 0◦, 22.5◦} and ψ ∈ {−22.5◦, 0◦, 22.5◦},

and all views of the 25 coordinates, where θ ∈ {−45◦,−22.5◦, 0◦, 22.5◦, 45◦} and

ψ ∈ {−45◦,−22.5◦, 0◦, 22.5◦, 45◦} respectively. The results are shown in Table 3.13.

It can be seen that fusing views of multiple orthogonal coordinates did not improve

the performance on this dataset. Similar results would be expected on other datasets

for the reason explained above.

The above analysis and experiments have demonstrated that the three orthog-

onal views in the natural coordinates are likely to be sufficient.



CHAPTER 3. SKELETON-BASED ACTION RECOGNITION 59

Table 3.13: The results for fusing views of multiple coordinates.

Number of views Accuracy (%)
9 95.15
25 94.85

Execution Rate Variation and Repetition

Theoretically, the proposed algorithm may suffer from the variations of the ratios

of different actions, especially those actions that are repetitive. In fact, variation

in executing rate and repetition is one of the key challenges in action recognition.

However, the proposed method can deal with such situations to some extend. In the

proposed method, the spatial-temporal information is encoded into texture images.

For those actions that are repetitive or have large variations of executing rate, the

shape formed by the joint trajectories help to distinguish them, even though the tex-

ture information would vary a lot. Fig 3.12 shows several examples of “waving hand”

from NTU RGB+D dataset. We picked up three samples that were performed by

different persons with different executing rates and repetitions. From the figure we

can see that with variations of the ratios and repetitions, the textures of the JTMs

are different, but the shape is still similar. To further justify this point, one exper-

iment was conducted as follows. We divided the samples for action “waving hand”

from NTU RGB+D dataset into two groups, one group with samples repeating less

than 3 times, and one group of samples repeating with more than 3 times. We used

the first group together with the “kicking” and “clapping” actions as training, and

used the second group together with the “kicking” and “clapping” actions as testing

and also swapped the training and testing samples. We found that in both settings,

the proposed method sucessfully distinguished the three actions, and the accuracy

is 100% for both settings.

3.3 Summary

This chapter presented two methods to address the research questions based on skele-

ton modality: (a) how to effectively mine the most frequent and relevant (discrimi-

native, representative and non-redundant) features based on skeleton data for action

recognition? (b) how to effectively represent skeleton sequence data for ConvNets-

based recognition? A novel method to explore temporal information and mine the

different combinations of different body parts in different frames is developed for

research question (a). An effective method that projects the joint trajectories to

three orthogonal JTMs to encode the spatial-temporal information into texture pat-

terns is developed for research question (b). The strength of the proposed methods
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has been demonstrated through the state-of-the-art results obtained on the recent

and challenging benchmark datasets for activity and action recognition. With the

increasing popularity of Kinect-based action recognition and advances in data min-

ing and deep learning methods, the proposed methods are promising for practical

applications.



Chapter 4

Depth-based Action Recognition

Research on action recognition has mainly focused on conventional RGB (red,

green and blue) video and hand-crafted features. However, there is no univer-

sally best hand-engineered feature for all datasets [WUK+09]. Microsoft Kinect

sensors provide an affordable technology to capture depth maps and RGB im-

ages in real-time. Compared to traditional images, depth maps offer better ge-

ometric cues and less sensitivity to illumination changes for action recognition

[LZL10, WLWY12, OL13, YT14]. Current approaches to recognizing actions from

RGB-D data are still based on hand-crafted features, which are often shallow. In

addition, their high-dimensional description of local or global spatio-temporal infor-

mation and performance vary across datasets. How to apply deep learning methods

to depth-based action recognition is still an open problem. This chapter presents

the studies that address the research questions 3, 4 and 5 listed in Section 1.2.

4.1 Weighted Hierarchical Depth Motion Maps

with ConvNets

4.1.1 Prior Works and Our Contributions

With Microsoft Kinect Sensors researchers have developed methods for depth map-

based action recognition. Li et al. [LZL10] sampled points from a depth map to

obtain a bag of 3D points to encode spatial information and employ an expandable

graphical model to encode temporal information [LZL08]. One limitation of this

method is view-dependency. Yang et al. [YZT12] stacked differences between pro-

jected depth maps as a depth motion map (DMM) and then used HOG to extract

relevant features from the DMM. This method transforms the problem of action

recognition from spatio-temporal space to spatial space. However, this method is

also view-dependent. In [OL13], a feature called Histogram of Oriented 4D Normals

(HON4D) was proposed; surface normal is extended to 4D space and quantized by

regular polychorons. Following this method, Yang and Tian [YT14] cluster hyper-

surface normals and form the polynormal which can be used to jointly capture the

local motion and geometry information. Super Normal Vector (SNV) is generated

by aggregating the low-level polynormals. In [LJT14], a fast binary range-sample

feature was proposed based on a test statistic by carefully designing the sampling

61
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scheme to exclude most pixels that fall into the background and to incorporate

spatio-temporal cues.

Depth maps have been augmented with skeleton data in order to improve recog-

nition. Wang et al. [WLWY12] designed a 3D Local Occupancy Patterns (LOP)

feature to describe the local depth appearance at joint locations to capture the infor-

mation related to subject-object interactions. The intuition is to count the number

of points that fall into a spatio-temporal bin when the space around the joint is

occupied by the object. Wang et al. [WLWY14] adopted LOP feature calculated

from the 3D point cloud around a particular joint to discriminate different types of

interactions and Fourier Temporal Pyramid (FTP) to represent the temporal struc-

ture. Based on these two types of features, the Actionlet Ensemble Model (AEM)

was proposed which combines the features of a subset of the joints. To fuse depth-

based features with skeleton-based features, Althloothi et al. [AMZV14] presented

two sets of features; features for shape representation extracted from depth data

by using a spherical harmonics representation and features for kinematic structure

extracted from skeleton data. The shape features are used to describe the 3D sil-

houette structure while the kinematic features are used to describe the movement

of the human body. Both sets of features are fused at the kernel level for action

recognition by using Multiple Kernel Learning (MKL) technique.

However, all of previous methods are based on hand-crafted features, which are

often shallow and dataset-dependent. We presents a novel method to apply Con-

vNets trained on ImageNet to depth map sequences for action recognition with a

small number of training samples. Generally speaking, ConvNets require a suffi-

ciently large number of training samples and how to apply the ConvNets to small

datasets is still an unsolved problem. To address this issue, an architecture com-

prising Weighted Hierarchical Depth Motion Maps (WHDMM) and Three Channel

Convolutional Neural Network (3ConvNets) is proposed. WHDMM is a strategy for

transforming the problem of action recognition to image classification and making

effective use of the rich information offered by the depth maps. Specifically, three-

dimensional (3D) pointclouds constructed from the original depth data are rotated to

mimic the different camera viewpoints, so that our algorithm becomes view-tolerant.

Each rotated depth frame is first projected onto three orthogonal Cartesian planes,

and then for each projected view, the absolute differences (motion energy) between

consecutive frames or sub-sampled frames are accumulated through an entire depth

sequence. To encode the temporal order of body poses, weights are introduced such

that recent frames contribute more to WHDMMs so that pair-actions (e.g. “sit

down” and “stand up”, having similar but reverse temporal patterns) can be dis-

tinguished. To leverage the ConvNets trained over ImageNets, the WHDMM are

encoded into pseudo-color images. Such encoding converts the spatio-temporal mo-
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tion patterns in videos into spatial structures (edges and textures) thus enabling

the ConvNets to learn the filters [ZF14]. Three ConvNets are trained on the three

WHDMMs constructed from the projected Cartesian planes independently and the

results are fused to produce the final classification score.
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Figure 4.1: The proposed WHDMM + 3ConvNets architecture for depth-based
action recognition.

4.1.2 The Proposed Methods

The proposed WHDMM + 3ConvNets method consists of two major components

(Fig. 4.1): three ConvNets and the construction of WHDMMs from sequences of

depth maps as the input to the ConvNets. Given a sequence of depth maps, 3D

points are created and three WHDMMs are constructed by projecting the 3D points

to the three orthogonal planes. Each WHDMM serves as an input to one ConvNet

for classification. Final classification of the given depth sequence is obtained through

a late fusion of the three ConvNets. A number of strategies have been developed

to deal with the challenges posed by small datasets. Firstly, more training data

are synthesized by (a) rotating the input 3D points to mimic different viewpoints

and (b) constructing WHDMMs at different temporal scales. Secondly, the same

ConvNet architecture as used for ImageNet is adopted so that the model trained

over ImageNet [KSH12] can be adapted to our problem through transfer learning.

Thirdly, each WHDMM goes through a pseudo-color coding process to encode, with

enhancement, different motion patterns into the pseudo-RGB channels before being

input to the ConvNets. In the rest of this section, rotation of the 3D points, con-

struction and pseudo-color coding of WHDMMs and training of the ConvNets are

described.
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4.1.2.1 Rotation To Mimic Different Camera Viewpoints

f Z
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Figure 4.2: Process of rotating 3D points to mimic different camera viewpoints.

Fig 4.2 (a) illustrates how to covert a pixel in a depth map into a 3D point by

calculating its location (X, Y, Z) in the real-world coordinate system centered on

the camera by using the pair of equations,

X =
Z · (U − Cx)

fx

, Y =
Z · (V − Cy)

fy

. (4.1)

In Equation 4.1, (U, V ) and Z denote screen coordinates and depth value respec-

tively; Cx, Cy denote the center of a depth map; fx and fy are the focal lengths of

the camera. For Kinect-V1 cameras, fx = fy = 580 [SJP11].

The rotation of the 3D points can be performed equivalently by assuming that

a virtual RGB-D camera moves around and points at the subject from different

viewpoints (Fig. 4.2). Suppose the virtual camera moves from position Po to Pd, its

motion can be decomposed into two steps: first move from Po to Pt, with rotation

angle denoted by θ and then moves from Pt to Pd, with rotation angle denoted by

β. The coordinates after rotation can be computed through multiplication by the

transformation matrices Try and Trx, as

[X
′

, Y
′

, Z
′

, 1]T = TryTrx

[

X, Y, Z, 1
]T

(4.2)

where X
′

, Y
′

, Z
′

represent the 3D coordinates after rotation, Try denotes the trans-

form around Y axis (right-handed coordinate system) and Trx denotes the transform

around X axis. The transformation matrices can be expressed as

Try =





Ry(θ) Ty(θ)

0 1



 ; Trx =





Rx(β) Tx(β)

0 1



 (4.3)

where

Ry(θ) =







1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)






Ty(θ) =







0

Z · sin(θ)

Z · (1 − cos(θ))






; Rx(β) =







cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)






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(a) (b) (c) (d) (e)

Figure 4.3: Example depth maps synthesized by the virtual RGB-D camera.
a) original depth map, depth maps synthesized respectively with the parameters
b) (θ = 45◦, β = 45◦), c) (θ = 45◦, β = −45◦), d) (θ = −45◦, β = 45◦) and e)
(θ = −45◦, β = −45◦).

Tx(β) =







−Z · sin(β)

0

Z · (1 − cos(β))






.

After rotation, a depth map from a different viewpoint can be obtained from

U
′

=
X

′

· fx

Z ′
+ Cx;V

′

=
Y

′

· fy

Z ′
+ Cy, (4.4)

where U
′

, V
′

and Z
′

respectively denote the new screen coordinates and their cor-

responding depth value.

Since RGB-D camera only captures 21
2
D, and not the full 3D information, the

rotation has to be within a range such that the synthesized depth maps still capture

sufficient spatio-temporal information of the actions. In other words, both θ and β

have to be limited to a certain range. Fig.4.3 shows some examples of the synthesized

depth maps and the original one from which they were created. Even at relatively

large angles (|θ| = 45◦, |β| = 45◦), the synthesized depth maps still capture the

shape of the body well. In some extreme cases where θ and β become very large

(Fig. 4.4), the synthesized depth maps do not capture sufficient spatial information

of the subject. Empirically, the useful range of the angles is between (−60◦, 60◦) for

both θ and β.

4.1.2.2 Construction of WHDMM

Each of the original and synthesized depth maps is projected to three orthogonal

Cartesian planes, referred to as front, side and top views and denoted by mapp

where p ∈ {f, s, t}. Unlike the Depth Motion Map (DMM) [YZT12] where it is

calculated by accumulating the thresholded difference between consecutive frames,

three extensions are proposed to construct a WHDMM. Firstly, in order to preserve

subtle motion information, for example, turning a page when reading books, for

each projected map, the motion energy is calculated as the absolute difference be-

tween consecutive or sub-sampled depth frames without thresholding. Secondly, to

exploit speed invariance and suppress noise, several temporal scales, referred to as

hierarchical temporal scales, are generated as illustrated in Fig. 4.5, where N is the
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number of frames, and a WHDMM is constructed for each of the temporal scales.

Through this process, the number of training samples are further increased and at

the same time the issue of speed variation is addressed. Lastly, in order to differ-

entiate motion direction, a temporal weight is introduced, giving a higher weight to

recent depth frames than to past frames.

Let WHDMM t
pn

be the WHDMM being projected to view p and accumulated

up to frame t at the nth temporal scale. It can be expressed as:

WHDMM t
pn

= γ|map(t−1)n+1
p −map(t−2)n+1

p |

+ (1 − γ)WHDMM t−1
pn

, (4.5)

where mapi
p denotes the ith depth map in the original video sequence and being

projected to view p; γ ∈ (0, 1) stands for the temporal weight and WHDMM1
pn

=

|mapn+1
p −map1

p|.

(a) (b)

Figure 4.4: Examples of synthesised depth maps for cases where θ and β are
very large. a) (θ = −75◦, β = −75◦); b) (θ = −85◦, β = −85◦).
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Figure 4.5: Hierarchical temporal scales: for the nth temporal scale, the sub-
sampled sequence is constructed by taking one frame, starting from the first frame,
from every n frames.

Using this simple temporal weighting scheme along with the pseudo-color coding

of the WHDMMs (to be described in the next section), pair actions, such as “sit

down” and “stand up”, can be distinguished.
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(a) (b) (c)

(f) (g) (h) (i)

(d) (e)

(j)
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Figure 4.6: Examples of pseudo-color coded WHDMMs of actions in the
MSRAction3D dataset performed by randomly selected subjects: a) high arm
wave, b) horizontal arm wave, c) hammer, d) hand catch, e) forward punch, f)
high throw, g) draw X, h) draw tick, i) draw circle, j) hand clap, k) two hand
wave, l) side-boxing, m) bend, n) forward kick, o) side kick, p) jogging, q) tennis
swing, r) tennis serve, s) golf swing, and t) pick up & throw.

4.1.2.3 Pseudo-Color Coding of WHDMMs

Abidi et al. [AZGA06] reported gaining an enhanced perceptual quality and more

information from gray scale texture through a human perception-based color cod-

ing. Motivated by this result, we transform the WHDMM into a pseudo-color

that enhances motion patterns of actions and improves signal-to-noise ratio. Meth-

ods of pseudo-color coding include spectrum-based maps, naturally ordered maps,

uniformly varying maps, shape and value-based maps, and function-based maps

[AZGA06]. Furthermore, nonlinear transformations can increase/decrease the con-

trast of certain gray levels without truncating low/high pixel intensities [Joh12].

In this chapter, an improved rainbow transform (a special case of the sine trans-

form) which is a variant of the spectrum-based mapping method is developed. The

improved rainbow transform is expressed as:

Ci=1,2,3 = {sin[2π · (−I + ϕi) ·
1

2
+

1

2
]}α · f(I) (4.6)

where Ci=1,2,3 represent the BGR channels, respectively; I is the normalized gray

value; ϕi denotes the phase of the three channels; α is the power; f(I) is an amplitude

modulation function; the added value, 1
2
, guarantees non-negativity. The value of

parameter α can be chosen to vary noise suppression. In our work, ϕi=1,2,3 and f(I)
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I, respectively.

To encode a WHDMM, linear mapping is used to convert WHDMM values to

I ∈ [0, 1]. Fig. 4.7 shows the transform with α = 1 and α = 10. As observed,

higher level noise in WHDMM is found in the areas of background or at edges of the

subjects where the WHDMM values are either very large or very small. Thus, in

order to improve the signal-to-noise-ratio (SNR) of WHDMM, the parameters of the

transform in Eq. (4.6) are chosen so as to suppress both the small and large values

of WHDMM. In addition, Fig. 4.7 shows that the improved rainbow transform with

a relatively large α encodes the gray intensities to RGB values in a drastic manner

than small α (e.g. α = 1), and suppresses the noise in the color-encoded WHDMMs

more effectively.
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Figure 4.7: Visual comparison of improved rainbow transform with α = 1 and
α = 10.

Fig. 4.6 shows sample pseudo-color coded WHDMMs of the actions from the

MSRAction3D dataset. Although the WHDMMs for the actions “forward kick”

(Fig. 4.6n)and “jogging” (Fig. 4.6p) appear similar, the pseudo-coloring has high-

lighted the differences. Since the texture and edges in a WHDMM are accumulation

of spatial and temporal information, the pseudo-color coding remaps the spatio-

temporal information of actions.

The value of α controls how well the pseudo-color coding improves the SNR of

a WHDMM. Fig. 4.8 shows the pseudo-color coded WHDMM of action “eat” at the

5th temporal scale. Notice that when α = 1 both the background (i.e. sofa and

person in the background) and the foreground subject are clearly noticeable. With

increased α value, say α = 10, the background is suppressed with little loss of the

foreground information. However, if the value of α is very large (say α = 20), both

the foreground and background are suppressed.

Fig. 4.9 illustrates how the recognition accuracy on the MSRDailyActivity3D
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dataset varies with the value of α when only the WHDMMs of frontal projection

are used.

α = 1

α = 10

α = 20

Figure 4.8: A sample color-coded WHDMM of action “eat” with different α
values.
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Figure 4.9: Variation of recognition accuracy with increasing value of α. MSR-
DailyActivity3D dataset has been used with only the frontal channel.

4.1.2.4 Network Training & Class Score Fusion

Three ConvNets are trained on the pseudo-color coded WHDMMs in the three

Cartesian planes. The layer configuration of the ConvNets follows those in [KSH12]

and is schematically shown in Fig. 4.1. Each ConvNet contains eight layers with
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weights; the first five are convolutional layers and the remaining three are fully-

connected layers. The implementation is derived from the publicly available Caffe

toolbox [JSD+14] based on one NVIDIA Tesla K40 card.

Training

The training procedure is similar to that in [KSH12], wherein the network weights

are learned using the mini-batch stochastic gradient descent with the momentum

value set to 0.9 and weight decay set to 0.0005. All hidden weight layers use the

rectification (RELU) activation function. At each iteration, a mini-batch of 256

samples is constructed by sampling 256 shuffled training color-coded WHDMMs.

All color-coded WHDMMs are resized to 256×256. The learning rate is initially set

to 10−2 and used to directly train the networks from data without initializing the

weights with pre-trained models on ILSVRC-2012 (Large Scale Visual Recognition

Challenge 2012, a version of ImageNet). The rate is set to 10−3 for fine-tuning

with pre-trained models on ILSVRC-2012, and then it is decreased according to a

fixed schedule, which is kept the same for all training sets. For each ConvNet the

training undergoes 100 cycles and the learning rate decreases every 20 cycles. For

all experiments, the dropout regularization ratio was set to 0.5 in order to reduce

complex co-adaptations of neurons in the nets.

