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ABSTRACT Human action recognition using a camera-based surveillance system remains a challenging

task. In particular, action recognition is difficult when a human is not visible in an image captured in a

dark environment. The existing studies have utilized near-infrared (NIR) and thermal cameras to solve this

problem. Compared to NIR cameras, thermal cameras enable long- and short-distance objects to be visible

without an additional illuminator. However, thermal cameras have two major disadvantages: a halo effect

and a temperature similarity. A halo effect occurs around an object with a high temperature. In a human

object, such a halo effect is similar to a shadow under the body area. It is more difficult to segment a

human area from an image with a halo effect. Moreover, if the background and human object have similar

temperatures, it becomes more difficult to segment the human area. These disadvantages influence not only

the accuracy of the segmentation of the human area but also the performance of human action recognition.

Unfortunately, no studies have considered these issues. To address these problems, this study proposes the

cycle-consistent generative adversarial network (CycleGAN)-based methods for removing halo effects from

thermal images and restoring the areas of the human bodies. In addition, this study also considered a method

for creating a skeleton image from a thermal image to analyze body movements. To extract more spatial and

temporal features from skeleton image sequences thus created, a method for human action recognition that

combines a convolutional neural network (CNN) and long short-term memory (LSTM) was proposed. In an

experiment using an open database (Dongguk activities & actions database (DA&A-DB2)), the proposed

method demonstrated a better performance than the existing methods.

INDEX TERMS Human action recognition, halo effect, image restoration and skeleton generation, thermal

camera, CNN stacked LSTM, and CycleGAN.

I. INTRODUCTION

Human action recognition using a camera-based surveillance

system remains a challenging task. In particular, action recog-

nition is difficult when a human is not visible in an image

captured in a dark environment. Existing studies have utilized

near-infrared (NIR) and long wavelength infrared (LWIR)

cameras to solve this problem. LWIR cameras (thermal cam-

eras) enable long- and short-distance objects to be visible

without an additional illuminator, whereas NIR cameras need

an additional illuminator to make only short-distance objects

visible in a dark environment. A thermal camera makes

an object visible in either a dark or bright environment by
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measuring temperatures ranging from −40 ◦C to +80 ◦C.

This study utilized a thermal camera to acquire data on long-

distance objects in either a dark or bright environment.

A halo effect and temperature similarity are two challenges

in images obtained using a thermal camera. A halo effect

occurs around an object with a high temperature. The higher

temperature of the object, the larger the halo effect. Such

a halo effect is similar to a shadow under the area of a

human body in a thermal image. However, in a thermal image,

the pixel value of the area of the object is quite similar to that

of the area with a halo effect. By contrast, in a visible image,

the pixel value of the shadow is lower than that of the area of

the object. For this reason, segmenting a human area from an

image with a halo effect is more difficult than segmenting a

human area from an image with a shadow. The size and pixel
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TABLE 1. Summary of comparisons between the proposed method and previous studies.

FIGURE 1. Example of camera setup and experiment environment.

value of a halo effect depend on the material of the ground

upon which the object stands. In addition, because the area of

a halo effect is usually connected with that of an object in a

thermal image, it is difficult to segment the area of the human.

When the background and human have similar temperatures,

segmenting the area of the human becomes more difficult.

To date, no studies have dealt with these issues.

This study proposes a new method to address these issues.

The proposed method utilizes convolutional neural network

(CNN)- and cycle-consistent generative adversarial network

(CycleGAN)-based methods for removing halo effects from

thermal images and restoring the areas of the human bodies.

This study also examines a new skeleton generation method

to analyze the body movement of a long-distance object for

action recognition in a thermal image. Depending on the tem-

perature of the environment, the pixel value of the entire body

area of a long-distance object in a thermal image is frequently

either 0 (black) or 255 (white). In either case, body joint

features such as the ankles, knees, hips, wrists, elbows, and

shoulders are barely visible and difficult to detect. To solve

this problem, a deep learning-based method for converting

original thermal images into skeleton images is examined.

