
Chapter 9

Action Recognition in Realistic

Sports Videos

Khurram Soomro and Amir R. Zamir

Abstract The ability to analyze the actions which occur in a video is essential for
automatic understanding of sports. Action localization and recognition in videos
are two main research topics in this context. In this chapter, we provide a detailed
study of the prominent methods devised for these two tasks which yield superior
results for sports videos. We adopt UCF Sports, which is a dataset of realistic sports
videos collected from broadcast television channels, as our evaluation benchmark.
First, we present an overview of UCF Sports along with comprehensive statistics of
the techniques tested on this dataset as well as the evolution of their performance
over time. To provide further details about the existing action recognition methods
in this area, we decompose the action recognition framework into three main steps
of feature extraction, dictionary learning to represent a video, and classification; we
overview several successful techniques for each of these steps. We also overview
the problem of spatio-temporal localization of actions and argue that, in general,
it manifests a more challenging problem compared to action recognition. We study
several recent methods for action localization which have shown promising results on
sports videos. Finally, we discuss a number of forward-thinking insights drawn from
overviewing the action recognition and localization methods. In particular, we argue
that performing the recognition on temporally untrimmed videos and attempting to
describe an action, instead of conducting a forced-choice classification, are essential
for analyzing the human actions in a realistic environment.
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9.1 Introduction

Developing automatic methods for analyzing actions in videos are of particular
importance for machine understanding of sports. Action recognition, which is the
problem of assigning a video to a set of predefined action classes, and action localiza-
tion, defined as identification of the spatio-temporal location where an action takes
place, are two of the fundamental and heavily studied topics in this context.

The majority of existing frameworks for action recognition consist of three main
steps: feature extraction, dictionary learning to form a representation for a video
based on the extracted features, and finally classification of the video using the
representation. In the first step, a set of features, such as STIP [32, 33] or dense
trajectories [77, 78], are extracted from a given video. These features are supposed
to encode the information which is useful for recognition of the action in a numerical
form such as a vector. Then, the extracted features are used for forming a represen-
tation of a video, which captures the actions that occur therein. Such representation
may be as simple as a histogram of most frequent motions [32, 33, 75, 77, 78] or a
semantically meaningful model such as action poses [76]. In the last step, a general
model for each action of interest is learnt using the computed representation of a set
of labeled training videos. Given the learnt models, a query video is then assigned
to the most similar action class by the classifier.

Action localization, unlike action recognition, deals with the problem of identi-
fying the exact location in space-time where an action occurs. It manifests a wider
range of challenges, e.g., dealing with background clutter or the spatial complexity
of the scene, and has been the topic of fewer research papers as compared to action
recognition. The recent successful action localization techniques, which will be dis-
cussed in Sect. 9.4, typically attempt to segment the action utilizing cues based on
the appearance, motion, or a combination of both [40, 69].

UCF Sports [57] is one of the earliest action recognition datasets that contains
realistic actions in unconstrained environment. In this chapter, we provide a detailed
study of the UCF Sports dataset along with comprehensive statistics of the methods
evaluated on it. We also discuss the technical details of the prominent approaches for
action localization and recognition which yield superior results for sports videos.

In Sect. 9.5, we discuss the insights acquired from summarizing the existing action
recognition and localization methods, especially the ones evaluated on UCF Sports. In
particular, we will argue that many of the existing action localization and recognition
systems are devised for temporally trimmed videos. This is a significantly unrealistic
assumption, and it is essential to develop techniques which are capable of perform-
ing the recognition or localization on temporally untrimmed videos. In addition, we
discuss that describing an action using a universal lexicon of lower level actions,
also known as action attributes [17, 37], is a worthwhile alternative to increasing the
number of classes in action datasets and performing a forced-choice classification
task. Lastly, we will discuss that the majority of existing action localization algo-
rithms mostly perform an exhaustive search in, spatial, temporal, or spatio-temporal
domain, in order to find a match for their action representation. This approach is
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Walking Swing-Side Skateboarding 

Diving Kicking Golf Swing Riding Horse 

Running Swing-Bench 

Lifting 

Fig. 9.1 UCF Sports Dataset: sample frames of 10 action classes along with their bounding box
annotations of the humans shown in yellow

inefficient, as also observed in several recent object detection methods [9, 15, 72],
and can be improved by employing a more efficient search strategy similar to selective
search [25, 72] or object proposals [15].

9.2 UCF Sports Dataset

UCF Sports consists of various sports actions collected from broadcast televi-
sion channels including ESPN and BBC. The dataset includes 10 actions: diving,
golf swing, kicking, lifting, riding horse, running, skateboarding, swinging-bench,
swinging-side, and walking. Figure 9.1 shows a sample frame of all ten actions. The
dataset along with human bounding box and human gaze annotations is available to
the public.1

The dataset includes a total of 150 sequences with the resolution of 720 × 480.
Table 9.1 summarizes the characteristics of the dataset. Figure 9.2 shows the distrib-
ution of the number of clips per action as the number of clips in each class is not the
same. Figure 9.3 illustrates the total duration of clips (blue) and the average clip length
(green) for every action class. It is evident that certain actions are short in nature, such
as kicking, as compared to walking or running, which are relatively longer and have
more periodicity. However, it is apparent from the chart that the average duration
of action clips shows great similarities across different classes. Therefore, merely
considering the duration of one clip would not be enough for identifying the action.

Table 9.1 Summary of the
characteristics of UCF Sports

Actions 10 Total duration 958 s

Clips 150 Frame rate 10 fps

Mean clip length 6.39 s Resolution 720 × 480

Min clip length 2.20 s Max num. of clips per class 22

Max clip length 14.40 s Min num. of clips per class 6

1 Download UCF Sports dataset: http://crcv.ucf.edu/data/UCF_Sports_Action.php.

http://crcv.ucf.edu/data/UCF_Sports_Action.php
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Fig. 9.2 Number of clips per action class

UCF Sports has been cited by more than 400 times since its introduction in
2008 and has been adopted by many state-of-the-art algorithms as an evaluation
benchmark. Figure 9.4 shows number of citations per year and the cumulative count
showing its rise every year.

Since its introduction, the dataset has been used for numerous applications such
as: action recognition, action localization, and saliency detection. Saliency detection
methods specify the region in the videos which attracts the human attention the most.
The following sections explain how the methodologies applied on UCF Sports have
evolved over time and describe the standard experimental setups. In the rest of this
chapter, we focus on action recognition and localization as the two main tasks for
analyzing the actions in videos.

9.2.1 Action Recognition

Action recognition is one of the heavily studied topics in computer vision. More than
80 % of the research publications which have utilized UCF Sports reported action
recognition results on this dataset. Figure 9.5 shows how the accuracy of action
recognition on UCF Sports has evolved every year since 2008. This figure reports
yearly mean accuracy for two experimental setups: (1) Leave-One-Out and (2) Five-

Fig. 9.3 The total time of video clips for each action class is shown in blue. Average length of clips
for each action is shown in green



9 Action Recognition in Realistic Sports Videos 185

Fig. 9.4 Research publications in which UCF Sports was utilized. The chart shows yearly and
cumulative counts until 2013

Fold cross-validation. The mean accuracy has gradually improved every year and
the state-of-the-art method (96.6 % accuracy [23]) is able to recognize the minority
of the actions correctly.

The early successful methods on UCF Sports were mostly based on sparse space-
time interest points [32, 33] and cuboid descriptors. However, the more recent dense
sampling [18, 50] and trajectory-based [77, 78] techniques have been able to outper-
form them and significantly improve the overall accuracy. Several of such methods
for feature extraction [16, 32, 33], action representation [26, 76], dictionary learning
[53], and classification [51, 57] will be discussed in more detail in Sect. 9.3.

9.2.1.1 Experimental Setup

The original way [57] to test on UCF Sports was to use a Leave-One-Out (LOO)
cross-validation scheme. This scenario takes out one sample video for testing and
trains using all of the remaining videos of an action class. This is performed for every
sample video in a cyclic manner, and the overall accuracy is obtained by averaging
the accuracy of all iterations.

