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T
he global COVID-19 pandemic is responsible for substantial 
mortality, morbidity and economic hardship. Even with effi-
cacious vaccines against the SARS-CoV-2 virus, it unknown 

how long it will take to achieve herd immunity, to what extent pro-
tection will diminish over time or if future mutations will enable 
SARS-CoV-2 to evade immune responses stimulated by current vac-
cines. Hence, there is a need to rapidly identify drugs that can mini-
mize the burden of COVID-19. Although large randomized trials 
have begun to successfully identify drugs that can be repurposed to 
address COVID-19 (refs. 1–3), most drugs evaluated so far have failed 
to show efficacy and have been largely confined to hospitalized or 
critically ill patients. It is a priority, therefore, to identify additional 
drugs that can be repurposed for early management in COVID-19.

Large-scale human genetic studies are now widely used to inform 
drug development programs. Drug–target disease pairs supported 

by human genetics have a greater odds of success in drug discov-
ery pipelines4. For example, identification of variants in PCSK9 
associated with lower risk of coronary disease led to the successful 
development of PCSK9 inhibitors, which are now licensed for pre-
vention of cardiovascular events5. The value of human genetics for 
drug discovery and development has also been realized for infec-
tious diseases. Human genetic studies showed that genetic variation 
in the CCR5 gene provides protection against infection by human 
immunodeficiency virus (HIV) type 1. These findings were key for 
the development of Maraviroc, an antagonist of CCR5, approved by 
the US Food and Drug Administration (FDA) for the treatment of 
patients with HIV-1 (ref. 6).

Genetic variants acting in ‘cis’ on druggable protein levels or gene 
expression that encode druggable proteins can provide powerful 
tools for informing therapeutic targeting, as they mimic the on-target 
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(beneficial or harmful) effects observed by pharmacological modi-
fication7. Such Mendelian randomization (MR) analyses have been 
used to suggest repurposing opportunities for licensed drugs8. MR 
analysis that focuses on actionable druggable genes, defined as genes 
that encode the protein targets of drugs that are licensed or in the 
clinical phase of drug development, could therefore serve as a swift 
and robust strategy to identify drug-repurposing opportunities to 
prevent the complications and mortality due to COVID-19.

To identify further potential repurposing opportunities to 
inform trials of patients with COVID-19, we conducted large-scale 
MR and colocalization analyses using gene expression and soluble 
protein data for 1,263 actionable druggable genes that encode pro-
tein targets for approved drugs or drugs in clinical development. 
By combining transancestry genetic data from 7,554 hospitalized 
patients with COVID-19 and more than 1 million population-based 
controls from the COVID-19 Host Genetics Initiative9 (HGI) and 
the Million Veteran Program10 (MVP), we provide support for two 
therapeutic strategies.

Results
Overall analysis plan. Figure 1 describes the overall scheme of the 
analyses. First, we identified all proteins that are therapeutic targets 
of approved or clinical-stage drugs. Next, we selected conditionally 
independent genetic variants that act locally on plasma levels of 
these proteins or tissue-specific gene expression that encode these 
proteins. We proposed that these variants were instrumental vari-
ables and conduct two-sample MR analyses using a transancestry 
meta-analysis of 7,554 cases from MVP and publicly available data 
(HGI outcome B2 from release 4 v.1, downloaded 4 October 2020; 
Supplementary Table 1). Given that all MR analyses rely on several 
assumptions, some11 unverifiable, we conducted a multistage strat-
egy to minimize confounding and biases. For MR results that passed 
our significance threshold after accounting for multiple testing, we 
performed colocalization to ensure MR results were not due to con-
founding by linkage disequilibrium (LD). Those with evidence of 
colocalization were investigated further using an independent pro-
teomics platform (Olink). Finally, we conducted phenome-wide 
scans and pathway enrichment of relevant variants to reduce risks 
of horizontal pleiotropy and other biases due to MR violations as 
well as to understand potential biological mechanisms.

Actionable druggable proteins. Using data available in ChEMBL 
v.26, we identified 1,263 human proteins as ‘actionable’ (thera-
peutic targets of approved or clinical-stage drugs; Supplementary  
Table 2). Of these, we noted 700 proteins that are targets for drugs 
with potential relevance to COVID-19 from cell-based screening, 
registers of clinical trials against COVID-19 or approved immuno-
modulatory/anticoagulant drugs (given the clear role of these path-
ways in COVID-19 outcomes) or have biological evidence for the role 
of the protein in SARS-CoV-2 infection (Supplementary Table 3).

Genetic proposed instruments for actionable druggable pro-
teins. Using GTEx v.8 (ref. 12), we identified all conditionally inde-
pendent expression quantitative trait loci (eQTLs) in 49 tissues that 
act in cis (within 1 Mb on either side of the encoded gene), which 
covered 1,016 of the 1,263 druggable genes in at least one tissue 
(Supplementary Tables 2 and 4). We also selected cis-protein quan-
titative trait loci (pQTLs) for plasma proteins measured using the 
SomaScan platform in 3,301 participants of the INTERVAL study13 
(Supplementary Table 5) and 10,708 Fenland cohort participants14 
(Supplementary Table 6) that covered a total of 67 proteins. In 
total 1,021 proteins had genetic proposed instruments using either 
eQTLs or pQTLs and 62 had proposed instruments using both.

Mendelian randomization and colocalization. Using our (eQTL 
and pQTL) proposed instruments, we performed two-sample MR 

on transancestry summary statistics for hospitalized patients with 
COVID-19 from MVP and HGI (Supplementary Table 1). Using 
GTEx cis-eQTLs as proposed instruments, we found significant 
(P < 3.96 × 10−5, 0.05 Bonferroni-corrected for 1,263 actionable pro-
teins) MR results for six genes (IL10RB, CCR1, IFNAR2, PDE4A, 
ACE2 and CCR5) in at least one tissue (MR results with P < 3.96 × 10−5 
shown in Table 1 and full MR results in Supplementary Table 7) 
and four additional genes (CA5B, CA9, NSTN and SLC9A3) with 
suggestive MR results (P < 5.00 × 10−4 and P > 3.96 × 10−5; Fig. 2 
and Supplementary Table 7). No proposed instruments involving 
cis-pQTLs reached our suggestive threshold in any of the analyses 
(Supplementary Tables 8 and 9). For three significant genes (IL10RB, 
IFNAR2 and ACE2) there was strong evidence of colocalization 
(posterior probability of shared causal variant across two traits, 
hypothesis 4 (PP.H4) > 0.80) between at least one proposed instru-
mental variant and our transancestry meta-analysis of COVID-19 
hospitalization (Table 1). The β-coefficients of MR estimates for 
ACE2 were positive in all tissues (Table 1), meaning higher ACE2 
expression is associated with higher risk of COVID-19 hospitaliza-
tion. MR β-coefficients for IFNAR2 and IL10RB were negative and 
positive, respectively in all tissues except one for each gene (skeletal 
muscle for IFNAR2; cultured fibroblasts for IL10RB; Table 1).

