
Action Shuffle Alternating Learning for Unsupervised Action Segmentation

Jun Li

Oregon State University

liju2@oregonstate.edu

Sinisa Todorovic

Oregon State University

sinisa@oregonstate.edu

Abstract

This paper addresses unsupervised action segmentation.

Prior work captures the frame-level temporal structure of

videos by a feature embedding that encodes time locations

of frames in the video. We advance prior work with a

new self-supervised learning (SSL) of a feature embedding

that accounts for both frame- and action-level structure of

videos. Our SSL trains an RNN to recognize positive and

negative action sequences, and the RNN’s hidden layer is

taken as our new action-level feature embedding. The posi-

tive and negative sequences consist of action segments sam-

pled from videos, where in the former the sampled action

segments respect their time ordering in the video, and in

the latter they are shuffled. As supervision of actions is not

available and our SSL requires access to action segments,

we specify an HMM that explicitly models action lengths,

and infer a MAP action segmentation with the Viterbi algo-

rithm. The resulting action segmentation is used as pseudo-

ground truth for estimating our action-level feature embed-

ding and updating the HMM. We alternate the above steps

within the Generalized EM framework, which ensures con-

vergence. Our evaluation on the Breakfast, YouTube In-

structions, and 50Salads datasets gives superior results to

those of the state of the art.

1. Introduction

This paper is about unsupervised action segmentation,

where the goal is to localize salient latent actions in

untrimmed videos. The actions are salient as differences

in their features allow for segmentation, and the actions are

latent as they may not have a distinct semantic meaning,

since no supervision about the actions is available. The

ground truth can be used only for evaluation. This is a long-

standing vision problem with a wide range of applications.

It can be used for mapping a long video to a significantly

shorter sequence of action segments, and thus for facilitat-

ing and reducing complexity of subsequent video interpre-

tation. It can also be used in applications where manual

video annotation is prohibitively expensive or not reliable.

In this paper, we focus on a particular setting studied

in recent work [18], where all videos show the same ac-

tivity (e.g., a cooking activity) which can be decomposed

into a temporal sequence of simpler actions (e.g., cooking

includes cutting, mixing, peeling). While the activity ex-

hibits variations across videos, they are mostly manifested

in varying lengths and features of each action of the activity,

whereas variations in the total number and temporal order-

ing of actions are limited by the very nature of the activity

(e.g., cooking usually requires a certain order of actions).

For such a setting, related work [18] makes the following

restrictive assumptions that every action appears only once,

and all actions always occur and follow the same temporal

ordering in all videos, referred to as fixed transcript. Based

on these assumptions, they learn a temporal feature embed-

ding by training a regression model to predict a temporal

position of every frame in the video, where the frame po-

sitions are normalized to the video length. Then, they use

the K-means for clustering these embedded features of all

video frames, and interpret the resulting clusters as repre-

senting the latent actions. After computing a likelihood for

every cluster, they run the standard Viterbi algorithm on ev-

ery video for localizing the latent actions.

We make three contributions, as illustrated in Fig. 1.

First, we relax the above assumption about the fixed tem-

poral ordering of actions in videos. We specify a Hidden

Markov Model (HMM), and thus infer a MAP ordering of

actions, instead of the fixed transcript. Unlike [18], our

HMM explicitly models the varying lengths of latent ac-

tions, and thus constrains implausible solutions in the do-

main (e.g., chopping cannot take a few frames). Also, our

HMM uses a multilayer perceptron (MLP) for estimating

the likelihood of the frame labeling with the latent actions.

Second, we specify a new self-supervised learning (SSL)

for action-level temporal feature embedding. As other SSL

approaches [18, 22, 13, 19, 5, 14, 8, 3, 33], ours exploits the

temporal structure of videos, where the structure we mean

that videos are sequences of actions with small variations

in action ordering. However, the cited references typically

focus on capturing the temporal structure at the frame level

(e.g., by shuffling or permuting frames [22, 19], encoding
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Figure 1. An overview of our unsupervised learning. (a) Initial clustering of frame features for identifying latent actions, and their temporal

ordering; the frame-level feature embedding is from [18]. (b) The iterative joint training of HMM, MLP, and Action Shuffle SSL for

inferring action segmentation within the generalized EM framework. (c) SSL for learning our action-level temporal feature embedding.