An alternative experimental setup was proposed in [86] that uses a five-fold
cross-validation scheme. Each fold consisted of one-fifth videos for testing and the
remaining for training. For each fold the recognition accuracy is calculated using

Fig. 9.5 Yearly mean accuracy of action recognition for two experimental setups: (1) Leave-One-
Out (2) Five-Fold cross-validation. The brackets show the maximum and minimum accuracy for
every year
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average class accuracy and the results are averaged over all folds to get the final
accuracy.

For action localization methods that perform action recognition as well, [31]
proposed a different testing scheme that uses one-third videos for each action class
as testing and the remaining two-thirds for training. Further details can be seen in
Sect. 9.2.2.1.

All of the three aforementioned experimental setups of LOO [30, 35, 57, 58, 81,
87], fivefold cross-validation [53, 86], and predefined splits [31, 69] have been used
for performing the evaluations on UCF Sports, while LOO and fivefold are more
common. However, fivefold cross-validation and using splits are computationally
less expensive as they require less training-testing iterations.

9.2.2 Action Localization

Action localization is an important problem with a wide range of applications such
as human activity analysis, behavior recognition, video retrieval, and many others.
Action localization is generally a more difficult task compared to action recognition.
That is because a successful action localization requires the action class to be correctly
recognized, and also its spatio-temporal location to be identified. Therefore, action
recognition is a subproblem solved within action localization. In action recognition,
at times it is feasible to recognize an action using only the background features,
and without utilizing the temporal or motion information. Therefore, even though
one could recognize such actions, detecting the exact spatio-temporal location of
the action would require additional steps such as modeling the temporal movement
of body parts. This becomes even more complex when practical challenges, e.g.,
occlusion or background clutter, are considered as well.

Action localization has been the subject of fewer research efforts compared to
action recognition. This is observable in the statistics as less than 15 % of the research
papers evaluated on UCF Sports have discussed action localization results. UCF
Sports was one of the first datasets for which bounding box annotations of the actions
were made available, and therefore it is an excellent dataset for studying the advances
on this topic. Table 9.2 shows some of the recent action localization approaches and
their results on this dataset.

Action localization approaches have mostly focused on developing action
representation models which suit the problem of spatio-temporal localization. The
figure-centric model [31] using the human location as a latent variable, Spatio-
temporal Deformable Part Model (SDPM) [69], or hierarchical space-time segments
[40] are some of the notable methods in this context. The key idea behind the major-
ity of these methods is to capture the human structure and its deformity in a spatio-
temporal framework. Further details of several localization methods tested on sports
videos are provided in Sect. 9.4.
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Table 9.2 Action localization results on UCF sports

Method Year Experimental Evaluation Accuracy

setup metric (%)

Shapovalova et al. [61] 2013 Splits ROC & AUC 32.3

Lan et al. [31] 2011 Splits ROC & AUC 38

Tian et al. [69] 2013 Splits ROC & AUC 42

Tran and Yuan [71] 2012 Splits Average precision 55.34a

Ma et al. [40] 2013 Splits Intersection-over-union 42.1

Gall et al. [21] 2011 Five-fold cross-validation Average precision 54

Yao et al. [86] 2010 Five-fold cross-validation Average precision 54

Cheng et al. [10] 2013 Five-fold cross-validation Average precision 61.6

Thi et al. [68] 2012 Five-fold cross-validation Binarized overlap 89

Raptis et al. [56] 2012 Leave-one-out cross-validation Localization score 62.6
a Only three actions were used for localization: Horse Riding, Running and Diving

9.2.2.1 Experimental Setup

Similar to Sect. 9.2.1, the original experimental setup for action localization is to
use Leave-One-Out (LOO) scheme. However, this setup has been criticized by
Lan et al. [31] for two main reasons. The first reason is that no parameters (e.g.,
the SVM regularizer weightings, C) have been given and experiments show that the
accuracy can change drastically by varying parameters. The second reason, which is
more critical, is that many videos have similar backgrounds, and therefore a strong
scene correlation exists between videos. Thus, while testing under LOO setting, the
classifier may use the background features to classify the video which results in an
artificially high accuracy. An empirical evidence for this issue has been provided in
[31]. To alleviate this problem, an alternate experimental setup [31] is proposed. The
new setup2 splits the dataset into two uneven parts: two-third of videos for training and
one-third for testing. To calculate the accuracy, an intersection-over-union criterion
is used to plot ROC curves with a certain overlap threshold. The intersection-over-

union computes the overlap between the predicted bounding box and the ground
truth, and divides it by the union of both the bounding boxes, for every frame. This
value is then averaged over all frames in a video. A 20 % overlap threshold is used
for this experiment. Area Under Curve (AUC) against the overlap threshold, which
shows how the performance varies if the threshold is changed, is used to compute
the final performance. To calculate the overlap, the ground truth bounding box per
frame is provided for the dataset. Figure 9.1 shows sample frames from UCF Sports
dataset for each action class along with their annotated bounding boxes of humans.

The reported results in Table 9.2 show a variety of experimental setups and eval-
uation metrics. Due to the aforementioned issues, adopting the predefined splits of

2 UCF Sports experimental setup for Action Localization: http://www.sfu.ca/~tla58/other/train_
test_split.

http://www.sfu.ca/~tla58/other/train_test_split
http://www.sfu.ca/~tla58/other/train_test_split
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[31] as the setup is recommended. As the evaluation metric, both Precision/Recall
and ROC curves are appropriate. However, Precision/Recall has been a more popular
choice for the other datasets, and therefore it is recommended for UCF Sports as well
for the sake of consistency.

9.3 Action Recognition in Realistic Sports Videos

In this section, we provide an overview of some of the action recognition techniques
which have shown superior results for sports videos. The overall recognition frame-
work is broken down into three major steps of feature extraction, dictionary learning
(for forming the representation of videos), and finally classification. The prominent
methods for each step are elaborated in the rest of this section.

9.3.1 Feature Extraction

Classifying actions from videos requires extracting a set of data points, commonly
termed features, that are expected to carry the information which is useful for distin-
guishing between various actions. Existing features can be classified into two main
categories: (1) Low-level (Local) and (2) High-level (Holistic) features. Low-level
features are the most commonly used features and are extracted by either detecting
interest points or densely sampling them in a video. High-level features capture fur-
ther structured information related to the action being performed. This high-level
structure aims at gathering features such as shape [26], pose [76] or contextual infor-
mation [81]. The general goal of feature extraction is to gather features that are
generic enough and robust to backround variation. These features should be invari-
ant to changes in scale, rotation, affine transformations, illumination, and viewpoint.
However, capturing the required information while preserving the robustness to the
aforementioned issues is a challenging problem. In the following sections, we will
explore several low-level and high-level features that have performed well on UCF
Sports.

9.3.1.1 Low-Level Features

Generally, low-level feature extraction is done by detecting sparse keypoints such as
corners [24, 62], edges [8, 48], contours [49, 52], or blobs [42]. The corner detectors
usually work by finding the locations that have large gradients in all directions; to
find edges, an intensity derivative is applied in a specific direction. Contours find
local silhouettes, and blobs aim at detecting regions within an image that have dis-
tinctive color properties compared to the neighboring areas. Once the keypoints are
detected, a descriptor is formed around the point, which captures the local informa-
tion. This descriptor can be scale-invariant such as Scale-Invariant Feature Transform
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Fig. 9.6 Space-Time Interest Points (STIP) [32]: Features detected in a Football sequence when
player is heading a ball. b Hand clapping sequence. The temporal slice of space-time volume shows
that the detected events correspond to neighborhoods with high spatio-temporal variation

(SIFT) [38], texture-based [54], shape-context [5], gradient location and orientation
histogram (GLOH) [46], steerable filters using Gaussian derivatives [20], moment
invariants [73], and many more. Other useful information that local features can
extract could be color, motion, trajectories, shape descriptors, and depth cues.

