
Action versus State based Logics
for Transition Systems

Rocco De Nicola

IEI- CNR

Via S. Maria, 461-56126 Pisa

ITALY

DENICOLA@ICNUCEVM.CNUCE.CNR.IT

Abstract

Frits Vaandrager

CWI

P.O. Box 4079, 1009 AB Amsterdam

THE NETHERLANDS

FRITSV@CWINL

A temporal logic based 011 actions rather than 011 states is presented and interpreted over

labelled transition systems. It is proved that it has essentially the same power as CTL *,a

temporal logic interpreted over Kripke structures. The relationship between the two logics

is established by introducing two mappings from Kripke structures to labelled transition

systems and viceversa and two tran..1formatio11 functions between the two logics which

preserve truth. A branching time version of the action based logic is also introduced. This

new logic for transition systems can play an important role as an intermediate between

Hennessy-Milner Logic and the modal µ-calculus. It is sufficiently expressive to describe

safety and liveness properties but permits model checking in linear time.

1. Introduction

Labelled Transition Systems (LTS's) and Kripke Structures (KS's) are two types of structures which

have proven to be basic for many applications in computer science, especially for modelling reactive and

concurrent systems. On one hand, LTS's have been more widely used to interpret process algebra

languages like CCS and other languages for the description of communicating systems. On the other hand,

KS 's form the common model for interpreting many temporal and modal logics which are used as tools for

specifying properties of communicating systems. The two types of structures are very similar and both can

be seen as generalizations of state automata: in L TS 's transitions are labelled to describe the actions which

cause a state change while in KS's states are labelled to describe how they are modified by the transitions.

In spite of their similarity and, we might say, their complementarity, the two models have mostly been

considered as alternative to each other and there are strong advocates standing on each side. For example,

Note: The research has been partially supported by Esprit Basic Research Action Program, Project 3011 CEDISYS and by

CNR Progetto Finalizzato Sistcmi Informatici c Calcolo Parallclo, project LAMBRUSCO.

408

due to the "experienced" easiness in formulating properties of systems in tenns of their states, Lamport

" ... decide(d) to base an axiomatic system for describing concurrent programs upon states rather than

operations." [Lam83]. Actually, very interesting logics like CTL and CTL *interpreted over KS's have

been put forward [EH83, ES89] and have been thoroughly investigated [BCG88]; also, sophisticated and

efficient tools have been developed for them [CES86]. For LTS 's, on the other hand, Hennessy an Milner

which were more interested in properly describing the actual behaviour of communicating systems, did

define a new logic, now known as HML [HM85]. More recently, due to the success of process algebras,

other, more expressive, logics interpreted over LTS's have been proposed (see e.g. [Lar88, Sti89, DV90])

and tools have been developed to support reasoning with them [CPS90].

Still, one might say that modal and temporal logics for computer science and the associated complexity

issue have been more thoroughly investigated in the setting of Kripke structures and that combinators for

transition systems and the issue of behavioural equivalence, as the basis for defining process algebras, have

received more attention in the setting of Labelled Transition Systems.

The point we want to make with this paper is that there is really no need for taking a definite standing

between LTS's and KS's as semantic models. For example, our results will enable one to use ones favorite

process algebra to describe system behaviour as an LTS and to use CTL * to specify the requirement the

system has to comply with. The model checker for CTL * or (better) for its branching time subset CTL can

then be used to check whether a given process satisfies the required properties.

We will introduce an action based version ofCTL* interpreted over LTS's (we will call it ACTL*)

which is the natural analogue of CTL * in a setting where transitions are labelled. The new logics contains

relativized modalities (e.g. Xacp - to be read "the next transition is labelled with an action a and the

subsequent path satisfies cp"-) as demanded by the interpretation model and is more expressive than HML.

Together with the new logic, we will introduce two transformation functions from KS's to LTS's and

viceversa which preserve essential properties of systems. In correspondence of the two transformation

functions, we will define two mappings between the logics, one from CTL * to ACTL * and the other in the

opposite direction, which, in combination with the functions on the models, preserve truth. We will prove

that, if A is an LTS, X. is a KS , the f<-s 'sand the Lts 's are the transformation functions, and the two l='s

are the satisfaction relation, we have:

• A, p I= cp iff fui (A), ks (p) I= fui (cp)

and

• X., p I= cp iff ~ts(X.), Lts(p) I= Lts(cp).