No existing studies have utilized a deep learning-based

method for recognizing the action of a long-distance object

in a thermal image to address the above issues. This study

attempts to extract more spatial and temporal features,

and proposes a method for human action recognition that

combines a CNN with long short-term memory (LSTM).

The remaining sections of this paper are organized as

follows. Section II reviews the existing studies dealing with

action recognition, skeleton generation, and deep learn-

ing. Section III examines the contributions of the proposed

method. Section IV describes the proposed method in detail.

Section V presents the experiment results and those of a
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FIGURE 2. Overall flowchart of the proposed method.

FIGURE 3. Example of captured thermal images and results of background subtraction method:
(a), (b) thermal images, (c), (d) results of background subtraction using images in (a) and (b), respectively.

comparative experiment. Finally, Section VI provides some

concluding remarks.

II. RELATED WORKS

Current methods of human action recognition can be clas-

sified mainly into two groups: deep learning-based meth-

ods and handcrafted feature-based methods without deep

learning.

Among the existing studies on the latter group, the meth-

ods in [1] and [2] extract invariant Fourier descriptors for

the scale and rotation from silhouette images and utilize

those features for human action recognition through a sup-

port vector machine (SVM) and neural network (NN). How-

ever, although they are useful in expressing the shapes of

objects, Fourier descriptors have difficulty expressing dif-

ferent actions with the same shape. A person standing has
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FIGURE 4. Image restoration using CycleGAN.

FIGURE 5. Example of paired and unpaired training data. Examples of (a) paired and
(b) unpaired images.

the same shape as another person lying down but they are

both conducting a different type of action. In [3], human

action recognition is applied using a local descriptor-based

scale invariant feature transform (SIFT) and Zernike moment

features. However, it takes a long time to extract such fea-

tures during the test phase. In [4]–[6], local spatiotemporal

features are created by applying a corner detection method

and attempting an action recognition using an SVM. Unfortu-

nately, the background is not clear, and when the background

includes different objects, the number of detected corners

increases, thereby decreasing the accuracy of the human

action recognition. In [7] and [8], motionlets and motion

saliency methods are proposed, which demonstrate high

accuracy only when an object has been clearly segmented

from its background. In [4], [5], and [9], methods for extract-

ingmotion features using space-time interest points and a his-

togram of oriented gradients (HoG) are proposed. However,

these methods require a long time to extract the features and

are sensitive to noise and illumination. In [9]–[14], various

handcrafted features such as a gait flow image (GFI), gait

history image (GHI), motion history image (MHI), and accu-

mulated motion image (AMI) are extracted to achieve human

action recognition. When these features are extracted, body

areas are detected in continuous images to obtain the gravity

center points of each area. Based on the gravity center points,

all areas were combined into a single image. However, the

accuracy of the gravity center points was lowered based on

the detection accuracy of the body areas and the background
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TABLE 2. Detailed description of generator structure (Conv, ReLU, BN, and ResBlock indicate the convolutional layer, rectified linear unit, batch
normalization layer, and residual block, respectively).

TABLE 3. Detailed description of residual block (Conv, ReLU, BN, and Add indicate the convolutional layer, rectified linear unit, batch normalization layer,
and addition function, respectively).

noise, which resulted in a decrease in extraction accuracy for

handcrafted features. In [15], a method for achieving faint

action recognition is considered, which utilizes information

of the width and height of the human areas detected in thermal

images. In [16], human action recognition is conducted based

on a convexity defect feature point. However, the accuracy

of the action recognition was not satisfactory because many

inaccurate feature points were detected owing to the back-

ground noise. In addition, it takes a long time to calculate

the contours, polygons, convex hulls, and convexity defects

in each frame. In [17], the gait energy image (GEI) based

ethnicity determination method is examined. In [18], action

recognition is conducted by extracting point-cloud features

from silhouette sequences. All studies mentioned thus far

were conducted based on handcrafted features, and deep

learning-based human action recognition has been attempted

in the following ways.