Class Score Fusion

Given a test depth video sequence (sample), WHDMMs at different temporal scales

are classified using the trained ConvNets. The average scores of n scales for each

test sample are calculated for each of the three ConvNets. The final class score for

a test sample is the average of the outputs from the three ConvNets. Thus

scoretest =
∑3

c=1

∑n
i=1 scorei

c

3n
. (4.7)

where scoretest represents the final class score for a test sample while scorei
c denotes

the score of i-th temporal scale for c-th channel.

4.1.3 Experimental Results

The proposed method was evaluated on three public benchmark datasets: MSRAc-

tion3D [LZL10], UTKinect-Action [XCA12] and MSRDailyActivity3D [WLWY12].

An extension of MSRAction3D, called MSRAction3DExt dataset, was used. It con-

tains more than twice (i.e. 23) as many subjects as in the previous dataset perform-

ing the same set of actions. In order to test the stability of the proposed method

with respect to the number of actions, a new dataset was created by combining
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MSRAction3DExt, UTKinect-Action and MSRDailiyActivity3D datasets; the new

dataset is referred to as Combined dataset. In all experiments, θ varied over the

range (−30◦ : 15◦ : 30◦) and β varied over the range (−5◦ : 5◦ : 5◦). For WHDMM,

γ was set to 0.495. Different temporal scales, as detailed below, were set according

to the noise level, complexity and average cycle in frames of actions performed in

different datasets. In order to evaluate the proposed strategies, six scenarios were

designed based on a) whether the training samples consists of: a subset T1 of the

original samples, samples (T2) synthesized from T1 through rotation and samples

T3 generated through temporal scaling of T1; b) how the ConvNets were initialized:

random initialization or use of pre-trained model over ImageNet.

S1: Use of T1 and training the ConvNets with random initialization.

S2: Use of T1 and T2, training the ConvNets with random initialization.

S3: Use of T1 and training the ConvNets with pre-trained model.

S4: Use of T1 and T2, training the ConvNets with pre-trained model.

S5: Use of T1 and T3, training the ConvNets with pre-trained model.

S6: Use of T1, T2 and T3, training the ConvNets with pre-trained model.

The six scenarios evaluate the proposed method from different perspectives and

effectiveness of the proposed strategies. Scenario S6 provides an evaluation of the

overall performance of the proposed method.

4.1.3.1 MSRAction3D Dataset

The MSRAction3D dataset [LZL10] was adopted to evaluate the proposed method.

In order to obtain a fair comparison, the same experimental setting as that

in [WLWY12] is followed, namely, the cross-subjects settings: subjects 1, 3, 5, 7, 9

for training and subjects 2, 4, 6, 8, 10 for testing. For this dataset, temporal scale

n = 1 and α = 2, and the proposed method achieved 100% accuracy. Results of

scenarios S1-S4 are shown in Table 4.1. As seen, without using temporal scaling,

i.e. n = 1, the recognition can reach 100%.

Table 4.1: Recognition results achieved on the MSRAction3D dataset.

Training Setting Accuracy
S1 7.12%
S2 34.23%
S3 100.00%
S4 100.00%
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Pre-training on ILSVRC-2012 (i.e. S3 and S4) is very effective. Because the

volume of training data is not enough to train millions of parameters of the deep

networks, without good initialization, overfitting becomes inevitable. When the

networks were directly trained from the original samples (i.e. S1), the performance

is only slightly better than a random guess.

Table 4.2 compares the performance of the proposed WHDMM + 3ConvNets

with recently reported depth-based results.

Table 4.2: Comparison of the proposed method with existing depth-based meth-
ods on the MSRAction3D dataset.

Method Accuracy
Bag of 3D Points [LZL10] 74.70%

Actionlet Ensemble [WLWY12] 82.22%
Depth Motion Maps [YZT12] 88.73%

HON4D [OL13] 88.89%
SNV [YT14] 93.09%

Range Sample [LJT14] 95.62%
Proposed Method 100.00%

The proposed method outperforms all previous methods. This is probably be-

cause (1) the WHDMM can filter out the simple and static background in MSRAc-

tion3D; (2) the pre-trained model can initialize the three ConvNets well, so that

they can learn the filters well even though action recognition and image classifica-

tion belong to different domains; and (3) the WHDMM and pseudo-color coding can

encode the spatio-temporal information into a single image.

4.1.3.2 MSRAction3DExt Dataset

The MSRAction3DExt dataset is an extension of MSRAction3D dataset with an

additional 13 subjects performing the same 20 actions 2 to 4 times in a similar

environment as that of MSRAction3D. Thus, there are 20 actions, 23 subjects and

1379 video clips. Similarly to MSRAction3D, the proposed method was evaluated

under four settings and the results are listed in Table 4.3. For this dataset, samples

of odd-numbered subjects were used for training and samples of the even-numbered

subjects were used for testing.

Table 4.3: Recognition results achieved on the MSRAction3DExt dataset.

Training Setting Accuracy
S1 10.00%
S2 53.05%
S3 100.00%
S4 100.00%
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Table 4.1 and Table 4.3 show that as the volume of dataset increases with respect

to the MSRAction3D dataset, the performance improved from 34.23% to 53.05%

when the Nets are directly trained from the original and synthesized samples. How-

ever, the performance is not comparable to that obtained when the pre-trained model

on ImageNet was used for initialization. The proposed method achieved again 100%

using the pre-trained model followed by fine-tuning even though this dataset has

more variations across subjects. Table 4.4 shows the results of SNV [YT14] on the

MSRAction3DExt dataset. As seen, the proposed method outperforms SNV [YT14].

Table 4.4: Comparision of the proposed method with SNV on the MSRAc-
tion3DExt dataset.

Method Accuracy
SNV [YT14] 90.54%

Proposed Method 100.00%

Using the pre-trained model followed by fine-tuning is effective on small datasets.

In the following experiments, results obtained by training the networks using the

pre-trained model and fine-tuning, i.e S3-6, are reported.

4.1.3.3 UTKinect-Action Dataset

The UTKinect-Action dataset [XCA12] was captured using a stationary Kinect-V1

sensor. Notice that one of the challenges of this dataset is viewpoint variation.

For this dataset, temporal scale n = 5 and α = 2 were set to exploit the temporal

information because, unlike, the MSRAction3D dataset, each samples in this dataset

contains multiple cycles of the actions. The cross-subject evaluation scheme used in

[XA13] was adopted. This is different from the scheme used in [XCA12] where more

subjects were used for training in each round. Experiments on the four training

scenarios S3, S4, S5 and S6 were conducted and the results are shown in Table 4.5.

Table 4.5: Recognition results achieved on the UTKinect-Action dataset using
different training settings.

Training Setting Accuracy
S3 82.83%
S4 88.89%
S5 86.87%
S6 90.91%

Table 4.5, shows that inclusion of synthesized samples improved tolerance to

viewpoint variation and, thus the recognition accuracy was 6 percentage points

higher. The confusion matrix for S6 is shown in Fig. 4.10. The most confused

actions are hand clap and wave which share similar appearance of WHDMMs.
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Figure 4.10: The confusion matrix of proposed method for UTKinect-Action
dataset.

Table 4.6 shows the performance of the proposed method compared to the pre-

vious depth-based methods on the UTKinect-Action dataset. The improved perfor-

mance will suggest that the proposed method has better viewpoint tolerance than

other depth-based algorithms.

Table 4.6: Comparative accuracy of proposed method and previous depth-based
methods using the UTKinect-Action dataset.

Method Accuracy
DSTIP+DCSF [XA13] 78.78%

Random Forests [ZCG13] 87.90%
SNV [YT14] 88.89%

Proposed Method 90.91%

4.1.3.4 MSRDailyActivity3D Dataset

The MSRDailyActivity3D dataset [WLWY12] was used to evaluate the proposed

method. Compared with MSRAction3D(Ext) and UTKinect-Action datasets, actors

in this dataset present large spatial and temporal changes. Most activities in this

dataset involve human-object interactions.

For this dataset, the temporal scale was set to n = 21 and α = 10, a larger

number of scales and power than those used for MSRAction3D and UTKinect-

Action datasets. This choice of values was made to exploit temporal information

and suppress the high level noise in this dataset. The same experimental setting

as in [WLWY12] was adopted and the final recognition accuracy reached 85.00%.

Results for the training settings, S3, S4, S5 and S6, are reported in Table 4.7. The

samples (T2) synthesized through rotation improved the recognition accuracy by

15 percentage points and the samples (T3) synthesized through temporal scaling

further improved the recognition accuracy by additional 15 percentage points

Table 4.8 compared the performance of the proposed method and that of existing

depth-based methods and Fig. 4.11 depicts the confusion matrix of the proposed
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Table 4.7: Recognition results achieved on the MSRDailyActivity3D dataset
using different training settings.

Training Setting Accuracy
S3 46.25%
S4 61.25%
S5 75.62%
S6 85.00%

method.

Table 4.8: Comparative accuracy of proposed method and previous depth-based
methods using the MSRDailyActivity3D dataset.

Method Accuracy
LOP [WLWY12] 42.50%

Depth Motion Maps [YZT12] 43.13%
Local HON4D [OL13] 80.00%

Actionlet Ensemble [WLWY12] 85.75%
SNV [YT14] 86.25%

Range Sample [LJT14] 95.63%
Proposed Method 85.00%
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Figure 4.11: The confusion matrix of proposed method for MSRDailyActivity3D
dataset.

Table 4.8 shows that the proposed method outperforms the Depth Motion Map

method [YZT12] and, has comparable performance to SNV [YT14] and Actionlet

Ensemble [WLWY12]. Notice that local HON4D [OL13] used skeleton data for

localizing the subjects in depth maps while Actionlet Ensemble [WLWY12] and

SNV [YT14] both used depth and skeleton data to extract features. However, the

proposed method performed worse than the Range Sample [LJT14]. Two reasons

are adduced for this observation. First, the background of this dataset is complex

and much more temporally dynamic compared with MSRAction3D(Ext) and this

introduced noise in the WHDMMs. However, the Range Sample [LJT14] method has
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a mechanism to remove/reduce the interference from the background using skeleton

data for preprocessing. Second, WHDMM is not sufficient to differentiate subtle

differences in motion between some actions when interactions with objects become

a key differentiating factor (e.g. call cellphone, drink and eat).

4.1.3.5 Combined Dataset

The Combined dataset is a combination of MSRAction3DExt, UTKinect-Action

and MSRDailyActivity3D datasets and was created to test the performance of the

proposed method when the number of actions increased. The Combined dataset is

challenging due to its large variations in background, subjects, viewpoints and imbal-

anced number of samples for each actions. The same actions in different datasets are

combined into one action and there are in total 40 distinct actions in the Combined

dataset.

Table 4.9: Description of the Combined dataset: A denotes MSRAction3DExt
dataset; U denotes UTKinect-Action dataset; D denotes MSRDailyActivity3D
dataset.

Action Label & Name From Action Label & Name From

1. high arm wave A 21. walk U&D

2. horizontal arm wave A 22. sit down U&D

3. hammer A 23. stand up U&D

4. hand catch A 24. pick up U

5. forward punch A 25. carry U

6. high throw A&U 26. push U

7. draw X A 27. pull U

8. draw tick A 28. drink D

9. draw circle A 29. eat D

10. hand clap A&U 30. read book D

11. two hand wave A&U 31. call cellphone D

12. side-boxing A 32. write on a paper D

13. bend A 33. use laptop D

14. forward kick A 34. use vacuum cleaner D

15. side kick A 35. cheer up D

16. jogging A 36. sit still D

17. tennis swing A 37. toss paper D

18. tennis serve A 38. play game D

19. golf swing A 39. lay down on sofa D

20. pickup & throw A 40. play guitar D

For this dataset, cross-subject scheme was adopted with half of the subjects used

for training and the rest for testing, the choice was made such that the training

and testing subjects were the same as those when each of the original individual

datasets was used for evaluation. This provides a fair basis for the evaluation of the
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Figure 4.12: The confusion matrix of proposed method for Combined dataset.

performance of the proposed method on the individual datasets when trained using

the Combined dataset.

The temporal scale was set to n = 5 and α = (2, 5) in the experiments. The pro-

posed method was tested with four settings and the results are shown in Table 4.10.

As expected, the strategy of using synthesized samples and multiple temporal scaling

become less apparent in improving the overall performance. One probable reason

is that the training of ConvNets has benefited from the large number of samples in

the Combined dataset.

Table 4.10: Comparative performance of the proposed method based on the
Combined dataset and with respect to the four training settings.

Training Setting Accuracy (α = 2) Accuracy (α = 5)
S3 87.20% 87.59%
S4 - 90.63%
S5 - 89.94%
S6 90.92% 91.56%

The performance of proposed method is compared with SNV [YT14] on this
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Table 4.11: Comparative recognition accuracies of the SNV and proposed meth-
ods using the Combined dataset and its original datasets.

Dataset
Method

SNV
Proposed
(α = 2)

Proposed
(α = 5)

MSRAction3D 89.83% 94.58% 94.92%
MSRAction3DExt 91.15% 94.05% 94.35%
UTKinect-Action 93.94% 91.92% 92.93%

MSRDailyActivity3D 60.63% 78.12% 80.63%
Combined 86.11% 90.92% 91.56%

Table 4.12: Comparative performance of the SNV and proposed methods using
individual and Combined dataset. Recognition accuracy and change of accuracy
are reported.

Dataset
Method

SNV SNVc η Proposed Proposedc η
MSRAction3D 93.09% 89.58% 3.77% 100.00% 94.92% 5.08%

MSRAction3DExt 90.54% 91.15% 0.67% 100.00% 94.35% 5.65%
UTKinect-Action 88.89% 93.94% 5.68% 90.91% 92.93% 2.22%

MSRDailyActivity3D 86.25% 60.63% 28.70% 85.00% 80.83% 4.91%

dataset in the following manner. A model is first trained over the Combined dataset

and then tested on the original individual datasets and Combined dataset. Note that

this was done according to the cross-subject evaluation scheme as described and, the

training and testing samples were kept the same as when the methods were applied

to individual datasets separately. The results and corresponding confusion matrices

are shown in Tables 4.11, 4.12 and Fig. 4.12 respectively. In order to compare the

performance of the methods on individual datasets and the combined case, the rate

change, η = |Xc−X|
X

× 100% was calculated, where X and Xc denote respectively

the accuracies when performing the training and recognition on individual datasets

separately and on the combined dataset.

Table 4.11 and Table 4.12 shows that the proposed method can maintain the

accuracy without a large drop while the number of actions increased and the dataset

becomes more complex. In addition, it outperformed the SNV method on the Com-

bined dataset.

4.1.3.6 Analysis

In the proposed method, ConvNets serve the purpose of feature extraction and

classification. Generally, ConvNets require a large amount of data to tune millions

of parameters to avoid overfitting. Directly training the ConvNets with a small

set of data would lead to poor performance due to overfitting, and this has been
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demonstrated in Table 4.1 and Table 4.3. However, the small amount (even for the

Combined dataset) of available data can be compensated with data augmentation.

In our method, two strategies are used for this purpose: synthesized viewpoints and

temporal scaling with additional benefits of making the method viewpoint and speed

tolerant respectively. However, without initializing the ConvNets with a model pre-

trained over ImageNet, the artificially augmented data seems insufficient to train the

nets. This is probably because the data synthesized from the original data do not

contain the same amount of independent information as would have been captured

by real cameras. Nonetheless, their contribution to the training is apparent as

demonstrated in the experiments. In addition, the scheme of pre-training followed

by fine-tuning provides a promising remedy for small datasets.

For each dataset, a different temporal scale was set to obtain the best results

and the reasons are as follows. For simple actions (or gestures), such as MSRAc-

tion3D(Ext), one scale is sufficient to distinguish the differences between actions

(gestures), due to their low motion complexity and short duration of motion. For

activities, such as those in the UTKinect-Action and MSRDailyActivity3D datasets,

more scales (e.g. 5) are needed, because the duration of the actions are long and

each action usually contains several simple actions (gestures). Use of a large num-

ber (e.g. over 5) of scales can capture the motion information in different temporal

scales. When we consider noisy samples, such as the MSRDailyActivity3D dataset,

larger temporal scales (e.g. 21) should be set in order to suppress the effects of

complex background in these datasets. However, the performance is not sensitive to

the number of temporal scales and gain in performance by tuning the scale is rather

marginal (around 2 percentage points).

For pseudo-coloring, the power α is in general set between 2 and 10 according

the characteristic of noise. A large value of α can suppress the noise in areas having

small or large WHDMM values. However, the performance gain over different α

values is around 3 percentage points for the datasets used in this chapter.

4.1.3.7 Computational Cost

Table 4.13 compares the computational cost of SNV and proposed method on the

MSRAction3D dataset. The dataset has 567 samples; 292 samples were used for

training and the rest for testing. The average number of frames per sample is 42.

The CPU platform used in the testing is a small HPC running CentOS6.5 with

2x Intel(R) Xeon(R) Processor E5-4620 at 2.20GHz and the GPU test platform is

equipped with an NVIDIA Tesla K40 card. The SNV method was implemented in

Matlab and executed on the CPU platform. The proposed method was implemented

in C/C++ and much of its computation is performed by the GPU. It should be

pointed out that the computational cost of the SVN method increases exponentially
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with the number of frames whereas the computation cost of the proposed method

increases linearly.

Table 4.13: Comparative computational cost of SNV and the proposed method
based on MSRAction3D dataset.

Cost
Method

SNV Proposed
Training
(seconds)

22913 (CPU time)
667 (CPU time) +
2246 (GPU time)

Testing
(seconds per sample)

76 (CPU time)
0.80 (CPU time) +
0.24 (GPU time)

Memory usage 16G RAM
4G video RAM +

4G RAM

4.2 Dynamic Depth Maps with ConvNets

4.2.1 Prior Works and Our Contributions

In our previous work, we applied ConvNets to depth action recognition based on

the variants of DMM [YZT12], which is sensitive to noise and cannot work well with

clutter background. Wu. et al. [WPK+16a] adopted a 3D ConvNet to extract fea-

tures from depth data, which requires a large amount of training data to achieve the

best performance. Compared to traditional RGB images, depth maps offer better

geometric cues and less sensitivity to illumination changes for action recognition. In

order to make full use of these properties and take advantages of ConvNets, we pro-

pose three simple, compact yet effective representations of depth sequences, referred

to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images

(DDNI) and Dynamic Depth Motion Normal Images (DDMNI), for both isolated

and continuous action recognition. These dynamic images are constructed from a

segmented sequence of depth maps using hierarchical bidirectional rank pooling to

effectively capture the spatial-temporal information. Specifically, DDI exploits the

dynamics of postures over time and DDNI and DDMNI exploit the 3D structural in-

formation captured by depth maps. Upon the proposed representations, a ConvNet

based method is developed for action recognition. The image-based representations

enable us to fine-tune the existing Convolutional Neural Network (ConvNet) models

trained on image data without training a large number of parameters from scratch.

The proposed method was evaluated on three large datasets, namely, the Large-scale

Continuous Gesture Recognition Dataset, the Large-scale Isolated Gesture Recogni-

tion Dataset, and the NTU RGB+D Dataset. State-of-the-arts results were achieved

on all datasets even though only the depth data was used.
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Figure 4.13: The framework of the proposed method.

4.2.2 The Proposed Methods

The proposed method consists of four stages: action segmentation, construction of

the three sets of dynamic images, ConvNets training and score fusion for classifica-

tion. The framework is illustrated in Fig. 4.13. Given a sequence of depth maps

consisting of multiple actions, the start and end frames of each action are identified

based on quantity of movement (QOM) [JZW+15]. Then, three sets of dynamic im-

ages are constructed for each action segment and used as the input to six ConvNets

for product score fusion-based classification. Details are presented in the rest of this

section.