Thus, one might say that the two logics are essentially equivalent.

Like it has been done for CTL *,we will introduce a branching time subset of ACTL * which we will

call ACTL. Moreover, we will present a linear time translation from ACTL to CTL. This permits linear

model checking for ACTL via reduction to CTL model checking. Also ACTL appears to be rather

expressive and we argue that it can be used to express various interesting properties of concurrent systems.

We will conclude the paper with a brief discussion on the discriminative power of ACTL without next time

operators, be them relativized or not. We will argue that this restricted logic induces on transition systems

the same equivalence as the divergence sensitive version of the branching bisimulation equivalence of

[GW89] as presented in [DV90].

As mentioned above, our results about ACTL pem1it equipping verification tools for process algebras

with a model checker which is linear in the size of the formula being checked; at the best of our knowledge

409

almost all existing tools rely on model checking variants of the µ-calculus and the algorithm for this is

exponential in the size of fom1ulae. A type of work similar to ours in this respect is presented in [JKP90J.

These authors do stick 10 CTL as a logic for L TS 's but substantially change its satisfaction relation; in a

sense they have a relativized satisfaction relation (<a, s> I= <p) instead of our relativized modality (Xa qi).

The expressive power of the two languages seems similar, but our satisfaction relation is more immediate.

It is also worth mentioning that our transfom1ation from LTS's to KS's is linear while theirs is quadratic.

Besides, they do not consider invisible actions and we have not been able to generalize their approach to

systems with silent steps in a way that would preserve some behavioural equivalence.

We think that our new logic for transition systems can play an important role as an intermediate

between H.ML and the modal µ-calculus. It is well known that HML is not expressive enough and that

model checking for the modal µ-calculus requires exponential time. ACTL is sufficiently expressive to

describe safety and liveness properties but permits model checking in linear time.

2. ACTL*: A logic for labelled Transition Systems

In this section, we introduce our action based logic and elaborate upon its expressivity. Firstly, we provide

the necessary definitions about labelled transition systems and their runs. Then, we describe the logic and

introduce auxiliary modalities which will be useful in the sequel.

Definition 2.1. (Labelled Transition Systems)

A labelled transition system (or LTS) is a structure A= (S, A, --7) where:

• S is a set of states;

•A is a finite, non-empty set of actions; the silent action 'C is not in A;

• --7 s;;; S x (Au(-c}) x Sis the transition relation; an clement (r,a,s)E -t is called a transition, and is

usually written as r-a--+s.

We let A-i; = Au(-c); A2 = Au(i::}, i:: e: A-i;. Moreover, we let r, s, ... range over states; a, b, ... over A; a,

0, ... over A-c and k, ... over Ae.. •
Remark 2.2. (Finiteness assumptions are not essential)

The assumption that the set A of actions is finite and non-empty is made for technical reasons. The results

of this paper can be generalized to arbitrary sets of actions if either one is willing to use infinitary

disjunctions in the logics or to restrict attention to those L TS' s for which the set of labels which actually

occur in transitions is finite. +

Definition 2.3. (Notation for strings)

Let K be any set. K* stands for the set of finite sequences of elements of K; KW denotes the set of infinite

sequences of elements of K; K 00 stands for KCl.luK *. Concatenation of sequences is denoted by

juxtaposition; A. denotes the empty sequence; ln:I denotes the length of a sequence n:. +

Definition 2.4. (Paths and runs over LTS' s)

410

Let A.= (S, A,~) be a LTS.

• A sequence (SQ,O:Q,S I) (s i ,a i ,sz) ... E ~ 00 is called a path from so; if a path cannot be extended

anymore because it is either infinite or ends in a state without outgoing transitions, it is called ajullpath.

•a run from s E Sis a pair p = (s;rc), where n is a path from s; we write first(p) =sand path(p) = n:;

moreover, if n is finite then last(p) denotes the last state of n; a maximal run is a run whose second

element is a fullpath;

• with p < e and p::;; ewe indicate that rune is a proper suffix, respectively a suffix, of run p;

• concatenation of runs is denoted by juxtaposition; concatenation is a partial operation: pe is only defined

if p is a finite run and last(p)=first(S).