In [19], two CNNs are used, namely, one utilizing optical

flow features and the other utilizing the original images as

inputs for action recognition. In [20] and [21]; [22]–[24];

and [19], [25], and [26] depth images, joint map data, and

visible light images are used, respectively, for action recog-

nition. Such input data contain many spatial features but

lack temporal features. To solve this problem, the study

in [27] utilized skeleton information as the input of a recur-

rent neural network (RNN) for action recognition. How-

ever, an RNN causes a vanishing and exploding problem.

For example, as the length of the sequential input features

increases, important information may disappear, or trivial

informationmay be accumulated. In [28]–[30], attempts were

made to address this problem by proposing LSTM network-

based action recognition methods using skeleton informa-

tion. The LSTM-based methods use input, output, and forget

gait functions to solve the vanishing and exploding prob-

lem. For action recognition, the study in [31] used joint

distance maps as the input of CNN and skeleton joint infor-

mation as the input of LSTM to extract spatial and temporal

information, and combined their output scores. In [32]–[34],
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TABLE 4. Detailed description of structure of discriminator CNN (Conv, LReLU, and InsNorm indicate the convolutional layer, leaky rectified linear unit,
and instance normalization layers, respectively).

a simultaneous learning method connecting a CNN and an

LSTM is proposed.

However, there have been no recognition methods using

a CNN and an LSTM for the various actions of long-

distance objects. This study proposes a method for rec-

ognizing various actions including waving with one hand,

waving with two hands, punching, kicking, sitting, stand-

ing, walking, running, lying down, leaving, and approaching.

The proposed CNN-LSTM structure is interconnected, and

sequential learning is conducted using input images. There

are only a few existing studies on human action recogni-

tion using a thermal camera. Some of the existing stud-

ies [9], [13], [15] did not utilize a deep learning algorithm

such as CNN-LSTM. The present study proposes a thermal

camera-based method for recognizing various actions of a

long-distance object under both dark and bright environments

using a deep learning algorithm.

In addition, this study also proposes a human action recog-

nition method that generates and utilizes skeleton images

from thermal images. The existing action recognition meth-

ods of the studies in [22]–[24], [27], [29], [31], and [35],

which are based on skeleton information, utilized skeletons

generated beforehand. There are already existing methods for

extracting skeleton information from depth images [36]–[39],

visible light images [40], [41], and thermal images [42].

However, no methods that can generate skeleton images

directly from thermal images have been proposed. There

are also no methods for generating a skeleton image of a

long-distance object from thermal images obtained under

various environments. To improve the performance of the

proposed human action recognition method, this study exam-

ined CycleGAN-based methods of image restoration and the

removal of a halo effect using thermal images obtained under

various environments.

Table 1 shows a brief summary of related studies, which

are compared with the proposed method.

FIGURE 6. Example of captured thermal images and results of
background subtraction method: (a), (b) thermal images and
(c), (d) results of background subtraction using images in (a) and (b),
respectively.

III. CONTRIBUTIONS

Our method is a novel approach compared to previous studies

in the following ways:
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FIGURE 7. Halo effect removal using CycleGAN.

FIGURE 8. Examples of previous skeleton generation methods and captured thermal images.
(a) A visible light image, (b) an example of joint detection, (c) a binary image of (a), (d) an example
of skeleton generation using the image in (c), and (e), (f) captured thermal images.

FIGURE 9. Skeleton generation using the proposed method.

FIGURE 10. Human action recognition using CNN-LSTM.

- To date, no CNN-LSTM based methods have been pro-

posed to recognize various actions of a long-distance

object in thermal images, such as waving with one

hand, waving with two hands, punching, kicking,

sitting, standing, walking, running, lying down, leaving,

and approaching. Accordingly, this study proposes a

CNN-LSTM-based method for recognizing various

actions of a long-distance object in thermal images.
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FIGURE 11. Example of images of human actions: (a) one hand waving, (b) two hands waving, (c) punching, (d) kicking,
(e) sitting, (f) standing, (g) walking, (h) running, (i) lying down, (j) leaving, and (k) approaching.