4.2.2.1 Action Segmentation

Previous works on action recognition mainly focus on the classification of segmented

actions. In the case of continuous recognition, both segmentation and recognition

have to be solved. This chapter tackles the segmentation and classification of actions

separately and sequentially.

Given a sequence of depth maps that contains multiple actions, each frame

has the relevant movement with respect to its adjacent frame and the first frame.

The start and end frames of each action is detected based on quantity of move-

ment (QOM) [JZW+15] by assuming that all actions starts from a similar pose. For

a multi-action depth sequence I, the QOM for frame t is defined as a two-dimensional
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Figure 4.14: An example of illustrating the inter-action segmentation results.
Figure from [JZW+15].

vector

QOM(I, t) = [QOMLocal(I, t), QOMGlobal(I, t)], (4.8)

where QOMLocal(I, t) and QOMGlobal(I, t) measure the relative movement of frame

t with respect to its adjacent frame and the first frame. They are defined as

QOMLocal(I, t) =
∑

m,n

ψ(It(m,n), It−1(m,n))

QOMGlobal(I, t) =
∑

m,n

ψ(It(m,n), I1(m,n))
, (4.9)

where (m,n) is the pixel location and the indicator function ψ(x, y) is defined as

ψ(x, y) =











1 if |x− y| > ThresholdQOM ;

0 otherwise

ThresholdQOM is a predefined threshold, which is set to 60 empirically in this chap-

ter. A set of frame indices of candidate delimiting frames is initialized by choosing

frames with lower global QOMs than a thresholdinter. The thresholdinter is calcu-

lated by adding the mean to twice the standard deviation of global QOMs extracted

from first and last 12.5% of the average action sequence length L which is calculated

from the training actions. A sliding window with a size of L
2

is then used to refine

the candidate set and in each windowing session only the index of frame with a

minimum global QOM is retained. After the refinement, the remaining frames are

expected to be the delimiting frames of actions, as shown in Fig. 4.14.
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4.2.2.2 Construction of Dynamic Images

The three sets of dynamic images, Dynamic Depth Images (DDIs), Dynamic Depth

Normal Images (DDNIs) and Dynamic Depth Motion Normal Images (DDMNIs) are

constructed from a segmented sequence of depth maps through hierarchical bidirec-

tional rank pooling. They aim to exploit shape, motion and structural information

captured by a depth sequence at different spatial and temporal scales. To this end,

the conventional ranking pooling [BFG+16] is extended to the hierarchical bidirec-

tional rank pooling.

The conventional rank pooling [BFG+16] aggregates spatio-temporal informa-

tion from one video sequence into one dynamic image. It defines a function that

maps a video clip into one feature vector [BFG+16]. A rank pooling function is

formally defined as follows.

Rank Pooling Let a depth map sequence with k frames be represented as

< d1, d2, ..., dt, ..., dk >, where dt is the average of depth features over the frames

up to t-timestamp. At each time t, a score rt = ωT · dt is assigned. The score

satisfies ri > rj ⇐⇒ i > j. In general, more recent frames are associated with larger

scores. The process of rank pooling is to find ω∗ that satisfies the following objective

function:

arg min
ω

1

2
‖ ω ‖2 +λ

∑

i>j

ξij

s.t. ωT · (di − dj) ≥ 1 − ξij, ξij ≥ 0

, (4.10)

where ξij is a slack variable. Since the score ri assigned to frame i is often defined

as the order of the frame in the sequence, ω∗ aggregates information from all of the

frames in the sequence and can be used as a descriptor of the sequence. In this

chapter, the rank pooling is directly applied on the pixels of depth maps and the ω∗

is of the same size as depth maps and forms a dynamic depth image (DDI).

However, the conventional ranking pooling method has two drawbacks. Firstly,

it treats a video sequence in a single temporal scale which is usually too shal-

low [FAHG16]. Secondly, since in rank pooling the averaged feature up to time

t is used to classify frame t, the pooled feature is biased towards beginning frames

of a depth sequence, hence, frames at the beginning has more influence to ω∗. This

is not justifiable in action recognition as there is no prior knowledge on which frames

are more important than other frames.

To overcome the first drawback, it is proposed that the ranking pooling is applied

recursively to sliding windows over several rank pooling layer. This recursive process

can effectively explore the high-order and non-linear dynamics of a depth sequence.

The rank pooling layer is defined as follows:
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Figure 4.15: Illustration of a two layered rank pooling with window size three
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Definition 2 (Rank Pooling Layer). Let I(l) =
〈

i
(l)
1 , ..., i

(l)
n

〉

denote the

input sequence/subsequence that contains n frames; Ml is the window size; and

Sl is a stride in the lth layer. The subsequences of I(l) can be defined as I(l)
t =

〈

i
(l)
t , ..., i

(l)
t+Ml−1

〉

, where t ∈ {1, Sl + 1, 2Sl + 1, . . .}. By applying the rank pooling

function on the subsequences respectively, the outputs of lth layer constitute the

(l + 1)th layer, which can be represented as I(l+1) =
〈

. . . , i
(l+1)
t , ...

〉

.

I(l) to I(l+1) forms one layer of temporal hierarchy. Multiple rank pooling lay-

ers can be stacked together to make the pooling higher-order. In this case, each

successive layer obtains the dynamics of the previous layer. Figure 4.15 shows a

hierarchical rank pooling with two layers. For the first layer, the sequence is the

input depth sequence, thus l = 1, n = 5; for the second layer, l = 2, n = 3. By

adjusting the window size and stride of each layer, the hierarchical rank pooling can

explore high-order and non-linear dynamics effectively.

To address the second drawback, it is proposed to to apply the rank pooling

bidirectionally.

Bidirectional Rank Pooling is to apply the rank pooling forward and back-

ward to a sequence of depth maps. In the forward rank pooling, the ri is defined in

the same order as the time-stamps of the frames. In the backward rank pooling, ri

is defined in the reverse order of the time-stamps of the frames. When bidirectional

rank pooling is applied to a sequence of depth maps, two DDIs, forward DDI and

backward DDI, are generated.

By employing the hierarchical and bidirectional pooling together, the hierarchi-

cal bidirectional rank pooling exploits the dynamics of a depth sequence at differ-

ent temporal scales and bidirectionally at the same time. It has been empirically

observed that, for most actions with relatively short durations, two layers of bidi-
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rectional rank pooling is sufficient.

Construction of DDI

Given a segmented sequence of depth maps, the hierarchical bidirectional rank pool-

ing method described above is employed directly on the depth pixels to generate two

dynamic depth images (DDIs), forward DDI and backward DDI. Even though rank

pooling method exploits the evolution of videos and aims to encode both the spatial

and motion information into one image, it is likely to lose much motion information

due to the insensitivity of depth pixels to motion. As shown in Fig. 4.16, DDIs ef-

fectively capture the posture information, similar to key poses. Moreover, compared

with the dynamic images (DIs [BFG+16]), the DDIs are more effective, without

having interfering texture on the body.

Construction of DDNI

Depth images well represent the geometry of surfaces in the scene, and norm vectors

is sensitive to motion of depth pixels. In order to simultaneously exploit the spatial

and motion information in depth sequences, it is proposed to extract normals from

depth maps and construct the so-called DDNIs (dynamic depth normal images).

For each depth map, a surface normal (nx, ny, nz) is calculated at each pixel. Three

channels (Nx, Ny, Nz), referred to as a Depth Normal Image, are generated from the

normals, where (Nx, Ny, Nz) are respectively normal images of the three components

(nx, ny, nz). The sequence of each DNI goes through hierarchical bidirectional rank

pooling to generate two DDNIs, one being the forward DDNI and the other is the

backward DDNI.

To minimize the interference of the background, it is assumed that the back-

ground in the histogram of depth maps occupies the last peak representing far dis-

tances. Specifically, pixels whose depth values are greater than a threshold defined

by the last peak of the depth histogram minus a fixed tolerance are considered as

background and removed from the calculation of DDNIs by re-setting their depth

values to zero. Through this simple process, most of the background can be re-

moved and has much contribution to the DDNIs. Samples of DDNIs can be seen in

Fig. 4.16.

Construction of DDMNI

The purpose of constructing a DDMNI is to further exploit the motion in depth

maps. Gaussian mixture model (GMM) is applied to depth sequences in order to

detect moving foreground. The norm vectors are extracted from the moving fore-

ground and Depth Normal Image is constructed from the norm vectors for each
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Figure 4.16: Samples of generated forward and backward DIs [BFG+16], DDIs,
DDNIs and DDMNIs for gesture Mudra1/Ardhapataka.

depth map. Hierarchical bidirectional rank pooling is applied to the Depth Norm

Image sequence, and two DDMNIs, forward DDMNI and backward DDMNI, are

generated, which capture the motion information specifically well (see the illustra-

tion in Fig. 4.16).

4.2.2.3 Network Training

After the construction of DDIs, DDNIs and DDMNIs, there are six dynamic images,

as illustrated in Fig. 4.16, for each depth map sequence. Six ConvNets were trained

on the six channels individually. VGG-16 [SZ14b] is adopted in this chapter. The

implementation is derived from the publicly available Caffe toolbox [JSD+14] based

on three NVIDIA Tesla K40 GPU cards and one Pascal TITAN X.

The training procedure is similar to those in [SZ14b]. The network weights are

learned using the mini-batch stochastic gradient descent with the momentum set to

0.9 and weight decay set to 0.0005. All hidden weight layers use the rectification

(RELU) activation function. At each iteration, a mini-batch of 32 samples is con-

structed by sampling 256 shuffled training samples, and all the images are resized to

224 × 224. The learning rate is set to 10−3 for fine-tuning with pre-trained models

on ILSVRC-2012, and then it is decreased according to a fixed schedule, which is

kept the same for all training sets. The training undergoes 100 epochs and the learn-
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ing rate decreases every 30 epochs for each ConvNet. The dropout regularization

ratio is set to 0.9 to reduce complex co-adaptations of neurons in nets.

4.2.2.4 Score Fusion for Classification

Given a test depth video sequence (sample), three pairs of dynamic images (DDIs,

DDNIs, DDMNIs) are generated and fed into six different trained ConvNets. For

each image pair, product score fusion was used. The score vector output from the

two pair of ConvNets are multiplied in an element-wise manner and the resultant

score vectors are normalized using L1 norm. The three normalized score vectors are

then multiplied in an element-wise fashion and the max score in the resultant vector

is assigned as the probability of the test sequence being the recognized class. The

index of this max score corresponds to the recognized class label and expressed as

follows:

label = Fin(max(v1 ◦ v2 ◦ v3 ◦ v4 ◦ v5 ◦ v6)) (4.11)

where v is a score vector, ◦ refers to element-wise multiplication and Fin(·) is a

function to find the index of the element having the maximum score.

4.2.3 Experimental Results

In this section, the Large-scale Isolated and Continuous Gesture Recognition

datasets at the ChaLearn LAP challenge 2016 (ChaLearn LAP IsoGD Dataset and

ChaLearn LAP ConGD Dataset) [EPLW+16], the NTU RGB+D dataset [SLNW16],

and the corresponding evaluation protocols and results & analysis are described. On

ChaLearn LAP ConGD Dataset, action segmentation was first conducted to segment

the continuous actions to isolated actions. For all the experiments, two layered hi-

erarchical bidirectional rank pooling method is adopted, with window size Ml = 3

and stride step Sl = 1.

4.2.3.1 ChaLearn LAP IsoGD Dataset

The ChaLearn LAP IsoGD Dataset was adopted to evaluate the proposed method.

In this chapter, only depth maps are used to evaluate the performance of the pro-

posed method.

Table 4.14 shows the results of each channel. From the results we can see that

DDIs achieved much better results than DDNIs and DDMNIs, and the reasons are

as follows: first, the depth values are not the real depth, but they are normalized to

[0,255], which distort the true 3D structure information and affects the norm vec-

tors extraction; second, for storage benefit, the videos are compressed at a loss level,

which leads to lots of compression blocking artifacts, which makes the extraction of
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moving foreground and norm vectors very noisy. Even though, the three kinds of

dynamic images still provide complimentary information to each other. In addition,

it can be seen that the bidirectional rank pooling exploits more useful information

compared to one-way rank pooling [BFG+16], and by adopting product score fusion

method, the accuracy is largely improved. Moreover, hierarchical rank pooling en-

codes the dynamic of depth sequences better compared with the conventional rank

pooling method.

Table 4.14: Comparative accuracy of the three set of dynamic images on the
validation set of the ChaLearn LAP IsoGD dataset. RP denotes conventional
rank pooling; HRP represents hierarchical rank pooling.

Method Accuracy for RP Accuracy for HRP
DDI (forward) 36.13% 36.92%

DDI (backward) 30.45% 31.24%
DDI (fusion) 37.52% 37.68%

DDNI (forward) 24.86% 25.02%
DDNI (backward) 24.58% 24.64%

DDNI (fusion) 29.26% 29.48%
DDMNI (forward) 24.81% 24.69%

DDMNI (backward) 23.14% 23.57%
DDMNI (fusion) 27.75% 27.89%

Fusion All 42.56% 43.72%

The results obtained by the proposed method on the validation and test

sets are listed and compared with previous methods in Table 5.2. These meth-

ods include MFSK combined 3D SMoSIFT [WRL+14] with (HOG, HOF and

MBH) [WS13] descriptors. MFSK+DeepID further included Deep hidden IDen-

tity (Deep ID) feature [SWT14]. Thus, these two methods utilized not only hand-

crafted features but also deep learning features. Moreover, they extracted fea-

tures from RGB and depth separately, concatenated them together, and adopted

Bag-of-Words (BoW) model as the final video representation. The other methods,

WHDMM+SDI [WLG+16, BFG+16], extracted features and conducted classifica-

tion with ConvNets from depth and RGB individually and adopted product score

fusion for final recognition. SFAM [WLG+17] adopted scene flow to extract features

and encoded the flow vectors into action maps, which fused RGB and depth data

from the onset of the process. C3D [LMT+16b] applied 3D convolutional networks

to both depth and RGB channels and fused them in a late fusion method. Pyra-

midal 3D CNN [ZZM+16b] adopted 3D convolutional networks to pyramid input

to recognize gesture from both clip videos and entire video. It is noteworthy that

the results of the proposed method have been obtained using a single modality viz.,

depth data, while all compared methods are based on RGB and depth modalities.

From this table, we can see that the proposed method outperformed all of these
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recent works significantly, and illustrated its effectiveness.

Table 4.15: Comparative accuracy of proposed method and baseline methods
on the ChaLearn LAP IsoGD dataset.

Method Set Recognition rate r
MFSK [WGL16] Validation 18.65%

MFSK+DeepID [WGL16] Validation 18.23%
SDI [BFG+16] Validation 20.83%

WHDMM [WLG+16] Validation 25.10%
Scene Flow [WLG+17] Validation 36.27%

Proposed Method Validation 43.72%
MFSK [WGL16] Testing 24.19%

MFSK+DeepID [WGL16] Testing 23.67%
Pyramidal 3D CNN [ZZM+16b] Testing 50.93%

C3D [LMT+16b] Testing 56.90%
Proposed Method Testing 59.21%

Table 4.16: Accuracies of the proposed method and previous methods on the
ChaLearn LAP ConGD dataset.

Method Set Mean Jaccard Index JS

MFSK [WGL16] Validation 0.0918
MFSK+DeepID [WGL16] Validation 0.0902

Proposed Method Validation 0.3905
MFSK [WGL16] Testing 0.1464

MFSK+DeepID [WGL16] Testing 0.1435
IDMM + ConvNet [WLL+16a] Testing 0.2655

C3D [CHKB16] Testing 0.2692
Two-stream RNNs [CLY+16] Testing 0.2869

Proposed Method Testing 0.4109

4.2.3.2 ChaLearn LAP ConGD Dataset

The ChaLearn LAP ConGD Dataset was adopted to evaluate the proposed method.

In this chapter, only depth data was used in the proposed method.

The results of the proposed method on the validation and test sets and their

comparisons with the results of previous methods are shown in Table 5.3. MFSK

and MFSK+DeepID [WGL16] methods first segmented the continuous videos to

segments and then extracted the features over the segments over two modalities to

train and classify the actions. IDMM + ConvNet [WLL+16a] also adopted the ac-

tion segmentation method and then extracted one improved depth motion map using

color coding method over the segments, and ConvNet was adopted to train and clas-

sify segmented actions. C3D [CHKB16] applied 3D convolutional networks to RGB
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Table 4.17: Comparative accuracy of the three set of dynamic images on the
NTU RGB+D Dataset. RP denotes conventional rank pooling; HRP represents
hierarchical rank pooling.

Method
Cross subject

Accuracy for RP
Cross subject

Accuracy for HRP
Cross view

Accuracy for RP
Cross view

Accuracy for HRP
DDI (forward) 75.80% 76.10% 76.50% 76.75%

DDI (backward) 70.99% 75.45% 75.62% 75.48%
DDI (fusion) 81.66% 82.01% 81.53% 81.60%

DDNI (forward) 79.79% 79.98% 54.57% 55.01%
DDNI (backward) 81.46% 81.28% 56.61% 57.43%

DDNI (fusion) 84.18% 84.24% 61.07% 62.35%
DDMNI (forward) 68.89% 69.33% 50.01% 50.67%

DDMNI (backward) 70.04% 71.11% 49.53% 49.27%
DDMNI (fusion) 73.56% 74.27% 54.98% 55.09%

Fusion All 86.72% 87.08% 83.75% 84.22%

video and jointly learn the features and classifier. Two-stream RNNs [CLY+16] first

adopted R-CNN to extract the hand and then conducted temporal segmentation.

Two-stream RNNs were adopted to fuse multi-modality features for final recognition

based on segments. The results showed that the proposed method outperformed all

previous methods largely, even though only single modality, i.e. depth data, was

used.

4.2.3.3 NTU RGB+D Dataset

The large NTU RGB+D Dataset was used to evaluate the proposed method. It

consists of front view, two side views and left, right 45 degree views. This dataset

is challenging due to large intra-class and viewpoint variations. For fair comparison

and evaluation, the same protocol as that in [SLNW16] was used. It has both

cross-subject and cross-view evaluation. In the cross-subject evaluation, samples of

subjects 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35 and 38 were

used as training and samples of the remaining subjects were reserved for testing. In

the cross-view evaluation, samples taken by cameras 2 and 3 were used as training,

while the testing set includes samples from camera 1.

Similarly to LAP IsoGD Dataset, we conducted several experiments to com-

pare the three set of dynamic images using conventional rank pooling method and

the proposed hierarchical bidirectional rank pooling method. The comparisons are

shown in Table 5.6. From the Table it can be seen that compared with DDIs, DDNIs

achieved much better results than DDI in cross-subject setting, due to the sensitivity

of norm vectors to motion over real depth values. This justified the effectiveness of

proposed depth norm images for rank pooling. However, due to the sensitivity of

norm vectors to motion and view angles, in cross-view setting, much worse results

were achieved for DDNIs and DDMNIs. From the final fusion results we can see that

the three set of dynamic images exploit the shape and motion at different levels,

and provide complimentary information to each other.
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Table 5.7 lists the performance of the proposed method and those previous

works. The proposed method was compared with some skeleton-based methods

and depth-based methods previously reported on this dataset. We can see that the

proposed method outperformed all the previous works significantly.

Table 4.18: Comparative accuracies of the proposed method and previous meth-
ods on NTU RGB+D dataset.