•we write run;t(s), or just run(s), for the set of runs from sand µrun;t(s), or just µrun(s), for the set of

maximal runs from s;

• we write runA_ and µrun;t for the set of runs resp. maximal runs in A.

We let n:, ... range over paths and p, er, ... over runs. +

Definition 2.5. (ACTL *: an Action based Computation Tree Logic)

The syntax of the logic ACTL *(Action based CTL *)is defined by the following grammar where we let cp,

cp', ... range over ACTL * -fomrnlas:

cp ::= T I -,cp I <pA<p' I :lcp I cpUcp' I Xcp I Xa<fl· +

Definition 2.6. (Satisfaction relations for ACTL *)

Let A= (S, A, ->) be a LTS. Satisfaction of an ACTL *-formula cp by a run p, notation A.,p I= cp or just p

I= cp, is defined inductively by:

• p I= T always;

• p I= -,cp iff p l;;e cp;

• p I= <pA<p' iff p I= cp and p I= cp';

• p I= :Jcp iff there exists a rune E µrun(first(p)) such that e I= cp;

• p I= cpUcp' iff there exists a 8 with p::;; 6 such that e I= cp' and for all p::;; rt<6: rt 1= cp;

• p I= Xcp iff there exist s, o:, s', 9 such that p = (s,(s,a,s'))S and 8 I= cp;

iff there exist S, s', e such that p = (s,(s,a,s'))S and e I= <p.

For s E S and cp E L we define s I= cp iff (s, A.) I= <p.

Notation 2.7. (Auxiliary notation for ACTL *)

We write

•F

• cp v cp'

• V (cpi I ie (il, . .,in))

• <p => cp'

• Vcp

• F<p

• G<p

• X-c <p

for-, T,

for -,(-,cp A -,cp'),

for <pi! v .. v <flin (by convention v (<pi I ie 0} = F),

for -,<pvcp',

for -,3-,<p,

for TU cp,

for -,F-,cp,

for X<p A -,(v (Xa cp I ae A}) .

+

•

411

In order to define more powerful modalities which will significantly shorten our notation, we introduce a

tiny auxiliary logic of actions.

Definition 2.8. (Action formulas)

The collection Afar of action formulas over A is defined by the following grammar where we let x, x',

range over action formulas:

X ::= ae A I -.x I Xl'-x'.

We write T for -.(Uol'--,ao) where Uo is some arbitrarily chosen action. Also, we use the abbreviations F,

cpvcp', etc. that were introduced for ACTL *. +

Definition 2.9. (Satisfaction relations for Afar)

Satfafaction of an action fommla x by an action a, notation a I= x, is defined inductively by:

• a I= b iff a = b;

• a i=-.x

•a I= Xl'.X'

iff a \;ex;

iff a I= X and a I= x'.

Definition 2.10. (Derived modalities)

•

By using the notion of action fonnulas we can introduce a number of very useful modalities. We will write

•Xxcp for v{XacplaeAandal=xL

• cp X UX. cp' for (<pl'-(XtT v XX T)) U (cp A~· cp'),

• cp Xu cp' for (<pA(X'tT v xx T)) u cp',

• cp <a> cp' for 3(cp rU a cp'),

• cp <e>cp' for 3(cp rU cp'),

• <k> cp

• [k] cp

for T <k> cp,

for -.., <k>-.cp. •

Intuitively, a path satisfies XX cp if it starts with a visible action that satisfies X and moreover the remainder

of the path satisfies cp. A path satisfies cp X Ux' cp' if eventually it contains a visible transition whose label

satisfies x' with a remainder satisfying cp', whereas at any moment before this event <p holds and all visible

labels satisfy X· A path satisfies cp XU cp' if some suffix satisfies cp' and at any moment before cp holds and

all visible actions satisfy X· Please, note that cp TU cp' is equivalent to <p U cp'. The logic ACTL * is more

expressive than the Hennessy-Milner logic with until operators that was introduced in [DV90]; these

modalities are just the modalities <p <a> <p' and cp <e><p' as defined above. The formula <p <a> cp' holds in a

state if it is possible to do some 't-transitions followed by an a-step such that after the a-step cp' holds and at

any moment before <p holds. The fommla cp <e>cp' is valid if after zero or more 't-steps cp' holds and at any

moment before cp holds. Our diamond operator <a>cp is slightly different from the diamond operator in the

standard Hennessy-Milner Logic (HML) of [HM85]. Our modality requires that there exists a path

consisting of a number of 't's followed by an a-transition such that cp holds immediately after the a-step,

whereas in standard HML it is allowed to have an additional number of 't-steps between the a-step and the

<p-state. The diamond operator <a>cp of standard HML is rendered by our <a><e>cp. Finally, we introduce

the modality [k] cp, which is the dual of <k> cp.