TABLE 5. Detailed description of structure of the CNN-LSTM (Conv, Pool, ReLU, and Fc indicate the convolutional layer, max pooling, rectified linear unit,
and fully connected layers, respectively. Nine classes are used).

- There are no methods for changing low-quality ther-

mal images obtained under various environments into

high-definition (HD) thermal images. Accordingly, this

study proposes a method for generating HD ther-

mal images from low-quality thermal images of long-

distance objects through CycleGAN. To develop the

proposed method, hyper-parameters, the number of fil-

ters, the numbers of convolution layers, and the sizes

of the filters in the existing CycleGAN were modified

according to the experiments.

- There are no methods for analyzing and removing halo

effects of objects in various long-distance environments.

Accordingly, this study proposes a halo effect removal

method using the modified CycleGAN considering its

high ability of image transformation.

- Some methods for matching a short-distance object with

a skeleton or extracting skeleton information in a ther-

mal image have been developed. However, no method

has been proposed for generating a skeleton image from

a thermal image. In addition, only a few studies on

applying a thermal image-based skeleton have been con-

ducted. Accordingly, this study proposes a method for

generating a skeleton image directly from an original

thermal image through a deep learning algorithm.

- The developed CNN model, the data generated, and the

Dongguk activities and actions database (DA&A-DB2)
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FIGURE 12. Example of conventional LSTM architecture.

FIGURE 13. Our CNN-LSTM architecture.

were released [43] for a fair performance evaluation by

other researchers.

IV. PROPOSED METHOD

A. CAMERA SETTINGS AND HUMAN DETECTION

This section provides a simple description regarding the

camera setup and human detection method. Figure 1 shows

the camera setup and experimental environment. A thermal

camera can acquire images (depth of 14 bits and size of

640 pixels × 480 pixels) at a rate of 30 fps [44]. During the

experiment, a thermal camera was placed at various heights

(5–10 m) under various environments to acquire the images.

Settings similar to those of a conventional CCTV camera

were applied.

Because it is difficult to detect an object under visible

light in images obtained under various environments (a dark

environment, variations in illumination, and severe shadows),

this study utilized a thermal camera. The details of the object

detection method are shown in [45]. As indicated in the

thermal image on the right side of Figure 1, a larger ROI (red

dashed box) than the detected area (green) being capturedwas

applied.

B. OVERALL PROCEDURE OF PROPOSED METHOD

Figure 2 shows an overall flowchart of the proposed method.

As indicated in Figure 1, the original cropped image was used

as the input. During the halo effect removal phase, the halo

effect is removed from the input image using a CycleGAN

network. In the skeleton generation phase, a skeleton is gen-

erated from a thermal image using aCNN. In the action recog-

nition phase, human action recognition was conducted using

a CNN-LSTM and sequential skeleton images. The details

of each phase are described step by step in the following

section.

C. IMAGE RESTORATION

1) OVERALL PROCEDURE OF IMAGE RESTORATION

This section describes the method for restoring the thermal

camera images. When thermal images are obtained in vari-

ous environments, if the background and object have similar

temperatures, the images acquired are similar to those shown

in Figure 3(a). By contrast, if the background and object

have different temperatures, the images acquired are similar

to those shown in Figure 3(b). When the object was detected

in the images of Figure 3(a), a portion of the human body
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FIGURE 14. Examples from each of the 16 sub-datasets: (a)–(p) sub-datasets I–XVI.
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TABLE 6. Description of experimental database.

area disappeared or was cut out, as shown in Figure 3(c),

which decreased the detection accuracy for the object. How-

ever, when the object was detected in the images shown in

Figure 3(b), the results were good, as indicated in Figure 3(d).

Accordingly, this study utilized the CycleGAN network [46]

and conducted image restoration, as illustrated in Figure 4,

to convert the thermal images of Figure 3(a) into those of 3(b).

As shown in Figure 4, the cropped thermal image mentioned

in Section IV.A was used as the input.