Method Cross subject Cross view

Lie Group [VAC14] 50.08% 52.76%
HBRNN [DWW15] 59.07% 63.97%

2 Layer RNN [SLNW16] 56.29% 64.09%
2 Layer LSTM [SLNW16] 60.69% 67.29%

Part-aware LSTM [SLNW16] 62.93% 70.27%
ST-LSTM [LSXW16] 65.20% 76.10%

ST-LSTM+ Trust Gate [LSXW16] 69.20% 77.70%
JTM [WLHL16] 73.40% 75.20%

HON4D [OL13] 30.56% 7.26%
SNV [YT14] 31.82% 13.61%

SLTEP [JCT+17] 58 .22% –

Proposed Method 87.08% 84.22%

4.3 Structured Images with ConvNets

4.3.1 Prior Works and Our Contributions

In our previous work, we proposed to adopt rank pooling method to encode depth

map sequences into three kinds of dynamic images. However, our empirical study has

demonstrated the rank pooling method is limited in the spatial domain. Due to the

unsupervised learning process, the rank pooling method mainly encodes the salient

global features in the temporal domain, without mining the discriminative motion

patterns in both spatial and temporal domains simultaneously. It is also found that

by applying the rank pooling method directly on the full body sequences, the small

but discriminative motion information to recognize actions is usually suppressed

by large motion, especially for these fine-grained actions where the local spatio-

temporal sub-volume motion is more important compared with the global motion

of the whole sequences. As shown in Figure 4.17, the action “play game” from

the MSRDailyActivity3D dataset, the large interference of body swaying motion

occupies the motion in structured body DDI, and hands motion which is essential

for recognition is not well highlighted in the DDI.

To address this problem, this chapter proposes to apply rank pooling method

on depth map sequences at three hierarchical spatial levels, namely, body level,

part level and joint level based on our proposed non-scaling method. Different from
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Figure 4.17: The three hierarchical structured DDIs for action “play game”
from the MSRDailyActivity3D Dataset [WLWY12]. From left to right: structured
body DDI, structured part DDI and structured joint DDI. The red circle denotes
the hand motion need to be recognized while the blue one represents the large
body swaying motion.

previous method [CLS15] that adopted one ConvNet for each human body part,

it is proposed to construct one structured dynamic depth image as the input of a

ConvNet for each level such that the structured dynamic images not only preserve

the spatial-temporal information but also enhance the structure information, i.e.

the coordination and synchronization of body parts over the period of the action.

Such construction requires low computational cost and memory requirement. This

representation, referred to as Spatially Structured Dynamic Depth Images (S2DDI),

aggregates motion and structure information from global to fine-grained levels for

action recognition. In this way, the interference of large motion with small mo-

tion can be minimized. As shown in Figure 4.17, for action “play game”, in the

structured part DDI and structured joint DDI, the small hand motion is easy to

recognize compared with that in structured body DDI. Moreover, the three struc-

tured dynamic images are complementary to each other, and an effective product

score fusion method is adopted to improve the final recognition accuracy. The pro-

posed image-based representation can take advantage of the available pre-trained

models for standard ConvNet architectures without training millions of parameters

afresh. It is evaluated on five benchmark datasets, namely, MSRAction3D [LZL10],

G3D [BMA12], MSRDailyActivity3D [WLWY12], SYSU 3D HOI [HZLZ15] and

UTD-MHAD [CJK15], and achieves the state-of-the-art results.

The key contributions of this method are four folds. (1) A simple yet effective

video representation, S2DDI, is proposed for RGB-D video based action recognition

by constructing three level structured dynamic depth images through bidirectional

rank pooling. (2) An efficient non-scaling method is proposed to construct the

S2DDI. (3) The three level structured dynamic images aggregate motion and struc-

ture information from global to fine-grained levels for action recognition. A product

score fusion method is adopted to improve the final action recognition accuracy. (4)
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sisted of three joints {J1, J2, J3} from three frames. The solid black boxes are the
bounding boxes of the component in each frame, while the dashed red box is the
sequence-based bounding box of the component.

The proposed method achieves state-of-the-art results on five benchmark datasets.

4.3.2 The Proposed Methods

The proposed method mainly consists of three phases, as illustrated in Figure 4.18,

the constructions of S2DDI guided by skeletons, three weights-shared ConvNets

training and product score fusion for final action recognition. The first phase is an

unsupervised learning process. It applies bidirectional rank pooling method to three

hierarchical levels of a depth sequence to generate the structured DDIs, with each

level of DDIs being represented by two motion images, forward (DDIF) and back-

ward (DDIB). In the following sections, the three phases will be described in detail.

The rank pooling method [BFG+16], that aggregates spatio-temporal information

from one video sequence into one dynamic image, is also briefly summarized.
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4.3.2.1 Construction of S2DDI

In the construction of S2DDI, a human body is processed hierarchically at three

spatial levels, namely, joint level, part level and body level. At each level, the body

is divided into several components, and each component is composed of several

joints. Specifically in this chapter, there are 16 components at the joint level, each

component containing 1 joint; at body part level, there are 9 components, each

component consisting of 3 joints as defined below; at body level, the entire body

is treated as a single component consisting of 16 joints. For each component, a

Dynamic Depth Images (DDI) is generated by applying the rank pooling forward

or backward to a sequence of depth patches that encloses the component. Two

DDIs, i.e. DDIF and DDIB, at each level are constructed by simply stitching their

component DDIs in a predefined arrangement. The three DDIFs and three DDIBs at

body, part and joint levels together are referred to as S2DDI. Note the rank pooling

requires that the frames in a depth patch sequences be of same size.

Let C = {j1, j2, . . . , jn} be a component consisting of n joints. Centered at

each joint in the image plane, a depth patch, referred to as a joint patch, of size

p × q pixels is cropped. A patch for the component C at frame t is extracted from

the depth map based on the bounding box of C by keeping the depth values inside

the joint patches and setting depth values outside of the joint patches but within

the bounding box to zero. Notice that size of the component bounding box varies

from frame to frame due to movement of the joints on one hand and, on the other

hand, rank pooling requires the same size of the component patches over a sequence.

Conventionally, the component patches would be scaled to a same size, referring to

as scaled patches. The obvious disadvantage of such scaling is the distortion of the

spatial information within a frame and, hence, motion information over the sequence.

It is proposed in this chapter to define a sequence-based component bounding box

that is able to enclose the instances of the component over the sequence instead of

using the bounding box at each frame. A component patch at each frame is then

extracted by centering the sequence-based bounding box onto the component in the

frame, referring to as non-scaled patches. In this way, the spatial and temporal

distortion due to scaling can be eliminated. Figure 4.19 illustrates the extraction of

non-scaling patches of a component consisting of three joints {J1, J2, J3} from three

frames. In the figure, the solid black boxes are the bounding boxes of the component

in each frame, while the dashed red box is the sequence-based bounding box of the

component.

For the structured body DDIs, all the 20 joints are included in a single compo-

nent. For the structured part DDIs, 9 components are defined according to the joint

configuration in Figure 3.2 as follows.
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Figure 4.20: Stitching of component DDIs to a structured part DDI (left) and
structured joint DDI (right).

C1 head,shoulder center,shoulder left

C2 head,shoulder center,shoulder right

C3 elbow left,wrist left,hand left

C4 elbow right,wrist right,hand right

C5 spine,hip center,hip right

C6 spine,hip center,hip left

C7 knee left,ankle left,foot left

C8 knee right,ankle right,foot right

C9 shoulder left,shoulder center,shoulder right

For the structured joint DDIs, the following 16 out of the 20 joints which usually

bear relatively small noise are used and each joint forms a component.

hip

center
spine

shoulder

center
head

shoulder left elbow left hand left shoulder right

elbow right hand right hand left knee left

foot left hip right knee right foot right

Different from the work in [CLS15] that adopted one ConvNet for each compo-

nent, all component DDIs at the part level are stitched together to form a structured

part DDI and the component DDIs at the joint level are stitched together to form a

structured joint DDI as shown in Figure 4.20. Such arrangement of component DDIs

into a single structured DDI at each spatial level enables ConvNets to explore more

effectively the structured information of an action than any late fusion approach.

4.3.2.2 Network Training

After the construction of structured DDIs at three levels, there are six dynamic

images for each depth map sequence, as illustrated in Figure 4.18. Three ConvNets

are trained on the three kinds of DDIs individually. The AlexNet [KSH12] is adopted

in this chapter. The network weights are learned using the mini-batch stochastic

gradient descent with the momentum being set to 0.9 and weight decay being set to
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0.0005. All hidden weight layers use the rectification (RELU) activation function. At

each iteration, a mini-batch of 256 samples is constructed by sampling 256 shuffled

training samples. All the images are resized to 256 × 256. The learning rate is

set to 10−3 for fine-tuning the pre-trained models on ILSVRC-2012, and then it

is decreased according to a fixed schedule, which is kept the same for all training

sets. For each ConvNet, the training undergoes 3K iterations and the learning rate

decreases every 1K iterations. For all experiments, the dropout regularization ratio

is set to 0.5 in order to reduce complex co-adaptations of neurons in the nets.

4.3.2.3 Product Score Fusion for Classification

Given a test depth video sequence (sample), three pairs of dynamic images (struc-

tured body DDIs, structured part DDIs and structured joint DDIs) are generated

and fed into three different trained ConvNets. For each image pair, product score

fusion is used. The score vectors outputted by the weight sharing ConvNets are

multiplied in an element-wise way, and then the resultant score vectors are normal-

ized using L1 norm. The three normalized score vectors are then multiplied in an

element-wise fashion and the max score in the resultant vector is assigned as the

probability of the test sequence. The index of this max score corresponds to the

recognized class label.

4.3.3 Experimental Results

The proposed method is evaluated on five widely used benchmark RGB-D

datasets [ZLO+16a], namely, MSRAction3D [LZL10], G3D [BMA12], MSRDailyAc-

tivity3D [WLWY12], SYSU 3D HOI [HZLZ15] and UTD-MHAD [CJK15] datasets.

These five datasets cover a wide range of different types of actions including simple

actions, actions for gaming, daily activities, human-object interactions and fine-

grained activities. For the experiments on all datasets, the offset parameters (p, q)

are empirically set. Specifically, for the construction of structured body DDI, they

are (80, 30) for head, two feet and two hands, and (80, 50) for other joints. For

structured part DDI, they are fixed to (30, 30) for all joints. For structured joint

DDI, they are set to be (20, 30). In the following, the merit of applying rank pooling

method to depth is first compared with raking pooling on RGB, the effectiveness

of using non-scaled patches in the construction of DDIs and the product score fu-

sion method is then demonstrated. Finally, the results on the five datasets are

presented and the detailed analysis on MSRDailyActivity3D Dataset are described.

The detailed analysis based on the confusion matrices for the other four datasets

are described in the supplementary material.
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Figure 4.21: Illustration of using scaled component patches (left) and non-scaled
component patches (right) for action “write on a paper” from MSRDailyActiv-
ity3D Dataset [WLWY12] for construction of structured joint DDI. The red circle
denotes spatial distortion among human body while the blue one represents the
preservation of aspect ratio among the parts and joints.

4.3.3.1 Effects of Design Choices

DDI vs. DI

Table 4.19 compares the performance of body DDI from depth and DI [BFG+16]

from RGB for action recognition on the MSRDailyActivity3D dataset. Three DDIs

are generated, one without foreground extraction, one using bounding box as fore-

ground extraction, and the last one using the proposed method. From the results

it can be seen that the DDI, especially the proposed structured body DDI, achieves

much better results than DI. This verifies that the proposed method is robust to the

noise in skeleton data.

Table 4.19: Comparison of DDI and DI on the MSRDailyActivity3D dataset.

Method Accuracy
DI [BFG+16] 52.13%

DDI (without foreground extraction) 53.01%
DDI (with foreground bounding box) 58.75%

Structured body DDI (proposed) 61.00%

Scaled vs. Non-Scaled Component Patches in Construting DDI

Experiments are conducted to evaluate on the S2DDI constructed using scaled and

non-scaled component patches. Table 4.20 shows the comparisons of these two

methods in terms of recognition accuracy. It can be seen that using non-scaled

patches greatly outperforms using scaled-patches mainly due to the elimination of

distortion induced by the scaling.
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Table 4.20: Comparison of Construction of S2DDI using scaled and non-scaled
component patches on the MSRDailyActivity3D dataset.

Method Accuracy
Structured part DDI (scaled) 67.88%
Structured joint DDI (scaled) 85.15%

S2DDI (scaled) 87.04%
Structured part DDI (non-scaled) 81.88%
Structured joint DDI (non-scaled) 93.13%

S2DDI (non-scaled) 97.50%

Structured Images vs. Channel Fusion

To verify the effectiveness of proposed structured images, taking part level from

MSRDailyActivity3D dataset for example, we compared the structured images with

channel fusion using ConvNets and SIFT+FV+SVM [GWZZ17], as in Table 4.21.

It can be seen that the proposed structured part DDI not only outperforms the

fusion of 9 separate DDIs, but also has computational advantage (1 channel vs.

9 channels). This is probably because the structural information is explored by

the ConvNet from the structured part DDI. But such structural information can

hardly be explored if each DDI is input to separate ConvNets and fused at the score

level. From the comparisons we can also see that the proposed method can take

advantages of the pre-trained models over ImagesNet for recognition compared with

the traditional classifiers (e.g. SVM).

Table 4.21: Comparison of structured images and channel fusion on the MSR-
DailyActivity3D dataset.

Method Acc
Structured part DDI (ConvNet) 81.88%

Structured part DDI (SIFT+FV+SVM) 76.25%
9 channel part DDIs fusion (ConvNet) 72.81%

9 channel part DDIs fusion (SIFT+FV+SVM) 71.88%

Traditional Rank pooling vs. Bidirectional Rank Pooling

Traditional pooling emphasizes the earlier frames in the pooling segment more than

later frames. One of the key motivations of bidirectional rank pooling is to over-

come this so that reversing cyclic movement patterns can be well distinguished. In

addition, it effectively arguments the training data. The effectiveness of bidirec-

tional rank pooling is shown in Table 4.22, taking MSRDailyActivity3D dataset for

example.
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Table 4.22: Comparison of traditional rank pooling and bidirectional rank pool-
ing on the MSRDailyActivity3D dataset.

Method body DDI part DDI joint DDI fusion
Traditional rank pooling(SIFT+FV+SVM) 42.50% 68.75% 80.00% 86.25%

Traditional rank pooling(ConvNets) 59.38% 80.00% 89.37% 95.63%
Bidirectional rank pooling(SIFT+FV+SVM) 49.69% 76.25% 81.25% 88.75%

Bidirectional rank pooling(ConvNets) 61.00% 81.88% 93.130% 97.50%

Product vs. Average vs. Max Score Fusion

This chapter adopts product score fusion method to improve the final accuracy on

the three structured DDIs. The other two commonly used late score fusion methods

are average and maximum score fusion. The comparisons among the three late score

fusion methods are shown in Table 5.10. It can be seen that the product score fusion

method achieves the best results on all the five datasets. This verifies that the three

structured DDIs are likely to be statistically independent and carry complementary

information.

Table 4.23: Comparison of three different late score fusion methods on the five
datasets.

Dataset
Score Fusion Method

Max Average Product
MSRAction3D 93.67% 97.56% 100%

G3D 94.83% 94.83% 96.05%
MSRDailyActivity3D 93.75% 95.00% 97.50%

SYSU 3D HOI 91.25% 94.17% 95.42%
UTD-MHAD 87.44% 88.54% 89.04%

4.3.3.2 MSRAction3D Dataset

The MSRAction3D Dataset [LZL10] was adopted to evaluate the proposed method.

The same experimental setting adopted in [WLWY12] is followed, namely, the cross-

subjects settings: subjects 1, 3, 5, 7, 9 for training and subjects 2, 4, 6, 8, 10 for

testing. Table 4.24 lists the performance of the proposed method, as well as the

results of several methods reported in recent three years. From the results, we

can see that the proposed method can well recognize the simple actions, because

the three hierarchical spatial dynamic image patches generated via bidirectional

rank pooling can aggregate rich spatio-temporal information in each level, and the

structure information of human body is explicitly exploited by the proposed non-

scaled component patches and structured motion images.
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Table 4.24: Comparison of the proposed method with existing methods on the
MSRAction3D dataset.

Method Accuracy
Lie Group [VAC14] 89.48%

HCM [LCNS16] 93.00%
SNV [YT14] 93.09%

Range Sample [LJT14] 95.62%
MTDMM + FV [CLZ+16] 95.97%

Structured body DDI 79.18%
Structured part DDI 83.83%
Structured joint DDI 95.40%

S2DDI 100%

4.3.3.3 G3D Dataset

Gaming 3D Dataset (G3D) [BMA12] was adopted to evaluate the proposed method.

For this dataset, the first 4 subjects are used for training, the fifth for validation

and the remaining 5 subjects for testing, following the configuration in [NWJ15].

Table 4.25 compares the performance of the proposed method with that reported

in [NWJ15, WLHL16]. It can been seen that S2DDI achieves better results.

Table 4.25: Comparison of the proposed method with previous methods on the
G3D dataset.

Method Accuracy
LRBM [NWJ15] 90.50%
JTM [WLHL16] 94.24%

Structured body DDI 74.81%
Structured part DDI 89.97%
Structured joint DDI 93.62%

S2DDI 96.05%

4.3.3.4 MSRDailyActivity3D Dataset

The MSRDailyActivity3D Dataset [WLWY12] was used to evaluate the proposed

method. Most activities in this dataset involve human-object interactions. The same

cross-subject experimental setting as in [WLWY12] is adopted. Compared with

existing methods on this dataset, the results in Table 4.26 show that the proposed

method is superior for dataset having fine-grained human-object interaction actions.

The confusion matrices for structured body DDI, structured part DDI and struc-

tured joint DDI are shown in Figure 4.22 and S2DDI in Figure 4.23. From the con-

fusion matrix, we can see that the structured body DDI confuses most activities,

especially “Eat”, “Read book”, “Write on a paper” and “play game”. This is because



CHAPTER 4. DEPTH-BASED ACTION RECOGNITION 101

Table 4.26: Comparison of the proposed method with previous methods on the
MSRDailyActivity3D dataset.

Method Accuracy
IPM [ZNH+15] 83.30%

WHDMMs+ConvNets [WLG+16] 85.00%
SNV [YT14] 86.25%

DS+DCP+DDP+JOULE-SVM [HZLZ15] 95.00%
Range Sample [LJT14] 95.63%

MFSK+BoVW [WGL16] 95.70%
Structured body DDI 61.00%
Structured part DDI 81.88%
Structured joint DDI 93.13%

S2DDI 97.50%
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Figure 4.22: Confusion matrix for structured body DDI (left), structured part
DDI (middle) and structured joint DDI (right) on MSRDailyActivity3D Dataset.

the structured body DDIs of these activities have similar shapes, and the motion to

be recognized is very small compared with the interference of large body swaying

motion, as illustrated in Figure 4.17. But as the granularity increases, most of the

activities can be well recognized, because the fine-grained small motion is enhanced

in the patches of parts and joints. By fusion of the three levels, most of the activi-

ties are better recognized, which reflects that the three structured motion images are

complementary to each other. Compared with the method proposed in [HZLZ15],

ours can better recognize “Drink”, “Read book”,“Write on a paper” and “Play game”

activities, due to the capability of both global to fine-grained motion and structure

information aggregation of our method. These activities are very easily confused

by global motion information aggregation method. However, the skeleton guided

decomposition can not work well for human-large object interaction. For example,

due to the large size of guitar, the proposed method loses much object information

and confused “play guitar” with “Read book”. This can be improved by setting

larger extension around the joints.