412

Example 2.11. (Expressivity of ACTL *)

ACTL * allows us to express in a concise way interesting properties of reactive systems. For instance, a one

bit buffer will satisfy the following property

'v'G([inO] ('Ii (T -.(inO v inl v oull)UoutO T)))

which expresses that always after a 0 is placed in the buffer eventually the buffer will release it; moreover,

as long as this event has not yet occurred, no bit will be accepted by the buffer and also no 1 will be

released. •

3. CTL*: a logic for Kripke Structures

Those readers who are familiar with the logic CTL * will have realized that the logic AC1L *resembles it

very closely. In this section, we will recall the definitions of CTL * and of the Kripke structures which

serve as models for it; this will allow us to investigate, later on in the paper, the relationships between the

two logics more closely.

Definition 3.1. (Kripke structures)

A Kripke structure (or KS) is a 4-tuple :JG= (S, AP, L, ~)where:

• S is a set of states;

• AP is a finite, nonempty set of atomic proposition names ranged over by p, q, ... ;

• L: S -t 2AP is the proposition labelling;

• -t ~ S x S is the transition relation; an element (r,s) E -t is called a transition and is usually written as

r -t s.

The notations for runs that were introduced for LTS's carry over to Kripke structures in the obvious way.

The only difference is that transitions are now no longer triples but pairs. •

Definition 3.2. (CTL *)

The syntax the logic CTL * is defined by the following grammar where we let <p, cp', ... range over CTL *
fommlas and p over atomic proposition names:

<p ::= p I -,cp I <pAcp' I 3<p I <pU<p' I Xcp.

We write T for -,(p0A-ip0) where Po is some arbitrarily chosen atomic proposition name. Also, we use the

abbreviations F, cpv<p', etc. that were introduced for the logic ACTL *. +

Definition 3.3. (Satisfaction relation for CTL *)

Let :JG = (S, AP, L, ~) be a Kripke structure. Satisfaction of a C1L * formula <p by a run p, notation :K., p

I= cp or just p I= cp, is defined inductively by:

• p I= p iff p E L(first(p));

• p I= -,cp iff p Ii: <p;

• p I= cpAcp' iff

• p I= 3cp iff

• p I= cpUcp' iff

• p l=Xcp iff

413

p I= cp and p I= cp';

there exists a rune E µrun(first(p)) such that e I= cp;

there exists a 0 with p ~ 0 such that 0 I= cp' and for all p ~ TJ<0: TJ I= cp;

there exist S, s', e such that p = (s,(s,s'))0 and e I= cp.

For s e S and cp e CTL * we define s I= cp iff (s, A.) I= cp. •
For the sake of clarity, please notice that the above relation, which is the standard satisfaction relation for

CTL * (see e.g. [ES89]), was called satisfaction with respect to maximal paths in [DV90] and it was there

written as p I=µ cp.

4. Actions vs States: relating ACTL *and CTL *

To relate the two logics presented in the previous sections, we will need some preliminary work which

allows us to relate the different structures on which they are interpreted, namely Kripke structures and

Labelled Transition Systems. We will make use of two (slightly modified) transformation functions

introduced in [DV90b]. For both constructions, the generated system has almost the same structure as that

of the original one. The first construction builds a Kripke structure from a labelled transition system by

splitting transitions labelled by visible actions and creating a new states for each of them, labelled with the

label of the original transition. The second construction builds a transition system from a Kripke structure

by labellling the original transitions with the set of atomic propositions labelling their target state and by

splitting all the original states to avoid that atomic propositions associated to states without incoming

transitions be lost. Together with the two tranformation functions on the modelling structures we will

present two transformation functions for the two logics and will then prove that truth of logical formula is

preserved by them.

