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Abstract

In this paper, we make three main contributions in the

area of action recognition: (i) We introduce the concept

of Joint Self-Similarity Volume (Joint SSV) for modeling

dynamical systems, and show that by using a new optimized

rank-1 tensor approximation of Joint SSV one can obtain

compact low-dimensional descriptors that very accurately

preserve the dynamics of the original system, e.g. an

action video sequence; (ii) The descriptor vectors derived

from the optimized rank-1 approximation make it possible

to recognize actions without explicitly aligning the action

sequences of varying speed of execution or different frame

rates; (iii) The method is generic and can be applied using

different low-level features such as silhouettes, histogram

of oriented gradients, etc. Hence, it does not necessarily

require explicit tracking of features in the space-time

volume. Our experimental results on three public datasets

demonstrate that our method produces remarkably good

results and outperforms all baseline methods.

1. Introduction
Various approaches have been proposed over the years

for action recognition. On the basis of representation, they

can be categorized as: time evolution of human silhouettes

[20], action cylinders, space-time shapes [22], and local 3D

patch analysis [13], generally coupled with some machine

learning techniques. Almost all the works mentioned

above rely primarily on an effective feature extraction

technique. These feature extraction methods can be roughly

categorized into: motion-based [4], appearance based [6],

space-time volume based [22], space-time interest points

or local features based [14, 16], and the closely related

methods to our approach that are based on the notion of

self-similarity [1, 7].

Our framework is shown schematically in Fig.1. We

construct a Self-Similarity Matrix (SSM) for each frame of

the video sequence using a feature vector. We then construct

Joint SSMs from this sequence of SSMs, leading to a

Joint Self-Similarity Volume (Joint SSV). Joint SSV is then

decomposed into its rank-1 approximation vectors using an

optimized iterative tensor decomposition algorithm. This

yields a set of compact vector descriptors that are highly

discriminative between different actions. To evaluate our

method on human action recognition, we used three public

datasets. To show that our method is generic and does

not depend on the input feature vector, we tested our

method using low-level features like silhouette, as well as

middle-level features like HOG3D. The final step used a

nearest neighbor classification using the descriptor vectors

produced by the rank-1 decomposition of Joint SSV.

The remainder of this paper is organized as follows:

Section 2 presents some preliminaries on the SSM and the

Joint SSM. Section 3 describes the construction of a Joint

SSV, followed by an optimized rank-1 tensor decomposition

algorithm in Section 4. Section 5 then describes the

similarity measure used to classify actions. Experimental

results and their analysis are presented in Sections 6 and 7.

2. Joint Self-similarity Matrix
Below are some preliminary results on SSM:

Definition 1: An SSM can be expressed by a N × N
matrix Ri,j(η, v) = Θ(η − ‖vi − vj‖p), i, j = 1, ..., N ,

where N is the length of a feature vector v, and η is a

threshold distance.

The threshold η filters the values of each SSM element.

We set η = 0 in this paper because this will give us a

complete representation for the Joint SSMs. Θ(·) can be the

Heaviside function (i.e. θ(x) = 0, if x < 0, and θ(x) = 1
otherwise) and ‖ · ‖ is chosen as an ℓp-norm in this paper.

It can be verified that the SSM holds the following

properties: Ri,j = Rj,i (Symmetry); Ri,j >= 0 for all

i and j (Positivity); and Ri,k <= Ri,j + Rj,k for all

i, j, k (Triangle inequality), and hence it is a metric. SSM

provides important insights into the dynamics of a vector,

which is especially advantageous in high dimensional

spaces [1]. The intuition behind the SSM is that, according

to recurrent plot theory, if we view the vector v as a

trajectory in 2D space, the SSM itself captures the internal

dynamics of this trajectory in a matrix form [2].

We further extend the SSM to Joint SSM based on the
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Figure 1: The flow of our action recognition framework. First, given an input action video, we extract either low-level

features like silhouettes in a frame-by-frame manner, or middle-level features like HOG3D from the partitioned video blocks.