The aforementioned features were initially devised for images and capture the
static information from the image. To extend this to videos and make use of tempo-
ral information, Space-Time Interest Points (STIP) [32, 33] were developed which
are based on an extension of Harris corner detector. STIP can be described as the
extention of spatial interest points into the spatio-temporal domain, where local struc-
tures which have significant local variations of image intensity values in space and
nonconstant motion in time are detected. These local spatio-temporal features often
correspond to interesting events in video data (see Fig. 9.6). Inspired by STIP, many
variants have been proposed over time such as 3D-SIFT [60], HOG3D [29], extended
SURF [80], and Local Trinary Patterns [87].

Although sparse keypoints have shown good classification performance, dense
sampling has given further improvements in the image classification task [18, 50].
Dense sampling is different from sparse interest points in the sense that points are
uniformly selected from the image, instead of using a criteria for selecting keypoints.
That way, more information is gathered which can be learned by a classifier to give
better performances in action recognition.

A more intuitive way of finding spatio-temporal characteristics is to track inter-
est points throughout the video sequence. Some recent methods [43, 45, 65, 66]
have shown improvement in action recognition performance using motion informa-
tion of trajectories. These methods obtain feature trajectories by either using KLT
tracker [39] in their approach [43, 45] or matching SIFT descriptors [38] between
consecutive frames [66].

In the following sections, we describe two main low-level features that have given
superior action recognition results on the UCF Sports dataset.
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Color Space-Time Interest Points

An extension of STIP [32] to Color-STIP [16] has been proposed recently which
gives the best performance in action recognition, compared to other sparse space-time
interest point features. This approach uses a multichannel reformulation of existing
STIP detectors and descriptors by considering different chromatic representations
derived from opponent color space. Chromaticity specifies the quality of a color and
consists of two parameters: hue and saturation. Adding Color to the temporal domain
allows for better motion estimation and temporal variation.

The approach transforms RGB space to Opponent color space and comes up with
a new photometric representation: I(ntensity), C(hromatic), N(ormalized chromatic)
and H(ue). A combination of intensity and chromatic channels is used to give a three-
channel representation: IC, IN, and IH. Multi-Channel Harris-STIP and Gabor-STIP
detectors are formulated for each photometric channel and are represented using a
Multi-Channel STIP descriptor. The Multi-Channel STIP descriptor is calculated by
incorporating chromaticity in the HOG3D [29] descriptor. The final descriptor is a
combination of two variants: (1) Channel Integration and (2) Channel Concatenation.

Many existing STIP-based approaches [32, 33] operate on image intensity, making
them sensitive to highlights and shadows. They ignore the discriminative information
by discarding chromaticity from the representation. By utilizing chromaticity in their
enhanced appearance model, Color-STIP has shown to outperform other STIP-based
methods.

Trajectories

Dense sampling of feature points and feature trajectories [39] have shown a notable
improvement in image classification [18, 50] and activity recognition [45]. Inspired
by these approaches, a recent method [77] computes dense trajectories by sampling
dense points from each frame and tracking them based on displacement information
from a dense optical flow field. By employing global smoothness constraints, dense
trajectories are made to be more robust to irregular abrupt motion as well as shot
boundaries.

Feature points are densely sampled on a grid, with uniform spacing, and tracked at
multiple spatial scales to obtain dense trajectories (see Fig. 9.7). Each point is tracked
between consecutive frames using median filtering in a dense optical flow field. These
points from subsequent frames are then linked together to form a trajectory. To avoid
the problem of drifting in trajectories, the length is limited to a fixed number of frames.
Drifting usually occurs when a trajectory moves away from the initial position during
the tracking process.

In order to encode various trajectory information, a novel descriptor is proposed
which combines trajectory shape, appearance, and motion information. The shape
of trajectory embeds local motion patterns and is described by a sequence of nor-
malized displacement vectors. The motion and appearance information is captured
by computing the descriptor within a space-time volume aligned with the trajectory.
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Fig. 9.7 Extracting Dense Trajectories [78]. Left Densely sampled feature points on each spatial
scale. Middle Tracking feature points separately on each spatial scale using median filtering for L

frames in a dense optical flow field. Right A N×N pixels neighborhood divided into nσ × nσ × nτ

grid is used to compute (HOG, HOF, MBH) descriptors along the trajectory

The volume is subdivided into a spatio-temporal grid to obtain local information.
Histogram of Oriented Gradients (HOG) [11] encoding static appearance informa-
tion, Histogram of Oriented Flow (HOF) [34] getting local motion information and
Motion Boundary Histogram (MBH) [12] capturing relative motion information, are
used as various descriptors for the trajectory volume.

Dense trajectories have shown to give better performance than Space-Time Inter-
est Points (STIP) [33], as they capture appearance and dynamic motion information
along the trajectory as compared to STIP, which uses cuboids instead. Experiments
have shown dense trajectories to be further robust to camera motion and more infor-
mative for action classification.

9.3.1.2 High-Level Features

High-level features in action recognition represent an action by detecting high-level
concepts [58] and often build upon local features [67]. The main idea is to preserve
structural information of actions. These high-level features can be a spatio-temporal
volume (STV) generated by 2D contours [88], 3D shapes induced by silhouettes [22],
motion descriptor based on smoothed and aggregated optical flow [14], kinematic
features [4] and so on.

The following sections introduce two of the recent high-level features that model
the action remarkably well under varying background conditions and yield superior
results on UCF Sports.

Spatio-Temporal Structures of Human Poses

An action can be considered as a mere articulation of parts. Hence, representing
an action as poses is intuitively meaningful and has the capability of incorporating
the variety of nonrigidness that a human body posesses when performing an action.
In this context, [76] presents a pose-based action representation which models the
spatio-temporal structures of human poses [85].
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Fig. 9.8 Representing actions with poses [76]. a A pose consists of 14 joints combined together
to form five body parts; b two spatial-part-sets showing co-occurring combinations of body parts
for a particular action; c temporal-part-sets showing co-occurring sequences of body parts; d action
representation consisting of spatial-part-sets (4) and temporal-part-sets (1–3)

Given a video, K-best pose estimations are obtained for each frame, and the best
pose is inferred using segmentation cues and temporal constraints. To obtain the
action representation, estimated joints are grouped into five body parts: Head, Left
arm, Right arm, Left leg, and Right leg (see Fig. 9.8). Efficient Contrast mining algo-
rithm is used to gather distinctive co-occurring spatial configuration of body parts,
called spatial-part-sets, and co-occurring pose sequences of body parts in temporal
domain, called temporal-part-sets. Similarly, for test videos, part-sets are detected
using estimated poses and represented using a histogram of part-sets. This histogram
is then classified using a Support Vector Machine (SVM). Representing actions in
terms of poses and part-sets gives a better visual interpretation and is compact as com-
pared to high-dimensional, low-level representations. It is also robust to variations
in body part movements since it can model the temporal movements effectively.

Shape Models

A joint shape-motion descriptor is proposed in [26], which combines shape features
from an appearance model and motion features from optical flow field to capture
distinct properties of an action. The approach represents an action as a sequence of
prototypes for flexible action matching in video sequences. In training, action interest
regions are localized and shape-motion descriptors are extracted. Using hierarchical
K-means clustering, an action prototype tree is learned in a joint shape and motion
space. The training sequences are represented as a labeled prototype sequence. In
testing, humans are detected and tracked using appearance information, while frame-
to-prototype correspondence is established by maximizing joint probability of the
actor location and action prototype by searching the learned prototype tree. Finally,
the action is recognized using dynamic prototype sequence matching.