The data manipulation samples positive and negative sequences, where the former respect temporal ordering of actions in the predicted

action segmentation and the latter shuffle the ordering of actions.

frames’ positions in video [18]) or the entire video level

(e.g., by manipulating the playback speed [8, 3, 33]). In

contrast, we seek to learn a feature embedding that would

account for the correct ordering of actions along the video.

As illustrated in Fig. 1 and Fig. 2, our SSL is based on

recognizing positive and negative sequences of actions, both

generated as sequences of action segments randomly sam-

pled from a video. The key difference between the positive

and negative sequences is that in the former the actions are

laid out in the same temporal ordering as in the video, and

in the latter the actions are shuffled resulting in an incorrect

ordering. As shown in Fig. 1, our SSL trains an RNN on

these positive and negative sequences, and minimization of

the incurred binary cross-entropy loss produces our action-

level temporal embedding of frame features.

As our third contribution, we formulate a joint training

of HMM, MLP, and Action Shuffle SSL within the Gener-

alized EM framework [28]. This extends prior work (e.g.

[18, 32]) where different components of their approaches

are usually learned independently. Note that our Action

Shuffle SSL requires access to action segments for gener-

ating the positive and negative examples. Action segmenta-

tion, in turn, requires the HMM inference. After the HMM

inference, we can update the action-level feature embed-

ding through the Action Shuffle SSL, as well as update the

HMM parameters. As these updates will change both fea-

tures and HMM, it seems reasonable to run the HMM infer-

ence again. We integrate all these steps within the general-

ized EM framework. A convergence guarantee of our joint

training follows from the generalized EM algorithm [28].

Fig. 1 shows an overview of our unsupervised learning

that consists of two stages. The initial stage follows [18].

Given frame features from all videos, we first compute the

frame-level feature embedding of [18], and then run the

K-means for identifying labels of the latent actions. As

shown in Fig. 1a, for every cluster, we compute the mean of

frames’ normalized positions in videos, then, sort the clus-

ters by their means in the ascending order, and finally take

the sorted cluster indices as labels of the corresponding la-

Figure 2. Action shuffling: Both positive and negative examples

are generated as sequences of 3 action segments randomly sam-

pled from a video, where the former respects the action ordering

in the video, and the latter shuffles the ordering.

tent actions. This ascending order of action labels is taken

as a likely transcript, and used in the HMM inference for

constraining the Viterbi algorithm to respect the transcript.

In the second stage, we perform the generalized EM algo-

rithm for iteratively updating the HMM, MLP, and action-

level embedding.

Evaluation on the challenging Breakfast [15], YouTube

Instructional [2], and 50Salads [27] datasets demonstrate

our superior performance over the state of the art.

The rest of the paper is organized as follows: Sec. 2 re-

views related work, Sec. 3 presents our SSL, Sec. 4 speci-

fies our HMM and its inference, Sec. 5 formalizes our joint

training, Sec. 6 extends our approach to a more general set-

ting, and Sec. 7 presents our experiments.

2. Related Work

This section reviews closely related work on action seg-

mentation under a reduced level of supervision.

Transcript supervised action segmentation. In this

problem, we have access to the true action ordering in train-

ing videos, but their exact action boundaries are unknown.

While this problem is different from ours, our approach

draws motivation from recent advances. For example, Ex-

tended Connectionist Temporal Classification (ECTC) reg-
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ularizes action alignment with consistency of frame similar-

ity [11]. Some approaches alternatively align actions with

frames and update their action models [17, 23]. Other meth-

ods first estimate a video segmentation, and then use this

estimation to train a classifier for frame labeling [25, 20].

Set supervised action segmentation. In this problem,

we have access to the ground-truth set of actions occur-

ring in the training video, but we do not know their order-

ing and temporal extents. This problem was first addressed

with multi-instance learning [24]. In [21], Set-Constrained

Viterbi (SCV) algorithm is used to produce pseudo-ground-

truth labels of frames for the subsequent fully supervised ac-

tion segmentation. In [9], Set Constrained Temporal Trans-

formation (SCT) is used to predict action labels of overseg-

mented temporal regions.