IL10RB and IFNAR2. Interferon (IFN)-α receptor 2 (IFNAR2) and 
interleukin (IL)-10 receptor-β (IL-10RB) both act as receptors for 
IFNs. IFNAR2 forms a complex with IFNAR1, which together act as 
a receptor for type I IFN (IFN-α, β, ω, κ, ɛ), whereas IL-10RB acts as a 
receptor for type III IFN (IFN-λ) when complexed with IFN-λ recep-
tor 1 (IFNLR1)15 or IL-10 when complexed with IL-10RA. IL-10RB 
and IFNAR2 are encoded by adjacent genes and some cis-eQTLs 
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Fig. 1 | Outline of the analyses performed. Using multiple data sources, this 

study tested cis-pQTL and cis-eQTL proposed instruments for actionable 

druggable proteins against COViD-19 hospitalization summary statistics 

meta-analyzed from the HGi and the MVp. Significant Mr associations that 

also showed evidence for colocalization were investigated further with an 

independent platform (Olink), phenome-wide scans of relevant variants 

and pathway enrichment.
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for IL10RB are also cis-eQTLs for IFNAR2 (Supplementary Table 10  
and Fig. 3), making it difficult to determine which gene may be 
responsible for the association with COVID-19 and requiring  
further investigation.

All significant MR results for IFNAR2/IL10RB that colocalized 
with COVID-19 hospitalization contained one of nine strongly cor-
related (r2 > 0.75 in 1000 Genomes Project European (1000G EUR) 
ancestry participants) variants (rs11911133, rs1051393, rs2300370, 
rs56079299, rs17860115, rs13050728, rs2236758, rs12053666 and 
rs1131668), which are cis-eQTLs for IL10RB in 11 tissues and for 
IFNAR2 in 4 tissues (Supplementary Table 11). Within this LD 
block (hereafter rs13050728-LD block), rs13050728 is the eQTL 
most strongly associated with COVID-19 hospitalization (per 
T-allele odds ratio = 1.17; 95% CI = 1.12–1.23; P = 1.88 × 10−12; 
Supplementary Table 10). Variants outside the rs13050728-LD block 
were not strongly associated with COVID-19 hospitalization (Fig. 3).

pQTLs for IL10RB. Using stepwise conditional analysis on Olink 
measurements of plasma IL-10RB, we identified two cis-pQTLs, 

rs2266590 (P = 1.04 × 10−136) and rs2239573 (P = 2.66 × 10−19), 
which explained 5.4% and 1.2%, respectively of the variance in 
plasma IL-10RB. rs2266590 was also an eQTL for IL10RB in three 
tissues and IFNAR2 in one tissue, while rs2239573 was also an eQTL 
for IL10RB in two tissues (Supplementary Table 11). rs2266590 and 
rs2239573 lie in intron 5 and 1, respectively of the IL10RB gene 
and are located in separate regions of high epigenetic modification 
(h3k27ac marking), indicating enhancer regions (Fig. 3). rs2266590 
and rs2239573 were not associated with COVID-19 hospitalization 
(P = 0.85 for rs2266590, P = 0.66 for rs2239573; Extended Data Fig. 1)  
and MR using these two cis-pQTLs yields a null result (P = 0.74).

A third cis-pQTL (rs2834167, P = 1.1 × 10−8) for plasma IL-10RB 
measured on the SomaScan platform was previously identified in 
3,200 Icelanders over the age of 65 years16. rs2834167 is a missense 
variant (Lys > Glu) and is not correlated with either of the cis-pQTLs 
for plasma IL-10RB measured by Olink (r2 = 0.01 for rs2266590, 
r2 = 0.03 for rs2239573 in 1000G EUR). Although rs2834167 was 
associated with IL10RB expression in 18 tissues, it was not associated 
with IFNAR2 expression in any tissue (Supplementary Table 11).  

Table 1 | Significant (P < 3.96 × 10−5) MR results

Gene Tissue β s.e. P value Phet Variants in instrument Colocalization

IL10RB Muscle skeletal 0.5078 0.0665 2.31 × 10−14 0.9732 rs2300370, rs2834167 0.98, <0.01

IL10RB Nerve tibial 0.2859 0.0384 9.76 × 10−14 0.0052 rs13050728, rs2834167, rs2266590 0.98, <0.01, 
<0.01

CCR1 Cells cultured fibroblasts 0.4449 0.0612 3.60 × 10−13 NA rs13095940 <0.01

IL10RB Brain nucleus accumbens 
basal ganglia

0.2541 0.0363 2.58 × 10−12 0.0019 rs2834167, rs17860115 0.75, 0.98

IL10RB Brain caudate basal 
ganglia

0.2635 0.0398 3.61 × 10−11 0.0003 rs2834167, rs1051393 0.01, 0.97

IFNAR2 Muscle skeletal 0.5881 0.0909 9.75 × 10−11 NA rs2300370 0.98

IL10RB Brain cerebellar 
hemisphere

0.1405 0.0229 8.22 × 10−10 0.0389 rs2834167, rs2236758 0.01, 0.95

IL10RB Breast mammary tissue 0.6490 0.1079 1.82 × 10−9 NA rs12053666 0.95

IL10RB Brain frontal cortex BA9 0.4667 0.0790 3.55 × 10−9 0.0366 rs2834167, rs1131668 0.14, 0.97

IL10RB Brain cortex 0.1929 0.0328 3.99 × 10−9 0.0354 rs2834167, rs1131668 0.02, 0.96

CCR1 Esophagus 
gastroesophageal 
junction

0.1776 0.0302 4.11 × 10−9 NA rs13059906 0.05

IL10RB Brain cerebellum 0.1147 0.0197 5.82 × 10−9 0.0239 rs2834167, rs1131668 <0.01, 0.96