The shape descriptor for an action interest region is represented as a feature
vector by dividing the region of interest into a square grid. Shape observations are
gathered using background subtraction or from appearance likelihood maps. For
the appearance likelihood map, an appearance model is built and is used to assign a
probability to each pixel in the specified region. An accumulation of such probabilites
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Fig. 9.9 Computing shape-motion descriptor [26]: a Raw optical flow field. b Motion-compensated
optical flow field. c Appearance likelihood map. d Motion descriptor from the raw optical flow field.
e Motion descriptor from the motion-compensated optical flow field. f Shape descriptor

for each grid square is used as a shape feature vector. The feature vector is L2
normalized to get the final shape descriptor, as seen in Fig. 9.9f.

The motion descriptor for an action interest region is represented as a feature
vector of Quantized, Blurred, Motion-compensated Flow (QBMF). The motion flow
feature is calculated similar to [14], where optical flow is computed and divided
into horizontal and vertial components and then background motion is removed by
subtracting the medians of flow fields to get median-compensated flow fields. Motion-
compensated flow fields (see Fig. 9.9b) are half-wave rectified into four nonnegative
channels and each one of them is blurred using a Gaussian Kernel to get motion
observations. The four channels are L2 normalized and concatenated to get the raw
motion descriptor. Finally, the raw motion descriptor is L2 normalized to get the final
motion descriptor. Figure 9.9d, e, shows the four channels of the motion descriptor,
where grid intensity indicates motion strength and the arrow indicates the dominant
motion orientation at that grid.

The results demonstrate good action recognition performance under moving cam-
era and dynamic background. The reason is that the approach models the correlation
between shape and motion using action prototypes in a joint feature space, which
allows the method to tolerate such complex conditions.

9.3.2 Dictionary Learning

Dictionary learning is an important step in forming the representation of actions. It
is most commonly employed in a Bag-of-Words (BoW) framework by using either
low-level features such as STIP [32, 33] or high-level features such as human poses
[76]. Typically, an unsupervised learning technique such as K-means is applied to
cluster local features, and then the features from each video sequence are mapped to
these cluster centers to get a histogram representation.

Sparse coding is also very popular and has been successfully applied to many
computer vision problems such as image classification [84], visual saliency [83],
and image restoration [55]. Sparse coding attempts to approximate an input sample
using a linear combination of a few items from an overcomplete dictionary. Dictio-
nary learning methods can be categorized into unsupervised and supervised learning.
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The dictionary learning is unsupervised when the goal is to minimize reconstruction
error of the original samples in order to build a dictionary. Supervised learning tech-
niques can form a category specific dictionary that promotes discrimination between
classes; this discriminatory term is added to the objective function which is to be
optimized.

In the following sections, we will explore new techniques for dictionary learning
that have produced notable results on UCF Sports dataset.

9.3.2.1 Multi-Task Sparse Learning

Multi-Task Sparse Learning (MTSL) [89] aims to construct a given test sample with
multiple features and very few bases. In this framework, each feature modality is
considered as a single task in MTSL to learn a sparse representation. These tasks are
generated from multiple features extracted from the same visual input (video), hence
they are interrelated. A Beta Process (BP) prior is used to learn a compact dictionary
and infer sparse structure shared across all tasks.

Each video is represented using two types of features: (1) a histogram and
(2) co-occurrence features. Histogram representation has achieved state-of-the-art
performance and is frequently used in a bag-of-words framework. However, it ignores
the geometric distribution of local features. Co-occurrence feature makes use of
spatio-temporal proximity distribution of local features in a video to utilize geomet-
ric context.

A task is generated from each modality of features coming from the same video
sequences. Each individual task is defined as learning a sparse representation of
the video in one feature space. Multi-task learning improves the performance of
each individual task by sharing information between related tasks. A target sample
y j , j = 1, . . . , J with J tasks, obtained from a video is represented in terms of a
dictionary D j , a sparse coefficient θ j and a residual error ε j . A sparse coefficient
vector is the product of a binary vector z j , defining which dictionary terms are used
to represent a sample, and a weight vector ω j . A Beta Process is used to formulate
the dictionary as well as the binary vector. A graphical model based representation
of MTSL is shown in Fig. 9.10. The bottom layer consists of individual models with
task-related parameters. In the middle layer, tasks are connected via common prior
of the tasks and the top layer is the hyperprior invoked on the parameters of the prior.
In the model, the variables are infered given the training samples. Gibbs sampling is
used to update them iteratively. All variables except the dictionary D are initialized
randomly. However, the dictionary is initialized using K-SVD [53]. K-SVD learns an
overcomplete dictionary for sparse representation. Once initialized, MTSL obtains
a compact and discriminative dictionary by Gibbs sampling. To classify a test video,
the sparse representation is obtained by MTSL model using the learned dictionary.
It is then classified using the reconstruction error accumulated over all the tasks.

This method classifies UCF Sports actions using a Leave-One-Out setup and
achieves an accuracy of 92.67 %. MTSL approach combined multiple features effi-
ciently to improve the recognition performance. Its robust sparse coding technique
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Fig. 9.10 Hierarchical
Bayesian model
representation of Multi-Task
Sparse Learning (MTSL)
approach [89]. Details of the
parameters can be found in
the paper

mines correlations between different tasks to obtain a shared sparsity pattern which is
ignored if each task is learned individually. By using the Beta Process, the reconstruc-
tion coefficient vector is sparse, and it is distinct from the widely used l1 regularized
sparseness, which has many small coefficient values, but not exactly zero.

9.3.2.2 Label Consistent K-SVD

To learn a discriminative dictionary for sparse coding, a label consistent K-SVD
(LC-KSVD) algorithm is proposed in [28]. During the dictionary learning process,
the approach uses class label information of training data and associates label infor-
mation with each dictionary item to enforce discriminability in sparse codes.

The above method presents a supervised learning algorithm to learn a reconstruc-
tive and discriminative dictionary for sparse coding. The objective function has a
reconstruction error term and has two formulations for sparsity constraints: (1) L0
norm and (2) L1 norm. It also introduces a new label consistency constraint called
“discriminative sparse code error.” This term encourages the features from the same
class to have similar sparse codes and those that belong to different classes have
different sparse codes. Each item in the dictionary is chosen in a way that it repre-
sents a subset of training features that are ideally from a single class, so that each
dictionary item can be associated to a particular label. This makes the correspon-
dence between dictionary items and the class labels. The last term in the objective
function is the classification error term. This term is a linear predictive classifier, and
enables joint dictionary and classifier construction. The objective function is efficient
and achieves a good classification performance; it also allows feature sharing among
classes. By including the classification term, the objective function enforces a label
consistency constraint on the sparse code with respect to the dictionary. It also makes
the learned dictionary adaptive to underlying stucture of the training data. Learning
the dictionary and classifier separately might make the dictionary suboptimal.
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Two different approaches are presented for dictionary learning: (1) LC-KSVD1
(2) LC-KSVD2. The objective function for LC-KSVD1 uses the reconstruction error
term and the label consistency regularization term. LC-KSVD2 has similar objective
function with a classification term added to it. This helps the algorithm jointly learn a
single overcomplete dictionary and a linear classifier. The parameters are initialized
by several iterations of K-SVD and multiple ridge regression model. The dictionary
is constructed by minimizing the error terms and satisfying the sparsity constraints.

LC-KSVD accesses the entire training set at every iteration to optimize the objec-
tive function. This can be difficult in a situation with limited memory resources.
Therefore, an incremental dictionary learning algorithm is presented that can employ
the same learning framework, but with limited memory resources.

This approach is evaluated using a Leave-One-Out experimental setup as well as
five-fold cross-validation and it achieves the accuracies of 95.7 and 91.2 %, respec-
tively. The results show that the method performs better than other sparse coding
techniques that learn the dictionary and then use a one-against-all classifier to obtain
classification results. Instead of iteratively solving subproblems to get a global solu-
tion, the proposed method is able to simultaneously learn the dictionary, discrimina-
tive sparse coding parameters, and the classifier parameters.