4.3.3.5 SYSU 3D HOI Dataset

The SYSU 3D Human-Object Interaction Dataset (SYSU 3D HOI

Dataset) [HZLZ15] was adopted to evaluate the proposed method. Table 5.9
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Figure 4.23: Confusion matrix for S2DDI on the MSRDailyActivity3D dataset.

compares the performances of the proposed method and that of existing methods

on this dataset using cross-subject settings as in [HZLZ15]. It can bee seen that,

our proposed method outperforms previous methods largely. It should be noticed

that on this dataset, the structured joint DDI achieves the best performance. From

the confusion matrices in the supplementary material we can see that the “Taking

from wallet” action is greatly confused in structured body and part DDIs, that

affects the final performance of S2DDI.

Table 4.27: Comparison of the proposed method with previous approaches on
SYSU 3D HOI Dataset.

Method Accuracy
HON4D [OL13] 79.22%

DS+DCP+DDP+MTDA [ZY11] 84.21%
DS+DCP+DDP+JOULE-SVM [HZLZ15] 84.89%

structured body DDI 65.00%
structured part DDI 85.83%
structured joint DDI 95.83%

S2DDI 95.42%

4.3.3.6 UTD-MHAD Dataset

UTD-MHAD [CJK15] was adopted to evaluate the proposed method. For this

dataset, cross-subjects protocol is adopted as in [CJK15], namely, the data from

the subject numbers 1, 3, 5, 7 used for training while 2, 4, 6, 8 used for testing. The

results are shown in Table 4.28. It can be seen that even the structured joint DDI

itself can achieve better result than previous methods. From the performances on

the five datasets, we can conclude that as the granularity increases, the proposed

method achieves higher accuracy.
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Table 4.28: Comparison of the proposed method with previous approaches on
UTD-MHAD Dataset.

Method Accuracy
WHDMMs+ConvNets [WLG+16] 73.95%

ELC-KSVD [ZLZ+14] 76.19%
Kinect & Inertial [CJK15] 79.10%

Cov3DJ [HTGES13] 85.58%
JTM [WLHL16] 85.81%

structured body DDI 66.05%
structured part DDI 78.70%
structured joint DDI 86.81%

S2DDI 89.04%

4.4 Summary

In this section, we proposed three methods to address research questions 3, 4 and

5 listed in Section 1.2. Based on depth map sequences, we studied the strategies

to apply ConvNets to small training data for action recognition. In order to make

full use of the properties of depth and take advantages of ConvNets, three simple,

compact yet effective image-based representations of depth sequences were proposed

for large-scale action recognition. Structured images were further proposed to cap-

ture the spatial-temporal-structural information contained in the depth sequences,

and aggregate motion and structure information from global to fine-grained levels

for action recognition. State-of-the-art results were achieved on both small datasets

and large datasets.



Chapter 5

RGB and Depth based Action

Recognition

Recognition of human actions from RGB-D data has generated renewed interest in

the computer vision community due to the recent availability of easy-to-use and low-

cost depth sensors (e.g. Microsoft Kinect TMsensor). In addition to tristimulus visual

data captured by conventional RGB cameras, depth data are provided in RGB-D

cameras, thus encoding rich 3D structural information of the entire scene. How to

adopt these two modalities together for action recognition is attracting more and

more attention. This chapter studied this issue by addressing the research question

6 and 7 (Section 1.2): how to fuse the depth and RGB modalities at data-level and

how to cooperatively train a single networks using these two heterogeneous inputs.

5.1 Scene Flow with ConvNets

5.1.1 Prior Works and Our Contributions

Previous works [NWJ15, KF15, HZLZ15, WZSS15, YLS16, JF16] showed the ef-

fectiveness of fusing the two modalities for 3D action recognition. However, all

the previous methods consider the depth and RGB modalities as separate channels

from which to extract features and fuse them at a later stage for action recognition.

Since the depth and RGB data are captured simultaneously, it will be interest-

ing to extract features considering them jointly as one entity. Optical flow-based

methods for 2D action recognition [WS13, LLL+15, PZQP14, PWWQ16, WQT15]

have provided the state-of-the-art results for several years. In contrast to optical

flow which provides the projection of the scene motion onto the image plane, scene

flow [VRCK05, HB14, MG15, HFR14, JSGJC15, SSP15, QBDC14] estimates the

actual 3D motion field. Thus, we propose the use of scene flow for 3D action recog-

nition. Differently from the optical flow-based late fusion methods on RGB and

depth data, scene flow extracts the real 3D motion and also explicitly preserves the

spatial structural information contained in RGB and depth modalities.

There are two critical issues that need to be addressed when adopting scene

flow for action recognition: how to organize the scene flow vectors and how to

effectively exploit the spatio-temporal dynamics. Two kinds of motion representa-

tions can be identified: Lagrangian motion [WS13, LLL+15, PZQP14, WQT15,

104
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PWWQ16, WLHL16] and Eulerian motion [BD01b, MB06, YZT12, WLG+15,

WLG+16, BFG+16]. Lagrangian motion focuses on individual points and analyses

their change in location over time. Such trajectories requires reliable point tracking

over long term and is prone to error. Eulerian motion considers a set of locations in

the image and analyses the changes at these locations over time, thus avoiding the

need for point tracking.

Since scene flow vectors could be noisy and to avoid the difficulty of long term

point tracking of Lagrangian motion, we adopted the Eulerian approach in con-

structing the final representation for action recognition. Furthermore, the scene

flow between two consecutive pair of RGB-D frames (two RGB images and two cor-

responding depth images) is one simple Lagrangian motion with only two frames

matching/tracking. This property provides a better representation than is possible

with Eulerian motion obtained from raw pixels.

However, it remains unclear as to how video could be effectively represented

and fed to deep neural networks for classification. For example, one can conven-

tionally consider a video as a sequence of still images with some form of tem-

poral smoothness, or as a subspace of images or image features, or as the out-

put of a neural network encoder. Which one among these and other possibili-

ties would result in the best representation in the context of action recognition

is not well understood. The promising performance of existing temporal encoding

works [WLG+15, WLG+16, WLHL16, BFG+16] provides a source of motivation.

These works encode the spatio-temporal information as dynamic images and enable

the use of existing ConvNets models directly without training the whole networks

afresh. Thus, we propose to encode the RGB-D video sequences based on scene

flow into one motion map, called Scene Flow to Action Map (SFAM), for 3D ac-

tion recognition. Intuitively and similarly to the three channels of color images, the

three elements of a scene flow vector can be considered as three channels. Such

consideration allows the scene flow between two consecutive pairs of RGB-D frames

to be reorganized as one three-channel Scene Flow Map (SFM), and the RGB-D

video sequence can be represented as SFM sequence. In the spirits of Eulerian mo-

tion and rank pooling methods [FGM+16, BFG+16], we propose to encode SFM

sequence into SFAM. Several variants of SFAM are developed. They capture the

spatio-temporal information from different perspectives and are complementary to

each other for final recognition. However, two issues arise with these hand-crafted

SFAMs: 1) direct organization of the scene flow vectors in SFM may sacrifice the

relations among the three elements; 2) in order to take advantage of available model

trained over ImageNet, the input needs to be analogous to RGB images; that is,

the input for the ConvNets need to have similar properties to conventional RGB

images as used in trained filters. Based on these two observations, we propose to
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learn Channel Transform Kernels with rank pooling method and ConvNets, that

convert the three channels into suitable three new channels capable of exploiting

the relations among the three elements and have similar RGB image features. With

this transformation, the dynamic SFAM can describe both the spatial and temporal

information of a given video. It can be used as the input to available and already

trained ConvNets along with fine-tuning.

The contributions of this chapter are summarized as follows:1) The proposed

SFAM is the first attempt, to our best knowledge, to extract features from depth and

RGB modalities as joint entity through scene flow, in the context of ConvNets; 2) we

propose an effective self-calibration method that enables the estimation of scene flow

from unregistered captured RGB-D data; 3) several variants of SFAM that encode

the spatio-temporal information from different aspects and are complementary to

each other for final 3D action recognition are proposed; 4) we introduce Channel

Transform Kernels which learn the relations among the three channels of SFM and

convert the scene flow vectors to RGB-like images to take advantages of trained

ConvNets models and 5) the proposed method achieved state-of-the-art results on

two relatively large datasets.

5.1.2 The Proposed Methods

SFAM encodes the dynamics of RGB-D sequences based on scene flow vectors. To

make our description self-contained, in Section 5.1.2.1 we briefly present the primal-

dual framework for real-time dense RGB-D scene flow computation (hereafter de-

noted by PD-flow [JSGJC15]). For scene flow computation, we assume that the

depth and RGB data are prealigned. If this is not the case, the videos can be

quickly realigned as described in Section 5.1.2.2. Then, in Section 5.1.2.3 we present

several hand-crafted constructions of SFAM and we propose an end-to-end learning

method for SFAM through Channel Transform Kernels in Section 5.1.2.4.

5.1.2.1 PD-flow

The PD-flow estimates the dense 3D motion field of a scene between two instants

of time t and t + 1 using RGB and depth images provided by an RGB-D camera.

This motion field M : (Ω ∈ R
2) → R

3 defined over the image domain Ω, is described

with respect to the camera reference frame and expressed in meters per second. For

simplicity, the bijective relationship Γ : R3 → R
3 between M and s = (µ, υ, ω)T is

given by:

M = Γ(s) =


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where µ, υ represent the optical flow and ω denotes the range flow; fx, fy are the

camera focal length values, and X, Y, Z the spatial coordinates of the observed

point. Thus, estimating the optical and range flows is equivalent to estimating the

3D motion field but leads to a simplified implementation. In order to compute the

motion field a minimization problem over s is formulated where photometric and

geometric consistency are imposed as well as a regularity of the solution:

min
s

{ED(s) + ER(s)}. (5.2)

In Eq. (5.2), ED(s) is the data term, representing a two-fold restriction for both

intensity and depth matching between pairs of frames; ER(s) is the regularization

term which both smooths the flow field and constrains the solution space.

For data term ED(s), the L1 norm of photometric consistency ρI(s, x, y) and

geometric consistency ρz(s, x, y) is minimized as:

ED(s) =
∫

|ρI(s, x, y)| + ε(x, y)|ρz(s, x, y)|dxdy, (5.3)

where ε(x, y) is a positive function that weights geometric consistency against

brightness constancy; ρI(s, x, y) = I0(x, y) − I1(x + µ, y + υ) and ρz(s, x, y) =

ω − Z1(x + µ, y + υ) + Z0(x, y) with I0, I1 being the intensity images while Z0, Z1

the depth images taken at instants t and t+ 1.

The regularization term ER(s) is based on the total variation and takes into

consideration the geometry of the scene which is formulated as:

ER(s) = λI

∫

Ω
|(rx

∂µ

∂x
, ry

∂µ

∂y
)| + |(rx

∂υ

∂x
, ry

∂υ

∂y
)|dxdy

+λD

∫

Ω
|(rx

∂ω

∂x
, ry

∂ω

∂y
)|dxdy, (5.4)

where λI , λD are constant weights and rx = 1
√

∂X2

∂x
+ ∂Z2

∂x

, ry = 1
√

∂Y 2

∂y
+ ∂Z2

∂y

.

As the energy function (Eq. (5.2)) is based on a linearisation of the data term

(Eq. (5.3)) and convex TV regularizer (Eq. (5.4)), the energy function can be solved

using convex solver. An iterative solver can be obtained by deriving the energy

function (Eq. (5.2)) as its primal-dual formulation and implemented in parallel

on GPUs. For more implementation details, the keen reader is recommended to

read [JSGJC15].
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5.1.2.2 Self-Calibration

Scene flow computation requires that the RGB and depth data be spatially aligned

and temporally synchronized. The data considered in this chapter were captured

by Kinect sensors and are temporally synchronized. However, the RGB and depth

channels may not be spatially registered if calibration was not performed properly

before recording the data. For the RGB-D datasets with spatial misalignment, we

propose an effective self-calibration method to perform spatial alignment without

knowledge of the cameras parameters. The alignment is based on a pinhole model

through which depth maps are transformed into the same view of the RGB video.

Let pi be a point in an RGB frame and p′
i be the corresponding point in the depth

map. The 2D homography mapping H satisfying pi = Hp′
i is a 3 × 3 projective

transformation for the alignment. Following the method in [HZ03], we chose a set

of matching points in an RGB frame and its corresponding depth map. Using four

pairs of corresponding points, H is obtained through direct linear transformation.

Let p′
i = (x′

i, y
′
i, 1)T , hT

j be the jth row of H and 0 = [0, 0, 0]T . The vector cross

product equation pi ×Hp′
i = 0 is written as [HZ03]:




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where the up-to-scale equation is omitted. A better estimation of H is achieved

by minimising (for example, using Levenberg-Marquardt algorithm [KYF05]) the

following objective function with more matching points:

arg min
Ĥ,p̂i,p̂i

′

∑

i

[d(pi, p̂i)
2 + d(p′

i, p̂i
′)]

s.t. p̂i = Ĥp̂i
′ for ∀i (5.6)

In Eq. (5.6), d(·) is the distance function and Ĥ is the optimal estimation of the

homography mapping while p̂i and p̂i
′ are estimated matching points from {pi, p

′
i}.

Because the process of selecting matching points may not be reliable, the random

sample consensus (RANSAC) algorithm is applied to exclude outliers. By trans-

forming the depth map using the 2D projective transformation H, the RGB video

and its corresponding depth video are spatially aligned.

5.1.2.3 Construction of Hand-crafted SFAM

SFAM encodes a video sample into a single dynamic image to take advantage of the

available pre-trained models for standard ConvNets architecture without training

millions of parameters afresh. There are several ways to encode the video sequences
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into dynamic images [BD01b, MB06, YZT12, WLG+15, WLG+16, BFG+16], but

how to encode the scene flow vectors into one dynamic image still needs to be

explored. As described in Section 5.1.2.1, one scene flow vector s = (µ, υ, ω)T is

obtained by matching/tracking one point in the current frame to another in the

reference frame; this is one simple Lagrangian motion. In order to avoid error in

tracking Lagrangian motion over long term, we construct SFAM using the Eulerian

motion approach and thus, the SFAM inherits the merits of both the Eulerian and

Lagrangian motion. As we argued earlier, the three entries (µ, υ, ω) in the scene

flow vector s for each point can be considered as three channels. Hence a scene

flow between two pairs of RGB-D images (I0, Z0 and I1, Z1) can be reorganized

as one three-channel SFM (Xµ, Xυ, Xω), and the RGB-D video sequences can be

represented as SFM sequences. Based on the SFM sequences, there are several ways

to construct the SFAM.

SFAM-D

Inspired by the construction of Depth Motion Maps (DMM) [YZT12], we accumulate

the absolute differences between consecutive SFMs and denote it as SFAM-D. It is

written as:

SFAM-Di =
T −1
∑

t=1

|X t+1
i −X t

i | i ∈ (µ, υ, ω), (5.7)

where t denotes the map number and T represents the total number of maps (the

same for the following sections). This representation characterizes the distribution

of the accumulated motion difference energy.

SFAM-S

Similarly to SFAM-D, we construct the SFAM-S (S here denotes the sum) by accu-

mulating the sum between consecutive SFMs. This can be written as:

SFAM-Si =
T −1
∑

t=1

(X t+1
i +X t

i ) i ∈ (µ, υ, ω). (5.8)

This representation mainly captures the large motion of an action after normaliza-

tion.

SFAM-RP

Inspired by the work reported in [BFG+16], we adopt the rank pooling method

to encode SFM sequence into one action image. Let X1, ..., XT denote the SFM

sequence where each Xt contains three channels (Xµ, Xυ, Xω), and ϕ(Xt) ∈ R
d be

a representation or feature vector extracted from each individual map, Xt. Herein,
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we directly apply rank pooling to the X, thus, ϕ(·) equals to identity matrix. Let

Vt =
1

t

∑t
τ=1 ϕ(Xτ ) be time average of these features up to time t. The ranking

function associates with each time t a score S(t|d) =< d, Vt >, where d ∈ R
d is a

vector of parameters. The function parameters d are learned so that the scores reflect

the order of the maps in the video. In general, more recent frames are associated

with larger scores, i.e. q > t ⇒ S(q|d) > S(t|d). Learning d is formulated as a

convex optimization problem using RankSVM [SS04]:

d∗ = ρ(X1, ..., XT ;ϕ) = arg min
d

E(d),

E(d) =
λ

2
‖ d ‖2 +

2

T (T − 1)
×

∑

q>t

max{0, 1 − S(q|d) + S(t|d)}.

(5.9)

The first term in this objective function is the usual quadratic regular term

used in SVMs. The second term is a hinge-loss soft-counting how many pairs q > t

are incorrectly ranked by the scoring function. Note in particular that a pair is

considered correctly ranked only if scores are separated by at least a unit margin,

i.e. S(q|d) > S(t|d) + 1.

Optimizing the above equation defines a function ρ(X1, ..., XT ;ϕ) that maps

a sequence of T SFMs to a single vector d∗. Since this vector contains enough

information to rank all the frames in the SFM sequence, it aggregates information

from all of them and can be used as a sequence descriptor. In our work, the rank

pooling is applied in a bidirectional manner to convert each SFM sequence into two

action maps, SFAM-RPf (forward) and SFAM-RPb (backward). This representation

captures the different types of importance associated with frames in one action and

assigns more weight to recent frames.

SFAM-AMRP

In previous sections, all the three channels are considered as separate channels in

constructing SFAM. However, the specific relationship (independent or otherwise)

between them is yet to be ascertained. To study this relationship, we adopt a simple

method viz., using amplitude of the scene flow vector s to represent the relations

between the three components. Thus, for each triple (Xµ, Xυ, Xω) we obtain a

new amplitude map, Xam. Based on the Xam =
√

X2
µ +X2

υ +X2
ω, the rank pooling

method is applied to encode the scene flow maps into two action maps, SFAM-

AMRPf and SFAM-AMRPb. This representation exploits the weights of frames

based on the motion magnitude.
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Figure 5.1: Samples of variants of SFAM for action “Bounce Basketball” from
M2I Dataset [LXN+16]. For top-left to bottom-right, the images correspond
to SFAM-D, SFAM-S, SFAM-RPf, SFAM-RPb, SFAM-AMRPf, SFAM-AMRPb,
SFAM-LABRPf, SFAM-LABRPb.

Input SFM Xµ 
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Figure 5.2: The framework for constructing SFAM with Channel Transform
Kernels using ConvNets.

SFAM-LABRP

To further investigate the relationship amongst the triple (Xµ, Xυ, Xω), they are

transformed nonlinearly into another space, similarly to the manner of transforming

RGB color space to Lab space. The Lab space is designed to approximate the human

visual system. Based on these transformed maps, the rank pooling method is applied

to encode the sequence into two action maps, SFAM-LABRPf and SFAM-LABRPb.

A few examples of the SFAM variants are shown in Figure 5.1 for action “Bounce

Basketball” from M2I Dataset [LXN+16]. It can be seen that different variants

of SFAM capture and encode SFM sequence into action maps with large visual

differences.

5.1.2.4 Constructing SFAM with Channel Transform Kernels (SFAM-

CTKRP)

In previous sections, we have presented the concept of SFAM and its several variants.

However, it has been empirically observed that none of them can achieve the best

results for all the datasets or scenarios. One reason adduced for this is that during

the construction of the SFAM, the relationship amongst the triple (Xµ, Xυ, Xω) are

hand-crafted. To learn the relationship amongst the elements of the triple (Xµ, Xυ,

Xω) from data with ConvNets, we propose a Channel Transform Kernels as follows.
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Figure 5.3: Illustration of approximate computation for Channel Transform
Kernels using convolution kernels followed by nonlinear transforms.