CCR1 Esophagus mucosa 0.4338 0.0751 7.60 × 10−9 NA rs34059564 <0.01

IFNAR2 Esophagus mucosa −0.4883 0.0865 1.63 × 10−8 NA rs11911133 0.92

PDE4A Artery aorta −0.5420 0.0965 1.98 × 10−8 0.0202 rs370630099, rs45524632 0.41, 0.61

IL10RB Testis 0.7104 0.1364 1.92 × 10−7 NA rs2284550 0.11

IFNAR2 Skin not sun-exposed, 
suprapubic

−0.3360 0.0671 5.46 × 10−7 NA rs8127500 <0.01

IFNAR2 pancreas −0.4708 0.0957 8.63 × 10−7 NA rs1476415 0.06

ACE2 Brain frontal cortex BA9 0.1121 0.0233 1.56 × 10−6 NA rs4830976 0.95

IFNAR2 Cells cultured fibroblasts −0.3893 0.0819 1.98 × 10−6 NA rs1131668 0.92

IL10RB Cells cultured fibroblasts −0.5197 0.1093 1.98 × 10−6 NA rs1131668 0.96

CCR5 Lung −0.5868 0.1272 3.99 × 10−6 NA rs12639314 0.02

IL10RB Esophagus 
gastroesophageal junction

0.4678 0.1052 8.80 × 10−6 NA rs56079299 0.96

Significant Mr results, P < 3.96 × 10−5 (0.05 Bonferroni-corrected for 1,263 actionable druggable genes). Mr estimates were calculated using inverse-variance weighting and fixed effects for instruments 

that contained more than one variant and Wald ratio for instruments with one variant. All results used cis-eQTL instruments and no results using cis-pQTL instruments yielded results P < 3.96 × 10−5. Phet 

refers to the heterogeneity P value across individual-variant Mr estimates within a genetic instrument calculated using the Cochrane Q method, therefore instruments containing one variant were not 

tested for heterogeneity. A positive β estimate indicates that more gene expression is associated with higher risk of COViD-19 hospitalization. ‘Colocalization’ indicates pp.H4 between eQTLs and COViD-19 

hospitalization. For example, for IL10RB in skeletal muscle, the primary GWAS with rs2300370 as the peak cis-eQTL colocalizes with COViD-19 hospitalization at pp.H4 = 0.98 and the secondary GWAS 

(after adjusting for rs2300370) with rs2834167 as the peak cis-eQTL does not colocalize with COViD-19 hospitalization (pp.H4 < 0.01). NA, not available; s.e., standard error.
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The A allele at rs2834167, which is associated with lower IL10RB 
gene expression but higher plasma IL-10RB, was inversely associ-
ated with COVID-19 (per-A-allele OR = 0.91; 95% CI = 0.87–0.95; 
P = 5.3 × 10−5). Because Emilsson et al.16 did not report full sum-
mary statistics we could not perform colocalization between this 
pQTL and COVID-19 hospitalization. However, rs2834167 as an 
eQTL does not colocalize (PP.H4 < 0.8) with COVID-19 in any tis-
sue (Table 1). These three cis-pQTLs, while possibly functional vari-
ants altering plasma IL-10RB levels, suggest that the plasma IL-10RB 
levels are not likely the mediator of the association between this 
locus and COVID-19 hospitalization. IFNAR2 was not measured 
on the SomaScan or Olink platforms.

Phenome-wide scan of rs13050728. To identify other phenotypes 
associated with rs13050728, we performed a phenome-wide scan 
of genome-wide association study (GWAS) for proteins measured 
by Olink and SomaLogic platforms in INTERVAL participants 
(Methods) and publicly available data on PhenoScanner17 and GTEx. 
rs13050728 was associated with tryptase-γ 1 (TPSG1, P = 1.5 × 10−5) 
and vascular endothelial growth factor 2 (VEGFR2, P = 2.6 × 10−5; 
Supplementary Table 12) and both showed strong evidence of 
colocalization with COVID-19 hospitalization (PP.H4 = 0.96 for 
VEGFR2, PP.H4 = 0.96 for TPSG1; Fig. 4). The C allele at rs13050728 
associated with higher IFNAR2 expression in all tissues (except 
skeletal muscle), lower risk of COVID-19 hospitalization and lower 
levels of plasma VEGFR2 and TPSG1 (Supplementary Table 12). 
This mimics agonistic effects of IFNAR2 through recombinant 
type I IFNs, which are known to have an anti-angiogenic effect, 
at least in part through reduced VEGF/VEGFR2 signaling18,19 and 
decrease tryptase levels in a phase 2 trial using recombinant type I 
IFN in patients with mastocytosis20, a condition that causes prolif-
eration of mast cells. rs13050728 was not associated (P < 3.96 × 10−5 
Bonferroni-corrected P value) with any phenotype beyond plasma 
VEGFR2 and TPSG1 and gene expression of IFNAR2 and IL10RB 
(Supplementary Table 12), indicating that this variant is unlikely 
to exhibit widespread horizontal pleiotropy. Also, the chances of  

substantial bias due to MR violations is low21 because the variant is 
not strongly associated with other risk factors that could alter the 
likelihood of SARS-CoV-2 testing or hospitalization of patients with 
COVID-19.

Pathway enrichment analysis of rs13050728. Using information 
from all GTEx v.8 tissues we identified 476 genes whose expression 
levels were associated with rs13050728 at a nominal significance 
level (P < 0.05). Taking into consideration an adjusted P value for 
multiple testing within the WikiPathway corpus, only two biologi-
cal pathways were significantly associated among all 624 pathways 
present in this database: host–pathogen interaction of human 
corona viruses, IFN induction (adjusted P value = 0.0028) and 
type I IFN induction and signaling during SARS-CoV-2 infection 
(adjusted P value = 0.0098). In addition, among Gene Ontology 
and Reactome pathways, several gene sets were also significantly 
enriched. Notably, among enriched pathways were those related to 
IFN type I or antiviral response (Extended Data Fig. 2a).

