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ABSTRACT:

Accumulating the motion information from a video sequence is one of the highly challenging and significant phase in Human Action

Recognition. To achieve this, several classical and compact representations are proposed by the research community with proven

applicability. In this paper, we propose a compact Depth Motion Map based representation methodology with hastey striding,

consisely accumulating the motion information. We extract Undecimated Dual Tree Complex Wavelet Transform features from the

proposed DMM, to form an efficient feature descriptor. We designate a Sequential Extreme Learning Machine for classifying the

human action secquences on benchmark datasets, MSR Action 3D dataset and DHA Dataset. We empirically prove the feasability

of our method under standard protocols, achieving proven results.

1. INTRODUCTION

In the field of machine vision, Human Action Recognition

(HAR) plays a significant role in many applications and hence it

has been one of the active research area for the last two decades.

HAR has wide applications and hence it is an inseparable part

of video surveillance, scene understanding, health monitoring,

fitness training, gait recognition and also human computer

interaction. Due to the extensive research works in the domain

of image/video processing, action recognition also attracted

the research community. Initially, motion sequences were

captured using traditional RGB video recording cameras and

hence research was limited to the 2D information registered

in the video frames. While dealing with recognition of more

complex movements, such as movement of body part either

nearer to a camera or away from the camera where there is no

texture variation, the distance from body part (object surface)

from the camera lens varies significantly. Owing to this, idea of

depth sensors came into reality.

The invention of low price depth sensors addressed these

limitations of 2D frames by registering the 3D depth (distance

from the lens of camera) information. Recent research works on

action recognition are exploring the feasibility of using depth

information along with RGB (Aggarwal , Xia, 2014) data.

Depth sensors are proven to be advantageous as the intensity

based video frames are highly sensitive to the cluttering of

background as well as lighting variance whereas depth frames

are insensitive to lighting variance. Apart from this, depth

frames are rich with discriminating, de facto depth and edge

information.

1.1 Motivation and Contribution

In order to shuffle off the burden of accessing huge video

files and high computationally intensive 3-layer RGB video

frame processing, we need to explore the possibilities of action

recognition solely based on depth frames. Further, to extract
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the textural features over the video frames, we need an efficient

and concise representation of the entire depth frame sequence.

The proposed work aims to explore depth motion map concept

to efficiently represent and classify human actions. The work

date backs to the pioneering work carried out by (Bobick

, Davis, 2001) where an accumulated foreground regions of

human to track the shape changes using motion history images

is addressed. Further, (Yang et al., 2012) extended this idea to

represent video frames using depth motion map.

With this backdrop, we propose a compact and computationally

efficient DMM representation, namely Stridden Depth Motion

Map (S-DMM), which hastily generates an accumulated dense

structure striding 4 frames of the video sequence at a time.

This completes the DMM generation four times faster than the

existing approach presented in (Chen et al., 2015b). Second, we

explore a Undecimated Dual Tree Complex Wavelet Transform

(UDTCWT) based feature descriptor for extracting the wavelet

features from our S-DMMs. Third, using a Sequential Extreme

Learning Machine (S-ELM) for classification, we compare our

method with the state-of-the-art methods considering standard

datasets.

The rest of paper is organized as follows. We briefly

discuss significant related works in Section 2. The proposed

methodology is detailed in Section 3, followed by experimental

results in Section 4 and Section 5 concludes this paper.

2. RELATED WORKS

Invention of depth sensors and action based game controlling

techniques have brought significant importance to HAR. Initial

attempts of action recognition from depth sequences were

focused on extracting local features. For example, (Li et

al., 2010) presented collection of 3D points features wherein

silhouettes of depth images were used to sample the 3D points.

(Vieira et al., 2012) segregates 3D points onto 4D grids of

equal size, encoding these grids as Spatio-Temporal Occupancy

Commission II, WG II/10
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Figure 1. Proposed methodology for Stridden Depth Motion Map generation, extracting UDTCWT features and Action

Recognition from Depth sequences

Patterns (STOP). (Wang et al., 2012) used sparse coding

method to encode large sampling space of Random Occupancy

Pattern (ROP) features.

Global feature representations generally use the differences

between consecutive frames to accumulate the motion

regions.(Bobick , Davis, 2001) proposed Motion History Image

(MHI) from the temporal history of each point giving rise to

the intensity of pixels in MHI. (Yang et al., 2012) proposed

Depth Motion Map (DMM) representation wherein absolute

difference between consecutive frames is calculated that results

to a frontal depth map, which is projected onto the other two

orthogonal planes (side and top). These projected maps are

accumulated yielding the corresponding DMMs in three planes.

Enhanced DMM based approaches are presented in (Chen et al.,

2015b, Chen et al., 2016a), such as stacking of depth frames

across an entire depth sequence on three orthogonal planes.