Unsupervised action segmentation and detection fo-

cuses on exploiting the temporal structure of videos [32, 29,

10, 26, 12]. For example, [10] detects all pairs of matching

video segments, [32] learns co-occurrence and temporal re-

lations between actions, [26] proposes a Generalized Mal-

lows Model to jointly learn action appearance and temporal

structure, [12] groups consecutive frames to form commu-

nities similar to social networks. Sec. 1 summarizes [18]

as the most closely related approach to ours, and points out

our differences and extensions.

Temporal SSL has been recently used in various video

interpretation problems, including action segmentation, for

learning a temporal feature embedding. Existing temporal

SSL methods are typically aimed at capturing the tempo-

ral structure of video either at the frame level or at the en-

tire video level. Examples of frame-level temporal SSL in-

clude the following: [22] determines whether a sequence

of frames from a video is shuffled or in the correct tem-

poral order; [19] predicts a permutation of a sequence of

frames; and [5, 14] estimate both spatial and temporal or-

dering of frame patches. Also, examples of video-level

temporal SSL include the following: [13] learns a feature

embedding that captures changes in the video’s motion dy-

namics such as speed and warping; [31] identifies the arrow

of time in videos; and [8, 3, 33] predict the playback speed.

All of these approaches perform the data manipulation

for their temporal SSL without taking into account the or-

dering of action segments in videos. For example, when

they shuffle frames in a given video [22] or when they ma-

nipulate the video’s speed [3, 13], the correct frame order-

ing or speed is readily available and deterministic, given by

the very input video. Instead, our video manipulation shuf-

fles latent actions whose “correct” ordering is only inferred

and not necessarily well-aligned with ground truth (since

the ground truth is not available in unsupervised learning).

Also, our SSL accounts for higher-level temporal structures

in the video beyond a sequence of frames.

3. Action Shuffle SSL

Our temporal feature embedding rests on the assump-

tion that actions tend to occur in similar relative locations

across videos showing the same activity. We capture this

temporal consistency at the level of frames and the level

of actions. As shown in Fig. 3, we first learn the frame-

level temporal embedding as in [18], in the initial stage of

our approach (see Fig 1a), and then iteratively learn our

action-level embedding through the Generalized EM algo-

rithm (see Fig 1b). In each iteration of the Generalized EM,

our action-level embedding is updated as described below.

Fisher features of video frames of positive and nega-

tive action sequences are input to an RNN for predicting

whether the input actions are shuffled. Both positive and

negative sequences consist of 3 action segments randomly

sampled from a video, where every action segment has 5

consecutive frames randomly selected from that action’s

time interval in the video. The sampled actions are shuf-

fled in negative sequences, and respect their time ordering

in positive sequences. Since the frame-level embedding is

learned as the output of an MLP, as in [18], our SSL shares

the same MLP to produce the input to our RNN. We train

the RNN on the binary cross entropy loss, and take its hid-

den layer as our action-level feature embedding.

4. HMM and Its Inference

Videos are represented as sequences of frame features

x1:Tm
= [x1, ..., xt, ..., xTm

], where Tm is the length of

mth video, m = 1, . . . ,M . For HMM modeling and in-

ference, xt represents the action-level feature embedding.

Following [18, 2, 26], we assume that there are at most N

latent actions, C = {c : c = 1, . . . , N}, and that each c

may occur only once in a video. Thus, for a given video

x1:T , our goal is to find an optimal action segmentation,

(ĉ1:K , l̂1:K), where ĉ1:K = [ĉ1, . . . , ĉK ] is the predicted

action sequence, K ≤ N , ĉk ∈ C, k is the index of a video

Figure 3. (Left) Learning the frame-level embedding of [18].

(Right) Learning our action-level embedding. The sampled pos-

itive and negative action sequences are input to an RNN for pre-

dicting if they are shuffled or not. The MLP of both frame-level

embedding and our action-level embedding is shared.
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segment k = 1, . . . ,K, and l̂1:K = [l̂1, . . . , l̂K ] are their

corresponding lengths such that
∑K

k=1 l̂k = T .