ACE2. Angiotensin-converting enzyme 2 (ACE2) converts angio-
tensin II into angiotensin (1–7) as part of the renin–angiotensin– 
aldosterone system and more notably, is the viral receptor for 
SARS-CoV-2. We identified seven cis-eQTLs in seven tissues 
(Supplementary Table 13) for ACE2, which are strongly correlated 
(r2 > 0.75 in 1000G EUR; Supplementary Table 14) with rs4830976 
being the eQTL in the region most strongly associated with 
COVID-19 hospitalization.

pQTLs for ACE2. Stepwise conditional analysis for plasma ACE2 
measured by Olink revealed one pQTL, rs5935998 (P = 1.45 × 10−21), 
which is in high LD with a previously reported cis-pQTL (rs12558179) 
for ACE2 (r2 = 0.89 in 1000G EUR)22 and a secondary suggestive 
signal (rs4646156, P = 3.20 × 10−7). rs5935998 and rs4646156 are 
concordant in their effect on COVID-19 hospitalization (higher 
ACE2 levels corresponds to higher risk of COVID-19 hospitaliza-
tion for both) resulting in a strong, positive MR association (MR 
β-coefficient: 0.34; 95% CI: 0.17-0.51; P = 8.1 × 10−5). Although nei-
ther rs5935998 or rs4646156 strongly colocalized with COVID-19  
hospitalization (PP.H4 = 0.49 for rs5935998, PP.H4 = 0.08 for 
rs4646156, Extended Data Fig. 3), the two pQTLs, while statisti-
cally independent, are mildly correlated (r2 = 0.20 in 1000G EUR), 
which can make colocalization difficult to interpret23. One possible 
explanation is that these two pQTLs confer an effect on COVID-19 
hospitalization that converges on the rs4830976-LD-block, as both 
are moderately correlated with rs4830976 (r2 = 0.32 for rs5935998, 
r2 = 0.42 for rs4646156 in 1000G EUR, Extended Data Fig. 3)

Phenome-wide scan of rs4830976. rs4830976 is associated 
(P < 3.96 × 10−5) with and colocalized (PP.H4 > 0.80) with expres-
sion of nearby genes CA5B, CLTRN (also known as TMEM27) and 
VEGFD (Supplementary Table 15) in at least one tissue, indicating 
that this variant may be instrumental in gene expression beyond 
ACE2. However, given the biological prior that ACE2 acts as the 
receptor of SARS-CoV-2, ACE2 is probably more likely than CA5B, 
CLTRN or VEGFD to be responsible for COVID-19 hospitaliza-
tion. There were no other reported phenome-wide scan results at 
P < 3.96 × 10−5 for rs4830976, which is at least in part due to the 
lack of reported X-chromosome results from a large proportion  
of GWAS.

Pathway enrichment analysis of rs4830976. Exploring the landscape 
of genes differentially expressed according to genotype in GTEx 
v.8, we observed 1,397 genes differentially expressed at a nominal 
P value <0.05. Overrepresentation analysis identified 238 signifi-
cantly enriched biological pathways among differentially expressed 
genes (Extended Data Fig. 2b). Among these, signaling by ILs, 
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regulation of cytokine production and antigen processing and pre-
sentation might prove biologically relevant in COVID-19 infection.

Discussion
To identify drug-repurposing opportunities to inform trials against 
COVID-19, we conducted a large-scale MR analysis of protein and 
gene expression data. We first updated the ‘actionable’ genome to 
an enlarged set of 1,263 human proteins and provided evidence for 
700 of these as targets for drugs with some potential relevance to 
COVID-19. By investigating more than 1,000 potential targets using 
several of the largest currently available human genetic datasets, 
we provide evidence for drug targets of type I IFNs (IFNAR2) and 
ACE2 modulators (ACE2) as priority candidates for evaluation in 
randomized trials of early management in COVID-19.

Our finding that ACE2 may play an important role in COVID-19  
is unsurprising given its well-known relevance to SARS-CoV-2. 
As ACE2 acts as the primary receptor for SARS-CoV-2, increased 
expression of ACE2 has been hypothesized to lead to increased sus-
ceptibility to infection. ACE2 plays a vital role in the renin–angio-
tensin–aldosterone system signaling pathway, providing negative 
regulation through the conversion of angiotensin II to angioten-
sin 1–7. This action has anti-inflammatory and cardioprotective 
effects24 and plays a protective role in acute respiratory distress 
syndrome25. ACE2 is a single-pass membrane protein but can be 
cleaved from the membrane to a soluble form which retains the 
enzymatic function to cleave angiotensin II. It has therefore been 
hypothesized that administration of human recombinant soluble 
ACE2 (hrsACE2) could be an effective treatment for COVID-19, 
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through distinct mechanisms in two phases of COVID-19. First, 
hrsACE2 can bind the viral spike glycoprotein of SARS-CoV-2, 
which could prevent cellular uptake of SARS-CoV-2 by reducing 
binding to the membrane-bound form of ACE2 (early phase). This 
suggestion is supported by the finding that APN01, a hrsACE2 
therapeutic, showed a strong reduction in SARS-CoV-2 viral load26 
and enhanced the benefit of remdesivir27 in primate kidney epithe-
lial (Vero) cells and human kidney organoids. In the later phase, 
hrsACE2 could reduce sequelae of SARS-CoV-2 infection by reduc-
ing inflammation in the lungs and other infected tissues. A case 
report of a hospitalized COVID-19 patient supports this hypothesis 
by showing that 7-d administration of APN01 was associated with 
a reduction in SARS-CoV-2 viral load and inflammatory markers28. 
APN01 is currently being tested in a phase II trial to reduce mortal-
ity and invasive mechanical ventilation in 200 hospitalized patients 
with COVID-19 (https://ClinicalTrials.gov/show/NCT04335136). 
Notably, a recent report showed that expression of a truncated 
ACE2 isoform, dACE2, which poorly binds with SARS-CoV-2 
spike protein, is stimulated by type I, II and III IFNs in human ileum 
organoids29.

One of the main challenges of our analysis was to determine 
whether IFNAR2 or IL10RB (or both) was driving the association 
with COVID-19 hospitalization, given that they share cis-eQTLs 
used as proposed instruments for our MR analysis. Multiple lines of 

evidence indicate that IFNAR2 appears to be primarily responsible 
for the signal observed. First, our phenome-wide scan using the 
lead IFNAR2/IL10RB cis-eQTL reproduced known effects of type 
I IFNs (the therapeutic target of IFNAR2) on VEGFR2 and TPSG1  
(refs. 18–20). Second, our pathway enrichment analysis using the 
same eQTL revealed pathways associated with type I IFN recep-
tor (IFNAR2) signaling. Last, three independent cis-pQTLs that 
are also cis-eQTLs for IL10RB did not show evidence of association 
with COVID-19, suggesting that plasma IL-10RB concentrations 
are less likely to be etiologically relevant to COVID-19.