In Figure 4, Conv, BN, Relu, and Add denote the con-

volutional layer, batch normalization layer, rectified lin-

ear unit, and addition function, respectively. As illustrated

in Figure 5(b), unpaired training data were used to train

CycleGAN.

2) DESCRIPTION OF CycleGAN AND DISCRIMINATOR

CNN STRUCTURES

This section describes the CycleGANnetwork structures used

for the image restoration methods in detail. CycleGAN shows

the high-transformation results obtained from amodel trained

using unpaired training data. Because the proposed image

restoration method used unpaired training data, it applied

CycleGAN. In addition, before being used, the original

CycleGANmodel was fitted to our database bymodifying the
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hyper-parameters, number of filters, number of convolution

layers, and size of the filters, as indicated in Tables 2–4.

Tables 2–4 describe the detailed structures of the generator,

residual block, and discriminator used by the CycleGAN,

respectively.

D. REMOVAL OF HALO EFFECT

This section describes the method of the halo effect removal.

As shown in Figure 6(a), a halo effect appears like a

shadow under the area of the human body. This study exam-

ined methods for removing halo effects, as indicated in

Figure 6(b), from the images shown in Figure 6(a). When an

object is detected in the images of Figure 6(a), the body area

is connected to the area of the halo effect, as shown in the

images of Figure 6(c). Thus, the accuracy of the detection

method for the object is degraded. However, if the object is

detected in the images of Figure 6(b), the detection results

are satisfactory, as shown in Figure 6(d). For the halo effect

removal method, the existing CycleGAN structure was fitted

to our database by modifying the hyper-parameters, number

of filters, number of convolution layers, and size of the filters,

as presented in Tables 2–4. The cropped thermal image men-

tioned in Section 4.1 was used as the input of the CycleGAN

network, as illustrated in Figure 7. Here, Conv, BN, Relu,

and Add denote the convolutional layer, batch normalization

layer, rectified linear unit, and addition function, respectively,

as shown in Figure 7. As illustrated in Figure 5(b), unpaired

training data were used to train the CycleGAN.

E. SKELETON GENERATION

This section describes the method of skeleton generation. It is

difficult to detect an object or extract skeleton information

from an image obtained using a visible light camera in a dark

environment, where a person is barely visible. Some methods

for detecting a human body in a dark environment using a

thermal camera have been developed. However, no method

has been proposed to extract the skeleton information of a

detected object.

Accordingly, this study proposes a method for extract-

ing a skeleton image from a thermal image obtained in

a dark environment. The existing methods for extracting

skeleton information from images obtained in a bright envi-

ronment were implemented, as shown in Figure 8(a)–(d).

Because the image in Figure 8(a) has much more spatial

information of the joints than the image in Figure 8(c),

a skeleton was made by detecting the locations of the joints,

as shown in Figure 8(b) [40], [41]. In the case of Figure 8(c),

where little spatial information of the joint is given, a thin-

ning method was applied to make a skeleton, as shown in

Figure 8(d) [47]–[50].

However, Figures 8(e) and 8(f) may have spatial infor-

mation, as shown in Figure 8(a), or no such information,

as shown in Figure 8(c), depending on the environment where

the thermal image is acquired. Moreover, if the method of

Figure 8(d) is applied to the image of Figure 8(e), or the

method of Figure 8(b) is applied to that of Figure 8(f),

FIGURE 15. Example of camera setup.

TABLE 7. Average distance of camera setup used to collect the
16 sub-datasets (unit: meters).

TABLE 8. Numbers of frames and the types of human actions in our
database.

the desired skeleton has difficulty being generated. Thus,

this study proposes a method for generating a skeleton from

thermal images, as shown in Figures 8(e) and 8(f).

We generate skeleton image by using the open source of

CNN proposed in [51]. The network in [51] was originally

proposed for style transfer and super-resolution reconstruc-

tion based on perceptual loss, and we adopted this network

for skeleton generation. The detailed explanations for this

CNN can be referred to [51]. The structure of this CNN was

the same as that of generator of CycleGAN. The structure

was fitted to our database bymodifying the hyper-parameters,

number of filters, number of convolution layers, and size of

the filters, as shown in Table 2.