The HMM. We specify the following HMM for identi-

fying a MAP action segmentation:

p(c1:K , l1:K |x1:T )
∝ p(x1:T |c1:K , l1:K)p(l1:K |c1:K)p(c1:K),

=
[

T
∏

t=1

p(xt|ck(t))
][

K
∏

k=1

p(lk|ck)
][

K−1
∏

k=1

p(ck+1|ck)
]

.

(1)

In (1), the likelihood p(xt|c) is estimated as

p(xt|c) ∝
p(c|xt)

p(c)
, (2)

where p(c|xt) is computed by passing xt to the MLP and

taking the resulting softmax score for action c. The prior

p(c) is defined as a uniform distribution for all c ∈ C. The

length of each action is modeled as a Poisson distribution:

p(l|c) =
λl
c

l!
e−λc , (3)

where λc is the mean length for class c.

The transition probability p(ck+1|ck) in (1) is defined

with respect to the initialized ordering of the latent actions,

c
init
1:N = [1, 2, 3, . . . , N ], computed by the K-means in the

initial stage of our unsupervised learning, as mentioned in

Sec. 1. Specifically, we define:

p(ck+1|ck) ∝







λck + λck+1
∑ck+1

j=ck
λcj

, ck+1 > ck

0 , otherwise

, (4)

where “∝” denotes the appropriate normalization such that
∑N

c=ck+1 p(c|ck) = 1. From (4), p(ck+1|ck) prevents tran-

sitions that would result in the opposite action ordering

from the initial cinit
1:N . Also, p(ck+1|ck) favors transitions

between actions with consecutive labels in c
init
1:N the most.

But we also allow transitions to actions with larger labels,

(ck+1−ck) > 1, especially if the expected time interval be-

tween ck and ck+1 is short, along the initial action ordering

in c
init
1:N . This allows for skipping some of the latent actions

in the HMM inference. Importantly, p(ck+1|ck) penalizes

“long skips” since the denominator in (4) strictly increases

with the number of actions skipped (ck+1−ck−1).
Note that our p(ck+1|ck) extends previous work [18],

where p(ck+1|ck) = 0 for all (ck+1 − ck) 6= 1, i.e., in [18],

the predicted action sequence is made equal to the fixed ini-

tial transcript, ĉ1:N = c
init
1:N . Another extension of [18] is

our length model p(l|c) in (3).

The HMM Inference. The MAP (ĉ1:K , l̂1:K) is com-

puted by the Viterbi inference. Given x1:T and the initial

transcript cinit
1:N , the Viterbi algorithm recursively maximizes

the posterior in (1) such that the first k actions of the tran-

script c1:k = [c1, ..., ck] at time t respect the action ordering

in c
init
1:N , c1:k � c

init
1:N

p(ĉ1:k, l̂1:k|x1:t) = max
t′, t′<t

ck∈c
init
k−1:N











p(ĉ1:k−1, l̂1:k−1|x1:t′)

·

(

t
∏

s=t′

p(xs|ck(s))

)

· p(lk|ck) · p(ck|ck−1)

}

,

(5)

where lk = t − t′ and p(ck|ck−1) penalizes transitions for

which ck−ck−1 > 1. We set p(·|x1:0) = 1, and p(c1|c0) =
κ, where κ > 0 is a constant. The final prediction is given

by the final recursion of p(ĉ1:K , l̂1:K |x1:T ).

The Likelihood MLP. Our HMM uses an MLP to esti-

mate frame likelihoods, as specified in (2). Note that this

likelihood MLP is different from the MLP used in our SSL

and shown in Fig. 3. The likelihood MLP is a framewise

classifier, initially trained on annotations produced by the

K-means in the initial stage of our approach (see Fig. 1a).

In the subsequent training iterations, the likelihood MLP is

supervised by the frame labelings, {ĉ1:K}Mm=1, predicted in

the previous iteration for all videos.