Second, we transform the feature vector in each frame into an SSM. From the sequence of SSMs we then construct a

symmetric and unique 3D structure, which we refer to as the Joint SSV. Joint SSV carries information about action dynamics.

However, in order to handle its large dimension, it is decomposed into three compact and discriminative vectors, two of which

are identical (due to symmetry). These descriptor vectors characterize the internal dynamics of an action. Finally, the vectors

are used for measuring similarity with a database of actions for classification.

Figure 2: Visualization of the symmetric Joint SSV. The

middle figure shows its cut in three direction. The right

figure shows the X-section of the volume.

idea of Joint Recurrence Plot (JPR) theory, which will be

used in the construction of the Joint SSV.

Definition 2: The Joint SSM is defined as

JRv,w
i,j (ηv, ηw, v, w) = Θ(ηv − ‖vi − vj‖p1

)Θ(ηw −
‖wi − wj‖p2

), in which i, j = 1, ..., N , ηv and ηw are two

internal thresholds, p1 and p2 are two distance norms.

This extension is motivated by the fact that a recurrence

will take place if a point vj on the first trajectory v returns to

the neighborhood of a former point vi, and simultaneously

a point wj on the second trajectory w returns to the

neighborhood of a former point wi.

3. Construction of Joint SSV
Suppose we have vectors Ψ = {V1, V2, ..., Vt} with

Vi ∈ Rd. These vectors can be regarded as some specific

feature vectors varying over time T , say, extracted features

from video sequence. Our objective here is to build a unique

volume that simultaneously characterizes the dynamics of

not only each element of Ψ but also the relation amongst

consecutive ones. Based on the recurrent plot theory, the

Laplacian operator is applied on the SSM sequence to fuse

the consecutive SSMs. We define the gradient operator

∇t on Ψ as ∇tΨ = dΨ
dt

= Vi − Vi−1. Since Γ(Ψ) =
{Γ(Vi)}i=1..t, we have ∇tΓ(Vi) = Γ(Vi)−Γ(Vi−1). It can

be verified that Γ(∇t(Vi)) = Γ(Vi − Vi−1) = ∇tΓ(Vi).
Therefore, Γ∇2

t (Ψ) = ∇2
t Γ(Ψ), and we can further arrive

at the following theorem:

Theorem 1: Given a random vector Ψ and a

self-similarity matrix operator Γ : Rd → Rd×d, it holds

that Γ∇2
t (Ψ) = ∇2

t Γ(Ψ).

Figure 3: Rank-1 approximation Â = λU (1) ◦ U (2) ◦ U (3)

for original Joint SSV A.

The self-similarity matrix operator Γ and the second

order Laplacian operator ∇2
t are exchangeable in terms of

the SSM sequence. Now we define the Joint Self-Similarity

Volume based on Definition 2. Let ◦ be the element-wise

multiplication operator between two matrices:

Definition 3: The Joint Self-Similarity Volume

corresponding to a random vector Ψ is built via a

map Ξ : Rd×t → Rd×d×t such that each element

in T dimension is defined by a matrix satisfying

Ξi|i=1..t = Γ(Ψi) ◦ Γ∇2
t (Ψi).

This generates a symmetric 3D volume, that we refer to

as the Joint SSV.

4. Rank-1 tensor approximation

To obtain an optimal rank-1 approximation of Joint SSV,

we propose an alternating least-squares (ALS) method by

optimizing the components of the factorization of a given

SSV in an iterative fashion similar to [10, 11]. Given a real

N th-order tensor A ∈ R
I1×I2×···×IN , there exists a scalar

λ and N unit-norm vectors U (1), U (2), · · · , U (N) such that

a rank-1 tensor Â = λU (1) ◦ U (1) ◦ · · · ◦ U (N) minimizes

the least-squares cost function

f(Â) = ‖A − Â‖2

over the manifold of rank-1 tensors, which can be analyzed

using the Lagrange multipliers and yields the following



equations [3]:

A×1 U (1)T

· · · ×n−1 U (n−1)T

×n+1 U (n+1)T

· · ·

×NU (N)T

= λU (n),

A×1 U (1)T

×2 U (2)T

· · · ×N U (N)T

= λ,

‖U (n)‖ = 1.