As illustrated in Figure 9, the original thermal image was

used as the input image of the CNN, and the skeleton image

was used as the output image. A skeleton in an image for

training is created, and was set to be thicker than the con-

ventional skeleton. In an additional experiment, the output

image extracted by a CNN was postprocessed (size filtering

and morphological operations) to generate a narrow skeleton

in an image, as illustrated in Figure 9.
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FIGURE 16. Examples of image restoration. (a)–(f) examples 1–6, respectively, where the
first, second, third, and fourth images are the original image, restored image, binarized
version of the original image, and binarized version of the restored image, respectively.

F. ACTION RECOGNITION

1) OVERALL PROCEDURE OF ACTION RECOGNITION

We propose an action recognition method that extracts the

action information of a long-distance object from ther-

mal images obtained in a dark or bright environment by

using a CNN stacked LSTM (CNN-LSTM). As illustrated

in Figure 10, the human action recognition was conducted

by adopting a sequence of skeleton images as the input.

As shown in Figure 11, this study attempted to recognize

11 actions such as waving with one hand, waving with two

hands, punching, kicking, sitting, standing, walking, running,

lying down, leaving, and approaching.

2) DESCRIPTION OF CNN-LSTM STRUCTURE

To solve the problem of long-term dependencies, an LSTM

was applied to various research areas such as action
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FIGURE 17. Examples of halo effect removal. (a)–(f) show examples 1–6, respectively, where the first,
second, third, and fourth images are the original image, halo effect removed image, binarized version
of the original image, and binarized version of the halo effect removed image, respectively.

recognition [32], text recognition [52], gait recognition [53],

caption generator [54], speech recognition [55], person

re-identification [56], and gait diagnosis [57]. Regarding the

long-term memory and temporal information, LSTM-based

methods have turned out to be most effective in solving the

vanishing and exploding gradient problem. Accordingly, this

study utilized an LSTM to extract temporal information from

sequential images. In addition, this study also connected a
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FIGURE 18. Examples of skeleton generation. Left and right image pairs in (a)–(d) show examples 1–8,
respectively, where the first and third images are the original images whereas the second and fourth images
are the generated skeleton images.

CNN to an LSTM to extract the spatial features. To enhance

the accuracy of human action recognition, various CNN struc-

tures were redesigned and tested. Table 5 shows the most

appropriate structure as demonstrated through the test results.

The optimal frame numbers (5 frames) for CNN-LSTM

of Table 5 were experimentally determined with training

data, which showed the highest accuracy of human action

recognition.

In Figure 12, x(t), y(t-1), and c(t-1) denote the current

input, previous output, and previous cell values; y(t) and c(t)

indicate the current output and cell values; i(.), f (.), and o(.)

indicate the input, forget, and output gait functions (sigmoid

function); and I (.) and O(.) are the input and output acti-

vation functions (tanh function), respectively. Finally, blue

arrows, red box and dashed black boxes indicate weighted

connections, gait functions and previous information,

respectively.

V. EXPERIMENTAL RESULTS

A. DESCRIPTION OF EXPERIMENT SETUP AND DATABASE

Open databases for action recognition acquired from vis-

ible light camera environments have already been devel-

oped [58]–[60]. However, no databases have been acquired

from a thermal camera environment.

This study conducted an experiment using theDA&A-DB2

database [43], which contains thermal images of long-

distance objects obtained in various environments (time

zones, weather, seasons, and camera settings) and locations.

Although the database consists of both visible light images

and thermal images, this study used only thermal images.

The database consists of 16 sub-datasets including a total

of 266,261 images. Figure 14 and Table 6 provide the detailed

information of the database. A desktop computer was used

for training and testing. The specifications of the desktop

computer include an Nvidia graphics card (Nvidia GeForce
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TABLE 9. Various methods for action recognition.

