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Action Selection for Single-Camera SLAM
Teresa A. Vidal-Calleja, Alberto Sanfeliu, and Juan Andrade-Cetto, Member, IEEE

Abstract—A method for evaluating, at video rate, the quality
of actions for a single camera while mapping unknown indoor
environments is presented. The strategy maximizes mutual in-
formation between measurements and states to help the camera
avoid making ill-conditioned measurements that are appropriate
to lack of depth in monocular vision systems. Our system prompts
a user with the appropriate motion commands during 6-DOF
visual simultaneous localization and mapping with a handheld
camera. Additionally, the system has been ported to a mobile
robotic platform, thus closing the control-estimation loop. To show
the viability of the approach, simulations and experiments are
presented for the unconstrained motion of a handheld camera and
for the motion of a mobile robot with nonholonomic constraints.
When combined with a path planner, the technique safely drives
to a marked goal while, at the same time, producing an optimal
estimated map.

Index Terms—Action selection, active vision, bearing-only si-
multaneous localization and mapping (SLAM), mutual informa-
tion, path planning.

I. INTRODUCTION

AUTONOMOUS vehicles must be able to automatically

determine their control commands to achieve a specified

task. Commonly, it is assumed that the vehicle has complete and

exact knowledge of its environment; of course, this assumption

is not always realistic. If uncertainty in the prior knowledge is

small, it is reasonable to anticipate all possible contingencies

and to generate sensor-based motion plans that can deal with

them. On the other hand, if the autonomous vehicle has no

prior knowledge of its environment, it is necessary to first learn

about it.

Mobile robots operate in environments that are either par-

tially or completely unknown. Often, the environment is chang-

ing with time in an unknown manner; hence, sensors that can

enable the vehicle to navigate in these environments are well

motivated.

Vision sensors offer a wide field of view, plus millisecond

sampling rates, and thus can easily be used for control. Cameras

can be cheaper when compared to other sensors, such as laser
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range scanners. However, some disadvantages of vision include

lack of depth information, image occlusion, low resolution,

and the requirement for extensive data interpretation, i.e.,

recognition.

Real-time performance imposes severe restrictions on the

volume of computation that can take place in a time step. In

order to get a fully autonomous vehicle working in a partially

unknown environment, image processing, decision making, full

estimation of vehicle location, and map updating should be

done at video rates, i.e., at 16 or 33 ms/step.

This paper is about the guidance of an autonomous vehicle

using only a single camera. We are interested in the real-time

estimation and control of a single camera’s motion, moving in

3-D within normal human environments and on nonflat terrains,

mapping visual features. The presented technique builds a fea-

ture map and localizes the sensor in this map by computing the

appropriate control actions in order to improve overall system

estimation.

Three experimental settings are discussed. The first one is

an online implementation for a single-camera simultaneous

localization and mapping (SLAM) system that extends the work

of Davison [1], adding control to his otherwise passive monoc-

ular system. Given the real-time characteristics of the visual

SLAM system used, fast and efficient action evaluation is of

utmost importance. Fortunately enough, the elements needed to

validate the quality of actions with respect to entropy reduction

are readily available from the SLAM priors, and by making

enough implementation adaptations, we are able to evaluate in

real time the value of a reasonably sized action space in order

to give a human approximate low-frequency easy-to-understand

motion commands: ‘move forward’, ‘turn left’, stop’, and so on.

An earlier version of this online implementation is presented

in [2]. The technique is extended in this paper with a novel

more efficient method to compute the information gain in con-

stant time.

The second setting discussed in this paper depicts a wide-

angle camera mounted on a mobile robot navigating in uneven

terrain. In this case, the expected information gain is evaluated

by propagating a particular action using a constrained motion

model. This model considers not only the nonholonomic con-

straints of the vehicle but also the slope of the terrain. As in the

previous case, the action space is also discretized but, this time,

within the range of possible translational and angular impulse

accelerations of the mobile robot. An early version of the tech-

nique was presented in [3]. In contrast to our contributions in

[2] and [3], this paper contains simulations averaging the results

of multiple Monte Carlo simulations for the aforementioned

two systems, as well as a consistency analysis for the handheld

camera case. The results of these extended simulation results

provide stronger support for the effectiveness of the approach.

1083-4419/$26.00 © 2010 IEEE
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Finally, a third case that combines the action selection strat-

egy with a local navigation technique, allowing for both entropy

reduction and obstacle avoidance at the same time, is presented.

The method proposes a new motion strategy that combines a

local planner with our information theoretic metric. Extended

simulation results are also reported for this latter case.

The remainder of this paper is ordered as follows: First,

we present a summary of related work. Then, in Section III,

a brief introduction is given on the extended-Kalman-filter-

based single-camera SLAM estimation. The information gain

metric that will be used to test the action space in the search

for a locally optimal action is also detailed. In Section IV,

we present an overview of the motion models for the free-

moving handheld camera and the constrained motion of a

wheeled mobile robot. In the same section, we also present the

local navigation strategy chosen. Section V is devoted to the

general perception model. Section VI discusses in detail three

experimental settings, including both simulations and experi-

mental results. First, the handheld camera performing SLAM

at video rate with generic 6-DOF motion is shown, where a

graphical user interface (GUI) feeds back motion commands

to the user. The section shows the advantages of using the

proposed action selection strategy when compared with random

exploratory sequences. Second, the case of a camera mounted

on a vehicle moving on uneven 3-D terrain is given, in which

a low-level feedback controller is used to follow the actions

chosen by the mutual information-based exploration strategy.

Finally, simulation results are presented for the application

of the local navigation technique, together with our action

selection strategy. Concluding remarks are given in Section VII.

II. RELATED WORK

Considerable research has focused on the use of vision

systems for guiding autonomous vehicles without mapping. As

exemplars, Kim et al. [4] proposed a tracking system based on

monocular visual feedback using consecutive image frames and

an object database. This was achieved with the use of an EKF.