(Chen et al., 2015b) exploited LBP feature on DMM and

Kernal Extreme Learning Machine(K-ELM) for classification

whereas (Chen et al., 2016a) uses vectorized DMM for feature

representation and l2-regularized collaborative representation

classifier for classification. (Yang , Yang, 2014) trained Deep

Convolutional Neural Networks (D-CNNs) on DMMs.

Various approaches of DMM representation and feature

representations on DMMs are presented in (Zhang , Tian,

2013, Bulbul et al., 2015b, Bulbul et al., 2015c, Bulbul et al.,

2015a, Chen et al., 2015a, Chen et al., 2017, Chen et al., 2016b).

(Liu et al., 2018) attempted a recognizer using multi-scale

energy based Global Ternary Image (GTI) modality on depth

sequences which accounted the spatial-temporal discrimination

and action speed variations in order to address the problems

of distinguishing similar actions and identifying the actions

with different speeds. DMM-based representations effectively

transform the action recognition problem from 3D to 2D,

with promising accuracies on the task of depth-based action

recognition (Liu et al., 2018).

3. PROPOSED ACTION RECOGNITION

METHODOLOGY

The proposed method has three phases namely, S-DMM based

depth video representation, UDTCWT based feature extraction

followed by classification using S-ELM technique. Different

phases of our methodology such as S-DMM generation,

UDTCWT feature representation, dimensionality reduction and

classification are briefed in sections 3.1, 3.2, 3.3 and 3.4

respectively. The work flow is pictorially presented in Figure

1.

3.1 Stridden Depth Motion Maps

Aiming for computation efficiency and more compact

representation, we traverse the depth video in strides (steps) of

4 frames per iteration during DMM generation. In addition,

we compute the frame variation at an interval of two frames

rather than subtracting the consecutive frames to find the energy
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Figure 2. Stridden DMM generated for high

wave action due to the proposed method.
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Figure 3. DMM generated for high wave action

due to an existing method (Chen et al., 2015b).

difference. The summation of absolute differences between

two alternative frames across the video sequence yields a

single S-DMM. The process is mathematically summarized in

equation 1.

SDMM{f,s,t} =

N
X

k=3,k=k+4

�

�

�
D

k
{f,s,t} �D

k−2

{f,s,t}

�

�

�
(1)

where f, s, t are front, side and top projections respectively

Dk
{f,s,t} is the k-th frame under the projection view

N is the number of frames in the depth sequence

SDMM is the generated Stridden Depth Motion Map.

It shall be observed that the S-DMM generated for high wave

action, using the proposed methodology (Figure 2 ) is more

prominent than the DMM generated using the existing method

(Figure 3) presented in (Chen et al., 2015b).

In our methodology, apart from the front (f) view available

in the depth video frame we generate two more additional

projection views namely, side(s) and top(t).

The computation of side and top 2D projected views from

the corresponding front view using equations 2 and 3 is given

below,

D
s
ik =

(

j, if D
f
ij 6= 0

0, otherwise
(2)

D
t
kj =

(

i, if D
f
ij 6= 0

0, otherwise
(3)

where i = 1, 2...M, j = 1, 2...N and k = 1, 2...L
L being the maximum depth value across front frames

Df is the current front frame of size MxN

Ds and Dt are the generated side and top projections.

3.2 Undecimated Dual Tree Complex Wavelet Transform

During the second phase, each of the S-DMMs generated

as described above are scanned with an Undecimated Dual

Tree Complex Wavelet Transform (UDTCWT) function to

produce an efficient feature descriptor. The traditional

wavelet transforms such as DWT, DTCWT are having certain

limitations when applied in digital image processing(Rajesh ,

Shekar, 2016). For example, the wavelet function produced

from 2D DWT is not suitable for extracting diagonal edge

details of an image due to its checker board pattern spectrum,

whereas Dual Tree Complex Wavelet Transform (DTCWT) is

free from such limitations. DTCWT wavelet coefficients are

invariant to signal shift, free from oscillations around signal

discontinuities such as edges and moreover do not suffer from

aliasing.

An undecimated version of the DTCWT i.e UDTCWT is

proposed in (Hill et al., 2012). It is more robust than DWT

and DTCWT as downsampling is not employed, which helps

in incorporating perfect one-to-one relationship between the

co-located coefficients extracted at different scales. This helps

to attain a flawless shift invariance in UDTCWT.