9.3.3 Action Classification

After passing through the stages of feature extraction and dictionary learning, the next
step is to form a video representation. Features studied in Sect. 9.3.1 are generally
used in the popular bag-of-words (BoW) [16, 77, 78] framework, where local features
are extracted from video sequences and mapped to a prelearned dictionary. The
dictionary is a collection of code words obtained by clustering features, generally
by K-means. After assigning each feature to a specific code word in a dictionary,
the video is represented using a histogram. This type of representation is simple and
efficient. Histogram representations are relatively robust to occlusion and viewpoint
changes.

Once a video representation is obtained, the final step is to classify the actions.
The technique for classification can either be generative, e.g., HMM [1, 19, 82], or
discriminative, e.g., CRF [44, 63]. It can also be as simple as a Nearest Neighbor
classifier or more complex methods such as mapping to a Grassmann manifold [23,
51]. Over the years, a variety of techniques have been proposed for performing action
classification on UCF Sports. Some of these methods are: template-based [57, 58],
hough-based [10, 21, 86], manifold learning [23], randomized trees [51], multiple
kernel learning [81], pattern mining [79], and several others. The following sections
present some of the notable techniques that show superior classification results on
UCF Sports.
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Fig. 9.11 Action MACH [57]: a Jumping Jack action from Weizmann action dataset. b 3D action
MACH filter for Jumping Jack action. c Wave2 action from Weizmann action dataset. d Normalized
correlation response for the Wave2 action using action MACH filter

9.3.3.1 Template-Based Method

Template-based matching emerged as an early solution for classifying actions.
Action Maximum Average Correlation Height (MACH) filter proposed in [57] applies
template-based matching to 3D spatio-temporal volume (video) having vector-valued
data at each pixel location. The filter is generic and embeds intraclass variability into
a single template. This capability enables the method to effectively discriminate a
wide range of actions on UCF Sports dataset.

A MACH filter uses the training instances of a class to learn a single template by
optimizing four performance metrics: Average Correlation Height (ACH), Average
Correlation Energy (ACE), Average Similarity Measure (ASM), and Output Noise
Variance (ONV). This gives a two-dimensional template which, when correlated with
a testing image using a FFT transform in frequency domain, results in a response
giving the most likely location of the object. The approach used in Action MACH

extends this filter to be applied to spatio-temporal volumes and be able to fully utilize
the temporal information.

During training, derivatives of spatio-temporal volumes, obtained from training
video sequences, are represented in frequency domain by performing a 3D FFT
transform. This 3D matrix is reshaped into a long column vector and is synthesized
by minimizing average correlation energy, average similarity measure, output noise
variance, and maximizing the average correlation height. After obtaining the 1D
vector, an inverse 3D Fourier transform gives the Action MACH filter. However, this
filter is only good for scalar values at each pixel location. To use vector-valued data,
Clifford Fourier transform is applied, which is a generalization of the traditional
scalar-valued Fourier transform.

Motion estimation in the video sequences is performed using Spatio-Temporal
Regularity Flow (SPREF) [2]. SPREF computes the directions along which the sum of
the gradients of a video sequence is minimized. Hence, a 3D vector field is generated
having three values at each location that represent the direction along which the
intensities of pixels change the least. This vector-valued data is then used to get the
final Action MACH filter by applying Clifford Fourier transform (see Fig. 9.11a, b).
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Fig. 9.12 Subspace tree construction [51]. Left Subspaces are added to a node. Middle If the node
size exceeds a threshold it is split. Right The subspaces are split and assigned to right and left child
node

To recognize an action in a test video sequence, the Action MACH filter is applied
everywhere in the spatio-temporal volume (see Fig. 9.11c, d). The peak value in the
response of the filter is compared to a threshold value and if it is greater, the video is
classified to be of that particular action class. This approach was the first one to be
applied on UCF Sports dataset and gave encouraging results.

9.3.3.2 Subspace Forest

A novel structure called Subspace Forest is introduced in [51], which proposes a ran-
domized forest based approximate nearest neighbor (ANN) method for subspaces.
This stucture is applied to action recognition, where actions are represented as sub-
spaces on a Grassmann manifold. A Subspace tree is constructed during training,
and, at testing stage, an ANN-based approach is used to classify each video sequence.

An action from a video is represented as a sequence of thumbnail-sized images
called tracklets. Each tracklet is a three-dimensional cube with height, width, and
frame as its axes. All tracklets are designed to be of an equal size. Every tracklet is
mapped as one point on the Grassmann manifold. The Grassmann manifold Gr(r,n)

can be described as a set of r-dimensional linear subspaces of the n-dimensional vec-
tor space V. Points on the Grassmann manifold are subspaces and can be identified
using orthogonal matrices. To map a tracklet on Grassmann manifold, the method
first unfolds the tracklet along one of its axes and then applies QR factorization to get
its orthogonal matrix. In this way, each tracklet is mapped onto the Grassmann man-
ifold and represented by three subspaces coming from three tensor unfoldings. The
distance between two tracklets is computed using the chordal distance by applying
the component-wise sine function to the principal angles between subspaces.

A Subspace Tree (SSTree) is defined as a tree structure to sort points on Grassmann
manifold. In this approach tracklets, obtained from video sequences, are sorted using
their orthogonal basis. The SSTree is constructed by adding samples to an initially
empty node, until the number of samples within a node become large enough to
consider splitting (see Fig. 9.12). One of the elements of the node is selected as the
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pivot and chordal distance is computed between each element and the pivot. Based
on the distance measure, i.e., greater or less than a threshold, the elements are added
to the right and left child nodes, respectively. This recursive process forms the tree
and all the samples are trickled down to the leaf nodes. The algorithm uses two
different variations for splitting a node: (1) Median spliting (2) Entropy splitting.
In median splitting, the pivot is selected randomly and the splitting threshold is
selected by computing the median chordal distance between the pivot and all the
remaining elements of the node. In entropy splitting, the pivot is also chosen randomly
and the splitting threshold is selected using entropy over normalized histogram of
distances computed between pivot and remaining elements. If the entropy falls below
a threshold, then the distances are split into two clusters and the midpoint between
cluster centers is used as a splitting threshold.

A variation of SSTree is also presented in an approach called Random Axes
SSTree (RA-SSTree). In this tree structure, every new child node randomly selects
an unfolding axes.

A Subspace Forest is defined as a collection of SSTrees. The forest size is chosen
as a multiple of three for SSTree, so that all three unfolding axes of the tracklet have
an equal number of SSTrees. In case of RA-SSTree, any number can be chosen.

To recognize the action class of a given video, first its tracklet is computed and
then unfolded along X, Y, and T dimension to get three orthogonal matrices. All the
orthogonal matrices are presented to the corresponding subspace trees in the forest
to find out the approximate nearest neighbors (ANN). The final classification is done
by the label of the K-Nearest-Neighbors (KNN) from each leaf node using a majority
voting scheme.

Using subspace forest on Grassmann manifold, the method is able to achieve supe-
rior results as compared to Action MACH. The method has the ability to scale to larger
real-world problems. It is also very simple to implement and has less parameters as
compared to bag-of-features framework.

9.4 Action Localization in Sports Videos

The task of localization involves identifying the spatio-temporal volume in which the
action is taking place. The simplest way to do this is to learn an action recognition
classifier and use a sliding window approach. This method slides in the spatio-
temporal volume of the video to select the subvolume with the maximum classifier
score. By finding the volume with the highest score, a bounding box is placed at each
frame to find the overlap with the ground truth. The label of the volume as well as the
average percentage overlap (between ground truth and predicted bounding box) over
all frames is used as a measure to judge whether the action was correctly localized.

Action recognition approaches that use a high-level representation, such as space-
time shape models [22], silhouettes [74], human poses [76] or motion history images
[7], have the potential ability to localize an action. However, this is not typically
feasible in case of global action representations, e.g., bag-of-words histogram, which
lose the spatial information.



200 K. Soomro and A.R. Zamir

Fig. 9.13 Process to extract hierarchical space-time segments [40]. Each video is used to compute
a boundary map using color and motion cues. The map is used to extract hierarchical segments.
Irrelevant segments are pruned, firstly using shape and motion cues, then using foreground map to
obtain a segment tree

Some of the recent methods achieving best localization performances are elabo-
rated in the following sections.