GTX TITAN X [61]), Intel CPU (core i7-6700 CPU @

3.40 GHz (with eight CPUs)), and 32 GB of RAM. The pro-

posed method was implemented using a Python-based Keras

application programming interface (API) with a Tensorflow

backend engine [62] and the OpenCV library [63].

Figure 15 and Table 7 show the height of the camera,

the distance between an object and the location of the camera

(horizontal distance), and another distance between an object

and a camera (D distance). Table 8 shows the types of human

actions and the number of images for each action.

B. TRAINING OF CycleGAN AND CNN-LSTM MODELS

This section describes the training phase of the proposed

methods in detail. All methods used images with size of

224 × 224 pixels for training and testing. When the gener-

ator of CycleGAN was trained using the image restoration

method, the cycle-consistency loss, identity loss, training

epoch, learning rate, mini-batch, loss function, and opti-

mizer were set to 10.0, 1.0, 6,000, 0.00001, 1, mean

squared error [64], and adaptive moment estimation methods

(Adam) [65], respectively. When the generator was trained

using the halo effect removal method, the learning rate

and training epoch were set to 0.00001 and 5,000 respec-

tively. In the case of the skeleton image generation method,

the learning rate and training epoch were set to 0.00001

and 2,000, respectively. In the case of the human action recog-

nition method, the training epoch, learning rate, momentum,

mini-batch, optimizer, and loss function were set to 5, 0.0001,

0.9, 10, Adam, and categorical cross entropy, respectively.

The epoch number was determined based on outcome images

obtained during training. The learning rate was determined

based on the epoch number.

C. TESTING

1) TESTING OF IMAGE RESTORATION

This section describes the testing results of the image restora-

tion method. Figure 16 shows the image restoration results.

The corresponding binarized images are also shown to see

FIGURE 19. Methods for action recognition: (a)–(k) methods 1–11.
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TABLE 10. Confusion matrix of the results of human action recognition using method 1 (unit: %).

TABLE 11. Confusion matrix of the results of human action recognition using method 2 (unit: %).

TABLE 12. Confusion matrix of the results of human action recognition using method 3 (unit: %).

how the results differ. As illustrated in Figure 16, the bina-

rized version of the restored image expresses the human body

areamore accurately than the binarized version of the original

image.

2) TESTING OF HALO EFFECT REMOVAL

This section presents the testing results of the halo effect

removal method. Figure 17 shows the results of the halo

effect removal method. The corresponding binarized images
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TABLE 13. Confusion matrix of the results of human action recognition using method 4 (unit: %).

TABLE 14. Confusion matrix of the results of human action recognition using method 5 (unit: %).

TABLE 15. Confusion matrix of the results of human action recognition using method 6 (unit: %).

are also shown to see how the results differ. As illustrated

in Figure 17, the binarized images with the halo effects

removed express the human body area more accurately than

those with the halo effects.

D. TESTING OF SKELETON GENERATION

This section describes the testing results of the skeleton

generation method, the images of which are shown in

Figure 18.
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TABLE 16. Confusion matrix of the results of human action recognition using method 7 (unit: %).

TABLE 17. Confusion matrix of the results of human action recognition using method 8 (unit: %).

TABLE 18. Confusion matrix of the results of human action recognition using method 9 (unit: %).

1) TESTING OF HUMAN ACTION RECOGNITION

This section presents the testing results of human action

recognition. The 11 methods of Table 9 were applied to the

test. Figure 19 shows the input images for each method.

Tables 10–25 provides the accuracies of the 11 methods

for the action recognition. Table 26 lists the details of the

processing time. The processing time was measured in the

experiment environment described in Section V.A.

As shown in Table 25, method 10 using image restora-

tion and skeleton generation, and method 11 (the proposed

method) using halo effect removal and skeleton generation,

produced the highest accuracies. In other words, the image

VOLUME 7, 2019 103911



G. Batchuluun et al.: Action Recognition From Thermal Videos

TABLE 19. Confusion matrix of the results of human action recognition using method 10 (unit: %).

TABLE 20. Confusion matrix of the results of human action recognition using method 11 (unit: %).