Definition 4.1. (From LTS' s to KS' s)

Let A = (S, A,--+) be a L TS and J. be fresh symbol not in A. The KS, ~ (..:l), is defined as

(S', AP, L, -->')where

• S' =Su {(r,a,s) I aeA and r-a-+ s};

•AP=Au{J.);

• -->' = {(r,s) I r-1:-+ s} u ((r,(r,a,s)) I r-a-t s} u (((r,a,s),s) I r-a-+ s};

•For r, s e Sand a e A: L(s) = (J.} and L((r,a,s)) = (a}.

The mapping can be adapted in the obvious way to runs; it is sufficient to replace each transition (r,a,s) by

the pair of transitions (r,(r,a,s)) ((r,a,s),s). •

Mapping~ is nothing more than the composition of the mappings tr2 and KS as presented in [DV90b].

Essentially, what~ does is to introduce an intermediate state for each visible transition in the LTS, and to

label the fresh states with the label of the transition and the old ones with {J.} while forgetting the label of

the transitions.

414

In correspondence of the mapping from LTS's to KS's, we have a mapping from ACTL *formulae to

CTL * fonnulae which preserves truth.

Definition 4.2. (From ACTL * to CTL *)

The mapping fts: ACTL * ~CTL * is inductively defined by:

• "-s(f) = T,

•"-5(-.cp) = -."-s(cp),

• Rs(<pA<p') = Rs(<j>) ARs(<p'),

•"-s(3cp) =3fts(cp),

• "-s(<pUcp') = (J_ => fts (cp)) U (J_" R.s (cp')),

• "-s(Xcp) = X((l_ A fts (cp)) v v {(a" X(fts (<p))) I ae A}),

• "-s(Xa cp) = X(aAX(fts (cp))). •
Theorem 4.3. (ks's preserve truth)

* Let A be a L TS, let p be a run of A and let cp be an ACTL -formula, then:

..<l,p I= cp iff fts(..<l),Rs (p) I= R.s (cp). •
The translation fts is linear in the size of the formulas, except for the case of the X-modality which can

cause an exponential blowup. Note however that by replacing in ACTL * the X-modality by the relativized

modality X-c, which would mean no loss in expressivity since X can be defined in tem1s of the modalities

Xi: and Xa, it becomes easy to give a linear version offts by defining:

"-s(X-ccp) = X(l_ "fts(cp)).

Somewhat arbitrarily, we have decided to use X in ACTL * instead of X-c because otherwise the reverse

translation fas: CTL * ~ACTL * which we present below would not be linear anymore.

Definition 4.4. (From KS' s to LTS' s)

Let :JG= (S, AP, L, ~)be a Kripke structure. The LTS C:ts(:JG) is defined as (S', A',~') where

• S' = S U {.s. I s e S);

•A'= 2AP u {1-) (we assume ..Lis a fresh symbol);

• ~' = { (s, J_, fil I s e S) U

{(s., .L(s), s) Is e S) u

{ (r, 't, s) I r,s e S, r -t s and .L (r) = .L(s)) u

{ (r, .L(s), s) I r,s e S, r ~ sand L(r) ;t: L(s)).

The mapping can be easily adapted to runs by defining:

C:ts(sO, (s0,sl)(sl,s2) ...) = (sO, (sO,Ll,sl) (sl,L2,s2) ...)

whereLn+l =ctcf if L(sn+l) =L(sn) then 't else L(sn+l). •
The above transformation C:ts is the result of a minor modification of the transformation LTSotr of

[DV90b]. We could not directly use transformation tr here because in general it does not preserve all the

essential information in a Kripke structure. The modification that we presented above uses an idea which

was also exploited in the definition of transformation fts: just like ~s splits each (visible) transition into

415

two consecutive transitions, the transformation Lts splits each state into two adjacent states.

We now present the translation function Lts from CTL *to our new logic ACTL *.It is the identity

function for all operators but for atomic propositions.