9.4.1 Hierarchical Space-Time Segments

Representing an action by Hierarchical Space-Time Segments [40] has shown that
preserving the static and nonstatic space-time segments along with their hierarchical
relationships yields good action localization results. This approach uses a two-level
hierarchiy: first level consists of root space-time segments and second level has parts
of the root. Without utilizing bounding box annotations to train any body or body
part detector, the algorithm uses an unsupervised approach to extract hierarchical
space-time segments. Each step of the algorithm is elaborated below.

First, using color and motion information, a frame segmentation method is
designed that preserves segments of the body and its parts, while suppressing the
background. A boundary map is computed using color and motion channels to be
utilized in forming an Ultrametric Contour Map (UCM). UCM gives a hierarchical
segmentation of a video frame. The segment tree is traversed to prune irrelevant
parts using motion and shape cues. For further pruning, a foreground map is built
based on structure and global color cue over the whole video sequence, yielding a
set of candidate segment trees, (see Fig. 9.13). In the remaining segment trees, each
segment is tracked forward and backward in the video to get space-time segments.
These space-time segments are used to train a Bag-of-Words framework with linear
SVM. In testing, space-time segments are identified with a positive contribution to
the video classification (see Fig. 9.14).

Thus, by using static and nonstatic parts, the method is able to achieve good
classification and localization performance. The static information helps in extracting
body parts that are not necessarily in motion, hence resulting in better localization.
Sample results can be seen in Fig. 9.15. The method reports an accuracy of 42.1 %
measured as average Intersection-Over-Union (IOU) over a subset of frames.
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Fig. 9.14 Extracted segments from video frames [40]. Segments are outlined by yellow boxes.
Boxes within a box show child–parent relationship

9.4.2 Spatio-Temporal Deformable Part Models

A natural extension of Deformable Part Models from 2D to a 3D for action
localization is given by Spatio-Temporal Deformable Part Models (SDPM) [69]. In
this method, a separate action model is learned for each class by selecting the most
discriminative 3D subvolumes as parts and establishing spatio-temporal relations
between them. The deformity in spatio-temporal volume that this approach yields
empowers capturing the intraclass variabilities and becoming robust to background
clutter.

The model consists of a root filter and many part models. Every part is defined by
its part filter, anchor position, and coefficients of deformation cost. In the training
stage, positive instances are selected from a single box of one cycle of an action.
Negative instances are selected from positive volumes of other action classes, as well
as by randomly drawing volumes from the background at multiple scales. HOG3D
[29] features are extracted and a SVM is trained accordingly. Similarly, for training
part models, HOG3D features are extracted at twice the resolution enabling them to
capture more detail. Once SVM is applied, subvolumes having higher weights (i.e.,
more discriminative) are selected as parts, while others are ignored. After the initial
model is obtained, latent SVM is used to update the model, while treating position
of ith part as a latent variable (see Fig. 9.16)

In the testing stage, a spatio-temporal feature pyramid is built using HOG3D
features at different spatial scales for the query video. A template-based sliding
window approach is applied in 3D volume and the placement with the highest score
is chosen to be the location of the action. This placement is defined by the location
of the root and part filters (see Fig. 9.17).

Fig. 9.15 Action localization results [40]. Green area denotes the ground truth annotation, whereas
the red area shows the localization result



202 K. Soomro and A.R. Zamir

Fig. 9.16 Spatio-Temporal Deformable Part Models (STPM) [69]. a Training process shows the
extraction of HOG3D features and learning the model using latent SVM. b Testing process with
the final result showing the root (yellow) and its parts (green)

This approach has shown to be effective as the parts exclude most of the back-
ground giving better localization and focus on distinctive locations within an action.
This method is different from other approaches as it explicitly models the intraclass
variability using part deformations, and by using global and part templates, it is able
to find the best location for an action in the scale, space, and time. The method
achieves state-of-the-art results on UCF Sports dataset, as shown in Fig. 9.18.

9.5 Discussion

The earlier action recognition benchmarks [6, 59] were recorded in a controlled set-
ting having static cameras with static and uncluttered backgrounds. The actions were
performed by a few selected actors and appeared without any occlusions. This was
improved by changing the source of videos to television broadcast and movies in
datasets such as UCF Sports [34, 41, 47, 57, 70]. Action videos from these types of

Fig. 9.17 SDPM [69] localization. a Root and part filter locations in a training frame for Swing-

Bench action. b Localization result in a test video. Root (yellow) and part (red, magenta, and green)
locations are shown for both train and test examples. Each column shows the middle frame of a
three temporal stage model
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Fig. 9.18 SDPM [69] results. Left ROC at 0.2 overlap threshold; compared with figure-centric
model [34]. Right Area Under Curve (AUC) for overlap threshold ranging from 0.1 to 0.6

sources presented a diversity of appearances, occlusion, and varying backgrounds.
Although these videos were recorded in an unconstrained environment, they were
produced by professional crew in favorable conditions, e.g., using selected view-
points. Later, the focus shifted toward collecting videos from online repositories,
e.g., YouTube. Videos collected from such sources were named to be videos “in
the wild” [36, 64]. Since the videos are uploaded by a diverse group of users, they
present a wide variety of challenges in a totally unconstrained environment. These
datasets have been utilized for both localizing and recognizing actions. In the rest
of this section, we discuss some of the common and crucial shortcomings in many
of the existing action recognition and localization methods which are expected to be
addressed in the future techniques.

Evaluating on temporally trimmed videos: even though the benchmarks have
evolved to be more challenging by being recorded in an unconstrained setting and
having a large number of action classes, the majority of the existing action datasets
suffer from a crucial shortcoming: the collected videos are carefully trimmed to only
contain the action of interest. Hence, the focus of the current action recognition
methods has been toward classifying actions in temporally trimmed videos which is
an unrealistic assumption. In addition, in many of the existing datasets, the action is
performed by only a single person, as compared to a group of people. This makes
these datasets even further simplistic and unrealistic compared to analyzing human
actions in a natural setting. In videos having a single actor, the main task is to identify
and recognize the motion of the actor, while separating it from background clutter.
However, realistic scenarios would have several actions being performed simulta-
neously by different actors with massive inter- and intraclass variability. Therefore,
the next generation of action recognition and localization methods are expected to
address these two major shortcomings and be able to perform their task on temporally
untrimmed videos [27] with potentially multiple actors performing various actions.

The task of recognizing multiple actions simultaneously will introduce new chal-
lenges to be explored such as: co-occurrence of actions, action-to-action occlusion,
and interclass dependencies. Potential applications which would require localization
of multiple actions include: video surveillance, automatic understanding of sports
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videos, or crowd analysis. For instance, automatic video surveillance requires detect-
ing (multiple) actions in real time, so an unwanted event can be predicted and pre-
vented. Such a system can also highlight the level of security threat of one action
over another, and therefore prioritize the localization of such actions.

Performing a forced-choice classification: thus far, action recognition has been
defined as a forced-choice classification task, which means a video has to belong to
one of the predefined action classes. Consequently, the majority of existing action
recognition methods have a poor performance when dealing with an unseen action
class or a clip which simply does not contain any particular action. A potential
alternative way of understanding actions is to describe them instead of classifying
them. Even though there exists an extremely wide variety of actions in the real world,
many of them share vast similarities in an atomic level. For example, the action of
Pole Vault can be broken down into running, jumping, landing, and then standing up.
Therefore, it is often feasible to describe an action using a universal lexicon of lower
level actions, sometimes called action attributes [17, 37]. Hence, it is a worthwhile
effort for the future action recognition techniques to understand the basic elements
of human actions and devise a simple and comprehensive description for an action
rather than a forced-choice classification.