Das et al. [5] also used an EKF and feedback from a monoc-

ular omnidirectional camera to enable wall-following, follow-

the-leader, and position regulation tasks. In [6], a method to

stabilize a wheeled mobile robot to a target pose based on

the discrepancies between a target view of the landmarks in

the workspace and the robot’s current view is presented. The

method combines the nonlinear control theory with research

derived from hypotheses on insect navigation. In [7], a bionic

vision system is used to guide a humanoid robot combining a

mechanical platform for pitching and rolling with stereo vision

to obtain the position of the objects in the scene.

In a different context, Song and Huang [8] used spatio-

temporal apparent velocities obtained from an optical flow of

successive images of an object to estimate depth and time-to-

contact to develop a monocular vision guided robot. In [9],

Wang et al. exploited rigid body transformations to develop

a visually servoed mobile robot (the regulation problem was

not solved due to restrictions on the reference trajectory) that

adapted for the constant unknown height of an object moving

on a plane. In a mapping context, without guidance, optical

flow, kinematics, and depth information are used to estimate

the object’s motion in [10].

One of the first approaches that took into account the effect

of actions during mapping with visual sensing used feature

correspondences from stereo image pairs [11]. The computa-

tional burden for the accurate detection and matching of image

pairs motivated the use of active visual sensing for landmark

selection in sparse feature maps.

Action selection is of paramount importance during bearing-

only SLAM. The reason is that single-bearing observations

produce ill-posed depth estimates, whereas incremental-bearing

observations can be integrated with the appropriate selection of

camera motion for triangulation. Our thesis is that the camera

should be driven to a location that maximizes the expected in-

formation gain between states and measurements. Exploration

strategies driven by uncertainty reduction have been used in the

past for the acquisition of 3-D models of objects from range

data [12] and within the context of SLAM to produce maps

from ultrasonic signals [13]. In the latter work, a metric is

proposed to evaluate uncertainty reduction as the sum of the

independent robot and landmark entropies with an exploration

horizon of one step. Bourgault et al. [14] alternatively proposed

a utility function for exploration that trades off the cost of

navigation with the potential vehicle localization uncertainty

reduction (measured as entropy) and the information gained

over an occupancy grid. That work required two different

representations of the environment: 1) an occupancy grid and

2) a map of individual features. Their work suggested results

over a simulated SLAM setting for a 2-D mobile platform with

range sensing. In contrast to these approaches, which indepen-

dently consider the reduction of vehicle and map entropies,

we tackle the issue of joint robot and map entropy reduction,

taking into account robot and map cross correlations. Our

work uses a feature-based map representation, and we present

results not only over simulated settings but also for real-time

implementations.

Another technique that tackles the problem of exploration

in SLAM as an entropy minimization problem makes use of

Rao-Blackwellized particle filters [15]. When using particle

filters for exploration, only a very narrow action space can

be evaluated due to the complexity in computing the expected

information gain. The main bottleneck is the generation of

the expected measurements that each action sequence would

produce, which is generated by a ray-casting operation in the

map of each particle. In contrast, measurement predictions in

a feature-based EKF implementation, such as ours, can be

computed much faster, having only one map posterior per

action to evaluate, instead of the many that a particle filter

requires. Moreover, in [15], the cost of choosing a given action

is subtracted from the expected information gain with a user-

selected weighting factor. In this paper, we show how the cost of

performing a given action is inherently taken into account when

evaluating the entropy for a set of possible priors. Higher level

strategies such as planning in partially observable continuous

domains via value iteration over POMDPs could also be consid-

ered [16]. Unfortunately, such long-term planning approaches

are not yet viable for real-time implementations and are out of

the scope of this work.
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In a work closely related to ours, Bryson et al. presented

simulated results of the effect that different vehicle actions

have with respect to the entropic mutual information gain [17].

The analysis is performed for a 6-DOF aerial vehicle equipped

with one camera and an inertial sensor, for which landmark

range, azimuth, and elevation readings are simulated, and data

association is known.

In all of the previously discussed works, little to no effort has

been expended on the real-time constraints of action selection

during exploration. This paper instead pays special attention to

ensure that the most appropriate action is chosen within the

small computation time available for video-rate bearing-only

SLAM systems.

III. ACTION SELECTION

This section presents the strategy of choosing the appropri-

ate motion commands for a single camera moving about an

unknown environment. The aim is to move the camera in the

direction that most reduces the uncertainty in the entire SLAM

state by using the information that should be gained from future

predicted landmark observations should such a move take place

but taking into account the information lost as a result of

moving with uncertainty.

Consider the classical feature-based SLAM framework [18],

in which the state vector x contains the camera pose and the

map of features x = (xv,y). An EKF propagates the camera

pose and velocity estimates, as well as the map estimate.

The state prior xk+1|k is predicted with the motion models

described in Section IV, which slightly vary, depending on the

platform setup. For instance, a handheld camera freely moving

is tracked with a constant velocity model, whereas a robot

moving in uneven terrain is restricted to be in contact with

the ground surface at all times, and its motion is limited by its

nonholonomic constraints.

In both cases, linear approximations for uncertainty propaga-

tion are computed with Σk+1|k = FΣk|kF
⊤ + Σu, in which F

is the appropriate motion model Jacobian, which is computed

as the partial derivative with respect to the state x of the motion

models for the free-moving camera and for the constrained

robot motion, and Σu is the input motion covariance term,

which is adequately tuned for each of the systems.

The subscripts k|k and k + 1|k denote the posterior at time k
and the prior (before integrating measurements) at time k + 1,

respectively. State updates follow the conventional Kalman re-

cursion xk+1|k+1 = xk+1|k + K(zi − zi,k+1|k), with zi,k+1|k,

which is the ith measurement prediction, and for which the

Kalman gain, error covariance matrix, and covariance update

are computed with

K =Σk+1|kH
⊤S−1

S =HΣk+1|kH
⊤ + Σz

Σk+1|k+1 = (I − KH)Σk+1|k

with H, which is the Jacobian of the measurement model with

respect to the state. Measurement uncertainty is assumed to be

zero-mean Gaussian with covariance Σz .