In our work, we form an higher dimensional global descriptor

using UDTCWT similar to the method presented in (Rajesh ,

Shekar, 2016). This is achieved in four stages. At first, we

compute UDTCWT at 6 different orientations (�150, �450,

�750, 150, 450, 750) and 4 scales leading to 24 complex

coefficient images. We separate the real and imaginary part

of each coefficient image producing 48 complex coefficient

images in total. During the second stage, we generate 8 Global

UDTCWT Phase Pattern (GUPP) images from the above said

48 complex coefficient images. In this process, the values

of 6 orientation coefficient images at each location (x,y) are

concatenated forming a 6 element vector. The elements in

vector are binarised (0 if value is greater than or equal to 0,

1 otherwise), to get a 6 bit vector which is in turn 0 padded at

the two ends to form a vector byte. The value of this byte is the

GUPP image value at (x,y). The process is shown in figure 4.

GUPP image for a given scale is computed by computing the

values in the similar manner for all (x,y) locations.

In the third stage, for each of the 48 complex coefficient images

Local UDTCWT Phase Pattern (LUPP) images are generated.

The LUPP image value at location (x,y) is computed from its

eight neighbor locations as shown in Figure 5, forming a 8 bit

vector. LUPP value at location p is computed using equation 4

as shown below,

LUPP
�

p
�

=

7
X

j=0

sgval(aj ⇤ P ) ⇤ 2j (4)
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Figure 4. Computing GUPP value at location p from complex coefficient images at six different orientations.

Figure 5. Eight neighbor locations for

computation of LUPP value at p.

where sgval(product)=0 if product is +ve, =1 if product is -ve.

P is the value of UDTCWT at the center pixel p.

ajs are values of UDTCWT at the eight neighbors.

Finally, we divide GUPPs and LUPPs into blocks, compute

spatial histogram in each block and concatenate these

histograms to form a global descriptor for the given S-DMM.

We as well extract similar features from side and top projections

of S-DMMs.

3.3 Dimensionality Reduction

The global descriptor obtained due to GUPP and LUPP

images is found to be robust. However, due to consecutive

concatenation of spatial histogram of each blocks and

concatenation of similar vectors from three projected DMMs,

the dimension of feature vector turns to be very high. It is

advisable to reduce the dimensionality in order to facilitate

an efficient and smooth computation. We employ Principal

Component Analysis (PCA) to reduce the dimension of feature

vector, retaining the most discriminating features. PCA linearly

maps the data to a new lower dimensional space, with the key

objective of maximizing the variance of the data in the lower

dimensional space.

3.4 Classification using S-ELM

We have used Sequential Extreme Learning Machine (Huang

et al., 2005) for classification. It is a known fact

that the single-hidden layer feed forward neural networks

(SLFNs)(Huang et al., 2006) with randomly chosen weights

between the input layer and the hidden layer and adequately

chosen output weights are universal approximators for any

bounded non-linear piecewise continuous function. In ELM,

the input weights and bias matrix are randomly assigned.

Considering an output neuron with a linear activation function,

the SLFN network can be regarded as a linear regression model

between the output vector of the hidden layer and the output of

the SLFN. The sequential implementation of the ELM results in

the application of recursive least-squares (RLS) to estimate the

output weights vector. In brief, S-ELM is capable of randomly

choosing the input weights and analytically determining the

output weights of SLFNs.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results conducted on

two standard datasets namely, MSR Action 3D dataset and

DHA dataset. The details of the datasets are presented in

subsection 4.1. We conducted extensive experiments as per the

standard protocols found in the existing literature and is detailed

in subsection 4.2. A comparative analysis of our work and the

results obtained are presented in subsection 4.3.

4.1 Dataset Description

We evaluate our approach with two of the popular benchmark

datasets namely MSR Action 3D dataset(Li et al., 2010) and

Depth-included Human Action (DHA) dataset (Lin et al.,

2012). The MSR Action 3D dataset contains 557 depth video

sequences, depicting 20 different actions, where each action is

performed 2 or 3 times by 10 subjects facing the depth sensor.

This dataset is challenging due to similarity of actions (e.g.

draw x, draw tick, draw circle) and variations in the speed

of actions. The DHA dataset is an extended dataset from the

Weizmann dataset (Blank et al., 2005), containing 23 actions in

total, each performed by 12 male and 9 female, 21 subjects in

total.

4.2 Experimental Setup

For comparison with the standard published results, we have

examined our method under two different experimental settings
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Method
Action Subsets

Average (%)
AS1 AS2 AS3

Li et al.(Li et al., 2010) 72.9 71.9 79.2 74.7

DMM-HOG (Yang et al., 2012) 96.2 84.1 94.6 91.6

Chen et al. (Chen et al., 2016a) 96.2 83.2 92.0 90.5

HOJ3D (Xia et al., 2012) 88.0 85.5 63.6 79.0

STOP (Vieira et al., 2014) 91.7 72.2 98.6 87.5

DMM-LBP (Chen et al., 2015b) 98.1 92.0 94.6 94.9

Proposed
DMM-UDTCWT 95.6 93.82 96.6 95.34

Stridden DMM-UDTCWT 96.52 93.82 96.92 95.75

Table 1. Average recognition accuracies (%) under Cross Subject tests on fixed subsets on MSR Action 3D dataset.