Definition 4.5. (From CTL * to ACTL *)

The mapping Lts: CIL * ~ACTL *is inductively defined by:

•Lts(p) <l>(v (<a>T I pe a.~AP)),

• Lts(-.cp) .., Lts(cp),

• [ts(cpAcp')

• Lts(:Jcp)

• Lts(cpUcp')

• Lts(Xcp)

[ts(cp) "Lts(cp'),

3 Lts(cp),

Lts(cp) U Lts(cp'),

x [ts(cp). +

We recall from Definition 2.10, that <.l>cp means that there exists a path containing any number of silent

moves and then a transition labelled by ..L which leads to a state satisfying cp, formally we have: <.l>cp = 3

((X"CT) U (XJ.cp).

Theorem 4.6. (Cts' s preserve truth)

Let K be a Kripke structure, let p be a run of '.I(, and let cp be a CIL * -fonnula, then:

K,p I= cp iff [ts(K),[.ts(p) I= [ts(cp). •
The huge disjunction which we need in Definition 4.5 in order to deal with atomic proposition names

results from a kind of mismatch between LTS's and Kripke structures: transitions in LTS's are labelled just

by actions, whereas states in KS's are labelled with sets of atomic proposition names. Had we used a

slightly different type of LTS' s which allowed sets of actions to occur as label rather than single actions, it

would have been natural to equip the logic ACTL * with modalities Xp for pan element of a transition label.

In that case the translation [ts could have been simplified even further by defining:

[ts(p) = <l> <p> T.

The translation ks would not be more complicated in this approach. In this paper we have chosen not to

label transitions with sets of actions, but just with actions, in order to preserve more closely the connection

with the LTS 's semantics of a wide variety of process description languages.

Now we have defined a translation ks from LTS's to KS's and another translation [ts from KS's to

L TS 's, a natural question to ask is what are the relationships between a L TS A. and the L TS Lts(~s (A.)),

or between a KS '.K. and the KS f<-s (fts(K)). It is not hard to see that, for instance, A. and Lts(f<-s (A)) are

not directly related via some behavioural equivalence like trace equivalence or bisimulation equivalence.

Although we still think that there exist interesting behavioural relationships, we have decided not to adress

these issues in the present paper.

416

5. ACTL: a new branching time logic for L TS's

In the previous sections we have introduced the logic ACTL * and shown that it is a very expressive logic

which is equivalent to CTL * in the sense that model checking for ACTL * can be reduced to model checking

for CTL * and vice versa. However, since model checking for CTL *is in PSPACE [EL87], and because of

our polynomial reduction of model checking for CTL * to model checking for ACTL *, this means that

model checking for ACTL *is in PSPACE.

The branching time logic CTL is a subset of CTL * which has an efficient model checking algorithm

with complexity O((ISI + l~I) x lcpl) [CES86]. Moreover an efficient implementation exists in the Extended

Model Checker (EMC), developed at CMU. Therefore it becomes interesting to look for subsets of ACTL *
which can be translated effieciently to CTL. Of course one should aim at having this subsets as large as

possible in order not to loose too much of the expressive power of ACTL *. In this section we present the

logic ACTL which is essentially a subset of ACTL * and which has the desired properties mentioned above.

However, before we come to ACTL, we will first define the logic CTL to which it is closely related.

Definition 5.1. (CTL)

The set offom1ulas CTL is defined as the smallest set of state formulas such that:

• if p E AP, then p is a state formula;

• if cp and cp' are state formulas, then -.<p and cpAcp' are state formulas;

• if 7t is a path fom1ula, then ::lre is a state formula;

• if cp and <p' are state formulas, then Xcp and <pU<p' are path formulas;

• if 7t is a path formula, then so is -,re.

We let <p,. •• range over CTL state formulas and 1t, ... over CTL path formulas.

Clearly, CTL is just a subset of CTL *.Thus the definition of the satisfaction relation for CTL *carries over

to CTL. Now here comes our proposal for ACTL:

Definition 5.2. (ACTL)

The set of formulas ACTL is defined as the smallest set of state formulas such that:

• T is a state formula;

• if cp and <p' are state formulas, then -,<p and <pAcp' are state formulas;

• if 11: is a path formula, then ::lre is a state fommla;

• if <p and <p' are state formulas and x and x' are action formulas, then Xx<p, X~cp, <p xUx' <p' and <p XU <p'

are path fom1ulas;

• if it is a path formula, then so is -,re.