Employing Exhaustive search as the search strategy: recently, several action
localization methods that employ mid-to-high level representations [31, 69] which
can effectively model the spatio-temporal structure of an action have been proposed.
However, many of these approaches perform an exhaustive search using a sliding
window, in temporal, spatial, or spatio-temporal domain, to find the desired location
of the action. This approach is particularly inefficient as all possible spatio-temporal
locations over different scales and aspect ratios have to be evaluated. Recently, effi-
cient search strategies, such as selective search or object proposal [3, 9, 13, 15, 72],
were shown to be more efficient than sliding window for object detection. Poten-
tially, action localization methods can also adopt a similar approach [25] and utilize
similar search strategies in order to increase the efficiency of their search in the
spatio-temporal domain.

9.6 Conclusion

In this chapter, we overviewed the prominent action localization and recognition
methods for sports videos. We adopted UCF Sports as the benchmark for evaluating
the discussed techniques, as it includes a wide range of unconstrained videos cat-
egorized into 10 different sports collected from broadcast television channels. We
provided an overview of the characteristics of UCF Sports as well as detailed sta-
tistics of the techniques evaluated on this dataset along with the evolution of their
performance over time. To provide further technical details, we decomposed action
recognition into three major steps of feature extraction, forming the video repre-
sentation using dictionary learning, and classification. For each step, we studied the
approaches which yield superior results on sports videos and discussed the reasons
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behind their success. Similarly, we presented the challenges faced in action local-
ization, elaborated the reasons behind its intricacy, and overviewed several recent
methods for this task, which have achieved promising results on sports videos. Lastly,
we presented a number of insights acquired from summarizing the discussed action
recognition and localization methods. We argued that conducting the recognition on
temporally untrimmed videos and attempting to describe an action, instead of per-
forming a forced-choice classification, are crucial for analyzing the human actions
in a pragmatic environment.

References

1. Ahmad M, Lee SW (2008) Human action recognition using shape and CLG-motion flow from
multi-view image sequences. Pattern Recognit 41(7):2237–2252

2. Alatas O, Yan P, Shah M (2007) Spatio-temporal regularity flow (SPREF): its estimation and
applications. IEEE Trans Circuits Syst Video Technol 17(5):584–589

3. Alexe B, Heess N, Teh Y, Ferrari V (2012) Searching for objects driven by context. In: Neural
information processing systems (NIPS)

4. Ali S, Shah M (2010) Human action recognition in videos using kinematic features and multiple
instance learning. IEEE Trans Pattern Anal Mach Intell (TPAMI) 32(2):288–303

5. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape
contexts. IEEE Trans Pattern Anal Mach Intell (TPAMI) 24(4):509–522

6. Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In:
Computer vision and pattern recognition (CVPR)

7. Bobick AF, Davis JW (2001) The recognition of human movement using temporal templates.
IEEE Trans Pattern Anal Mach Intell (TPAMI) 23(3):257–267

8. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach
Intell (TPAMI) 6:679–698

9. Carreira J, Sminchisescu C (2010) Constrained parametric min-cuts for automatic object seg-
mentation. In: Computer vision and pattern recognition (CVPR)

10. Cheng SC, Cheng KY, Chen YPP (2013) GHT-based associative memory learning and its
application to human action detection and classification. Pattern Recognit 46(11):3117–3128

11. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer
vision and pattern recognition (CVPR)

12. Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and
appearance. In: European conference on computer vision (ECCV)

13. Dollar P (2010) A seismic shift in object detection. http://pdollar.wordpress.com/2013/12/10/
a-seismic-shift-in-object-detection

14. Efros A, Berg A, Mori G, Malik J (2003) Recognizing action at a distance. In: International
conference on computer vision (ICCV)

15. Endres I, Hoiem D (2014) Category-independent object proposals with diverse ranking. IEEE
Trans Pattern Anal Mach Intell (TPAMI) 36:222–234

16. Everts I, van Gemert J, Gevers T (2013) Evaluation of color stips for human action recognition.
In: Computer vision and pattern recognition (CVPR)

17. Farhadi A, Endres I, Hoiem D, Forsyth D (2009) Describing objects by their attributes. In:
computer vision and pattern recognition (CVPR)

18. Fei-Fei L, Perona P (2005) A Bayesian hierarchical model for learning natural scene categories.
In: Comput vision and pattern recognition (CVPR), vol 25, pp 24–531

19. Feng X, Perona P (2002) Human action recognition by sequence of movelet codewords. In:
International symposium on 3D data processing, visualization, and transmission. IEEE, pp
717–721

http://pdollar.wordpress.com/2013/12/10/a-seismic-shift-in-object-detection
http://pdollar.wordpress.com/2013/12/10/a-seismic-shift-in-object-detection


206 K. Soomro and A.R. Zamir

20. Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern
Anal Mach Intell (TPAMI) 13(9):891–906

21. Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V (2011) Hough forests for object detection,
tracking, and action recognition. IEEE Trans Pattern Anal Mach Intell (TPAMI) 33(11):2188–
2202

22. Gorelick L, Blank M, Shechtman E, Irani M, Basri R (2007) Actions as space-time shapes.
IEEE Trans Pattern Anal Mach Intell (TPAMI) 29(12):2247–2253

23. Harandi MT, Sanderson C, Shirazi S, Lovell BC (2013) Kernel analysis on Grassmann mani-
folds for action recognition. Pattern Recognit Lett 34(15):1906–1915

24. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference,
vol 15. Manchester, p 50

25. Jain M, van Gemert JC, Bouthemy P, Jégou H, Snoek C (2014) Action localization by tubelets
from motion. In: Computer vision and pattern recognition (CVPR)

26. Jiang Z, Lin Z, Davis LS (2012) Recognizing human actions by learning and matching shape-
motion prototype trees. IEEE Trans Pattern Anal Mach Intell (TPAMI) 34(3):533–547

27. Jiang YG, Liu J, Zamir AR, Laptev I, Piccardi M, Shah M, Sukthankar R (2014) Thumos
challenge: action recognition with a large number of classes

28. Jiang Z, Lin Z, Davis L (2013) Label consistent K-SVD—learning a discriminative dictionary
for recognition

29. Kläser A, Marszalek M, Schmid C (2008) A spatio-temporal descriptor based on 3d-gradients.
In: British machine vision conference (BMVC)

30. Kovashka A, Grauman K (2010) Learning a hierarchy of discriminative space-time neigh-
borhood features for human action recognition. In: Computer vision and pattern recognition
(CVPR)

31. Lan T, Wang Y, Mori G (2011) Discriminative figure-centric models for joint action localization
and recognition. In: International conference on computer vision (ICCV)

32. Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2–3):107–123
33. Laptev I, Lindeberg T (2003) Space-time interest points. In: International conference on com-

puter vision (ICCV)
34. Laptev I, Marszalek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from

movies. In: Computer vision and pattern recognition (CVPR)
35. Le Q, Zou W, Yeung S, Ng A (2011) Learning hierarchical invariant spatiotemporal features

for action recognition with independent subspace analysis. In: Computer vision and pattern
recognition (CVPR)

36. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In:
Computer vision and pattern recognition (CVPR)

37. Liu J, Kuipers B, Savarese S (2011) Recognizing human actions by attributes. In: Computer
vision and pattern recognition (CVPR)

38. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis
60(2):91–110

39. Lucas B.D, Kanade T (1981) An iterative image registration technique with an application to
stereo vision. In: International joint conference on artificial intelligence (IJCAI)

40. Ma S, Zhang J, Cinbis N, Sclaroff S (2013) Action recognition and localization by hierarchical
space-time segments. In: International conference on computer vision (ICCV)

41. Marszalek M, Laptev I, Schmid C (2009) Actions in context. In: Computer vision and pattern
recognition (CVPR)

42. Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally
stable extremal regions. In: British machine vision conference (BMVC)

43. Matikainen P, Hebert M, Sukthankar R (2009) Action recognition through the motion analysis
of tracked features. In: ICCV workshops on video-oriented object and event classification