Specifically, our objective is to find a rank-1 approximation

of Joint SSV such that there exists a scalar λ and three

vectors U (1), U (2) and U (3) with objective function

min
∑

i,j,k

(aijk − λU
(1)
i ◦ U

(2)
j ◦ U

(3)
k )2, (1)

where aijk denotes the Joint SSV, a 3-order tensor, as shown

in Fig.3. The ◦ is the outer product operator for vector, i
and j are spatial mode indices and i, j ∈ [1, I], I is the size

of Joint SSM; while k ∈ [1,K], K is the frame number

for this Joint SSV. Since each vector U (1), U (2) and U (3) is

determined only up to a scaling factor, we have

‖U (1)‖2 = ‖U (2)‖2 = ‖U (3)‖2 = 1.

On the other hand, Joint SSV is symmetric in spatial

dimension since its elements remain constant under any

permutation of the indices i and j, i.e. aijk = ajik,

therefore

U (1) = U (2). (2)

For clarity of presentation, we denote U (1), U (2) and U (3)

as ρ, ρ and ε, and we will call them the primary vector ρ,

and secondary vector ε, respectively. Under the constraint

of Eq.(2), the Eq.(1) can be solved by the technique of

Generalized Rayleigh Quotient (GRQ) in [23], and we

adopt the alternating least squares algorithm (ALS) in this

paper for the optimal SSV approximation.

Algorithm 1: Joint SSV rank-1 approximation

input : A 3-order tensor Joint SSV A ∈ R
I×I×K ,

where I is the spatial dimension of Joint

SSM, and K is the temporal dimension of A
output: Two vectors ρ and ε that minimize

‖A − λρ ◦ ρ ◦ ε‖2, where ρ ∈ R
I , ε ∈ R

K ,

and ‖ρ‖2 = ‖ε‖2 = 1
Initialize U0 = [ρ(0), ε(0)]T ;

for t ← 0 to Nmaxiteration do

ρ̃(t+1) = A×2ρ
(t)×3ε

(t);

ε̃(t+1) = A×1ρ
(t)×2ρ

(t);

ρ(t+1) = ρ̃(t+1)/‖ρ̃(t+1)‖;

ε(t+1) = ε̃(t+1)/‖ε̃(t+1)‖;

λ(t+1) = A×1ρ
(t+1)×2ρ

(t+1)×3ε
(t+1);

end

In Algorithm 1, the ×i for i = 1, 2, 3 denotes the

multiplication between a tensor and a vector in mode-i of

that tensor, whose result is also a tensor, namely,

B = A×iρ ⇐⇒ (B)jk =

I∑

i=1

Aijkρi.

Starting with random initial values for ρ and ε, the

algorithm alternately changes ρ (or ε) while fixing the other

one, and iteratively achieves the optimal approximation.

The iteration stops when the difference between A and Â
arrives at a sufficiently small value.

5. Similarity measure for classification
Let Ψ and Ψ′ be the two initial input vectors, whose

corresponding decomposed vector pairs are v = {ρ, ρ, ε}
and w = {ρ′, ρ′, ε′}, respectively. We first normalize ρ and

ρ′ (as well as ε and ε′) to zero mean and unit variance, and

make ρ and ρ′ (as well as ε and ε′) of equal dimension. The

similarity between Ψ and Ψ′ is then defined as

D(Ψ, Ψ′) =

3∑

i=1

max d(vi, wi),

where d(vi, wi) denotes the cross-correlation of the ith

elements in v and w.

6. Experiments
We evaluated our method on 3 well-known public

datasets: Weizmann, KTH, and UCF sports dataset. Our

goal was to evaluate the feasibility of our technique on

various datasets with different Joint SSV schemes.

6.1. Two schemes

HOG3D-based Joint SSV (JSSV-hog3d) We employed

the dense representation as in [20], and used the HOG3D

descriptor [8] at densely distributed locations within a

Region of Interest (ROI) centered around the actor, and

partition the volume into regular overlapping blocks. All

blocks were then partitioned into small regular cells.