Again, we let <p,. .. range over state formulas and 7t, ... over path formulas. •

The modalities Xx<p, <p xUx' <p' and <p XU <p' used above can be seen as compact notation for ACTL *
fommlae, thus ACTL is a proper subset of ACTL * and it inherits the satisfaction relation from ACTL *.

For translating ACTL to CTL we cannot just use the mapping R-s: ACTL * -tCTL*, restricted to ACTL

and with the understanding that modalities like Xx<p are expanded to ACTL *. For instance, consider the

417

ACTL fom1ula of the form Xx cp; if we expand notation, we obtain an ACTL* formula of the form v{Xa cp

I aeA and a I= x}. Mapping fu; will translate this to a CJL* formula v{X(nAX(h,s(cp))) I ae A and a I= X}

which is not a CTL formula; indeed, in CJL no conjunction or disjuntion of X-modalities is allowed. Thus

we have to modify the mapping R.s. The reader may check that the mapping R.s' which is defined below

does yield CTL formulas.

Definition S.3. (From ACTL to CTL)

The mapping R.s': ACTL--?CTL is inductively defined by:

•R.s'(T) = T,

•Rs'(-,cp) = -,fu;'(cp),

• Rs '(cpAcp')

• Rs '(37t)

= R.s '(cp) /\ R.s '(cp ')'

= 3 R.s'(1t),

• ks '(cp XU x' cp') = ((.!.. "R.s '(cp)) v (--..!.. 1·-::<)) U (--,..L /\ 3((....,..l_ "X') U (.!.. /\ R.s '(cp')))),

• ks '(cp XU cp') = ((.!.. "fu; '(cp)) v (--,.!.." X)) U (.!.." R.s '(cp')),

•ks'(Xxcp) = X(-,.l."X"3X(R.s'(cp))),

• ks'(X,;cp) = X(.l." fu;'(cp)),

•ks'(--,1t) =,fu;'(1t). •
The key result about fu;' is that it preserves truth. An interesting propery is that the size of M'(cp) is linear

in the size of cp.

Theorem S.4. (ks and ks' together preserve truth)

Let A be a LTS, lets be a state of A and let cp be an ACTL-formula. Then:

A.,s I= cp iff R.s (A),s I= R.s '(cp). •
As a corollary of the above theorem, we have that there exists a model checking algorithm for ACTL with

time complexity O((ISl+l--?I) x lcpl). Indeed, if we let A. be a finite LTS, s be a state of A. and cp be an

ACTL-formula, Theorem 5.4 says that in order to determine whether A, s I= cp it suffices to check whether

ks(A), s I= R.s'(cp). We can easily compute R.s(A) in O(ISl+l--?1)-time and the number of states and

transitions of R.s (A) will be of order ISl+l--?I. The formula R.s '(cp) can be computed in O(lcpl)-time and its

size will be of order lcpl. Next, we can apply the model checking algorithm for CTL of [CES86] which will

terminate in O((ISl+l--?I) x lcpl)-time.

ACTL is still a rather expressive logic in which safety and liveness properties can be formulated. The

formula of Example 2.11 for instance is an ACTL formula. Also the next proposition shows that, given our

design objective to find a subset of ACTL* which can be translated into CTL, we have still managed to

presJ-ve expressiveness: in combination with Theorem 4.6 and Theorem 5.4, the proposition says that

ACTL is just as expressive as CTL in the setting with transformations (ts and R.s between KS's and

LTS's.

Proposition S.S. (ACTL has the same expressive power of CTL)

Let cp be a CTL formula. Then Lts(cp) is an ACTL formula. •

418

An interesting feature of the mapping M' is that it maps all formulae without the relativized next time

operators into formulae of CfL which do not cointain the next operator. This fact allows us to conclude this

section and the paper with a few remarks about the relationships between the equivalence induced on LTS's

by our new logics and the (divergence sensitive version of the) branching bisimulation equivalence of

[GW89].

In fact, by exploiting the results of [DV90] about the correspondence between the equivalence induced

by CTL- X and branching bisimulation equivalence and by relying on Theorem 5.4 above, we can deduce

that ACTL-(Xx, X-cl induces on finite LTS's the same identifications as divergence sensitive branching

bisimulation equivalence. Due to the way the transformation function~ from AC1L * to C1L * is defined,

we cannot use the same chain of reasoning to prove that also the equivalence induced by ACfL * - (X, Xa}

coincides with branching bisimulation. It is, however, possible to define, in the same vein of fi.s ', a new

mapping~" to CfL * -X from ACTL * without next operators but with the relativized until modalities

:~:Ux•; and this would enable us to conclude that also the richer logics is in full agreement with divergence

sensitive branching bisimulation equivalence.