Let Y1, Y2, Y3 be the new learned maps from the original triple (Xµ, Xυ, Xω), the

relationship between them can be formulated as:

Y1 = ϕ1(ω1Xµ + ω2Xυ + ω3Xω)

Y2 = ϕ2(ω4Xµ + ω5Xυ + ω6Xω) (5.10)

Y3 = ϕ3(ω7Xµ + ω8Xυ + ω9Xω)

where Y has the same size with X, ω are scalar values and ϕ denotes the transforms

that need to be learned. The learning framework is illustrated in Figure 5.2. There

are different ways to learn these Channel Transform Kernels. For sake of simplicity,

in this work we achieved the non-linear channel transformations by three successive

convolution layers, where each layer comprises nine convolutional kernels with size

1 × 1 and followed by ReLU nonlinear transform, as illustrated in Figure 5.3. Based

on RankPool layer [BFG+16] for temporal encoding, we can construct the SFAM

with the proposed Channel Transform Kernels using ConvNets.

5.1.2.5 Product Score Fusion for Classification

After construction of the several variants of SFAM, we propose to adopt one effective

late score fusion method, namely, product score fusion method, to improve the final

recognition accuracy. Take SFAM-RP for example, as illustrated in Figure 5.4, two

SFAM-RP, one SFAM-RPf and one SFAM-RPb, are generated for one pair of RGB-

D videos and they are fed into two different trained ConvNets channels. The score

vectors output by the two ConvNets are multiplied element-wisely and the max

score in the resultant vector is assigned as the probability of the test sequence. The

index of this max score corresponds to the recognized class label. This process can

be easily extended into multiple channels.

5.1.3 Experimental Results

According to the survey of RGB-D datasets [ZLO+16a], we chose two public bench-

mark datasets, which contain both RGB+depth modalities and have relatively large
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training samples to evaluate the proposed method. Specifically we chose ChaLearn

LAP IsoGD Dataset [WLZ+16] and M2I Dataset [LXN+16]. In the following, we

proceed by briefly describing the implementation details and then present the ex-

periments and results.

5.1.3.1 Implementation Details

For scene flow computation, we adopted the public codes provided by [JSGJC15].

For rank pooling, we followed the work reported in [BFG+16] where each channel

was generated into one channel dynamic map and then merged the three channels

into one three-channel map. Differently from [BFG+16], we used bidirectional rank

pooling. For ChaLearn LAP IsoGD Dataset, in order to minimize the interference

of the background, it is assumed that the background in the histogram of depth

maps occupies the last peak representing far distances. Specifically, pixels whose

depth values are greater than a threshold defined by the last peak of the depth

histogram minus a fixed tolerance (0.1 was set in our experiments) are considered as

background and removed from the calculation of scene flow by setting their depth

values to zero. Through this simple process, most of the background can be removed

and has much contribution to the SFAM.

The AlexNet [KSH12] was adopted in this chapter. The training procedure of

the hand-crafted SFAMs was similar to that described in [KSH12]. The network

weights were learned using the mini-batch stochastic gradient descent with the mo-

mentum set to 0.9 and weight decay set to 0.0005. All hidden weight layers used

the rectification (RELU) activation function. At each iteration, a mini-batch of

256 samples was constructed by sampling 256 shuffled training samples. All the

images were resized to 256 × 256. The learning rate was set to 10−3 for fine-tuning

with pre-trained models on ILSVRC-2012, and then it was decreased according to

a fixed schedule, which was kept the same for all training sets. Different datasets

underwent different iterations according to their number of training samples. For

all experiments, the dropout regularization ratio was set to 0.5 in order to reduce

complex co-adaptations of neurons in the nets. The implementation was derived

from the publicly available Caffe toolbox [JSD+14] based on one NVIDIA Tesla K40

GPU card. Unless otherwise specified, all the networks were initialized with the

models trained over ImageNet [KSH12]. For SFAM-CTKRP, we revised the codes

of paper [BFG+16] based on MatConvNet [VL15]. The product score fusion method

is compared with the other two commonly used late score fusion methods, average

and maximum score fusion on both datasets. This verifies that the SFAMs are likely

to be statistically independent and provide complementary information.
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Figure 5.4: Illustration of Product Score Fusion for SFAM-RP.

5.1.3.2 ChaLearn LAP IsoGD Dataset

The ChaLearn LAP IsoGD Dataset [WLZ+16] was adopted to evaluate the proposed

method. The dataset is divided into training, validation and test sets. As the test

set is not available for public usage, we report the results on the validation set. For

this dataset the training underwent 25K iterations and the learning rate decreased

every 10K iterations.

Table 5.5 shows the results of six variants of SFAM, and compares them

with methods in the literature [WGL16, WLZ+16, BFG+16, WLG+16]. Among

these methods, MFSK combined 3D SMoSIFT [WRL+14] with (HOG, HOF and

MBH) [WS13] descriptors. MFSK+DeepID further included Deep hidden IDentity

(Deep ID) feature [SWT14]. Thus, these two methods utilized not only hand-

crafted features but also deep learning features. Moreover, they extracted fea-

tures from RGB and depth separately, concatenated them together, and adopted

Bag-of-Words (BoW) model as the final video representation. The other methods,

WHDMM+SDI [WLG+16, BFG+16], extracted features and conducted classifica-

tion with ConvNets from depth and RGB individually and adopted product score

fusion for final recognition.

Compared with these methods, the proposed SFAM outperformed all of them

significantly. It is worth noting that all the depth values used in the proposed

SFAM were estimated rather than the exact real depth values. Despite the possible

estimation errors, our method still achieved promising results. Interestingly, the

proposed variants of SFAM are complementary to each other and can improve each

other largely by using product score fusion. Even though this dataset is large,

on average 144 video clips per class, it is still much smaller compared with 1200

images per class in ImageNet. Thus, directly training from scratch cannot compete

with fine-tuning the trained models over ImageNet and this is evident in the results

reported in Table 5.5. By comparing different types of SFAM, we can see that the

simple SFAM-S method achieved the best results among all types of hand-designed

SFAMs. Due to the relatively large training data, SFAM-CTKRP achieved the best

result among all the variants, even though the approximate rank pooling in the
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work reported in [BFG+16] was shown to be worse than rank pooling solved by

RankSVM [SS04]. The reasons for these two phenomenona probably are as follows:

under the inaccurate estimation of the depth values, the scene flow computation

will be affected and based on this inaccurate scene flow vectors, rank pooling can

not achieve its full efficacy. In other words, the rank pooling method is sensitive

to noise. Instead, the proposed Channel Transform Kernels cannot only exploit the

relations amongst the channels but also decrease the effects of noise after channel

transforms.

Table 5.1: Results and comparison on the ChaLearn LAP IsoGD dataset.

Method Accuracy
MFSK [WGL16, WLZ+16] 18.65%

MFSK+DeepID [WGL16, WLZ+16] 18.23%
SDI [BFG+16] 20.83%

WHDMM [WLG+16] 25.10%
WHDMM+SDI [WLG+16, BFG+16] 25.52%

SFAM-D (training from scratch) 9.23%
SFAM-D 18.86%

SFAM-S (training from scratch) 18.10%
SFAM-S 25.83%

SFAM-RP 23.62%
SFAM-AMRP 18.21%
SFAM-LABRP 23.35%
SFAM-CTKRP 27.48%

Max Score Fusion All 33.24%
Average Score Fusion All 34.86%
Product Score Fusion All 36.27%

5.1.3.3 M2I Dataset

Multi-modal & Multi-view & Interactive (M2I) Dataset [LXN+16] was adopted to

evaluate the proposed method. For evaluation, all samples were divided with respect

to the groups into a training set (8 groups), a validation set (6 groups) and a test set

(6 groups). The final action recognition results are obtained with the test set. For

this dataset the training underwent 6K iterations and the learning rate decreased

every 3K iterations.

We followed the experimental settings as in [LXN+16] and compared the results

on two scenarios: single task scenario and cross-view scenario. The baseline methods

were based on iDT features [WS13] generated from optical flow and has been shown

to be very effective in 2D action recognition. Specifically, for the BoW framework, a

set of local spatio-temporal features were extracted, including iDT-Tra, iDT-HOG,

iDT-HOF, iDT-MBH, iDT-HOG+HOF, iDT-HOF+MBH and iDT-COM (concate-
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Table 5.2: Comparison on the M2I Dataset for single task scenario (learning
and testing in the same view).

Method
Accuracy

SV FV
iDT-Tra (BoW) [LXN+16] 69.8% 65.8%

iDT-COM (BoW) [LXN+16] 76.9% 75.3%
iDT-COM (FV) [LXN+16] 80.7% 79.5%

iDT-MBH (BoW) [LXN+16] 77.2% 79.6%

SFAM-D 71.2% 83.0%
SFAM-S 70.1% 75.0%

SFAM-RP 79.9% 81.8%
SFAM-AMRP 82.2% 78.0%
SFAM-LABRP 72.0% 83.7%

Max Score Fusion All 87.6% 88.8%
Average Score Fusion All 88.2% 89.1%
Product Score Fusion All 89.4% 91.2%

Table 5.3: Comparison on the M2I Dataset for cross-view scenario.(SV → FV:
learning in the side view and test in the front view; FV → SV: learning in the
front view and testing in the side view.)

Method
Accuracy

SV → FV FV → SV
iDT-Tra [LXN+16] 43.3% 39.2%

iDT-COM [LXN+16] 70.2% 67.7%
iDT-HOG+MBH [LXN+16] 75.8% 71.8%
iDT-HOG+HOF [LXN+16] 78.2% 72.1%

SFAM-D 66.7% 65.2%
SFAM-S 68.2% 60.2%

SFAM-RP 71.6% 65.2%
SFAM-AMRP 77.7% 66.7%
SFAM-LABRP 76.9% 65.9%

Max Score Fusion All 84.7% 73.8%
Average Score Fusion All 85.3% 75.3%
Product Score Fusion All 87.6% 76.5%

nation of all descriptors); for fisher vector framework, they only used the iDT-COM

feature for evaluation. For comparisons, we only show several best results achieved

by baseline methods for each scenario. Table 5.2 shows the comparisons on the

M2I Dataset for single task scenario, that is, learning and testing in the same view

while Table 5.3 presents the comparisons for cross-view scenario. Due to the lack

of training data, SFAM-CTKRP could not converge steadily and the results varied

largely, thus, we did not show its results. For this dataset, SFAM-AMRP achieved

the best result for side view while SFAM-LABRP achieved the best result for front

view. From Table 5.2 we can see that for scene flow estimation based on real true
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depth values, the rank pooling-based method achieved better results than SFAM-D

and SFAM-S, which are consistent with the conclusion in [LXN+16]. SFAM-AMRP

achieved the best results for two cross-view scenarios which can be seen from Ta-

ble 5.3. Interestingly, even though our proposed SFAM did not solve any transfer

learning problem as in [LXN+16] but directly training with the side/front view and

testing in the front/side view, it still outperformed the best baseline method sig-

nificantly, especially in the SV → FV setting. This bonus advantage reflects the

effectiveness of proposed method.

5.2 Cooperative Training of ConvNets for RGB

and Depth Modalities

5.2.1 Prior Works and Our Contributions

RGB-D based action recognition has attracted much attention in recent years due

to the advantages that depth information brings to the combined data modality.

For example, depth is insensitive to illumination changes and includes rich 3D

structural information of the scene. However, depth alone is insufficient for rec-

ognizing some actions. In the task of recognizing human-object interactions where

texture is vital for successful recognition, depth does not capture the necessary

texture context. To exploit the complementary nature of the two modalities, sev-

eral works [JKDF14, NWJ15, KF15, HZLZ15, WZSS15, KF17] have combined the

two modalities for RGB-D action recognition and demonstrated the effectiveness

of modality fusion. Ni et al. [NWM11] constructed one color-depth video dataset

and developed two color-depth fusion techniques based on hand-designed features

for human action recognition. Liu and Shao [LS13b] proposed to adopt genetic

programming method to simultaneously extract and fuse the color and depth infor-

mation into one feature representation. Jia et al. [JKDF14] proposed one transfer

learning method that transfered the knowledge from depth information to the RGB

dataset for effective RGB-based action recognition. Hu et al. [HZLZ15] proposed

a multi-task learning method to simultaneously explore the shared and feature-

specific components for heterogeneous features fusion. Sharing similar ideas, Kong

and Fu [KF15] compressed and projected the heterogeneous features to a shared

space while Kong and Fu [KF17] learned both the shared space and independent

private spaces to capture the useful information for action recognition. However, all

these efforts are based on hand-crafted features and tend to be dataset-dependent.

The advent of deep learning has brought about the development of meth-

ods [JXYY13, TBF+15, SZ14a, WLG+15, WLG+16, JG16, DAHG+15] based on
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ConvNet or RNN. These methods take as input either RGB or depth or both of

them as independent channels with late fusion. It is noteworthy that none of these

methods address the problem of using heterogeneous inputs (such as RGB and

depth) in a cooperative manner to train a single network for action recognition.

This cooperative training paradigm allows the powerful representation capability of

deep neural network to be fully leveraged to explore the complementary information

contained in the two modalities in one single network architecture. The need for

independent processing channels is thus obviated. Motivated by this observation,

we propose to adopt deep cooperative neural networks for RGB-D action recognition

based on these two modalities.

However, it remains unclear as to how a RGB-D sequence could be effectively

represented and fed to deep neural networks for recognition. For example, one can

conventionally consider it as a sequence of still images (RGB and depth) with some

form of temporal smoothness, or as a subspace of images or image features, or as the

output of a neural network encoder. Which one among these and other possibilities

would result in the best representation in the context of action recognition is not

well understood. In addition, it is not clear either how the two heterogeneous RGB

and depth channels can be represented and fed into a single deep neural network

for the cooperative training. Inspired by the promising performance of the recently

introduced rank pooling machine [FGO+15, BFG+16] on RGB videos, the rank pool-

ing method is adopted to encode both RGB and depth sequences into compatible

dynamic images. A dynamic image contains the temporal evolution information of a

video sequence and keeps the spatio-temporal structured relationships of the video;

this has been demonstrated to be an effective video descriptor [BFG+16]. Based

on this pair of dynamic images, namely, RGB visual dynamic images (VDIs) and

depth dynamic images (DDIs), a cooperatively trained convolutional neural net-

works (c-ConvNet) is proposed to exploit the two modality features and enhance

the capability of ConvNets for cases in which the features arise either from hetero-

geneous or homogeneous sources.

There are two issues in using a single c-ConvNet for either homogeneous or het-

erogeneous modality action recognition. First, how to enhance the discriminative

power of ConvNets and second, how to reduce the modality discrepancy. Specif-

ically, in most classification cases, the conventional ConvNets can learn separable

features but they are often not compact enough to be discriminative [WZLQ16].

Modality discrepancy arises because the feature variations in different modalities

pose a challenge for a single network to learn modality-independent features for

classification. To handle these two issues, we propose to jointly train a ranking

loss and a softmax loss for action recognition. The ranking loss consists of two

intra-modality and cross-modality triplet losses, which reduces variations in both
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intra-modality and cross-modality. Together with the softmax loss, the supervision

signal intra-modality triplet loss enables the c-ConvNet to learn more discriminative

features, while the inter-modality triplet loss weakens or eliminates the modalities

distribution variations and only focuses on action distinctions. Moreover, in this

way, knowledge about the correlations between RGB and depth data are incorpo-

rated in the c-ConvNet, and enables the use of additional depth information for

the case where only RGB information is available. Furthermore, due to the image

structure of dynamic images, the proposed c-ConvNet can be fine-tuned on the pre-

trained networks on ImageNet, thus making it possible to work on small datasets.

The c-ConvNet was evaluated extensively on three datasets: two large datasets,

ChaLearn LAP IsoGD [WLZ+16] and NTU RGB+D [SLNW16] datasets, and one

small dataset, SYSU 3D HOI [HZLZ15] dataset. Experimental results achieved are

state-of-the-art. The c-ConvNet showed promising results compared with conven-

tional ConvNet, and it is suitable for use with single or both modalities for action

recognition.

The contributions of this chapter are summarized as follows: 1) to our best

knowledge, this is the first attempt to adopt ConvNet for a cooperatively trained

network taking heterogeneous input (RGB-D) for action recognition. Thus the cor-

relation between RGB and depth modalities are efficiently exploited; 2) a c-ConvNet

is proposed by jointly training both ranking and classification loss functions, and the

extra ranking loss function makes the ConvNets more discriminative and modality

independent; 3) State-of-the-art results are achieved on three datasets.

5.2.2 The Proposed Methods

The proposed method consists of three phases, as illustrated in Figure 5.5, viz., the

constructions of RGB visual dynamic images (VDIs) and depth dynamic images

(DDIs), c-ConvNets and product-score fusion for final heterogeneous-feature-based

action recognition. The first phase is an unsupervised learning process. It applies

bidirectional rank pooling method to generate the VDIs and DDIs and represented

by two dynamic images (forward (DDIf) and backward (DDIb)). In the following

sections, we describe the three phases in detail. The rank pooling method [BFG+16],

that aggregates spatio-temporal-structural information from one video sequence into

one dynamic image, is also briefly summarized.

5.2.2.1 Construction of VDIs & DDIs

Rank pooling defines a rank function that encodes the video into one feature

vector. Let the RGB/depth video sequence with k frames be represented as

< d1, d2, ..., dt, ..., dk >, where dt is the average of RGB/depth features over time
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Figure 5.5: The framework of proposed method. A c-ConvNet consists of one
feature extraction network shared by the ranking loss and softmax loss, and two
separate branches for the two losses. Two distinct c-ConvNets are adopted to
exploit bidirectional information in videos. The inputs of the two c-ConvNets are
two paired DDIs and VDIs, namely, DDIf & VDIf, and DDIb & VDIb. During
training process, the ranking loss and softmax loss are jointly optimized; during
testing process, an effective product-score fusion method is adopted for action
recognition. The softmax loss serves to learn separable features for action recog-
nition while the ranking loss encourages the c-ConvNet to learn discriminative
and modality-independent features.

up to t-frame or t-timestamp. At each time t, a score rt = ωT · dt is assigned. The

score satisfies ri > rj ⇐⇒ i > j. In general, more recent frames are associated with

larger scores. This process can be formulated as:

arg min
ω

1

2
‖ ω ‖2 +δ

∑

i>j

ξij

s.t. ωT · (di − dj) ≥ 1 − ξij, ξij ≥ 0

, (5.11)

where ξij is the slack variable. Optimizing the above equation defines the rank

function that maps a sequence of k RGB/depth video frames to a single vector ω∗.

Since this vector aggregates information from all the frames in the sequence, it can

be used as a video descriptor. The process of obtaining ω∗ is called rank pooling.

In this chapter, rank pooling is directly applied on the pixels of RGB/depth frames

and the ω∗ is of the same size as RGB/depth frames and forms a dynamic image.

Since in rank pooling the averaged feature up to time t is used to classify frame t,

the pooled feature is biased towards beginning frames of the depth sequence, hence,

frames at the beginning has more influence to ω∗. This is not justifiable in action

recognition as there is no prior knowledge on which frames are more important than

other frames. Therefore, unlike the work of Bilen et al. [BFG+16], the rank pooling

is applied bidirectionally RGB/Depth sequences to reduce such bias.