5. Alternating Learning

We jointly learn the HMM, MLP, and action-level feature

embedding by alternating the Expectation and Maximiza-

tion steps of the Generalized EM algorithm. In the E-step,

we estimate the following Q(θ, θold) function of the θ pa-

rameters, where θ = {W,Λ}, W are the parameters of the

likelihood MLP and RNN for the action-level embedding,

and Λ = {λc : c ∈ C} is the set of mean action lengths:

Q(θ, θold) =
1

Tm

∑

(cm,lm)

∑M

m=1 p(c
m, lm|xm; θold) log p(cm, lm,xm; θ),

(6)

where from (1) the joint log-likelihood in (6) is

log p(cm, lm,xm; θ) =
∑Tm

t=1 log p(x
m
t |cm

k(t);W ) +
∑Km

k=1 log p(l
m
k |cmk ; Λ)

+
∑Km

k=1 log p(c
m
k+1|c

m
k ; Λ)

(7)

For our videos, the posteriors are products of framewise

likelihoods over typically more than 1000 frames. Hence,

the posteriors in (6) are very close to zero for all latent

variables (cm, lm) that are different from the MAP ones,

(cm, lm) 6= (ĉm, l̂m), specified in (5). Therefore, for

our problem setting, it is appropriate to approximate (6) as

Q(θ, θold) ≈ 1
Tm

log p(ĉm, l̂m,xm; θ).

In the M-step, we maximize Q(θ, θold) with respect to

W and Λ by performing fixed-step gradient descent which
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updates the parameters of the likelihood MLP and RNN as:

W new = W old + α
1

M

M
∑

m=1

Tm
∑

t=1

∇ log p(xm
t |ĉmk(t);W ), (8)

where α is the learning rate. Also, maximizing Q(θ, θold)
with respecto Λ gives the following update rule for the mean

length of every action λc ∈ Λ:

λnew
c = λold

c +
1

M

M
∑

m=1

(

∑Km

k=1 l̂
m
k · 1(c = ĉmk )

∑K

k=1 1(c = ĉmk )
− λold

c

)

(9)

where M is the number of videos.

In [28], the interested reader can find the proof that the

weak convergence is guaranteed, p(c1:k, l1:k|x1:t; θ
new) >

p(c1:k, l1:k|x1:t; θ
old), as long as the above updating pro-

cess maintains that Q(θnew, θold) > Q(θold, θold). In our

experiments, we empirically observe convergence when a

difference between the new and old log-posteriors is less

than ǫ = 10−3.

6. Learning with All Activities

As in [18], we also address action segmentation across

all activities. In this case, we have no access to the activity

class, so the assumption that actions tend to occur in simi-

lar relative temporal orderings across all videos may not be

justified. To address this issue, we take the following steps.

Similar to the previously discussed one-activity setting,

we first learn the frame-level embedding for all videos

across all activities. The frames are then clustered in the

frame-level embedding space to construct a bag-of-words

representation for each video with a soft assignment. This

allows for clustering videos based on their bag-of-words

representation, and each resulting cluster is interpreted as a

set of videos showing the same activity. Finally, we perform

the second stage of our approach, as illustrated in Fig. 1b,

for each video set separately.

7. Experiments

Datasets. For evaluation, we use three benchmark

datasets: Breakfast [15], YouTube Instructional [2], and

50Salads [27].

Breakfast is a large-scale dataset, consisting of 10 differ-

ent complex activities of people making breakfast, with ap-

proximately 8 actions per activity class. Every video has on

average 6.9 actions, and the video lengths vary from a few

seconds to several minutes. For evaluation on Breakfast,

as unsupervised input video features, we use the reduced

Fisher Vector features [16], as in [26, 18].

YouTube Instructions shows five activities: making cof-

fee, cpr, jumping car, changing car tire, potting a plant in

150 videos with an average length of about two minutes. As

in [26, 18], for evaluation on YouTube Instructions, we use

the unsupervised features proposed by [2].

50Salads has 4.5 hours of video footage of one complex

activity, that of making a salad. Its video length is much

longer than that of Breakfast and YouTube Instructions. As

in [18], two different action-granularity levels are used for

evaluation: mid-level with 17 action classes and eval-level

with 9 action classes.

Evaluation Metrics. For establishing a correspondence

between the predicted segmentation and ground-truth seg-

ments, we follow [2, 26, 18] and use the Hungarian al-

gorithm for one-to-one matching based on the overlap be-

tween the matched segments over all videos. For evalua-

tion on Breakfast and 50Salads, we compute the mean over

frames (MoF). For YouTube Instructions, we report the F1-

score, where for calculating precision and recall the positive

detections must overlap more than 50% with the matched

ground-truth segments.