TABLE 21. Accuracies of human action recognition methods (unit: %).

restoration, halo effect removal, and skeleton generation

were effective at improving the accuracy of human action

recognition.

For examples, as shown in Figures 3(the 1st and 3rd images

of (a)), 6(the 1st and 3rd images of (a)), 11(i), 14(j), and 17

(the 1st images of (b) and (d)), there are many cases that the
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TABLE 22. Accuracies of human action recognition methods (unit: %).

TABLE 23. Accuracies of human action recognition methods (unit: %).

temperature of human body is similar to that of background

or severe halo effects happen, which produces incorrect seg-

mentation of body area and consequent error of human action

recognition. Therefore, we use CycleGAN in order to make

the body area more distinctive from background and remove

halo effects.

As shown in Table 9, the methods 1 and 2 respectively

show the cases before and after CycleGAN. In addition,

the methods 3 and 10 (or 11) show the cases before and after

CycleGAN, respectively. As shown in Table 25, the accuracy

by the method 2 is higher than that by the method 1. In addi-

tion, the accuracies by the methods 10 and 11 are higher than

that by the method 3. From these results, we confirm that

CycleGAN can improve the overall accuracy of human action

recognition.

We use the skeleton image for CNN-LSTM instead of

the full frame because the motion information based on the

skeleton image can be more distinctive than that of the full

frame. As shown in Table 9, the methods 2 and 10 show

the cases of action recognition without and with skeleton

generation, respectively. In addition, the methods 4 and 11

show the cases of action recognition without and with skele-

ton generation, respectively. As shown in Table 25, the

accuracies of action recognition by the methods 10 and 11
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TABLE 24. Overall accuracies of human action recognition methods (unit: %).

TABLE 25. Overall accuracies of human action recognition methods (unit: %).

TABLE 26. Overall processing time of human action recognition methods (unit: ms).

are higher than those by the methods 2 and 4, respec-

tively, which confirms that the skeleton image is more

effective for human action recognition than the full frame

data.

According to Table 26, the processing time of both meth-

ods 10 and 11 was approximately 10 fps. The following

section describes a comparative experiment with the existing

methods.
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TABLE 27. Comparison of previous methods with the proposed
method (unit: %).

E. COMPARISONS

This section compares the proposed method with the existing

methods. Table 27 shows the accuracies of five existingmeth-

ods of human action recognition. As is clear from Table 27,

the proposed method shows higher recognition rates than the

existing methods.

VI. CONCLUSIONS

This study proposed human action recognition methods using

thermal image restoration, halo effect removal, and skeleton

generation. These approaches were combined in various ways

to produce different results. Various techniques including

CycleGAN, CNN, and CNN-LSTM were adopted for the

proposed methods. In addition, an experiment was conducted

using the DA&A-DB2 open database, which was built solely

for the present study. There are many databases acquired

by thermal camera [68]–[75]. However, most of them are

for pedestrian or object detection, and there is no existing

database including the images of human action with halo

effects. Therefore, we collected our DA&A-DB2 database for

experiments. For fair performance evaluation, this database

is released to other researchers as shown in [43]. The pro-

posed methods were compared with five existing methods.

In a comparative experiment, the proposed methods achieved

the highest accuracy. Moreover, the proposed methods using

image restoration, halo effect removal, and skeleton genera-

tionwere effective and efficient for human action recognition.

Because the existing state-of-the art methods used the

images where the front or back side of body area is captured

by camera as shown in Figure 8 (a), joint positions can be eas-

ily detected from the skeleton image. However, our database

frequently includes the cases where the joint positions are

difficult to be detected as shown in Figure 8(f) and the right

people of Figures 11(j) and (k). Therefore, we use the skeleton

image for the input to CNN-LSTM instead of joint positions.

In further studies, we will focus on the removal or intensity

reduction of halo effects on thermal images, which are caused

by more diverse objects and machines in various environ-

ments. We will also develop a method for improving the

processing time using a lighter model with fewer parameters

and CycleGAN and CNN-LSTM layers.
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