6. References

[BCG88] M.C. Browne, E.M. Clarke & 0. Griimberg: Characterizing Finite Kripke Structures in

Propositional Temporal Logic. Theoret. Comp. Sci., 59 (1,2), 1988, pp. 115-131.

[CES89] E.M. Clarke, E.A. Emerson & A.P. Sistla: Automatic Verification of Finite State Concurrent

Systems using Temporal Logic Specifications. ACM Top/as, 8 (2), 1986, pp. 244-263.

[CLM89] E.M. Clarke, D.E. Long & K.L. Macmillan: Compositional Model Checking. In Proceedings

4th Annual Symposium on Logic in Computer Science (UCS), Asilomar, California, IEEE

Computer Society Press, Washington, 1989, pp. 353-362.

[CPS88] Cleaveland, R., Parrow, J., Steffen, B. The Concurrency Workbench. In Automatic Verification

Methods for Finite State Systems (J. Sifakis, ed.) Lecture Notes in Computer Science 407,

Springer-Verlag, 1990, pp. 24-37.

[DV90a] R. De Nicola, & F.W. Vaandrager: Three Logics for Branching Bisimulations (Extended

Abstract) in Proc. of the 5th Annual Symposium on Logic in Computer Science (L!CS '90),

Philadelphia, USA, June 1990, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 118-

129.

[DV90b] R. De Nicola, & F.W. Vaandrager: Three Logics for Branching Bisimulations, CWI Report CS

R9012, 1990.

[EH86] E.A.Emerson & J.Y. Halpern: "Sometimes" and "Not Never" Revisited: on Branching Time

versus Linear Time Temporal Logic. Journal of ACM, 33, 1, 1986, pp. 151-178.

[EL87] E.A. Emerson & C.L. Lei: Modalities for Model Checking: Branching Time Strikes Back.

Science of Computer Programming, 6, 1987.

[ES89] E. A. Emerson & J. Srinivasan: Branching Time Temporal Logic. In Linear Time, Branching

Time and Partial Order in Logics and Models for Concurrency, (de Bakker, de Roever and

Rozenberg, eds.) Lecture Notes in Computer Science 354, Springer-Ver!ag, 1989, pp. 123-172.

419

[GV90) J.F. Groote & F.W. Vaandrager: An Efficient Algorithm for Branching Bisimulation and

Stuttering Equivalence.In Proceedings ICALP '90, Warwick, Lecture Notes in Computer Science,

Springer-Verlag, 1990.

[GW89] R.J. van Glabbeck & W.P. Weijland: Branching Time and Abstraction in Bisimulation Semantics

(extended abstract). In Information Processing '89 (G.X. Ritter, ed.), Elsevier Science Publishers

B.V. (North Holland), 1989, pp. 613-618.

[HM85) M. Hennessy & R. Milner: Algebraic Laws for Nondeterminism and Concurrency. Journal of

ACM, 32, 1985, pp. 137-161.

[JKP90] B. Jonsson, A.H. Khan & J. Parrow: Implementing a model checking algorithm by adapting

existing automated tools. In Automatic Verification Methods for Finite State Systems (J. Sifa.kis,

ed.) Lecture Notes in Computer Science 407, Springer-Verlag, 1990, pp. 179-188.

[Lam83] L. Lamport: What Good ls Temporal Logic?, Information Processing '83 (R.E.A. Mason, ed.)

Elsevier Science Publishers B.V. (North Holland), 1983, pp. 657-668.

[Lar88] K.G. Larsen: Proof Systems for Hennessy-Milner Logic with Recursion, in proceeding CAAP

'88 (M. Dauchet & M. Nivat eds) Lecture Notes in Computer Science 299, Springer-Verlag,

1988.

[Sti89] C. Stirling: Temporal Logics for CCS, in Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency, (de Bakker, de Roever and Rozenberg, eds.) Lecture Notes in

Computer Science 354, Springer-Verlag, 1989, pp. 660-672.