Evidence of a role for type I IFN in COVID-19 is rapidly emerg-
ing. Studies using in vitro (A549 pulmonary cell lines), animal 
(ferrets) and ex vivo (human lung tissue) models have all shown 
lower expression of genes encoding type I IFNs after exposure to 
SARS-CoV-2 compared to other respiratory viruses30,31. This has 
been confirmed in vivo by studies showing impaired type I IFN 
response, including almost no IFN-β activity, in the peripheral 
blood of patients with severe COVID-19 compared to patients with 
mild-to-moderate COVID-19 (ref. 32). More notably, lower levels 
of IFN-α-2 among recently hospitalized patients with COVID-19 
were associated with a substantial increase in the risk of progres-
sion to critical care, supporting our observation that lower geneti-
cally predicted IFNAR2 expression was associated with higher risk 
of COVID-19 hospitalization32. Additionally, auto-antibodies for 
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type I IFNs were found in a much higher proportion of individu-
als with severe COVID-19 than those with asymptomatic or mild 
SARS-CoV-2 infection33.

Whole exome and genome sequencing studies on patients with 
severe COVID-19 have identified rare mutations that implicate 
type I IFN signaling. Zhang et al.34 found that patients with severe 
COVID-19 were enriched for rare variants predicted to cause loss 
of protein function at 13 genes involved in type I IFN response. A 
cases-series of four patients under the age of 35 years with severe 
COVID-19 found a rare loss-of-function mutation in TLR7 and 
decreased type I IFN signaling35. The GenOMICC study of imputed 
GWAS on severe COVID-19 identified signals that lie in the 
IFNAR2 gene36.

Several in vitro studies have found a reduction in SARS-CoV-2 
replication in multiple cell types (including animal and human) and 
human organoids after pretreatment with type I or III IFNs when 
compared with controls37–40 (Supplementary Table 16). Though these 
in vitro studies are encouraging, evidence from randomized trials 
for type I IFNs in early COVID-19 stages is limited. Hung et al.41  
showed that randomization to a combination of IFN-β-1b, riba-
virin and lopinavir-ritonavir was superior to lopinavir-ritonavir  
alone in shortening the duration of viral shedding, alleviating symp-
toms and reducing the length of the hospital stay. Notably, these 
benefits were confined to a subgroup who were hospitalized within 
7 d of onset of symptoms when IFN-β-1b was administered to the 
intervention arm. These results, together with our genetic findings 
on COVID-19 hospitalization and the established role of type I 
IFNs as first line of response against viral agents suggest recom-
binant type I IFN as potential intervention during early stages of 
COVID-19. To date, there is no large randomized trial on IFN-β 
for early treatment of patients with COVID-19 who are at high risk  
of hospitalization.

Trial evidence on the use of IFN-β in late stages of COVID-19 
has emerged recently. The SOLIDARITY trial, which randomized 
2,050 hospitalized patients with COVID-19 to IFN-β-1a, found 
no effect on mortality overall (relative risk (RR) = 1.16, 95% CI 
0.96–1.39), but the trial was not powered to evaluate a possible 
trend across subgroups of COVID-19 severity at randomization 
(RR = 1.40, 95% CI 0.82–2.40 for those on ventilator, RR = 1.13, 
95% CI 0.86–1.50 for those not ventilated but on oxygen and 
RR = 0.80, 95% CI 0.27–2.35 in those with neither)42. The Adaptive 
COVID-19 Treatment Trial 3 (ACTT-3) stopped enrollment of 
severely ill patients with COVID-19 for a trial on IFN-β-1a and 
remdesivir due to adverse events but continued enrolling patients 
with less severe disease43. The ACTT-2 found that baricitinib (an 
inhibitor of the JAK family of proteins, some of which are imme-
diately downstream of IFNAR2) when administered to hospitalized 
patients with COVID-19 was beneficial in severe cases but not in 
moderate disease3. These findings indicate no role for the use of 
IFN-β during late stages of COVID-19, when the cytokine storm is 
already established.

We are the first to implicate a causal role for ACE2 in COVID-19  
manifestations using MR techniques; we have also implicated 
IFNAR2 in COVID-19, concordant with recent studies36,44. However,  
the current study notably complements and extends previous efforts 
by employing key approaches to protect against potential biases, 
strengthen causal inference and enhance understanding of poten-
tial mechanisms. First, in contrast to Liu et al. and the GenOMICC 
study, the current study involved several measures to minimize 
potential biases. We used colocalization methods to minimize the 
chances of false positive results due to confounding by LD. We 
reduced the possible impact of bias due to horizontal pleiotropy by 
restricting our proposed instruments to variants acting in cis and 
performing a phenome-wide scan to ensure instrumental variants 
were only associated/colocalized with gene expression of the tested 
gene or downstream phenotypes. When the possibility of horizontal 

pleiotropy was identified (for example IFNAR2 and IL10RB-sharing 
eQTLs), we addressed this using pQTL data and pathway enrich-
ment analysis to disentangle mechanisms, ultimately showing that 
IFNAR2 is more likely to be the causal gene. Phenome-wide scans 
revealing effects on plasma proteins (VEGFR2 and TPSG1) that 
mimic known biology of type I IFN provides confidence that we are 
correctly instrumenting IFNAR2 and can identify on-target (harm-
ful or beneficial) effects of administering type I IFN.

Second, our study had excellent statistical power, yielding strong 
MR associations for IFNAR2 (P = 9.8 × 10−11), increasing confidence 
in the validity of the much weaker signals for IFNAR2 reported in 
the GenOMICC study (P = 0.004), particularly as the earlier report 
had displayed evidence of confounding by LD (P for heterogeneity 
in dependent instruments (HIEDI) = 0.015)36. Indeed, compared to 
the analysis on COVID-19 hospitalization by Liu et al., our analy-
sis contained more than double the number of cases44. Third, with 
our rigorous instrument selection process that used comprehensive 
datasets on gene expression and plasma protein levels, we were 
able to robustly evaluate over 1000 actionable drug targets, such as 
ACE2, which was not evaluated in the previous MR studies. Fourth, 
inclusion of MVP with HGI provided a more diverse population 
and identification of credible biological targets that were consistent 
across multiple ancestral groups.

Last, we provide an updated catalog of all actionable protein tar-
gets and drugs that are amenable to causal inference investigation 
through human genetics that can be applied to outcomes beyond 
COVID-19. For 700 proteins of the actionable genes, we also 
include information as to potential relevance to the treatment of 
COVID-19, which can help future studies to contextualize findings 
on COVID-19.