Visual comparisons of DDIf (forward), DDIb (backward), VDIf (forward) and
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DDIf DDIb VDIf VDIb

Figure 5.6: Visual comparisons of DDIf, DDIb, VDIf and VDIb. The left two
columns are the “wear a shoe” action and the right two columns are the action
“handshaking” from NTU RGB+D Dataset [SLNW16].

VDIb (backward) are illustrated in Figure 5.6. From this figure, it can be seen

that compared with VDIs, DDIs lose the texture information of the object (shoes)

and human, which is beneficial for simple action recognition without human-object

interactions but bad for interactions. The two directional DDIs and VDIs also

capture different order of information for actions which are complementary to each

other. Besides, the dynamic images also capture the structured information of an

action, that illustrates the coordination and synchronization of body parts over the

period of the action, and describe the relations of spatial configurations of human

body across different time slots.

5.2.2.2 c-ConvNet

Joint Ranking and Classification The softmax loss adopted in the ConvNet can

only learn separable features for homogeneous modalities, and is not guaranteed to

be discriminative [WZLQ16]. In order to make the ConvNet more discriminative

for both RGB and depth modalities, the softmax and ranking losses are proposed

to be jointly optimized as in Figure 5.5. Triplet loss is a type of ranking loss,

and has proven effective in several applications, such as face recognition [SKP15,

LSWT16], pose estimation [KCL16] and image retrieval [JWF16]. In this chapter,

the triplet loss is adopted as the ranking loss. In common usage, the triplet loss works

on the homogeneous triplet data, namely, anchor, positive and negative samples,

(xi
a, x

i
p, x

i
n), where (xi

a, x
i
p) have the same class label and (xi

a, x
i
n) have different

class labels. The training encourages the network to find an embedding f(x) such

that the distance between the positive sample and the anchor sample di
<a,p> =

||f(xi
a) − f(xi

p)||22 is smaller than the distance di
<a,n> = ||f(xi

a) − f(xi
n)||22 between

the negative sample and the anchor sample by a margin, α. Thus the triplet loss l
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can be formulated as:

l =
N

∑

i

[||f(xi
a) − f(xi

p)||22 − ||f(xi
a) − f(xi

n)||22 + α]+, (5.12)

where N is the number of possible triplets.

In order to make the triplet loss suitable for both homogeneous and heteroge-

neous modality-based recognition, a new triplet loss made up of both intra-modality

and inter-modality triplet losses is designed (see Figure 5.7). For the sake of com-

putational efficiency and consideration of both intra and inter modalities variations,

four types of triplets are defined in this chapter. If the anchor is one depth sam-

ple, then two positive and negative depth samples are assigned to intra-modality

triplet while two RGB samples are assigned to cross-modality triplet; if the anchor

is one RGB sample, then two positive and negative RGB samples are assigned to

intra-modality triplet while two depth samples are assigned to cross-modality triplet.

Thus, the new ranking loss can be defined as:

Lr = (lDep,Dep + lRGB,RGB) + λ(lDep,RGB + lRGB,Dep), (5.13)

where lDep,Dep denotes the intra-modality loss function of triplet

(xi
adepth

, xi
pdepth

, xi
ndepth

); lDep,RGB represents inter-modality loss function of triplet

(xi
adepth

, xi
pRGB

, xi
nRGB

); and it is analogous to lRGB,RGB and lRGB,Dep; λ trades off

between the two kinds of losses. With the constraint of these four triplet losses,

the network is forced more towards action distinction so that the cross-modality

variance is weakened or even eliminated. In this way, the knowledge about the

correlations between RGB and depth data are also incorporated in the c-ConvNet,

and enables the use of additional depth information for the case where only RGB

information is available.

Together with the softmax loss, the final loss function to be optimized in this

chapter is formulated as:

L = Ls + γLr, (5.14)

where Ls denotes the softmax loss and γ is a weight to balance the different loss

functions.

Network Structure The c-ConvNet consists of one feature extraction network,

a branch each for ranking loss and softmax loss, as illustrated in Figure 5.5. The

feature extraction network is shared by the two losses and it can be any available pre-

trained network over ImageNet. In this chapter, VGG-16 [SZ14b] network is adopted

due to its promising results in various vision tasks. The softmax loss branch is built

on the FC8 layer which is same as VGG-16. The ranking loss branch consists of one

feature mapping layer (FC9-128), one L2 normalization layer, one triplet selection
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Figure 5.7: Illustration of the intra-modality and inter-modality triplets.

layer and one ranking loss layer. The feature mapping layer built on the FC7 layer of

VGG-16, aims to learn a compact representation for the triplet embedding. Inspired

by [SKP15], L2 normalization layer is followed to constrain the embedding to live

on the hypersphere space. Triplet is selected online using one triplet selection layer

to generate the four kinds of triplets. In this layer, every training sample will be

selected as the anchor sample, and its corresponding positive and negative samples

randomly selected according to Figure 5.7. The ranking loss is built on the triplet

selection layer to minimize the loss according to Equation 5.13. In order to leverage

the bidirectional information of videos, two c-ConvNets are trained separately based

on forward and backward dynamic images. An effective product-score fusion method

is adopted for final action recognition based on FC8 layer.

5.2.2.3 Product Score Fusion

Given a test RGB and depth video sequences, two pairs of dynamic images, VDIf

& DDIf, and VDIb & VDIb are constructed and fed into two different trained c-

ConvNets. For each image pair, product score fusion is used. The score vectors

output of the weight sharing c-ConvNets are multiplied in an element-wise manner,

and then the resultant score vectors (product-score) are normalized using L1 norm.

The two normalized score vectors are multiplied, element-wise, and the max score in

the resultant vector is assigned as the probability of the test sequences. The index

of this max score corresponds to the recognized class label.

5.2.3 Experimental Results

The proposed method was evaluated on three benchmark RGB-D datasets, namely,

two large ones, ChaLearn LAP IsoGD [WLZ+16] and NTU RGB+D [SLNW16]

datasets, and a small one, SYSU 3D HOI [HZLZ15] dataset. These three datasets

cover a wide range of different types of actions including gestures, simple actions,
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daily activities, human-object interactions and human-human interactions. In the

following, we proceed by briefly describing the implementation details and then

present the experiments and results.

5.2.3.1 Implementation Details

The proposed method was implemented using the Caffe framework [JSD+14] based

on one NVIDIA Tesla K40, one TITAN X and two TITAN X Pascal GPU cards.

First, the feature extraction network was fine-tuned on both depth and RGB modal-

ities. Then, the c-ConvNet was trained 30 epochs. The initial learning rate was set

to 0.001 and decreased by a factor of 10 every 12 epochs. The batch size was set

as 50 images, with 5 actions in each batch. The network weights are learned using

the mini-batch stochastic gradient descent with the momentum set to the value 0.9

and weight decay set to the value 0.0005. The parameter γ was assigned the value

10 in order to ensure that the two losses are of comparable magnitude. Parameters

α and λ were assigned values that depend on the level of difficulty of the datasets.

Table 5.4: Results and comparison on the ChaLearn LAP IsoGD Dataset using
ConvNet and c-ConvNet.

Method Accuracy
DDIf (ConvNet) 36.13%
VDIf (ConvNet) 16.20%
DDIb (ConvNet) 30.45%
VDIb (ConvNet) 14.99%

DDIf + VDIf (ConvNet) 33.64%
DDIb + VDIb (ConvNet) 30.48%
DDIf + DDIb (ConvNet) 37.52%
VDIf + VDIb (ConvNet) 17.60%

DDIf + VDIf + DDIb + VDIb (ConvNet) 35.65%

DDIf (c-ConvNet) 36.36%
VDIf (c-ConvNet) 28.44%
DDIb (c-ConvNet) 36.55%
VDIb (c-ConvNet) 31.95%

DDIf + VDIf (c-ConvNet) 41.01%
DDIb + VDIb (c-ConvNet) 40.78%
DDIf + DDIb (c-ConvNet) 40.08%
VDIf + VDIb (c-ConvNet) 36.60%

DDIf + VDIf + DDIb + VDIb (c-ConvNet) 44.80%

5.2.3.2 ChaLearn LAP IsoGD Dataset

The ChaLearn LAP IsoGD Dataset [WLZ+16] was adopted to evaluate the proposed

method. The dataset is divided into training, validation and test sets. All three sets
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consist of samples of different subjects to ensure that the gestures of one subject in

the validation and test sets will not appear in the training set. As the test set is

not available for public usage, we report the results on the validation set. For this

dataset, the margin α was set to 0.2. The parameter, λ, was set to a value of 5 to

solve the more difficult task of learning large cross-modality discrepancy.

Table 5.5: Results and comparison on the ChaLearn LAP IsoGD Dataset with
previous papers.

Method Modality Accuracy
MFSK [WGL16, WLZ+16] RGB+depth 18.65%

MFSK+DeepID [WGL16, WLZ+16] RGB+depth 18.23%
SDI [BFG+16] RGB 20.83%

WHDMM [WLG+16] Depth 25.10%
WHDMM+SDI [WLG+16, BFG+16] RGB+depth 25.52%

SFAM [WLG+17] RGB+Depth 36.27%
Proposed Method RGB+Depth 44.80%

To compare the ConvNet with the c-ConvNet, four ConvNets (VGG-16) on

DDIf, VDIf, DDIb and VDIb were trained separately for 40 epochs, initialized with

the pre-trained models over ImageNet. The initial learning rate was set to 0.001

and decreased by a factor of 10 every 16 epochs. The momentum and weight de-

cay parameters were set similarly as c-ConvNet. It is found that 40 epochs were

enough to achieve good results; increasing the training epochs would not increase

but even decreased the results. For c-ConvNet, two c-ConvNets are trained sepa-

rately based on DDIf&VDIf, and DDIb&VDIb, as illustrated in Figure 5.5. The

trained c-ConvNet can be used for single or both modalities testing. For both cases,

the product-score fusion method was adopted to aggregate different channels. The

comparisons of ConvNet and c-ConvNet are shown in Table 5.4. From this Table it

can be seen that for depth channels, DDIf and DDIb, the c-ConvNet only increases

the accuracy slightly, but for RGB channels, VDIf and VDIb, the improvements are

over 10 percentage points. Interestingly, for ConvNet, due to the poor results of

RGB features, the fusion of additional RGB channels decreased the final accuracy

compared with those in which only depth was adopted. Meanwhile, the proposed

c-ConvNet significantly improved the RGB channel, and the fusion of two modali-

ties improved the final results. These results demonstrate that knowledge about the

correlations between RGB and depth data are incorporated in the c-ConvNet, and

enables the use of additional depth information for the case where only RGB infor-

mation is available for testing. The fusion of both forward and backward dynamic

images improved the final accuracy by around 5 percentage points. Thus justifying

that bidirectional motion information are mutually beneficial and can improve ac-

tion recognition. The results of c-ConvNet in the final fusion over the four channels



CHAPTER 5. RGB AND DEPTH BASED ACTION RECOGNITION 126

improved by nearly 10 percentage points; a strong demonstration of the effectiveness

of the proposed method.

Table 5.5 shows the comparisons of proposed method with previous works.

Previous methods include MFSK combined 3D SMoSIFT [WRL+14] with (HOG,

HOF and MBH) [WS13] descriptors. MFSK+DeepID further included Deep hidden

IDentity (Deep ID) feature [SWT14]. Thus, these two methods utilized not only

hand-crafted features but also deep learning features. Moreover, they extracted fea-

tures from RGB and depth separately, concatenated them together, and adopted

Bag-of-Words (BoW) model as the final video representation. The other methods,

WHDMM+SDI [WLG+16, BFG+16], extracted features and conducted classifica-

tion with ConvNets from depth and RGB individually and adopted product-score

fusion for final recognition. SFAM [WLG+17] adopted scene flow to extract features

and encoded the flow vectors into action maps, which fused RGB and depth data

from the onset of the process. From this table, we can see that the proposed method

outperformed all of these recent works significantly, and illustrated its effectiveness.

5.2.3.3 NTU RGB+D Dataset

The largest NTU RGB+D Dataset was adopted to evaluate the proposed method.

It consists of front view, two side views and left, right 45 degree views. This dataset

is challenging due to large intra-class and viewpoint variations. For fair comparison

and evaluation, the same protocol as that in [SLNW16] was used. It has both

cross-subject and cross-view evaluation. In the cross-subject evaluation, samples of

subjects 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35 and 38 were

used as training and samples of the remaining subjects were reserved for testing. In

the cross-view evaluation, samples taken by cameras 2 and 3 were used as training,

while the testing set includes samples from camera 1. For this dataset, the margin

α was set to 0.1 while λ was set to 2.

Similarly to LAP IsoGD Dataset, we conducted several experiments to compare

the conventional ConvNet and c-ConvNet, and the comparisons are shown in Ta-

ble 5.6. From this table, we can see that the c-ConNet learned more discriminative

features compared to conventional ConvNet. Analysis of this results and the com-

parative results on LAP IsoGD Dataset indicates that the improvements gained on

NTU RGB+D Dataset are less than those of LAP IsoGD Dataset. This is probably

due to the high accuracy already achieved on this dataset by ConvNet. From these

two comparisons it may be conclude that c-ConvNet works better on the difficult

datasets for recognition.

Table 5.7 lists the performance of the proposed method and those previous

works. The proposed method was compared with some skeleton-based methods,

depth-based methods and RGB+Depth based methods that are previously reported
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Table 5.6: Results and comparison on the NTU RGB+D Dataset using ConvNet
and c-ConvNet.

Method Cross subject Cross view

DDIf (ConvNet) 75.80% 76.50%
VDIf (ConvNet) 70.99% 75.45%
DDIb (ConvNet) 76.44% 75.62%
VDIb (ConvNet) 71.37% 76.57%

DDIf + VDIf (ConvNet) 80.77% 83.19%
DDIb + VDIb (ConvNet) 80.74% 83.04%
DDIf + DDIb (ConvNet) 81.66% 81.53%
VDIf + VDIb (ConvNet) 78.31% 83.58%

DDIf + VDIf +
DDIb + VDIb (ConvNet)

84.99% 87.51%

DDIf (c-ConvNet) 76.58% 78.22%
VDIf (c-ConvNet) 71.35% 77.41%
DDIb (c-ConvNet) 77.69% 76.55%
VDIb (c-ConvNet) 73.24% 78.02%

DDIf + VDIf (c-ConvNet) 82.64% 85.21%
DDIb + VDIb (c-ConvNet) 82.81% 85.62%
DDIf + DDIb (c-ConvNet) 82.51% 83.26%
VDIf + VDIb (c-ConvNet) 78.59% 84.68%

DDIf + VDIf +
DDIb + VDIb (c-ConvNet)

86.42% 89.08%

on this dataset. We can see that the proposed method outperformed all the previ-

ous works significantly. Curious observation of the results shown in Table 5.6 and

Table 5.7 indicates that when only one channel of the dynamic images (e.g. DDIf

or VDIf) is adopted, the proposed method still achieved the best results. This is a

strong demonstration of the effectiveness of dynamic images using ConvNets.

5.2.3.4 SYSU 3D HOI Dataset

The SYSU 3D Human-Object Interaction Dataset (SYSU 3D HOI

Dataset) [HZLZ15] was adopted to evaluate the proposed method. As this

dataset is quite noisy, especially the depth data, and the subjects are relatively

small in the scene, the ranking pooling has been affected and the constructed DDIs

and VDIs become noisy as well. Only 69% recognition accuracy was achieved by

using the noisy dynamic images. In order to reduce the noise impact, skeleton data

were used to locate the joints of subjects, and around each joint (16 joints in total

were selected for the body) one VDI or DDI was generated and the VDIs or DDIs of

all 16 joints are stitched together into one VDI or DDI as input to the c-ConvNets.

For this dataset, the margin α was set to 0 while λ was set to 1.

Similarly to the above two large datasets, we conducted the following experi-

ments to compare the ConvNet and c-ConvNet as in Table 5.8. From this table, it
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Table 5.7: Comparative accuracies of the proposed method and previous meth-
ods on NTU RGB+D Dataset.

Method Modality CS CV

Lie Group [VAC14] Skeleton 50.08% 52.76%
HBRNN [DWW15] Skeleton 59.07% 63.97%

2 Layer RNN [SLNW16] Skeleton 56.29% 64.09%
2 Layer LSTM [SLNW16] Skeleton 60.69% 67.29%

Part-aware LSTM [SLNW16] Skeleton 62.93% 70.27%
ST-LSTM [LSXW16] Skeleton 65.20% 76.10%
Trust Gate [LSXW16] Skeleton 69.20% 77.70%

HON4D [OL13] Depth 30.56% 7.26%
SNV [YT14] Depth 31.82% 13.61%

SLTEP [JCT+17] Depth 58 .22% –

SSSCA-SSLM [SNGW17] RGB+Depth 74.86% –
Proposed Method RGB+Depth 86.42% 89.08%

can be inferred that the proposed method would still work on these small simple

datasets, albeit with a slight increase the final accuracy.

Table 5.9 compares the performances of the proposed method and those of ex-

isting methods on this dataset using cross-subject settings as in [HZLZ15]. It can

bee seen that, the proposed method outperformed previous methods significantly.

Table 5.8: Results and comparison on the SYSU 3D HOI Dataset using ConvNet
and c-ConvNet.

Method Accuracy
DDIf (ConvNet) 97.92%
VDIf (ConvNet) 91.25%
DDIb (ConvNet) 92.50%
VDIb (ConvNet) 92.92%

DDIf + VDIf (ConvNet) 97.08%
DDIb + VDIb (ConvNet) 94.58%
DDIf + DDIb (ConvNet) 97.92%
VDIf + VDIb (ConvNet) 93.33%

DDIf + VDIf + DDIb + VDIb (ConvNet) 97.92%

DDIf (c-ConvNet) 97.92%
VDIf (c-ConvNet) 92.50%
DDIb (c-ConvNet) 92.50%
VDIb (c-ConvNet) 92.50%

DDIf + VDIf (c-ConvNet) 97.08%
DDIb + VDIb (c-ConvNet) 95.00%
DDIf + DDIb (c-ConvNet) 97.92%
VDIf + VDIb (c-ConvNet) 95.00%

DDIf + VDIf + DDIb + VDIb (c-ConvNet) 98.33%
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Table 5.9: Comparison of the proposed method with previous approaches on
SYSU 3D HOI Dataset.

Method Modality Accuracy
HON4D [OL13] Depth 79.22%
MTDA [ZY11] RGB+Depth 84.21%

JOULE-SVM [HZLZ15] RGB+Depth 84.89%
Proposed Method RGB+Depth 98.33%

5.2.3.5 Further Analysis

Score-fusion

In this chapter, an effective product-score fusion method was adopted to improve the

final accuracy on the four-channel dynamic images. The other two commonly used

late score fusion methods are average and maximum score fusion. The comparisons

among the three late score fusion methods are shown in Table 5.10. We can see that

the product-score fusion method achieved the best results on all the three datasets.

This verifies that the four-channel dynamic images, namely, DDIf, VDIf, DDIb and

VDIb, provide mutually complementary information.

Table 5.10: Comparison of three different late score fusion methods on the three
datasets.

Dataset
Score Fusion Method

Max Average Product
LAP IsoGD 42.01% 43.48% 44.80%

NTU RGB+D
(Cross subject)

84.69% 85.86% 86.42%

NTU RGB+D
(Cross view)

87.01% 87.98% 89.08%

SYSU 3D HOI 97.08% 97.92% 98.33%

Table 5.11: Comparison of margin α on LAP IsoGD and NTU RGB+D (Cross
subject setting) datasets in terms of accuracy(%).