Histograms of 3D gradient orientations, generated using

dodecahedron based quantization [8] with 6 orientation

bins, for cells within a block, were then computed, and

concatenated to form a block descriptor. Here we name all

blocks within the same temporal location a slice, as shown

in Fig.4.

We used the same configuration as in [20] for defining

ROIs but different block setup. We used 2κ × 2κ × 2τ

pixel blocks subdivided by 2 × 2 × 2 cells, and computed

the HOG3D descriptor for each block. Note that κ and τ
are parameters that control the size of blocks. We let κ
range from 2 to 4. Otherwise, the larger the κ is, the less

the number of blocks for each slice will be, which may be

disadvantageous for the computation of Joint SSVs. The τ



Figure 4: (Left) Extracting HOG3D feature descriptor after

the dense sampling for the action volume in ROI and the

partitioning of the volume into blocks; (Right) All blocks

with the same temporal location form a slice. Each slice

is further vectorized to a vector feeding into the Joint SSV

construction procedure.
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Figure 6: Converting silhouette features to time series using

the method in [21] for Bend and Jack actions from the

Weizmann dataset.

ranges from 1 to 5. It can control the depth of the generated

volume.

Slices overlap with each other between consecutive ones,

yielding a redundant representation, which enhances the

discriminative power [20]. Within each slice, all blocks

are concatenated in row order into a block sequence. This

sequence is a vector used for building the self-similarity

matrix. Using all slices, we then construct a Joint SSV out

of both SSMs and Joint SSMs using the procedure described

in Section 3.

Silhouette-based Joint SSV (JSSV-silh) We extracted

the contour from the silhouette in each frame and

transformed the contour into a time series using the method

in [21], as shown in Fig.6. The time series were normalized

to zero mean and unit variance before being fed into the

framework as input vectors to generate the Joint SSV.

Silhouettes can be easily extracted from static or uniform

action background, but harder or even impractical for more

challenging action sequences. For this reason, we merely

tested this scheme on Weizmann dataset, which provides

well-extracted silhouette features. Fig.8 shows a sequence

of generated SSMs for Bend action in Weizmann dataset,

and Fig.7 shows the visual difference between four different

actions.

6.2. Datasets and recognition rate

For all the results reported in this section, we performed

the recognition using nearest neighbor classification and

leave-one-out cross validation.
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Figure 7: SSM comparison among various action frames

using silhouette feature. (Top) Selected frames from

4 actions Jack, Run, Wave2, and Side; (Bottom) The

corresponding silhouette-based SSMs.
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Figure 9: Recognition rate under different HOG3D block

depth 2τ for three datasets using JSSV-hog3d scheme.

Weizmann dataset The Weizmann dataset 1 consists of

videos of 10 different actions performed by 9 actors. Each

video clip contains one subject performing a single action.

The 10 different action categories: walking, running,

jumping, gallop sideways, bending, one-hand-waving,

two-hands-waving, jumping in place, jumping jack, and

skipping. Each of the clip lasts about 2 seconds at 25Hz

with image frame size of 180 × 144.

We evaluated two schemes separately, namely the

JSSV-silh and the JSSV-hog3d. For the former scheme,

we used the provided well-extracted silhouettes in dataset to

build input vectors for the whole framework, and we were

able to achieve a recognition rate of 100%. For the latter

one, we extract the ROI using the silhouettes and fitting

a bounding box around each of them. To be consistent,

all ROIs in our experiments are scaled and concatenated to

form a 128 × 64 × t volume, where t is the frame number

in sequence. We evaluated various block size setups (Fig.9

and Table 1) and observed that when κ = 4 and τ = 3 (i.e.

block size: 16×16×8), the JSSV-hog3d scheme yields the

best recognition rate of 100%, as shown in Table 1.