Our analysis also has limitations. Though we make use of instru-
mental variants from multiple data sources, they did not cover the 
entire actionable druggable genome or were derived from patients 
with COVID-19. Identifying the most relevant tissue or cell type 
can be challenging for interpreting MR analyses of gene expression. 
In our case, a relevant tissue could be one invaded by SARS-CoV-2, 
an organ associated with clinical complications of COVID-19, a tis-
sue where the COVID-19-relevant protein is produced or a tissue 
that would be the likely site of action for the target drug. We opted 
to use a data-driven strategy that incorporates all tissues available in 
GTEx v.8. For IFNAR2, we recovered fibroblasts (the main cell type 
responsible for IFN-β production), esophageal mucosa45 (a tissue 
invaded by SARS-CoV-2) and skeletal muscle46 (associated with the 
neurological manifestations of COVID-19). For ACE2, we recovered 
brain tissue, an organ known to be invaded by SARS-CoV-2 and 
associated with clinical manifestations47,48. Last, this work focused 
on cis-variants with an effect on gene expression and protein lev-
els. We did not consider the full complexity of gene isoforms and 
splice single-nucleotide polymorphisms (SNPs), therefore missing 
mediation relationships that are isoform-specific. Also, we did not 
consider other pathways through which variants may affect disease, 
such as DNA methylation, histone modification, chromatin acces-
sibility and others.

In conclusion, our transancestry MR analysis covering all action-
able druggable genes identified two drug-repurposing opportuni-
ties (type I IFNs and hsrACE2) as interventions that need to be 
evaluated in adequately powered randomized trials to investigate 
their efficacy and safety for early management of COVID-19.

Online content
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Methods
Identi�cation of actionable druggable genes suitable for repurposing 
against COVID-19. Information about drugs and clinical candidates and their 
therapeutic targets, was obtained from the ChEMBL database (release 26 (ref. 49) 
Supplementary Methods). For the purposes of our COVID-19 drug-repurposing 
e�orts, actionable proteins were de�ned as those that are therapeutic targets 
of approved drugs and clinical candidates or are potential targets of approved 
drugs. �erapeutic targets were identi�ed from the drug mechanism of action 
information in ChEMBL and linked to their component proteins. Each protein 
was assigned a con�dence level based on the type and size of target annotated and 
the resulting list was �ltered to remove nonhuman proteins and those with lower 
con�dence assignments (cases where the therapeutic target consists of more than 
ten proteins or the protein is known to be a nondrug-binding subunit of a protein 
complex). For approved drugs, additional potential human target proteins were 
identi�ed from pharmacological assay data in ChEMBL with recorded a�nity/
e�cacy measurements ≤100 nM (represented by a pChEMBL value ≥7).

A total of 1,263 unique human proteins were identified as ‘actionable’ from data 
available in ChEMBL. These consisted of 531 proteins that are therapeutic targets 
of approved drugs, 381 additional proteins that are therapeutic targets of clinical 
candidates and 351 additional proteins that are bound by approved drugs, but not 
annotated as the therapeutic targets. While the biological relevance of the latter 
group of targets in the context of the approved drug indications may be unclear, 
the high affinity/efficacy measurements suggest the drug should be capable of 
modulating these proteins, should they be found to be relevant to COVID-19 
(although likely not in a selective manner). Proteins were further annotated with 
biological and drug information relating to their potential role in SARS-CoV-2 
infection (Supplementary Methods) such as change in abundance during infection, 
interaction with viral proteins or the activity of drugs in antiviral cell-based assays. 
Of the 1,263 actionable proteins identified previously, 300 were annotated as 
biologically relevant in SARS-CoV-2 infection and 547 were targets of drugs with 
some evidence of COVID-19 relevance from cell-based assays, clinical trials or the 
ATC classification (Supplementary Table 2).

Selection of proposed instruments. eQTL proposed instruments. We proposed eQTL 
instruments using raw data from GTEx v.8 by performing conditional analysis on 
normalized gene expression in European ancestry individuals in 49 tissues that had 
at least 70 samples. eQTLs were derived in all 49 tissues (that is we did not restrict it 
to tissues we thought most relevant to COVID-19) because the biological relevance 
of tissues to SARS-CoV-2 infection is still rapidly evolving. We used Matrix eQTL50 
and followed the same procedure as outlined by the GTEx consortium (https://
gtexportal.org/home/). Brie�y, a�er �ltering the genotypes (genotype missingness 
<0.05, minor allele frequency <0.01, Hardy–Weinberg equilibrium <0.000001, 
removing ambiguous SNPs), within each tissue, we performed GWAS between 
variants and gene expression adjusting for sex, the �rst �ve principal components 
of European genetic ancestry, PEER factors, sequencing platform and protocol. To 
identify independent eQTLs, we performed conditional analysis in regions around 
associations that fell below genome-wide (GW) signi�cance, additionally adjusting 
for the peak variant if there exists an association reaching a P value of 5.00 × 10−8. 
Cis-eQTLs were de�ned as GW-signi�cant (P < 5.00 × 10−8) associations within 1 Mb 
on either side of the encoded gene. To convert from build 38 to build 37, we used 
the table available from the GTEx consortium for all variants genotyped in GTEx 
v.8 and hg19 li�over, (https://storage.googleapis.com/gtex_analysis_v8/reference/
GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.
lookup_table.txt.gz). In each tissue, multiple GW-signi�cant (P < 5.00 × 10−8) eQTLs 
for the same gene were combined into a single instrument using inverse-variance 
weighting and �xed-e�ects meta-analysis across variant-level MR estimates for each 
variant, a standard two-sample MR approach. For example, for IL10RB expression in 
skeletal muscle tissue, there were two conditionally independent eQTLs (rs2300370 
and rs2834167; Table 1); a variant-level MR-estimate was obtained for each by 
dividing the β-coe�cient for COVID-19 hospitalization by the β-coe�cient of the 
eQTL and dividing the standard error of the COVID-19 hospitalization estimate 
by the β-coe�cient of the eQTL. �e two variant-level MR estimates were then 
meta-analyzed using inverse-variance weighting and �xed e�ects to yield the �nal 
MR result. Instruments for expression of the same gene derived in di�erent tissues 
were tested separately.

pQTL proposed instruments. We proposed pQTL instruments from two sources of 
publicly available data that reported conditionally independent pQTLs for proteins 
measured by the SomaLogic SomaScan51,52 platform: (1) Sun et al.13, who reported 
results for 2,994 proteins in 3,301 INTERVAL participants and (2) Pietzner et al.14, 
who reported results for 179 proteins in 10,708 participants of the Fenland cohort. 
In both, we restricted proposed instrumental variants to cis-pQTLs for actionable 
proteins, used a P value threshold of 5 × 10−8 and removed variants with minor 
allele frequency <0.01. MR was run independently for each data source (proposed 
instruments for the same protein in different platforms were tested against 
COVID-19 hospitalization independently).