44. Mendoza M.Á, De La Blanca NP (2008) Applying space state models in human action recog-
nition: a comparative study. In: International Workshop on Articulated Motion and Deformable
Objects. Springer, pp 53–62



9 Action Recognition in Realistic Sports Videos 207

45. Messing R, Pal C, Kautz H (2009) Activity recognition using the velocity histories of tracked
keypoints. In: International conference on computer vision (ICCV)

46. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans
Pattern Anal Mach Intell (TPAMI) 27(10):1615–1630

47. Mikolajczyk K, Uemura H (2008) Action recognition with motion-appearance vocabulary
forest. In: Computer vision and pattern recognition (CVPR)

48. Mikolajczyk K, Zisserman A, Schmid C (2003) Shape recognition with edge-based features.
In: British machine vision conference (BMVC)

49. Nelson RC, Selinger A (1998) Large-scale tests of a keyed, appearance-based 3-d object recog-
nition system. Vis Res 38(15):2469–2488

50. Nowak E, Jurie F, Triggs B (2006) Sampling strategies for bag-of-features image classification.
In: European conference on computer vision (ECCV), pp 490–503

51. O’Hara S, Draper B (2012) Scalable action recognition with a subspace forest. In: Computer
vision and pattern recognition (CVPR)

52. Pope AR, Lowe DG (2000) Probabilistic models of appearance for 3-d object recognition. Int
J Comput Vis 40(2):149–167

53. Qiu Q, Jiang Z, Chellappa R (2011) Sparse dictionary-based representation and recognition of
action attributes. In: International conference on computer vision (ICCV)

54. Randen T, Husoy JH (1999) Filtering for texture classification: a comparative study. IEEE
Trans Pattern Anal Mach Intell (TPAMI) 21(4):291–310

55. Ranzato M, Poultney C, Chopra S, LeCun Y (2006) Efficient learning of sparse representations
with an energy-based model. In: Neural information processing systems (NIPS)

56. Raptis M, Kokkinos I, Soatto S (2012) Discovering discriminative action parts from mid-level
video representations. In: Computer vision and pattern recognition (CVPR)

57. Rodriguez M, Ahmed J, Shah M (2008) Action Mach: a spatio-temporal maximum average
correlation height filter for action recognition. In: Computer vision and pattern recognition
(CVPR)

58. Sadanand S, Corso JJ (2012) Action bank: a high-level representation of activity in video. In:
Computer vision and pattern recognition (CVPR)

59. Schuldt C, Laptev I, Caputo B (2004 ) Recognizing human actions: a local SVM approach. In:
International conference on pattern recognition (ICPR)

60. Scovanner P, Ali S, Shah M (2007) A 3-dimensional sift descriptor and its application to action
recognition. In: ACM international conference on multimedia

61. Shapovalova N, Raptis M, Sigal L, Mori G (2013) Action is in the eye of the beholder: eye-
gaze driven model for spatio-temporal action localization. In: Neural information processing
systems (NIPS)

62. Shi J, Tomasi C (1994) Good features to track. In: Computer vision and pattern recognition
(CVPR)

63. Sminchisescu C, Kanaujia A, Metaxas D (2006) Conditional models for contextual human
motion recognition. Comput Vis Image Underst 104(2):210–220

64. Soomro K, Zamir AR, Shah M (2012) Ucf101: A dataset of 101 human action classes from
videos in the wild. arXiv preprint arXiv:1212.0402 (2012).

65. Sun J, Mu Y, Yan S, Cheong L (2010) Activity recognition using dense long-duration trajec-
tories. In: International conference on multimedia and expo

66. Sun J, Wu X, Yan S, Cheong L, Chua T, Li J (2009) Hierarchical spatio-temporal context
modeling for action recognition. In: Computer vision and pattern recognition (CVPR)

67. Tamrakar A, Ali S, Yu Q, Liu J, Javed O, Divakaran, A, Cheng H, Sawhney H (2012) Evaluation
of low-level features and their combinations for complex event detection in open source videos.
In: Computer vision and pattern recognition

68. Thi TH, Cheng L, Zhang J, Wang L, Satoh S (2012) Integrating local action elements for action
analysis. Comput Vis Image Underst 116(3):378–395

69. Tian Y, Sukthankar R, Shah M (2013) Spatiotemporal deformable part models for action detec-
tion. In: Computer vision and pattern recognition (CVPR)

http://arxiv.org/abs/1212.0402


208 K. Soomro and A.R. Zamir

70. Tran D, Sorokin A (2008) Human activity recognition with metric learning. In: European
conference on computer vision (ECCV)

71. Tran D, Yuan J (2012) Max-margin structured output regression for spatio-temporal action
localization. In: Neural information processing systems (NIPS)

72. Uijlings J, van de Sande K, Gevers T, Smeulders A (2013) Selective search for object recog-
nition. Int J Comput Vis 104(2):154–171

73. van Gool L, Moons T, Ungureanu D (1996) Affine/photometric invariants for planar intensity
patterns. In: European conference on computer vision (ECCV)

74. Wang Y, Huang K, Tan T (2007) Human activity recognition based on r transform. In: Computer
vision and pattern recognition (CVPR)

75. Wang H, Ullah MM, Kläser A, Laptev I, Schmid C (2009) Evaluation of local spatio-temporal
features for action recognition. In: British machine vision conference (BMVC)

76. Wang C, Wang Y, Yuille A (2013) An approach to pose-based action recognition. In: Computer
vision and pattern recognition (CVPR)

77. Wang H, Kläser A, Schmid C, Liu C (2011) Action recognition by dense trajectories. In:
Computer vision and pattern recognition (CVPR)

78. Wang H, Kläser A, Schmid C, Liu CL (2013) Dense trajectories and motion boundary descrip-
tors for action recognition. Int J Comput Vis 103(1):60–79

79. Wang L, Wang Y, Gao W (2011) Mining layered grammar rules for action recognition. Int J
Comput Vis 93(2):162–182

80. Willems G, Tuytelaars T, van Gool L (2008) An efficient dense and scale-invariant spatio-
temporal interest point detector. In: European conference on computer vision (ECCV)

81. Wu X, Xu D, Duan L, Luo J (2011) Action recognition using context and appearance distribution
features. In: Computer vision and pattern recognition (CVPR)

82. Yamato J, Ohya J, Ishii K (1992) Recognizing human action in time-sequential images using
hidden Markov model. In: Computer vision and pattern recognition (CVPR)

83. Yang J, Yang M (2012) Top-down visual saliency via joint CRF and dictionary learning. In:
Computer vision and pattern recognition (CVPR)

84. Yang J, Yu K, Gong Y, Huang T (2009) Computer vision and pattern recognition (CVPR)
85. Yang Y, Ramanan D (2011) Articulated pose estimation with flexible mixtures-of-parts. In:

Computer vision and pattern recognition (CVPR)
86. Yao A, Gall J, van Gool L (2010) A Hough transform-based voting framework for action

recognition. In: Computer vision and pattern recognition (CVPR)
87. Yeffet L, Wolf L (2009) Local trinary patterns for human action recognition. In: International

conference on computer vision (ICCV)
88. Yilmaz A, Shah M (2005) A novel action representation. In: Computer vision and pattern

recognition (CVPR)
89. Yuan C, Hu W, Tian G, Yang S, Wang H (2013) Multi-task sparse learning with beta process

prior for action recognition. In: Computer vision and pattern recognition (CVPR)


	9 Action Recognition in Realistic  Sports Videos
	9.1 Introduction
	9.2 UCF Sports Dataset
	9.2.1 Action Recognition
	9.2.2 Action Localization

	9.3 Action Recognition in Realistic Sports Videos
	9.3.1 Feature Extraction
	9.3.2 Dictionary Learning
	9.3.3 Action Classification

	9.4 Action Localization in Sports Videos
	9.4.1 Hierarchical Space-Time Segments
	9.4.2 Spatio-Temporal Deformable Part Models

	9.5 Discussion
	9.6 Conclusion
	References