Fig. 1. Maximization of mutual information for the evaluation of motion
commands. A bearing sensor is located at the center of the plot, and a decision
on where to move must be taken as a function of the pose and landmark
states, and the expected measurements. Three landmarks are located to its
left, front, and right–front. Moving to the location in between landmarks 2
and 3 maximizes the mutual information between the SLAM prior and the
measurements.

We adopt entropy as a measure of dispersion, i.e., as a

measure of how much randomness there is in our state estimate.

Entropy is defined as H(X) = −∑

x
p(x) log p(x), which, for

our case where p(x) is an n-variate Gaussian distribution, has

the form H(X) = 1/2 log((2πe)n|Σ|).
Being able to know the changes in entropy naturally leads to

the important question “What action provides the best reduc-

tion of entropy?” or, equivalently, “What action gives us the

most informative observation?” The question may be answered

through the idea of mutual information.

We want to choose the action that maximizes the mutual

information between the state x and the possible measurements

occurring at that location z. The mutual information is defined

as the relative entropy between the joint distribution p(x, z) and

the marginals p(x) and p(z), i.e.,

I(XZ) =
∑

x∈X,z∈Z

p(x, z) log
p(x, z)

p(x)p(z)

=H(X) + H(Z) − H(X,Z)

=H(X) − H(X|Z) (1)

which, for our Gaussian multivariate case, evaluates to

I(XZ) =
1

2
log

|Σk+1|k|
|Σk+1|k+1|

. (2)

In choosing a maximally mutually informative motion com-

mand, we are maximizing the difference between prior and pos-

terior entropies [19]. That is, we choose the motion command

that most reduces the uncertainty of x due to the knowledge of

z as a result of a particular action. Fig. 1 shows the directions

maximizing the mutual information for a simple 2-DOF camera

and three landmarks. The cost of actions is implicitly taken into

account as loss of information when evaluating the priors in

(2). This is possible, because the plant noise model depends on

the value of the motion command. In the figure, the entropy
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Fig. 2. Action evaluation in time intervals. Actions U = {u1,u2, . . . ,un}
are evaluated at different time intervals but compared at the same instant
in time.

reduction as a result of the three landmark-bearing measure-

ments is plotted in grayscale. The optimal position, for which

the relative entropy is maximized, is marked by the red dot in

the plot. Note also that, for large-valued actions, the compro-

mise between greater loss of information during the prediction

step and the information recovery during the update step pro-

duces less informative overall entropy reduction. This happens

near the boundaries of the action space shown.

This action selection mechanism picks the optimal choice in

one-step lookahead. Getting the optimal sequence of actions

for a larger time horizon turns out to be prohibitive for a real-

time application. The problem turns into a partially observ-

able Markov decision process, in which computing the value

function would require the integration of all possible states and

measurements. Even for the one-step lookahead time horizon,

the evaluation of a decently sized action space requires some

considerations. The computation of determinants in (2) only

allows for the estimates of the outcome of all possible actions

from the set U to be computed for neighboring points in time.

However, the comparison against each other occurs at the same

point in time. Fig. 2 illustrates the approach.

A second consideration is necessary to drive the system to

explore and not to settle for homoeostasis, because the use of

entropy reduction as a measure of exploration assumes that

uncertainty can be reduced as landmarks are being discovered.

Our solution to the problem is to first have an idea of the

size of the space to be mapped and initially fill this space

with uniformly distributed expected landmarks with large un-

certainty. The error covariance matrix that will be used in com-

puting the information gain measures contains the variances

for such a fixed number of uncorrelated unvisited landmarks.

Fig. 3 shows a representation of such covariance matrix. It is

common practice to have an a priori estimation of the size

to be mapped for any mobile robotic exploration mechanism.

Think, for example, of probabilistic grid-based mapping. The

grid size and granularity are known a priori. In our case,

the expected number of landmarks to see and a very rough

uniform disposition of them in the environment are our initial

conditions. Several authors make such assumption either with

a priori grid-based discretization of the environment [14], [20]

or by adding uniformly distributed unvisited landmarks as

vague priors [21], [22].

A straightforward evaluation of global entropy reduction as

in (2) is computationally expensive. It requires the computation

of the determinants of large matrices. In recent work [23], we

show however that this measure can be computed in constant

Fig. 3. A fixed number of unvisited landmark states accounting for the
unexplored part of the scene is added to the state vector during the computation
of entropy values. These unvisited landmarks contain artificially large and
uncorrelated covariance.

time. Algebraic manipulation transforms the ratio of determi-

nants of large matrices in (2) into a ratio of determinants of

matrices with the size of the observation

I =
1

2
log

|Σk+1|k|
|Σk+1|k+1|

=
1

2
log

|S|
|Σz|

. (3)

Due to the sparsity of the measurement Jacobian H, the

computation of the preceding equation turns out to be indepen-

dent of the map size and can be computed in constant time,

depending only on the range of the sensor. To be more precise,

the computation takes time cubic on the number of features seen

at each iteration. The result is particularly relevant for not only

exploration strategies such as the one reported in this paper but

also SLAM systems, in general, that use information content

at each step for other purposes, such as active loop closure

assertion or heuristics that maintain the state size limited.

IV. MOTION MODELS AND LOCAL NAVIGATION

The three experimental settings presented in this work use

the preceding considerations with slight differences.

A. Unconstrained Constant Velocity Motion Model

The first experimental setting focuses on action selection for

video-rate SLAM with a single camera rapidly moving with

6-DOF in 3-D within normal human environments and with

minimal prior information about motion dynamics. Insisting on

video-rate performance using modest hardware imposes severe

restrictions on the volume of computation that can take place in

each 16-ms time step. Re-estimation must take place of course,

but making strictly optimal camera movements would require,

in addition, the computation of model Jacobians for the entire

action space [24]. Such a computation remains infeasible for

our 6-DOF nonlinear system and measurement models. Human

actions are 1) approximate, 2) low frequency, and 3) delayed.