KTH dataset The KTH dataset 2 consists of 6 actions

performed by 25 actors in four different scenarios. We

followed the evaluation procedure in [20] but used slightly

different settings for the block size. We extracted the ROIs

1http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
2http://www.nada.kth.se/cvap/actions/



Figure 5: Screenshots for different action classes of 3 public datasets. (The 1st row) The Weizmann dataset and the KTH

dataset; (The 2nd row) The UCF sports dataset.

Figure 8: A sequence of computed SSMs for frames selected from the the Bend action in Weizmann dataset. Note that all

above SSMs have identical dimension. Both salient and subtle differences between silhouette contours can be revealed by

SSMs.

using the bounding boxes provided by [14], and evaluated

the JSSV-hog3d scheme on this dataset under various block

size configurations, as shown in Fig.9. When τ is small,

the block depth is small, making the final decomposed

vectors undiscriminating for classification. But as τ grows,

the recognition rate grows accordingly. This also agrees

with our intuition that larger blocks contain more cells, and

capture more stable gradient information compared with the

smaller ones. But as the block size becomes too large, more

redundant information is introduced, leading a reduced

recognition rate. Especially, our best recognition rate 100%
is achieved when κ = 4 and τ = 4, This outperforms both

the result in [20] (92.4%), which has a similar experimental

configuration as us, and the state-of-the-art approach in [5]

(94.5%).

UCF sports dataset The UCF sports dataset 3 contains

11 actions: golf swing (back, front, side), kicking (front,

side), riding horse, run, skate boarding, swing bench,

swing (side), and walk. This dataset also provides the

well-extracted bounding boxes for extracting the ROIs

from each action sequence. Each action contains unequal

number of samples. For consistency in our experiments, we

chose 10 samples for each action class. For those actions

3http://server.cs.ucf.edu/ vision/data.html

having less than 10 samples such as “golf-swing-back”,

“golf-swing-side”, and “golf-swing-front”, we increased

the amount of data samples by adding a horizontally flipped

version of existing samples. This resulted in 110 samples in

total. As shown in Table 1, our best recognition rate 86.9%
is achieved when κ = 3 and τ = 3, which is comparable

with the state-of-the-art in [9] (87.27%).

7. Conclusion

In this paper, we study the application of Joint

Self-Similarity Volume for action recognition in video

sequences. A new optimized rank-1 tensor approximation

algorithm is proposed for dimensionality reduction, which

can largely preserves the salient characteristics for scene

dynamics. A significant saving in both memory and

computational complexity can be achieved since only a

collection of rank-1 tensors is adopted as the reference

database. The algorithm also allows one to recognize

actions without explicitly aligning the videos in temporal

dimension. Due to the fact that the proposed formulation is

not dependent on the low-level features extracted from the

sequence, we can apply this framework using any type of

low-level feature vector, including feature vectors that are

view-invariant [18].



Table 1: (Upper table) Comparison of recognition rate for 3 action datasets under the JSSV-hog3d scheme. The κ and τ are

parameters controlling the block size 2κ × 2κ × 2τ ; (Bottom table) Comparison of recognition rate for 3 datasets between

our 2 different schemes and other methods.

Weizmann KTH UCF sports

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

κ=2 70.5 78.4 82.0 80.1 71.1 70.5 73.9 64.8 76.3 60.2 68.0 64.7 69.8 72.0 48.6

κ=3 75.0 76.5 86.2 87.3 85.4 75.5 70.4 84.8 88.0 84.0 63.9 72.8 86.9 80.5 76.4

κ=4 83.6 90.1 100.0 90.0 89.1 80.2 83.0 94.8 100.0 92.2 68.2 81.9 64.8 77.5 76.1

Methods Weizmann KTH UCF sports

JSSV-silh 100.0 - -

JSSV-hog3d 100.0 100.0 86.9

Schindler [17] 100.0 Gilbert [5] 94.5 Kovashka [9] 87.27

Zhang [24] 97.8 Lin [14] 93.4 Klaser [12] 86.7

Other methods J.Imran [7] 95.3 Schindler [17] 92.7 Wang [19] 85.6

Niebles [16] 90.0 Weinland [20] 92.4

Liu [15] 89.3 Liu [15] 82.8
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