Accuracy: 93.41%
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Figure 6. Confusion matrix under setting 2 on MSR Action 3D dataset demonstrating the class-wise recognition

accuracy.

Method Accuracy (%)

DMM-HOG(Yang et al., 2012) 85.5

ROP (Wang et al., 2012) 86.5

HON4D (Oreifej , Liu, 2013) 88.9

DMM-LBP (Chen et al., 2015b) 91.9

DMM-UDTCWT 92.67

Stridden DMM-UDTCWT 93.41

Table 2. Recognition accuracies under setting 2 on MSR

Action 3D dataset .

Method Accuracy (%)

D-STV/ASM (Lin et al., 2012) 86.8

SDM-BSM (Liu et al., 2015) 89.5

D-DMHI-PHOG (Gao et al., 2015) 92.4

D-STV (Gao et al., 2014) 86.8

DMM-UDTCWT 94.2

Stridden DMM-UDTCWT 94.6

Table 3. Average recognition accuracies under Leave One

Subject Out test on DHA dataset.

available in the literature(Chen et al., 2015b). On MSR Action

3D dataset, under setting 1, the actions are divided into three

subsets (AS1, AS2 and AS3) comprising of 8 actions each.

The AS1 includes actions namely, Horizontal wave, Hammer,

Forward punch, High throw, Hand clap, Bend, Tennis serve and

Pickup throw. The AS2 comprises of action sequences such

as High wave, Hand catch, Draw x, Draw tick, Draw circle,

Two hand wave, Forward kick and Side boxing whereas AS3 is

made up of actions like High throw, Forward kick, Side kick,

Jogging, Tennis swing, Tennis serve, Golf swing and Pickup

throw. On these three action subsets, we perform cross subject

test, wherein one half of the subjects (1, 3, 5, 7, 9) were used

for training and the rest for testing.

On Action 3D dataset, in setting 2, all the 20 actions are

employed and one half of the subjects (1, 3, 5, 7, and 9) are

used for training and the remaining subjects are used for testing.

Thus, setting 2 is more challenging than setting 1, comprising

more action classes. To evaluate our method on DHA dataset,

we employ Leave One Subject Out (LOSO) testing protocol.
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4.3 Discussion

We have made a comparative study with state-of-the-art

action recognition methods, following their standard train/test

protocol. Under setting 1 of MSR Action 3D dataset, our

method achieves 95.75% of average accuracy. The results are

tabulated in Table 1. Under setting 2 with cross subject test,

experimental results are obtained and the results are tabulated

in Table 2 along with other existing methods. In addition, we

have also made a comparative study considering much more

complex dataset such as DHA dataset with Leave One Subject

Out strategy. The comparative results are presented in Table 3.

The confusion matrix is presented in Figure 6, that

demonstrates the class-wise recognition accuracies of MSR

Action 3D dataset under setting 2 and it is evident that

seven out of thirteen Draw x actions are wrongly classified as

Draw tick whereas five out of fifteen Draw circle actions are

wrongly predicted to be Draw tick. This is due to the fact

that there is strong interclass similarities among these three

action sequences. Figure 7 shows action frames from Draw

x, Draw tick and Draw circle actions respectively. Comparing

the confusion matrix for Action 3D dataset of our proposed

method to that of presented in (Chen et al., 2017, Chen et

al., 2015b), it is evident and we conclude that our method

effectively discriminates and better classifies Draw x action

from Horizontal wave and Hammer actions as opposed to the

methods presented in (Chen et al., 2017, Chen et al., 2015b).

Figure 7. Interclass similarity across Draw x,

Draw tick and Draw circle action sequences on

MSR Action 3D dataset.

Considering various recognition accuracies on MSR action

3D dataset presented in Table 1, Table 2 and the recognition

accuracies on DHA dataset presented in Table 3, we observe

that there is a substantial difference between the recognition

rate achieved by the proposed method and it is much more

evident in the case of DHA dataset.

5. CONCLUSION

An accurate and efficient method for human action recognition

using UDTCWT based feature descriptor considering newly

proposed Depth Motion Map from depth sequences is

presented. The proposed Stridden DMMs efficiently and

quickly register the action cues and UDTCWT extracts the

wavelet features from this compact DMM representation.

A Sequential ELM is employed to classify the action

sequences. The proposed method is extensively evaluated on

two benchmark datasets, under standard protocols presented

in the literature. Our experiments exhibit better results when

compared to state-of-the-art methods. However, effective and

discriminative representation to overcome the challenge of

interclass similarities is to be addressed in our future works.

Also, we intend to address the lack of DMMs in registering

the speed variations of action sequences and to improve

the computational speed of the proposed UDTCWT feature

descriptor.
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