Therefore, we give a small set of choices at 1-s intervals. To give

a human time to react, the action is selected every second, so in

Fig. 2, nstep is equal to the frames per second. The camera

motion predictions are computed with a smooth unconstrained

constant velocity motion model presented as follows:
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It is assumed that the camera could be attached to any

mobile platform—in this case, a human hand—and is free to

move in any direction in R
3 × SO(3). The system is driven

by zero-mean normally distributed accelerations. The Gaussian

acceleration assumption means that large impulsive changes

of direction are unlikely. The camera motion prediction mod-

el is

xv,k+1|k =

⎡

⎢

⎣

pk+1|k
qk+1|k
vk+1|k
ωk+1|k

⎤

⎥

⎦
=

⎡

⎢

⎣

pk|k + (vk|k + ak∆t)∆t
Qqk|k

vk|k + ak∆t
ωk|k + αk∆t

⎤

⎥

⎦
(4)

with p = (x, y, z)⊤ and q = (q0, q1, q2, q3)
⊤ denoting the cam-

era pose (three states for position and four for orientation using

a unit norm quaternion representation), and v = (vx, vy, vz)
⊤

and ω = (ωx, ωy, ωz)
⊤ denoting the linear and angular veloc-

ities, respectively. The input to the system is the acceleration

vector u = (a⊤,α⊤)⊤ = (ax, ay, az, αx, αy, αz)
⊤.

The model Q for the prediction of change in orientation is

inspired by [25] and is

Q = cos

(

∆t‖Ω‖
2

)

I +
2

‖Ω‖ sin

(

∆t‖Ω‖
2

)

M (5)

where M is the skew-symmetric matrix form of the angular

velocity

M =

⎡

⎢

⎣

0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0

⎤

⎥

⎦
. (6)

The redundancy in the quaternion representation is accounted

with a ‖q‖ = 1 normalization at each update, accompanied

by the corresponding Jacobian modification as in [1]. Note

also that this model is decoupled in terms of linear and an-

gular velocities. Therefore, camera rotations do not affect the

translation.

B. Constrained 3-D Motion Model

In the second experiment, the case of the camera mounted

on a vehicle moving in uneven terrain is considered. We have

opted for a strategy that chooses actions in terms of impulse

accelerations. The expected information gain is evaluated by

propagating actions with a constrained motion model, with the

advantage that this model considers not only the nonholonomic

constraints of the vehicle but also the slope of the terrain. The

vehicle receives a new control command when all the actions

have completely been evaluated, i.e., nstep in Fig. 2 is equal to

the size of U plus one.

In order to do the prediction step of the EKF, computing

the position using the 2-D vehicle model or even the odometry

information would be inappropriate if we want 3-D informa-

tion. For this reason, the model considers not only uneven

surfaces but also the kinematic constraints of the differential

steer vehicle and the camera position with respect to the rotation

axis of the vehicle.

In this case, the vehicle is controlled by linear and angular ve-

locities u = (vr, ωr)
⊤, which are tangent to the terrain surface.

Vehicle surface contact is considered at all times. Substituting

the previous motion prediction model with a constrained model

for the continuous transition of the camera optic center, we get

[

pk+1

θk+1

]

=

[

pk

θk

]

+

[

Fv

Fω

]

uk∆t (7)

where

Fv =

⎡

⎣

−sin φ sin ψ−cos φ cos ψ sin θ −l cos ψ cos θ cos φ
cos φ sin ψ−sin φ cos ψ sin θ −cos ψ cos θ sin φ

cos ψ cos θ −l cos ψ sin θ

⎤

⎦

Fω =

⎡

⎣

0 sin ψ tan θ
0 cos ψ
0 sinψ

cos θ

⎤

⎦

θ = [ψ, θ, φ]⊤ is a yaw–pitch–roll Euler angle representation

of q, and l is the distance between the axle center of the mobile

robot and the camera optic center.

C. Vehicle Guided With APF

The third experiment combines the uncertainty reduction

strategy with a local planner in order to guide the vehicle from

an initial to a final position without colliding with obstacles.

The control law for the vehicle is based on an artificial po-

tential field (APF). In using the potential field method, the

vehicle follows the direction of a resultant force that combines

attractive and repulsive forces to guide the vehicle through

obstacles to reach a goal. The strategy considers optimal actions

as the maximum reduction of entropy added to the direction of

the potential field. In this way, the vehicle is able to reduce

uncertainty in the map and in its pose while being guided

to its final destination without colliding with the obstacles of

the map.

The APF method has extensively been studied in the obstacle

avoidance problem for autonomous mobile robots [26]–[28] in

convex terrains. Control for the vehicle using this approach is

presented as follows:

Consider the position of the vehicle in a workspace p [refer to

(7)], the position of the goal g, and the position of an obstacle,

e.g., y. An artificial potential function applied to the vehicle at

point p has the form

U = Ua(p,g) + Ur(p,y) (8)

where Ua(p,g) is the attractive potential induced by the goal,

and Ur(p,y) is the repulsive potential induced by the obstacle.

The resultant force is then obtained as f = fa + fr, where

fa = −∇Ua(p,g)

fr = −∇Ur(p,y). (9)

The relation between the output p and the control input is

ṗ = u, and the task at hand is to compute the optimal velocity

command u.
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Given that the position of the camera in the y-axis depends

only on the terrain (the altitude is not controllable), we reduce

the obstacle avoidance problem to a 2-D positioning problem

on the xz plane. Let us consider the desired velocity values

ud = (ux,d, 0, uz,d) to be proportional to the normalized force

generated by the potential field, i.e.,
⎡

⎣

ux,d

uy,d

uz,d

⎤

⎦ =
ud

‖f‖

⎡

⎣

f1

0
f2

⎤

⎦ (10)

where f1 and f2 are the components of the total force f in the

direction of the x- and z-axis, respectively, and ud is the desired

scalar velocity. Under these conditions, it is possible to propose

the feedback control law

[

vr

ωr

]

=
vd

‖f‖F+
v

⎡

⎣

f1

0
f2

⎤

⎦ . (11)

where F+
v = (F⊤

v Fv)−1F⊤
v is the left pseudoinverse of Fv .