Estimates for COVID-19 hospitalization. To generate outcome summary 
statistics, we meta-analyzed results from the MVP, an ongoing, prospective 

cohort recruiting from 63 Veterans Health Administration (VA) medical facilities 
(Supplementary Methods) and the Host Genetics Initiative9, a global collaboration 
to accumulate GWAS on COVID-19 infection and clinical manifestations.

In MVP, 1,062 COVID-19 cases (Supplementary Table 1) were identified 
between 1 March and 17 September 2020 using an algorithm developed by 
the VA COVID National Surveillance Tool. The National Surveillance Tool 
classified COVID-19 cases as positive or negative based on real-time PCR with 
reverse transcription (rRT–PCR) laboratory test results conducted at VA clinics, 
supplemented with natural language processing on clinical documents. The 
algorithm to identify patients with COVID-19 is continually updated to ensure 
new annotations of COVID-19 are captured from clinical notes, with chart 
reviews performed periodically to validate the algorithm53. COVID-19-related 
hospitalizations were defined as admissions from 7 d before up to 30 d after a 
patient’s first positive test for SARS-CoV-2. We tested association between all our 
proposed genetic instruments and COVID-19 hospitalization (versus population 
controls) in MVP, adjusting for age, sex and the first ten principal components 
(PCs) in three mutually exclusive, ancestry-specific strata separately (European, 
African and Hispanic ancestry) using PLINK v.2 (analysis completed on 10 
October 2020). We have previously provided a detailed description of the genotype 
data quality control process54. The MVP received ethical and study protocol 
approval by the Veterans Affairs Central Institutional Review Board and informed 
consent was obtained for all participants.

We downloaded publicly available summary statistics for the B2 outcome 
from Host Genetic Initiative on 4 October 2020 (release 4 v.1). In total, HGI 
accumulated 6,492 cases of COVID-19 hospitalization through collaboration 
from 16 contributing studies (Supplementary Table 1), which were asked to 
define cases as ‘hospitalized laboratory confirmed SARS-CoV-2 infection 
(RNA and/or serology based), hospitalization due to corona-related 
symptoms’ versus population controls (https://docs.google.com/document/
d/1okamrqYmJfa35ClLvCt_vEe4PkvrTwggHq7T3jbeyCI/view) and use 
a model that adjusts for age, age2, sex, age × sex, PCs and study specific 
covariates (https://docs.google.com/document/d/16ethjgi4MzlQeO0KAW_
yDYyUHdB9kKbtfuGW4XYVKQg/view). Summary statistics (βs and standard 
errors) from the four analyses, MVP-European, MVP-African, MVP-Hispanic and 
COVID-19 HGI (HGI summary statistics were already meta-analyzed from GWAS 
that contributed to the HGI consortium) were meta-analyzed using METAL 
software55 with inverse-variance weighting and fixed effects.

Quantile–quantile plots of P values from genome-wide association testing 
in MVP did not display any inflation of results in any ancestry-specific stratum 
(Supplementary Fig. 1). Additionally, Phet values from the meta-analysis (output 
from METAL’s ‘analyze heterogeneity’ command) were not inflated (Supplementary 
Fig. 2), indicating that there is little overall heterogeneity between estimates across 
ancestries within MVP and between MVP and HGI.

Mendelian randomization and colocalization. We conducted MR analyses using 
the R package TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/). We 
used fixed-effects, inverse-variance-weighted MR for proposed instruments that 
contain more than one variant and Wald ratio for proposed instruments with 
one variant. For proposed instruments with multiple variants, we also tested the 
heterogeneity across variant-level MR estimates, using the Cochrane Q method 
(mr_heterogeneity option in TwoSampleMR package). We defined significant MR 
results using a P value threshold of P < 3.96 × 10−5 (0.05 Bonferroni-corrected for 
1,263 actionable druggable genes) and identified a list of ‘suggestive’ actionable 
druggable targets that passed a threshold of P < 5.00 × 10−4. For statistically 
significant MR results, we also performed colocalization56 between each eQTL and 
the transancestry meta-analysis on COVID-19 hospitalization using the moloc 
R package (https://github.com/clagiamba/moloc) with default priors (probability 
of shared causal variant for trait 1 and trait 2 is P1 = P2 = 1 × 10−4, probability of 
shared causal variant across two traits is P12 = 1 × 10−5). For example, if a proposed 
instrument contained two variants, we performed colocalization for the primary 
eQTL GWAS with COVID-19 hospitalization, as well as the secondary eQTL 
GWAS (eQTL GWAS after adjusting for peak variant from primary GWAS) 
with COVID-19 hospitalization. Statistically significant MR hits with posterior 
probability for hypothesis 4 (PP.H4) > 0.8 (the probability of a shared causal 
variant) for a least one instrumental variant were then investigated further using 
the following analyses.

Identifying pQTLs using Olink assay. We performed stepwise conditional 
analysis to identify cis-pQTL proposed instruments for proteins that passed our 
significance and colocalization thresholds and were one of 354 unique proteins 
measured on four Olink57 panels (CVD1, CVD2, Inflammation and Neuro; Olink 
Target 96 & Target 48 panels for protein biomarker discovery from https://www.
olink.com/products/target/) in 4,998 INTERVAL participants13. INTERVAL is 
a prospective cohort study of ~50,000 blood donors recruited from 25 National 
Health Service Blood and Transplant centers in England. Participants were 
genotyped using the UK Biobank Affymetrix Axiom array, followed by phasing 
using SHAPEIT3 and imputation on the Sanger Imputation Server using a 1000G 
Phase 3-UK10K imputation panel. Alleles were tested against Olink proteins 
using SNPTEST v.2.5.2 and adjusted for age, sex, plate, time from blood draw to 