Dataset
α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LAP IsoGD 40.39 40.46 41.01 40.46 39.68 40.54 39.11 36.57 29.10

NTU RGB+D 82.12 82.64 80.51 80.30 78.56 77.60 - - -

Margin parameter, α

In the triplet loss, the parameter α refers to the margin between the anchor/positive

and negative. A small alpha value enforces less on the similarities between the

anchor/positive and negative, but results in faster convergence for the loss. On the
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other hand, a large alpha value may lead to a network with good performance, but

slow convergence during training. The channel DDIf&VDIf was taken for example

on both LAP IsoGD and NTU RGB+D datasets (cross subject setting) to illustrate

the effects of this parameter, and the comparisons are listed in Table 5.11. From the

table it can be seen that on LAP IsoGD Dataset, it achieved best accuracy when

α was set to 0.2, and with the with the increase of the α, the accuracy decreased

significantly. On NTU RGB+D Dataset, best accuracy was obtained when α was

set to 0.1, and decreased dramatically when α increased. This evidence suggests

that the accuracy is sensitive to this parameter, and it is advisable to set relatively

small α values for reasonable results.

Table 5.12: Comparison of weight λ on LAP IsoGD and NTU RGB+D (Cross
subject setting) datasets in terms of accuracy(%).

Dataset
λ

0 1 2 3 5 7
LAP IsoGD 39.68 39.51 39.61 39.71 41.01 40.13

NTU RGB+D 80.36 81.15 82.64 80.18 80.06 80.11

Weight parameter, λ

In this section, the impact of the weight parameter, λ, as it balances the intra-

modality and inter-modality triplet losses is discussed. The channel DDIf&VDIf

were taken for example, and the comparisons are listed in Table 5.12. From this

Table, it can be seen that assigning a relatively large weight λ (i.e. putting more

weight on cross-modality triplet loss), will improve the final accuracy for the difficult

datasets (e.g. LAP IsoGD Dataset). However, the accuracy is comparatively less

sensitive to this parameter than α.

5.3 Summary

In this section, we proposed two methods to address the research questions 6 and 7

(Section 1.2). Based on the RGB and depth modalities, we first proposed to adopt

scene flow for action recognition. Differently from previous late fusion based methods

on RGB and depth data, scene flow extracts the real 3D motion and also explicitly

preserves the spatial structural information contained in RGB and depth modalities.

ConvNets are adopted to transform the scene flow vectors to analogous RGB color

space to take advantage of the pre-trained models over ImageNet for action recogni-

tion. In the second piece of work, we addressed the problem of using heterogeneous

inputs (RGB and depth) in a cooperative manner to train a single network for both

homogeneous and heterogeneous action recognition. It was implemented by jointly
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training both ranking and classification loss functions. State-of-the-art results were

achieved on both large-scale datasets and small datasets for the two proposed meth-

ods. However, the key advantage of pooling feature features over temporal axis is to

turn a spatial-temporal problem into a spatial problem and to enable us to leverage

CNNs. But pooling features over temporal axis may inevitably result in some loss of

spatial and/or temporal information for complex actions. For those actions, RNN

or spatial-temporal tree based method may have advantage if there are sufficient

training data.



Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions of this thesis and discusses the potential

directions of future work.

6.1 Conclusions

The central task of this thesis is human action recognition from RGB-D data. We

have studied this problem from three perspectives: skeleton-based, depth-based and

RGB and Depth based action recognition. Some conclusions are mainly drawn from

the proposed works as follows.

In chapter 3, we mainly studied the problem of skeleton-based action recognition

using hand-crafted features and ConvNets. For hand-crafted features, we proposed

to apply pattern mining method to obtain the most relevant (discriminative, repre-

sentative and non-redundant) combinations of parts in several continuous frames for

action recognition rather than to utilize all the joints as most previous works did.

The new representation is much robust to the errors in the features, because the

errors are usually not frequent patterns. For ConvNets-based action recognition on

skeleton data, we proposed to encode the both spatial configuration and dynamics

of joint trajectories into three texture images through color encoding, referred to

as Joint Trajectory Maps (JTMs), as the input of ConvNets for action recognition.

Such image-based representation enables us to fine-tune existing ConvNets models

trained on ImageNet for classification of skeleton sequences without training the

whole deep networks afresh.

In chapter 4, we mainly studied the problem of depth-based action recognition

using ConvNets. However, there are mainly two reasons that make this task difficult.

First, the preclusion of color and texture in depth maps weakens the discriminative

representation power of ConvNet models which are texture-driven feature extractor

and classifier. Second, existing depth data is relative small-scale. The conventional

pipelines are purely data-driven and learn representation directly from the pixels.

Such model is likely to be at risk of overfitting when the network is optimized

on limited training data. To handle these two restrictions, we took advantage of

the representation power of CNN on texture images and at the same time enlarge

available training data by encoding depth map sequences into texture color images

using the concepts of Depth Motion Maps (DMM) and pseudo-coloring; training

data was enlarged by scene rotation on the 3D point cloud. Inspired by the promising

132
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results achieved by rank pooling method on RGB data, we also encoded the depth

map sequences into three kinds of dynamic images with rank pooling: Dynamic

Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth

Motion Normal Images (DDMNI). These three representations takes advantages

of depth modality that is insensitive to illumination changes and provides better

geometric clues, and capture the posture and motion information from three different

levels for action recognition. However, due to the unsupervised learning process,

the rank pooling method mainly encodes the salient global features in the temporal

domain, without mining the discriminative motion patterns in both spatial and

temporal domains simultaneously, the conventional rank pooling method is weak

in fine-grained action recognition. To deal with this problem, we then proposed to

apply rank pooling method on depth map sequences at three hierarchical spatial

levels, namely, body level, part level and joint level based on our proposed non-

scaling method. Different from previous method that adopted one ConvNet for each

human body part, it is proposed to construct one structured dynamic depth image

as the input of a ConvNet for each level such that the structured dynamic images

not only preserve the spatial-temporal information but also enhance the structure

information. Such structured-image-based representation can also take advantages

of pre-trained models over ImageNet using ConvNets.

In chapter 5, two methods that adopted both RGB and depth modalities were

proposed. In the first method, we proposed to use scene flow to extract the real 3D

motion for action recognition. Based on the scene flow vectors, a new representation,

namely, Scene Flow to Action Map (SFAM) is proposed for RGB-D action recogni-

tion. We adopt a channel transform kernel to transform the scene flow vectors to an

optimal color space analogous to RGB. This transformation takes better advantage

of the trained ConvNets models over ImageNet for final classification. To exploit

the conjoint information in multi-modal features arising from heterogeneous sources

(RGB, depth), we then proposed to cooperatively train a single convolutional neural

network (named c-ConvNet) on both RGB visual features and depth features, and

deeply aggregates the two kinds of features for action recognition. The c-ConvNet

enhances the discriminative power of the deeply learned features and weakens the

modality discrepancy by jointly optimizing a ranking loss and a softmax loss for both

homogeneous and heterogeneous modality-based action recognition. Furthermore,

knowledge about the correlations between RGB and depth data are incorporated

in the c-ConvNet, and enables the use as additional depth information for the case

where only RGB information is available.
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6.2 Future Work

In this section, we first highlight some challenges for action recognition. The dis-

cussion on challenges then provides a basis to outline potential future research di-

rections.

6.2.1 Challenges

The advent of low-cost RGB-D sensors that have access to extra depth and skele-

ton data, has motivated the significant development of human motion recognition.

Promising have been achieved with deep learning approaches [WLG+16, ZLX17,

LSXW16], on several constrained simple datasets, such as MSR-Action3D, Berkeley

MHAD and SBU Kinect Interaction. Despite this success, results are far from sat-

isfactory on some large complex datasets, such as ChaLearn LAP IsoGD and NTU

RGB+D datasets. In fact, it is still very difficult to build a practical intelligent

recognition system. Such goal poses several challenges:

Encoding temporal information. There are several methods to encode tem-

poral information. We can use CNN to extract frame-based features and then

conduct temporal fusion [KTS+14], or adopt 3D filter and 3D pooling layers to

learn motion features [TBF+15], or use optical/scene flow to extract motion infor-

mation [SZ14a, WLG+17], or encode the video into images [BFG+16, WLG+16,

WLHL16], or use RNN/LSTM to model the temporal dependences [DAHG+15,

DWW15, LWH+17]. However, all these approaches have their drawbacks. Temporal

fusion method tends to neglect the temporal order; 3D filters and 3D pooling filters

have a very rigid temporal structure and they only accept a predefined number of

frames as input which is always short; optical/scene flow methods are computation-

ally expensive; sequence to images methods inevitably loses temporal information

during encoding; the weight sharing mechanism of RNN/LSTM methods make the

sequence matching imprecise, but rather approximated, so an appropriate distance

function must be used to predict the match probability. In fact, there is still no

perfect method for temporal encoding, and how to model temporal information is a

big challenge.

Small training data. Most of available deep learning methods rely on large

labeled training data [KTS+14, TBF+15]. However, in practical scenarios, ob-

taining large labeled training data is costly and laborious, even impossible, espe-

cially in medical-related applications. It has been shown that fine-tuning motion-

based networks with spatial data (ImageNet) is more effective than training from

scratch [SZ14a, WLHL16, BFG+16, WLG+17]. Strategies for data augmentation

are also commonly used [WLG+16]. Likewise, training mechanisms to avoid overfit-
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ting and control learning rate have also been studied [SHK+14]. However, it is still

a challenge to effectively train deep networks from small training data.

Viewpoint variation and occlusion. Viewpoint variation might cause sig-

nificantly different appearance of the same action, and occlusion would crash the

skeleton data. Occlusion includes inter-occlusion caused by other subjects or ob-

jects, and self-occlusion created by the object/subject itself. Most of available

datasets require subjects to perform actions in a visible and restricted view to

avoid occlusion, and this results in limited view data collection and less occlu-

sion. However, occlusion is inevitable in practical scenarios, especially for in-

teractions. This makes it challenging to isolate individuals in overlapping area

and extract features of a unique person; leading to the ineffectiveness of many

of available approaches [DWW15, SLNW16, LHWL17]. Possible solutions to

handle viewpoint variation and occlusion include the use of multi-sensor sys-

tems [OCK+13, WNX+14, SLNW16, CYY+17]. The multi-camera systems is able

to generate multi-view data, but the drawback is the requirement of synchroniza-

tion and feature/recognition fusion among different views. This usually increases

processing complexity and computation cost. Several methods have been proposed

to handle the viewpoint variation and occlusion. [WLG+15] proposed to rotate the

depth data in 3D point clouds through different angles to deal with viewpoint invari-

ance; spherical coordinates system corresponding to body center was developed to

achieve view-independent motion recognition [HWPVG17]. However, these meth-

ods become less effective when occlusion occurs. How to effectively handle occlusion

using deep learning methods is a new challenge.

Execution rate variation and repetition. The execution rate may vary

due to the different performing styles and states of individuals. The varying rate

results in different frames for the same motion. Repetition also bring about this

issue. The global encoding methods [HLWL16, KAB+17, LLC17] would become

less effective due to the repetition. The commonly used methods to handle this

problem is up/down sampling [ZLX+16, ZLX17, LHWL17]. However, sampling

methods would inevitable bring redundant or loss of useful information. Effective

handling of this problem remains a challenge.

Cross-datasets. Many research works have been carried out to recognize hu-

man actions from RGB-D video clips. To learn an effective action classifier, most of

the previous approaches rely on enough training labels. When being required to rec-

ognize the action in a different dataset, these approaches have to re-train the model

using new labels. However, labeling video sequences is a very tedious and time-

consuming task, especially when detailed spatial locations and time durations are

required. Even though some works have studied this topic [CLH10, SS14, ZLO17],

they are all based on hand-crafted features, and the results are far from satisfac-
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tory due to the large distribution variances between different datasets, including

different scenarios, different modalities, different views, different persons, and even

different actions. How to deal with cross-datasets RGB-D motion recognition is a

big challenge.

Online motion recognition. Most of available methods rely on segmented

data, and their capability for online recognition is quite limited. Even though con-

tinuous motion recognition is one improved version where the videos are untrimmed,

it still assumes that all the videos are available before processing. Thus, proposal-

based methods [SWC16, WXLVG17] can be adopted for offline processing. Differ-

ently from continuous motion recognition, online motion recognition aims to receive

continuous streams of unprocessed visual data and recognize actions from an un-

segmented stream of data in a continuous manner. Generally speaking, there are

two main approaches for online recognition, sliding window-based and RNN-based.

Sliding window-based methods [CYY+17] are simple extension of segmented-based

action recognition methods. They often consider the temporal coherence within the

window for prediction and the window-based predictions are further fused to achieve

online recognition. However, the performance of these methods are sensitive to the

window size which depends on actions and is hard to set. Either too large or too

small a window size could lead to significant drop in recognition. For RNN-based

methods [MYG+16, LLX+16], even though promising results have been achieved,

it is still far from satisfactory in terms of performance. How to design effective

practical online recognition system is a big challenge.

Action prediction. We are faced with numerous situations in which we must

predict what actions other people are about to do in the near future. Predicting

future actions before they are actually executed is a critical ingredient for enabling

us to effectively interact with other humans on a daily basis [Ryo11, HDlT14, LCS14,

VOL+14]. There are mainly two challenges for this task: first, we need to capture

the subtle details inherent in human movements that may imply a future action;

second, predictions usually should be carried out as quickly as possible in the social

world, when limited prior observations are available. Predicting the action of a

person before it is actually executed has a wide range of applications in autonomous

robots, surveillance and health care. How to develop effective algorithms for action

prediction is really challenging.

6.2.2 Future Research Directions

The discussion on the challenges faced by available methods allows us to outline

several future research directions for the development of deep learning methods for

motion recognition. While the list is not exhaustive, they point at research activities



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 137

that may advance the field.

Hybrid networks. Most of previous methods adopted one type of neural

networks for motion recognition. As discussed, there is no perfect solution for

temporal encoding using single networks. Even though available works such as

C3D+ConvLSTM [ZZSS17] used two types of networks, the cascaded connection

makes them dependent on each other during training. How to cooperatively train

different kinds of networks would be a good research direction; for example, using

the output of CNN to regularize RNN training in parallel.

Simultaneous exploitation of spatial-temporal-structural information.

A video sequence has three important inherent properties that should be considered

for motion analysis: spatial information, temporal information and structural infor-

mation. Spatial information refers to the spatial configuration of human body at an

instant of time (e.g. relative positions of the human body parts); temporal informa-

tion characterizes the spatial configuration of the body over time or the dynamics

of the body; structural information refers to the coordination and synchronization

of body parts over the period of actions, and it describes the relations of spatial

configurations of human body across different time slots. Several previous methods

tend to exploit the spatio-temporal information for motion recognition, however,

structural information contained in the video is rarely explicitly mined. Concurrent

mining of these three kinds of information with deep learning would be an interesting

topic in the future [JZSS16].

Fusion of multiple modalities. While significant progress has been achieved

by singly using RGB, skeleton or depth modality, effective deep networks for fusion

of multi-modal data would be a promising direction. For example, methods such as

SFAM [WLG+17] and PRNN [SK17] have pioneered the research in this direction.

The work SFAM [WLG+17] proposed to extract scene flow for motion analysis. The

strategy of fusing the RGB and depth modalities at the outset allowed the capture

of rich 3D motion information. In PRNN [SK17] the concept of privileged informa-

tion (side information) was introduced for deep networks training and showed some

promise. So far, most methods considered the three modalities as separate channels

and fused them at later or score stage using different fusion methods without co-

operatively exploiting their complementary properties. Cooperative training using

different modalities would be a promising research area.

Large-scale datasets. With the development of data-hungry deep learning

approach, there is demand for large scale RGB-D datasets. Even though there are

several large datasets, such as NTU RGB+D Dataset [SLNW16] and ChaLearn LAP

IsoGD Dataset [WLZ+16], they are focused on specific tasks. Various large-scale

RGB-D datasets are needed to facilitate research in this field. For instance, large-

scale fine-grained RGB-D motion recognition datasets and large-scale occlusion-
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based RGB-D motion recognition datasets are urgently needed.

Zero/One-shot learning. As discussed, it is not always easy to collect large

scale labeled data. Learning from a few examples remains a key challenge in ma-

chine learning. Despite recent advances in important domains such as vision and

language, the standard supervised deep learning paradigm does not offer a satisfac-

tory solution for learning new concepts rapidly from little data. How to adopt deep

learning methods for zero/one shot RGB-D-based motion recognition would be an

interesting research direction. Zero/one-shot learning is about being able to recog-

nize gesture/action classes that are never seen or only one training sample per class

before. This type of recognition should carry embedded information universal to all

other gestures/actions. In the past few year, there are some works on zero/one-shot

learning. For example, Wan et al. [WGL16] proposed the novel spatial-temporal fea-

tures for one-shot learning gesture recognition and have got promising performances

on Chalearn Gesture Dataset CGD) [GAJE14]. For zero-shot learning, Madapana

and Wachs [MW17] proposed a new paradigm based on adaptive learning which it

is possible to determine the amount of transfer learning carried out by the algo-

rithm and how much knowledge is acquired for a new gesture observation. However,

the mentioned works are used traditional methods (such as bag of visual words

model [WRLD13]). How to adopt deep learning methods for zero/one shot RGB-D

based motion recognition would be an interesting research direction when it used

only very few training samples.

Outdoor practical scenarios. Although lots of RGB-D datasets have been

collected during the last few years, there is a big gap between the collected datasets

and wild environment due to constrained environment setting and insufficient cat-

egories and samples. For example, most available datasets do not involve much

occlusion cases probably due to the collapse of skeleton dataset in case of occlusion.

However, in practical scenarios, occlusion is inevitable. How to recover or find cues

from multi-modal data for such recognition tasks would be an interesting research

direction. Besides, with the development of depth sensors, further distances could

be captured, and recognition in outdoor practical scenarios will gain the attention

of researchers.

Unsupervised learning/Self-learning. Collecting labeled datasets are time-

consuming and costly, hence learning from unsupervised video data is required.

Mobile robots mounted with RGB-D cameras need to continuously learn from the

environment and without human intervention. How to automatically learn from the

unlabeled data stream to improve the learning capability of deep networks would be

a fruitful and useful research direction. Generative Adversarial Net (GAN) [HE16]

has got much processes recently in image generation task, such as face generation,

text-to-image task. Besides, it also can be used for recognition task. For example,
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Luan et al. [TYL17] proposed a Disentangled Representation learning Generative

Adversarial Networks (DR-GAN) for pose-invariant face recognition. Therefore, we

believe the GAN-based techniques also can be used for action/gesture recognition,

which is a great excited direction for researches. Carl et al. [VPT16b] proposed a

generative adversarial network for video with spatial-temporal convolutional archi-

tecture that untangles the scene’s foreground from backgrounds. This is an initial

works to capitalize on large amounts of unlabeled video in order to learn a model of

scene dynamic for both video recognition tasks (e.g. action classification) and video

generation tasks (e.g. future prediction). Increasing research will be reported in the

coming years on GAN-based methods for video-based recognition.

Online motion recognition and prediction. Online motion recognition and

prediction is required in practical applications, and arguably this is the final goal of

motion recognition systems. Differently from segmented recognition, online motion

recognition requires the analysis of human behavior in a continuous manner, and

prediction aims to recognize or anticipate actions that would happen. How to design

effective online recognition and prediction systems with deep learning methods has

attracted researchers’ eyes, for example, Vondrick et al. [VPT16a] introduced a

framework that capitalizes on temporal structure in unlabeled video to learn to

anticipate human actions and objects based on CNN, and it is likely to emerge as

an active research area.
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