The attractive potential is given by

Ua =
1

2
ξ
(

(z − gz)
2 + (x − gx)2

)

where g = (gx, yk|k, gz) is the goal.

On the other hand, the repulsive potential, which is inside of

the region of influence, is given by

Ur =
η

2

(

1

(z − yi
z)

2 + (x − yi
x)2

− 1

ρ2
0

)2

where yi
x and yi

z are the 2-D components of the ith obstacle or

map feature position vector.

The total repulsive force is given by

fr =
∑

i∈J

f i
r (12)

with J = {i|ρ(p,yi) ≤ ρ2
0} and ρ(p,yi) = (z − yi

z)
2 + (x −

yi
x)2, i.e., the square distance to each obstacle or feature in the

workspace.

Note that, for the first two experimental settings, i.e., the

handheld camera and the vehicle moving in 3-D terrain, the

use of the unvisited expected landmarks is needed to drive

exploration. In the case of the APF, these unknown landmarks

are no longer needed. Thus, the optimal action now is given by

u∗ = λ arg min
u∈U

I(x,u, z) + (1 − λ)min U(xk|k) (13)

where λ is the weight factor.

V. MEASUREMENT MODEL

In this paper, we are interested in mapping the 3-D coordi-

nates of salient point features from images and need to do so at

video rate. Environments with a relatively small number of fea-

tures are considered (50 or less). The strategy is aimed at local

action selection and can be used in any submapping or hierar-

chical mapping approach at the level of each local map. Thus,

TABLE I
PARAMETERS FOR THE SIMULATION OF HANDHELD CAMERA SLAM

the limit of 50 landmarks per local map is not a constraint to the

action selection mechanism. The visual SLAM implementation

used is based on the Shi-Tomasi saliency operator, matching

correspondences in subsequent frames using a normalized sum-

of-squared differences, and a particle filter along the ray for

initialization [11], [29]. Different implementations using, for

instance, SIFT features and inverse depth initialization can be

found in the literature and beyond the scope of this work.

Image projection is modeled using a full-perspective wide-

angle camera model. The position of a 3-D scene point yi

is transformed into the camera frame as yc
i = [xc, yc, zc]⊤ =

R⊤(yi − p), with R being the rotation matrix equivalent to q.

The point’s projection onto the image plane is

hi =

[

u

v

]

=

[

u0 − uc/
√

d

v0 − vc/
√

d

]

(14)

where uc = fkuxc/zc, vc = fkvyc/zc, the radial distortion

term is d = 1 + Kd(u
2
c + v2

c ), and the intrinsic calibration of

the camera (focal distance f , principal point (u0, v0), pixel

densities ku and kv , and radial distortion parameter Kd) is

calibrated a priori.

When an image feature is detected, its measurement must

be either associated with an existing feature or added as a new

feature in the map. The location of the camera, along with the

locations of the already mapped features, are used to predict

feature position hi using (14), and these estimates are checked

against the measurements using a nearest neighbor test. Feature

search is constrained to 3σ elliptical regions around the image

estimates, as defined by the innovation covariance matrix.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we present simulation and experimental re-

sults for the three cases previously mentioned. The experi-

ments show how the proposed entropy-based action selection

mechanism produces improved overall localization and map

estimation, compared to random motion selection for both

unconstrained and constrained motion and also to the case of

APF alone when driving to a predefined goal.

A. Handheld Camera

For the free-moving camera, changes in translation and

orientation are kinematically decoupled. In addition, should

an omnidirectional sensor be used, one would not require a

strategy to direct fixation. Following this reasoning, our ac-

tion selection metric is only used to decide upon maximally
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Fig. 4. Monte Carlo simulation of 100 runs for the freely moving single camera using an unconstrained motion model with two different action selection
mechanisms: (a) and (b) mutual information and (c) and (d) random inputs. In (a) and (c), trajectories and a final map are plotted, and rReal and rEst are the real
and estimated camera trajectories, respectively. In (b) and (d), Pcam, Plan, and P indicate the camera, map and overall entropies, respectively; the label newland
and the green dots and dotted vertical lines represent the value of entropy at the instant when new landmarks are initialized. Mean values of the trajectories and
the entropies are highlighted to ease comparison.

informative translation commands, letting the user freely

choose where to look.

The set of possible actions is divided into seven ele-

ments, i.e., “go_forward,” “go_backwards,” “go_right,”

“go_left,” “go_up,” “go_down,” and “stay.” Details on the

EKF-SLAM implementation are further detailed in [1].

1) Simulations: In our simulations of a freely moving cam-

era, the desired camera pose is predicted for the best chosen

action at each iteration. A feedback linearization low-level

control law is applied to ensure that these locations are reached

at 1-s intervals, at this point in time the motion metric is again

evaluated to determine the next desired action.

The simulation considers a fixed number of expected land-

marks to be found, and the mutual information metric is com-

puted, taking into account such fixed number of landmarks

in the computation of the innovation covariance. Unvisited

landmarks are initialized with independently distributed large

uncertainties of 1.5 m2.

A thorough evaluation of the proposed approach is presented

with a 100-run Monte Carlo simulation. Parameters for the

simulations are given in Table I.

Results of the Monte Carlo simulation are plotted in Figs. 4

and 5. Note the abrupt reductions in entropy in Fig. 4(b). These

changes are caused by repeated small-loop closure events pro-

duced by autonomous back-and-forth or left–right maneuvers.