Implementation Details. In our experiments, the di-

mension of our action-level feature embedding is set to be

20. The MLP used for the embedding has one 40× 20 hid-

den layer. The hidden-to-hidden layer in the RNN is 20×20.

The likelihood MLP for the HMM has one 40 × N hidden

layer. One iteration of the Generalized EM algorithm is re-

ferred to as epoch. In our experiments, we observe con-

vergence after 20 epochs. It only takes several hours for

training, e.g. an average of 1 hour training time given an ac-

tivity from Breakfast. We observe as the number of epochs

increases we get non-decreasing Q function given by (6).

Within each epoch we generate 2 ·M positive and negative

action sequences, two per video, for our SSL of the RNN.

The backprop for the SSL is performed with the SGD with

momentum, and our learning rate is 0.001.

Ablations. We consider the following variants of our

approach for evaluating the effect of each component:

• ASAL = Our full approach with the alternating learn-

ing of the action-level embedding and HMM;

• FTE + HMM = From our full approach we removed

the action-level embedding and keep the frame-level

temporal embedding (FTE) of [18]; the HMM is iter-

atively updated, but not FTE as it belongs to the first

stage of our approach;

• ActionShuffle + initHMM = From our full approach

we remove the alternating learning, but use the action-

level embedding and the HMM initialized on the K-

means results from the first stage of our approach; this

version tests the effect of our joint learning.

• ActionShuffle + Viterbi = From our full approach we

remove the HMM, but use the action-level embedding

and the Viterbi algorithm constrained to respect the ini-

tial fixed transcript of actions as in [18]; this version

amounts to running [18] with our action-level feature
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GT

ASAL

Figure 4. A representative result for our full approach ASAL

on a sample video P04 webcam02 P04 friedegg from the Break-

fast dataset. Top-down, the rows correspond to the ground

truth sequence of actions (pour oil, crack egg, fry egg, take plate,

put egg2plate) and our action segmentation.

embedding instead of their FTE.

7.1. Evaluation for the Same Activity

In this section, evaluation is done for the setting where

all videos belong to the same activity class. Table 1, Ta-

ble 2, and Table 3 show that our approach outperforms the

state of the art, on all three datasets, for this setting. On

Breakfast, our approach gives a higher F-1 score by 11.5,

and a higher MoF by 10.7 than the strong baseline [18].

On Youtube Instructional, our approach outperforms [18]

by 3.8 in F1-score and 5.9 in MoF. On 50salads, we get bet-

ter results than [18] for both eval and mid granularity level

features by 3.7 and 4.2 in MoF, respectively. In addition,

for a comparison to an upper-bound performance, Table 1

also includes the best results of recent approaches on Break-

fast trained under two other learning settings which increase

the level of supervision – specifically, fully-supervised and

weakly transcript-supervised learning as reviewed in Sec. 2.

As can be seen, our approach comes in performance very

close to the best weakly supervised approach on Breakfast.

In addition, we also show the results of LSTM+AL [1], as a

representative of approaches that use a different evaluation

method with a per-video local Hungarian matching.

Figure 4 illustrates a representative action segmentation

that our approach ASAL produced for a sample video from

Breakfast. As can be seen, ASAL is usually good at identi-

fying salient actions, but may miss the start and end frames

of the corresponding ground-truth actions.

Effect of Feature Embedding. For the setting where

all videos belong to the same activity class, we compare

the results of our full approach ASAL and FTE+HMM.

FTE+HMM computes the frame-level temporal embedding

(FTE) in the first stage, and does not update it in the second

stage. Table. 4 shows that, on Breakfast, our full approach

ASAL gives better results than FTE+HMM by 2.1 in F1-

score and 4.0 in MoF. The large performance gain of our

approach suggests that our action-level embedding success-

fully captures the temporal structure of videos.