NATuRE MEDICINE | www.nature.com/naturemedicine

https://gtexportal.org/home/
https://gtexportal.org/home/
https://storage.googleapis.com/gtex_analysis_v8/reference/GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz
https://storage.googleapis.com/gtex_analysis_v8/reference/GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz
https://storage.googleapis.com/gtex_analysis_v8/reference/GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz
https://www.ncbi.nlm.nih.gov/snp/?term=rs2300370
https://www.ncbi.nlm.nih.gov/snp/?term=rs2834167
https://docs.google.com/document/d/1okamrqYmJfa35ClLvCt_vEe4PkvrTwggHq7T3jbeyCI/view
https://docs.google.com/document/d/1okamrqYmJfa35ClLvCt_vEe4PkvrTwggHq7T3jbeyCI/view
https://docs.google.com/document/d/16ethjgi4MzlQeO0KAW_yDYyUHdB9kKbtfuGW4XYVKQg/view
https://docs.google.com/document/d/16ethjgi4MzlQeO0KAW_yDYyUHdB9kKbtfuGW4XYVKQg/view
https://mrcieu.github.io/TwoSampleMR/
https://github.com/clagiamba/moloc
https://www.olink.com/products/target/
https://www.olink.com/products/target/
http://www.nature.com/naturemedicine


ARTICLES NATURE MEDICINE

processing, season and the first five PCs. Conditional analysis was performed by 
adjusting for peak variants until no association fell below 5.00 × 10−6.

Phenome-wide scan. We conducted a phenome-wide scan for variants with the 
following goals. First, we wanted to evaluate whether our proposed instruments 
could reproduce known phenotype associations (for example disease, biomarkers) 
ascribed to the drug that were due to on-target effects. Second, we wanted to 
identify whether our proposed instruments were associated with comorbidities 
associated with greater likelihood of SARS-CoV-2 testing or predictors of 
hospitalization in patients with COVID-19, as this could potentially highlight the 
presence of certain biases21. Also, for genes that were the target of licensed drugs, 
we checked whether the disease indication was also a risk factor for COVID-19 
outcomes, as this might introduce a bias analogous to confounding by indication 
in MR.

To accomplish these goals, we investigated proposed instruments for 
associations of a phenome-wide range of outcomes. We searched the GTEx12 portal 
(https://gtexportal.org/home/) for gene expression and Phenoscanner17 (http://
www.phenoscanner.medschl.cam.ac.uk/) for proteins, traits and diseases. We 
additionally queried variants in GWAS for 354 Olink proteins (described earlier) 
and all the proteins measured by the SomaScan platform (described by Sun et al.13) 
in 3,301 INTERVAL participants.

Characterizing downstream transcriptional consequences of associated loci. 
To confirm specificity of identified loci and to better explore their most important 
downstream transcriptional consequences, we studied the transcriptional landscape 
modulation associated with the selected variants using GTEx v.8 data with 
representation of 49 different tissues. For this we have used rs13050728 as the proxy 
of the IFNAR2/IL10RB locus and rs4830976 as the proxy of the ACE2 locus and 
conducted a differential gene-expression analysis for all transcripts available in GTEx 
v.8. After fitting models for all genes, enrichment pathway analysis was conducted 
to retrieve the most enriched pathways using both the differentially expressed gene 
list (through an overrepresentation analysis) and a gene set enrichment analysis 
framework (using the R package clusterProfiler58). For enrichment analyses we used 
the corpus from WikiPathways, Gene Ontology and Reactome.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
GTEx project v.8 data are available at https://gtexportal.org/home/. CheMBL 
database data are available at https://www.ebi.ac.uk/chembl/. Fenland-SomaLogic 
protein GWAS data are available at https://omicscience.org/apps/covidpgwas/. 
HGI COVID-19 hospitalization summary statistics are available at https://www.
covid19hg.org/. PhenoScanner results are available at http://www.phenoscanner.
medschl.cam.ac.uk/.
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Extended Data Fig. 1 | Regional association plots for rs2266590 and rs2239573 for plasma IL-10RB, IL10RB gene expression, and COVID-19 

hospitalization. This region was investigated further using iL-10rB pQTL data because it was available on an independent proteomic platform (Olink) 

and results using eQTL instruments for IL10RB passed our Mendelian randomization P value threshold (0.05 Bonferroni-corrected for 1,263 actionable 

druggable genes) and colocalization threshold (pp.H4 > 0.8). a, rs2266590 as pQTL for plasma iL-10rB measured by Olink in 4,998 iNTErVAL 

participants. b, rs2266590 as an eQTL for IL10RB expression tibial artery tissue (N = 584). c, rs2266590 in COViD-19 hospitalization. d, rs2239573 

as pQTL for plasma iL-10rB (after adjusting for rs2266590) measured by Olink in 4,998 iNTErVAL participants. e, rs2239573 as an eQTL for IL10RB 

expression in whole blood (N = 670). f, rs2239573 in COViD-19 hospitalization. a colocalizes with b (pp.H4 = 0.97), and d colocalizes with e (pp.

H4 = 1.00). The two variants highlighted in this figure (rs2266590 and rs2239573), which are associated with gene expression and plasma protein levels 

of iL-10rB, are not associated with COViD-19 hospitalization (P = 0.85 for rs2266590, P = 0.66 for rs2239573).
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Extended Data Fig. 2 | Enrichment analysis of peak eQTLs for IFNAR2-IL10RB and ACE2 regions. results obtained from association analysis using all 49 

tissues from GTEx V8 contrasted against variant genotypes in an additive model. Dotplot of over-representation analysis using all significant (p < 0.05) 

differentially expressed (DE) genes (476 for rs13050728; 1,397 for rs4830976) for a, rs13050728, peak eQTL in the IFNAR2-IL10RB region and b, 

rs4830976, peak eQTL in the ACE2 region. Count = number of DE genes part of the enriched pathway. Gene ratio is the rate of DE genes represented in 

each pathway.
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Extended Data Fig. 3 | Regional association plots for cis-variants associated with ACE2 gene expression or ACE2 plasma protein levels, and their 

association with COVID-19 hospitalization. a, rs4830976 as an eQTL for ACE2 expression in brain frontal cortex tissue (N = 175). b, rs4830976 in COViD-

19 hospitalization (N = 1,377,758). c, rs5935998 as the primary pQTL for plasma ACE2 measured by Oink in 4,998 iNTErVAL participants d, rs5935998 

in COViD-19 hospitalization e, rs4646156 as the secondary pQTL (that is after adjusting for rs5935998) for plasma ACE2 measured by Oink in 4,998 

iNTErVAL participants. f, rs4646156 in COViD-19 hospitalization. a colocalizes with b (pp.H4 = 0.95), but c does not colocalize with d (pp.H4 = 0.49) and 

e does not colocalize with f (pp.H4 = 0.08).
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