This behavior is the product of the action selection mechanism

chosen and is meant to keep the system well localized before at-

tempting to search for new landmarks. Homoeostasis is avoided

however through observation in the camera field of view of un-

visited landmarks, whose corresponding actions produce large

reductions in entropy and thus induce exploration.

The simulated environment represents a room that is 6 ×
6 × 2.5 m3 in size containing 33 randomly distributed point

landmarks, six of which are anchors, which are used as global

references [30], [31]. These anchors make the system observ-

able and provide a metric scale to the visual system.
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Fig. 5. Estimation errors for position and orientation of a 100-run Monte Carlo simulation for the freely moving single camera using an unconstrained motion
model with two different action selection mechanisms: (a) and (b) mutual information action selection and (c) and (d) random input motion commands. Estimation
errors for camera position and orientation, and their corresponding 2σ standard deviation bounds are plotted. In (a) and (c), the position errors are indicated as
distances to the real camera location along the x-, y-, and z-axis. In (b) and (d), orientation errors are given in Euler angles from the true orientation. Mean values
are highlighted for comparison.

Fig. 6. Average NEES of the vehicle position p over 100 Monte Carlo runs.
(Dotted red line) Random action selection strategy. (Continuous blue line)
Average NEES for the mutual information action selection strategy.

Sensor standard deviation is set at 2 pixels, and data associa-

tion is not known a priori. Instead, nearest neighbor χ2 tests are

computed to guarantee correct matching. New landmarks are

initialized once their ratio of depth estimate to depth standard

deviation falls below a threshold of 0.3. The plots show the

results of actively translating a 6-DOF camera while building

a map of 3-D landmarks. In all cases, each of the seven

motion actions will produce a displacement of 0.3 m in the

corresponding direction while rotating at a constant velocity of

0.1 rad/s.

Figs. 4(c) and (d) and 5(c) and (d) show the results of

controlling the camera with random inputs. Comparing these

plots with our proposed strategy, we notice that, while our

strategy reduces the entropy re-observing landmarks before

searching for new landmarks, the random selection of actions

is more eager to explore, without any control over loop closure

and, hence, without worrying for localization accuracy. In the

end, the result is improved entropy reduction for the proposed

technique.

Improved localization of camera and landmarks is further

shown through a normalized estimation error (NEES) plot of

the mean Monte Carlo estimates, as explained in [32]. Fig. 6

Fig. 7. Real-time active visual SLAM with a handheld camera experiment.
(a) Computed camera, map, and total entropies during the experiment. The
vertical lines indicate the points in time where new features are discovered.
(b) List of actions sent to the GUI for the first minute.

shows that the average NEES for the proposed approach is

significantly better than that of the random action selection,

justifying the validity of using entropy measures for action

selection.

2) Real-Time Experiments: We present now experimental

results validating the mutual information maximization strategy

for the control of a handheld camera in a challenging 15-fps

visual SLAM application. The experiments were implemented

on top of the single-camera SLAM [33]. We developed an

extension for this application that computes the desired actions

using the approach presented in this paper sending motion

commands to the GUI.
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Fig. 8. Snapshots of the GUI during active visual SLAM experiment.

The camera starts approximately at rest with some known

object in view to act as a starting point and provide a metric

scale. The camera moves, translating and rotating in 3-D,

according to the instructions provided to a user through a GUI

and executed by the user, within a room of a restricted volume,

such that various parts of the unknown environment come

into view.

Given that the control loop is being closed by the human

operator, only displacement commands are computed. Gaze

control is left to the user. Furthermore, the mutual information

measure requires evaluating the determinant of the innovation

covariance matrix at each iteration. Because of the complexity

of this operation, single-motion predictions are evaluated one

frame at a time. It is not until the 15th frame in the sequence that

all mutual information measures are compared, and a desired

action is displayed on screen. That is, the user is presented

with motion directions to obey every second. Note also that,

in computing the mutual information measure, only the camera

position and map parts of the covariance matrix are used,

leaving out the gaze and velocity parts of the matrix. Finally,

to keep it running in real time, the resulting application must

be designed for sparse mapping. That is, with the computing

capabilities of an off-the-shelf system, our current application

is limited to less than 50 landmarks.

Fig. 7 shows (a) a plot of the decrease in the various

entropies for the map being built and (b) the list of actions

chosen as shown to the user during the first minute. Note

that, in consonance with our simulated exercise, in the real-

time implementation, the system prompts the user for repeated

up–down movements, as well as left–right commands. This

can be explained as, after initializing new features, the system

repeatedly asks for motions perpendicular to the line of sight

to best reduce their uncertainty, to gain parallax. In addition,

closing loops have an interesting effect in the reduction of

entropy, as can be seen around the 1500th frame in Fig. 7(a).

Fig. 8 shows snapshots of the GUI for one of our validation

experiments. The top part of each frame contains a 3-D plot

of the camera and the landmarks mapped, whereas the bottom

part shows the information being displayed to the user superim-

posed on the camera view.

TABLE II
ACTION SET FOR A NONHOLONOMIC VEHICLE

TABLE III
PARAMETERS FOR THE SIMULATION OF CONSTRAINED 3-D SLAM

B. Vehicle in 3-D Environment

Now we present the guidance of a vehicle performing SLAM

with a single wide-angle camera in uneven terrain. Actions in

the form of impulse accelerations guarantee smooth platform

velocity change. The chosen command is then integrated to

produce the input velocity that is sent to the vehicle. The actions

are chosen from the discrete set from Table II.

To compare the effects produced by the various actions on the

localization and map estimates, the motion model and a feed-

back control law are used to predict the prior mean xk+1|k for

each instant acceleration in the set, propagating the covariances

by computing the corresponding Jacobians. Map feature priors

are also used to simulate the expected observations using the

camera measurement model and the state prior. The posterior

covariance is then computed, taking into account only known

landmarks inside the camera field of view.