Effect of Alternating Training and HMM. For the set-

ting where all videos belong to the same activity class,

we evaluate two different ways for learning the compo-

nents of our approach – specifically, the joint alternating

Breakfast

Fully Supervised MoF

HTK [15] 28.8

TCFPN [7] 52.0

HTK+DTF w. PCA [16] 56.3

RNN+HMM [7] 60.6

Weakly Supervised MoF

OCDC [4] 8.9

HTK [17] 25.9

CTC [11] 21.8

ECTC [11] 27.7

HMM+RNN [23] 33.3

TCFPN [7] 18.3

NN-Viterbi [25] 43.0

D3TW [6] 45.7

CDFL [20] 50.2

Unsupervised F1-score MoF

Mallow [26] - 34.6

CTE [18] 26.4 41.8

(LSTM+AL) [1] - (42.9∗)

VTE-UNET [30] - 48.1

Our ASAL 37.9 52.5

Table 1. Comparison of our approach with the state of the art on

Breakfast. The table also shows the latest best results on Break-

fast for the fully supervised and weakly supervised learning, as an

upper-bound performance to ours. The dash means “not reported”,

and ∗ means that results are evaluated with the “per video” Hun-

garian matching, not the Hungarian matching over all videos. In

the unsupervised setting, we get the best F1-score and MoF, and

come very close to the best weakly supervised performer.

YouTube Instructions

Unsupervised

F1-score MoF

Frank-Wolfe [2] 24.4 -

Mallow [26] 27.0 27.8

CTE [18] 28.3 39.0

VTE-UNET [30] 29.9 -

Our ASAL 32.1 44.9

(LSTM+AL) [1] (39.7∗) -

Table 2. Comparison of our approach with the state of the art under

unsupervised learning on YouTube Instructions. The dash means

“not reported”, and ∗ means that results are evaluated with the “per

video” Hungarian matching, not the Hungarian matching over all

videos. We achieve the best F1-score and MoF.

learning of our full approach ASAL, and separate learn-

ing of the action-level embedding and HMM in Action-

Shuffle+initHMM based on the K-means results. Specif-

ically, ActionShuffle+initHMM trains the likelihood MLP

with the framewise pseudo-ground truth from the K-means,
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50Salads

Unsupervised

Granularity level MoF

VTE-UNET [30] eval 30.6

CTE [18] eval 35.5

Our ASAL eval 39.2

(LSTM+AL) [1] eval (60.6∗)

VTE-UNET [30] mid 24.2

CTE [18] mid 30.2

Our ASAL mid 34.4

Table 3. Comparison of our approach with the state of the art un-

der unsupervised learning on 50salads. The dash means “not re-

ported”, and ∗ means that results are evaluated with the “per video”

Hungarian matching, not the Hungarian matching over all videos.

We achieve the best results on both action-granularity levels.

Embeddings

Breakfast

F1-score MoF

FTE + HMM 35.4 47.7

ASAL 37.9 52.5

Table 4. Evaluation of different feature embeddings on Break-

fast. ASAL is our full approach, and FTE+HMM does not use

our action-level embedding but only the frame-level embedding of

[18]. We achieve better results, which suggests that our action-

level embedding successfully captures the temporal structure.

and learns the expected action length in (3) as an average

of action lengths in the K-means. Then, such an HMM is

inferred with the Viterbi algorithm, and the resulting ac-

tion segmentation is used for our SSL of the action-level

feature embedding. In ActionShuffle+initHMM, there is

no alternating training, i.e., after the initial separate learn-

ing all components are not updated further. In addition,

we also evaluate ActionShuffle+Viterbi that does not have

our HMM but the model used in [18]. This model evalu-

ates frame likelihoods, but does not capture action lengths

and action transitions. Also, their model inference is con-

strained to the fixed initial transcript of actions. Table. 5

shows that our full approach gives superior performance on

Breakfast in comparison with ActionShuffle+initHMM and

ActionShuffle+Viterbi. ActionShuffle+initHMM gives bet-

ter results than ActionShuffle+Viterbi, which suggests that

accounting for action lengths and transitions in the HMM is

very important.

For evaluating convergence of our alternating learning,

in Fig. 5, we plot values of the Q function, given by (6), over

training epoches on the activity “Juice” from Breakfast. The

vertical axis is the mean of Q values over all videos in one

epoch. The figure shows that our Generalized EM algorithm

converges after 20th epoch on the activity “Juice”.

Figure 5. The mean of Q values over all videos for training epochs

on videos of the activity “Juice” from Breakfast. The plot shows

that our Generalized EM algorithm converges after 20th epoch.