1) Simulations: A Monte Carlo simulation with 100 runs of

a mobile robot navigating in uneven terrains is executed. Plant

noise varied using the constrained motion model in (7), using

the full-perspective wide-angle camera model and a sinusoidal

model of a 3-D surface. In our simulations, as well as in the

real-time experiments, encoder velocities are used to predict

plane surface normals for the computation of action priors

constrained to the characteristics of the terrain. The simulated

environment contains 31 landmarks whose location is sampled
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Fig. 9. Camera trajectories and entropies of a 100-run Monte Carlo simulation of a mobile robot exploring an uneven room. The mutual information maximization
strategy produces a nearly linear motion tangent to the surface. The vehicle starts at the shown terrain depression and proceeds backward, slightly rotating to
increase map coverage. In (a), labels rReal and rEst indicate real and estimated vehicle trajectories, respectively. In (b), Pcam, Plan, and P indicate the robot,
map, and overall entropies. In addition, in (b), the label newland and the green dots, and the dotted vertical lines represent the value of entropy at the instant when
new landmarks are initialized.

Fig. 10. (a) Estimation errors for camera position and (b) orientation and their corresponding 2σ standard deviation bounds, respectively. In (a), position errors
are plotted as distances to the real camera location in meters along the x-, y-, and z-axis. In (b), orientation errors are plotted in Euler angles.

from a uniform distribution. Of these, six are used as anchors to

give a metric scale and help fulfil the observability conditions

of the SLAM system. The rest is initialized with 5-m2 variance

to avoid homoeostasis. Other simulation parameters are given

in Table III.

Fig. 9 shows the vehicle trajectories and the landmark lo-

cations with their uncertainty plotted using hyper-ellipsoids of

uncertainty at 2σ. The steep decays in overall entropy indicate

either landmark discovery or repeated loop closure. Interest-

ingly enough, the nonholonomic motion constraints of the

system force the vehicle to autonomously explore by repeatedly

choosing a negative linear acceleration. The effect is to augment

the camera field of view with the consequent inclusion of new

features in the model but still maintaining known landmarks in

sight, thus keeping the vehicle well localized at all times. In

contrast to the unconstrained motion case, short-loop closures

orthogonal to the field of view to maintain parallax are not

possible to achieve, with the reason being that the vehicle

cannot perform saccadic motions in the way that a free-moving

camera can. Loop closure instead is only possible through back-

and-forth motion sequences.

Camera pose estimation errors are shown in Fig. 10. Notice

how, when the terrain abruptly changes, velocities become

underestimated in the direction that the terrain changed. Thus,
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Fig. 11. Real-time experiment of a single camera mounted on a vehicle traversing uneven terrain. (a) Mobile robot used in the experiments. (b) 3-D trajectory of
the vehicle and orientation with respect to the y axis. (c) Actions from Table II sent to the vehicle every second.

in simulating vehicle motion, a more elaborate model taking

into account surface discontinuities must be considered for very

rough terrains.

2) Real-Time Experiments: For the case where the camera is

mounted on a vehicle, two independent modules are considered:

an action selection module on top of our modified version of the

SLAM system [33] and an interface that communicates such

motion commands to the robot, enforcing low-level obstacle

avoidance and system integrity. The robot is controlled using

ARIA [34], and the experiments were conducted on the mobile

platform shown in Fig. 11, with a wide-angle camera rigidly

attached to the robot body.

The whole process is running at 15 fps. Single-motion pre-

dictions are evaluated one frame at a time. It is only every

seventh frame in the sequence that all mutual information

measures are compared, and the best action is sent to the mobile

robot. For the experiments, the acceleration magnitudes were

set to v̇r = 0.1 m/s2 and ω̇r = 0.09 rad/s2. When computing

posteriors, these are predicted for the duration that would take

them to the end of the 15th frame, with each action in turn being

evaluated for a slightly shorter period of time. The motivation

is that we want to be able to test actions on the basis of their

effect at the very same point in time (at the end of the 15th

frame). In order to evade any bias related to the time spent in

evaluating the effect of actions, these are randomly ordered at

each iteration.

As with the simulated setting, the robot navigates in uneven

terrain, as shown in Fig. 11. In the plots, the estimated path

(blue continuous line in top frame) is shown in 3-D, as opposed

to the vehicle odometry, which is restricted to the xz plane.

The orientation angle (bottom frame) indicates the vehicle

orientation with respect to the world axis y (orthogonal to the

white sheet of paper placed in front of the robot, which serves

as global reference consistent to the world xz plane).

As in the simulated case, our mutual information-based

action selection strategy for this constrained motion case au-

tonomously explores the room driving the vehicle back and

forth but mostly backward, enlarging the field of view by

pulling away from the initial view. Fig. 11(b) gives account of

the actions sent to the robot and shows as most frequent action

iterations between positive and negative linear accelerations.

The feature map and camera pose are updated and displayed

in real time in the GUI. Fig. 12 contains a sequence of frames

from the experiment that shows the robot driving away from the

initial known features.

We have shown with our simulations and experiments how

the principled action selection mechanism proposed can deal

with both unconstrained and constrained motion models, au-

tomatically selecting the best suited actions for each case and

enforcing minimization of localization and map estimation

uncertainty during SLAM exploration sessions. For the uncon-

strained motion model, saccadic motion perpendicular to the

line of sight is selected since it closes small loops as features

are discovered, actively reducing entropy. For the nonholo-

nomic constrained motion model, these saccadic movements

are not possible, and the system settles for moving backward,

increasing the field of view and adding new features to the stare

estimate while preserving observation of previous ones, again

actively enforcing loop closure and reduced estimation entropy.

C. Obstacle Avoidance

We consider now the case of longer term navigation, com-

bining the goals of exploration and navigation to a specific

location. In this case, low-level obstacle avoidance as the one

implemented in the previous section does not suffice, and a

higher level mechanism to help drive the robot through ob-

stacles should be implemented. We presented in Section IV-C

a control law that weighs these two objectives during robot

navigation: 1) exploration and 2) obstacle avoidance.

The technique uses APFs to enforce smooth maneuvering

through the obstacles that the SLAM algorithm discovers

during exploration. We present the result of a Monte Carlo

simulation with 100 runs, in which the robot is driven through

a path of more than 3 m in length, with the goal location at (0,

0, 2). The attraction potential function scaling factor is ψ = 1,

the repulsive potential factor is ν = 2, and the safe radio for

obstacles is ρ = 0.35 m. Other simulation parameters are given

in Table IV.

The results of using the APF method without active entropy-

based action selection are shown in of Figs. 13(a) and (b) and

14(a) and (b). The plots highlight the mean trajectory and mean
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Fig. 12. Snapshots of the GUI during the autonomous exploration of a single camera mounted on a vehicle traversing uneven terrain.

TABLE IV
PARAMETERS FOR THE SIMULATION OF CONSTRAINED 3-D SLAM

WITH ARTIFICIAL POTENTIAL FIELDS

entropy estimates for the entire Monte Carlo runs. The sequence

of control inputs is given in Fig. 15.

The strategy is compared with our hybrid control law, which

takes into account obstacle avoidance, as well as reduction of

entropy. Figs. 13(c) and (d) and 14(c) and (d) show the trajec-

tories, entropy plots, and position and orientation error plots.

Note how obstacle collision is gracefully avoided, whereas the

SLAM system effectively maximizes the mutual information.

The advantage of using the hybrid technique can be observed

in the entropy plots in Fig. 13. The system spends more time

gazing to already mapped landmarks, instead of driving the

robot toward the goal, and adds landmarks to the map at later

instants in time. The entire simulation takes 900 steps, on

average, instead of the 700 steps that the pure APF system

takes. Thus, the result is a compromise between execution

time and accuracy in estimation results. Another advantage of

the hybrid approach is that the mutual information term in

the action law helps the system overcome local minima traps

common in APF navigation.

VII. CONCLUSION

Action selection strategies for guiding a video-rate visual

SLAM system have been introduced and shown using maximal

mutually informative motion commands by maximizing the

difference between innovation covariance and posterior SLAM

entropies. The resulting motion command reduces the uncer-

tainty of the state from the information given by measurements.

Our method is validated in three visual SLAM implemen-

tations: 1) a video-rate handheld SLAM system; 2) a mobile

robot with nonholonomic and terrain constraints; and 3) an

APF for obstacle avoidance. The video-rate handheld camera

system produces motion commands in real time for 6-DOF

visual SLAM and is sufficiently general to be incorporated into

any type of mobile platform, without the need for other sensors.

The action selection mechanism actively performs short-loop

closure orthogonal to the field of view of the camera.

Mounting the same wide-angle camera on a wheeled mobile

robot provides for an autonomous information-driven explo-

ration strategy that has been tested for navigation in uneven

terrains. Simulation and experimental results consistently show

a behavior in which the robot pulls back from its initial con-

figuration, having the camera search for more landmarks while

reducing its own pose uncertainty. In the end, we have a simple

principled action selection mechanism that seems to accommo-

date for unconstrained and constrained motion models, choos-

ing the most appropriate actions in each case and guaranteeing

reduced estimation uncertainty during exploration.

The reported camera trajectories are simple, because 1) the

robot is commanded by acceleration impulses that tend to drive

the robot through smooth velocity changes and 2) the real-time

constraints of the implementation allow only for the evaluation

of a very limited set of possible actions. The computational

complexity in computing entropy does not permit large maps;

in that case, submapping will be a good solution.

In a third experimental setting, our strategy is combined with

an obstacle avoidance mechanism that uses APFs. Actions are

now chosen with a compromise between navigation toward a

goal by using attractive potentials, avoiding obstacles on the

way using repulsive potentials, and enforcing reduced estima-

tion uncertainty through entropy minimization.

The real-time requirements of the task preclude using an

optimal control law that uses a continuous-valued action space.

Instead, we evaluate our information metrics for a small set of

actions carried out over a fixed amount of time and choose the

best action from those. Improvements can be done with greedy

algorithms, which consider the evaluation of n-step lookahead

and also larger sets of actions. These improvements are issues

of further study.

One possible weakness of the presented information-based

approach to action selection is that it estimates the utility of

measures, assuming correct motion and measurement models.
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Fig. 13. (a) and (c) Vehicle trajectories and map and (b) and (d) entropies of a 100-run Monte Carlo simulation of a mobile robot moving to the goal using (a) and
(b) the APF strategy to control the vehicle and (c) and (d) APF combined with mutual information to control the vehicle. Map features are considered as obstacles.
In (a) and (c), rReal and rEst indicate real and estimated vehicle trajectories, respectively. In (b) and (d), the label newland and the green dots and dotted vertical
lines represent the value of entropy at the instant when new landmarks are initialized. Pcam and P indicate the robot, map, and overall entropies. The mean value
of entropies is highlighted for comparison.

Fig. 14. (a) and (c) Camera position and (b) and (d) orientation errors for a Monte Carlo simulation with 100 runs. Standard deviation bounds are plotted at 2σ

for the APF strategy alone [(a) and (b)], and the hybrid method with APF and mutual information [(c) and (d)]. Position errors are plotted as x, y, and z distances
to the real camera location in meters, and orientation errors are plotted as Euler angles. The mean values are highlighted for comparison.
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Fig. 15. Control command signals for the vehicle. (a) Accelerations produced
by APF alone. (b) Accelerations produced by the combined APF with mutual
information. The desired linear velocities are set to 0.2 m/s in x and 0.1 m/s
in y.

Model discrepancies and effects of linearization in the com-

putation of estimates and control commands are not being

considered and could play a major role for large sampling

intervals. This issue is also a topic of further research.
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