Difference in Learning and Models

Breakfast F1-score MoF

ActionShuffle+Viterbi 30.7 44.1

ActionShuffle+initHMM 32.1 46.8

ASAL 37.9 52.5

Table 5. Effect of Alternating Training and HMM. We compare our

full approach ASAL with ActionShuffle+Viterbi, where no HMM

is used, and ActionShuffle+initHMM, where no joint training is

used. ASAL gives the best performance.

7.2. Evaluation across All Activities

In this section, we evaluate our approach in a more gen-

eral unsupervised setting, where videos belong to different

activity classes with different temporal structures of actions.

Following [18], we also perform the Hungarian matching

of all predicted actions to the ground truth action segments.

For this setting, all experiments are evaluated on the Break-

fast dataset. We assume N = 5 actions for each activity,

and that there are 10 activities in Breakfast. Then the match-

ing is performed between 50 different action clusters to 48

ground-truth actions, and the remaining unmatched clusters

are set as background.

In Table 6, we compare our full approach ASAL with the

state of the art on Breakfast, for this multi-activity setting,

and observe that ASAL gives the best results.

Effect of Embedding For the multi-activity setting, we

compare our ASAL with FTE+HMM which does not use

the action-level feature embedding. We also define another

variant of our approach, where the action-level embedding

is learned for all activity classes without taking into account

that videos belong to different activities – the approach re-

ferred to as Global emb+HMM. As shown in Table 7, the

action-level embedding learned for each estimated activity
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Learning across All Activities

Breakfast MoF

CTE [18] 16.4

Our ASAL 20.2

Table 6. Evaluation in the setting when videos belong to multiple

different activity classes. Our full approach ASAL gives better

results than [18].

in ASAL gives better performance than Global emb+HMM,

since actions of different activities have very different tem-

poral orderings which cannot be reliably captured by our

the action-level embedding aimed only for a single activity.

Embedding Across All Activities

Breakfast MoF

Global emb + HMM 18.3

FTE + HMM 17.9

ASAL 20.2

Table 7. Evaluation of embeddings across all activities. The supe-

rior performance of our ASAL suggests that the action-level em-

bedding is not suitable for capturing large variations in the tempo-

ral structure of multiple distinct activities.

Effect of Alternating Learning and HMM For the

multi-activity setting, we also compare our full ap-

proach ASAL with ActionShuffle+initHMM and Action-

Shuffle+Viterbi. As shown in Table 8, ASAL gives the su-

perior performance.

HMM & Training Across All Activities

Breakfast MoF

ActionShuffle+Viterbi 17.2

ActionShuffle+initHMM 18.7

ASAL 20.2

Table 8. Evaluation of HMM and two different learning strategies

on Breakfast for the setting when videos belong to different ac-

tivities. We compare our full approach ASAL with ActionShuf-

fle+Viterbi, where no HMM is used, and ActionShuffle+initHMM,

where learning of the HMM and action-level embedding is inde-

pendent and not alternated. ASAL gives the best performance.

8. Conclusion

In this paper, we have advanced unsupervised action

segmentation by making the following contributions. First,

we have specified a new self-supervised learning (SSL)

as a verification of the temporal ordering of actions. The

proposed SSL provides the action-level feature embedding

used in an HMM for inferring a MAP action segmenta-

tion. Second, our HMM explicitly models action lengths

and transitions, and in this way relaxes the restrictive

assumptions of prior work that all videos have a fixed time

ordering of actions. Third, we have unified learning of the

action-level embedding and HMM within the Generalized

EM framework. Our evaluation studies two different

settings – when videos show a single activity or multiple

distinct activities – on the Breakfast, Youtube Instructions,

and 50Salads datasets. In both unsupervised settings,

and on all three datasets, our approach achieves superior

results relative to the state of the art, and even comes

close to the best weakly supervised performer on Breakfast

for the single-activity setting. We have also presented

a detailed ablation study that demonstrates advantages

of the proposed: a) action-level embedding relative to

the frame-level temporal embedding of prior work; b)

modeling of action lengths and transitions relative to fixing

inference to a predefined action transcript as in prior work;

and c) joint alternating training of all components of our

approach relative to their separate training.
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