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Abstract

This paper tackles the problem of localizing actions

in long untrimmed videos. Different from existing works,

which all use annotated untrimmed videos during training,

we learn only from short trimmed videos. This enables

learning from large-scale datasets originally designed for

action classification. We propose a method to train an

action localization network that segments a video into in-

terpretable fragments, we call ActionBytes. Our method

jointly learns to cluster ActionBytes and trains the local-

ization network using the cluster assignments as pseudo-

labels. By doing so, we train on short trimmed videos that

become untrimmed for ActionBytes. In isolation, or when

merged, the ActionBytes also serve as effective action pro-

posals. Experiments demonstrate that our boundary-guided

training generalizes to unknown action classes and local-

izes actions in long videos of Thumos14, MultiThumos, and

ActivityNet1.2. Furthermore, we show the advantage of Ac-

tionBytes for zero-shot localization as well as traditional

weakly supervised localization, that train on long videos, to

achieve state-of-the-art results.

1. Introduction

The goal of this paper is to determine the start, the end

and the class of each action instance in a long untrimmed

video. State-of-the-art approaches for action localization

slide a trained model over an untrimmed video to produce

classification score sequences over time [5, 18, 40]. They

depend on start, end, and action class labels at training time.

Weakly-supervised approaches [28, 32, 34] have demon-

strated this even works when the long untrimmed training

videos come with action class labels only. Different from

all these works, we will localize action instances in long

untrimmed videos by learning from short trimmed videos

labeled with just their action class.
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Figure 1: From short, trimmed videos we learn to local-

ize actions in long, untrimmed video. During training, our

method jointly learns to generate pseudo-labels from Ac-

tionBytes, and to localize them in the short video. During

testing, our localization model detects the instances of the

query action class in the untrimmed video.

Short trimmed videos are highly popular and easy to

access for action classification. Datasets in this domain

come with a large number of samples and labels [3, 4, 8,

24]. Kinetics-700 [3], for example, has nearly 650k short

trimmed video clips categorized into as many as 700 action

classes. In this work, we leverage datasets commonly used

for action classification, the what, for tackling the task of ac-

tion localization, the when. This opens up opportunities for

1) learning from larger datasets with more action classes,

and 2) localizing unknown classes by transferring knowl-

edge between trimmed and untrimmed video datasets.

However, given just short trimmed videos during training

provides virtually no scope to learn about action boundaries.

To overcome this limitation, we adopt a self-supervised ap-

proach to regularize our network to learn boundary-aware

models. Specifically, we use intermediate layers of a CNN

model to decompose a trimmed video into multiple atomic

actions called ActionBytes. From these we generate pseudo-

labels to train a CNN to localize ActionBytes within videos.

This model can be used to extract a new set of ActionBytes,

so we iterate between updating ActionBytes and training the

localization model using new pseudo-labels. Given a long

test video, we slide our trained model over it to generate a

classification score sequence for the query action, and thus

localize its instances, see Figure 1.
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We make three contributions in this paper. First, we

define What2When, the task of localizing actions in long

untrimmed videos using short trimmed videos commonly

used for action classification. Second, we introduce Action-

Bytes: interpretable, temporally scale-invariant fragments

of videos capable of spotting parts of an action. Third, we

propose an iterative approach for training boundary-aware

models from short videos. We experimentally show the ef-

fectiveness of our method on Thumos14 [10], MultiThu-

mos [38] and AcitivityNet [1]. Since our approach transfers

action class knowledge from trimmed videos to untrimmed

videos with unseen classes, it is a natural fit for zero-shot

applications. We evaluate our model in a zero-shot scenario

where the label set of the short trimmed training videos and

the long untrimmed test videos are disjoint. Finally, we con-

duct experiments on the task of weakly supervised action

localization. Although our method is not designed for learn-

ing from long videos, we show the benefit of ActionBytes as

action proposals in obtaining favorable performance com-

pared to the state-of-the-art.

2. Related work

The problem of learning from short videos to localize

action in long videos relates to multiple recognition tasks in

videos.

Mid-level representation. Several works have proposed

methods to automatically discover mid-level representa-

tions by segmenting an action into atomic actions [9, 15,

33]. Lan et al. [15] discover mid-level action elements by

clustering spatio-temporal segments. This is done on a per-

class basis. In [6, 9] the authors automatically obtain mean-

ingful action fragments but they require temporal action an-

notations to do so. Alternatively, [39] also uses parts of

actions but exploits their ordered fashion. Unlike all the

above methods, our ActionBytes are class-agnostic, which

makes them suitable to enable knowledge transfer to videos

of unseen classes.

Pseudo-labeling. Recently self-supervised approaches

have been proposed pseudo-labeling data in representation

learning [2], label propagation for semi-supervised learn-

ing [11] and semantic segmentation [16]. This line of work

relies on clustering to create pseudo-labels from unlabelled

data. We also generate pseudo-labels per video during train-

ing, but for a different purpose, we use them to regularize

our localization model to be sensitive to boundaries.

Self-training. Our approach can also be considered as

a self-training procedure applied to the video domain, and

adapted for localization in the What2When task. It differs

from other self-training approaches [17, 29, 42] in many

ways, but mainly because the pseudo-labels are generated

at the sub-video level and are regularized for localization.

Weakly supervised. In recent times, there has been in-

creased interest in developing models that can be trained

with weaker forms of supervision, such as video-level la-

bels. UntrimmedNets [34] and STPN [26] formulated

weakly supervised action localization as a multiple instance

learning problem along with attention to locate the actions

in videos. AutoLoc [32] introduced a boundary predictor

built on an Outer-Inner-Constrastive loss. W-TALC [28] in-

troduced a co-activity similarity loss that looks for similar

temporal regions in a pair of videos containing a common

action class. Nguyen et al. [27] proposes to model both

foreground and background, while [39] exploits temporal

relations among video segments. All these methods depend

on the presence of multiple actions in long videos to learn

to discriminate foreground action from background. Differ-

ently, we propose a method to learn action boundaries from

short videos through our ActionByte mining.

Zero-shot learning. Many approaches for zero-shot and

few shot learning focus on intra-dataset splits between seen

and unseen classes [7, 14, 19, 37]. While others attempt

cross-dataset action recognition [12, 20, 41] and some of

those learn only from the image domain to recognize ac-

tions in videos [12, 20]. To avoid the use of common classes

across datasets, Roitberg et al. [30] present an evaluation

by filtering very similar classes between source and target.

The common practice in zero-shot learning is to transfer ac-

tion class knowledge through a semantic embedding space,

such as attributes, word vectors or visual features. Among

these, word vectors have been preferred as only category

names are required for constructing the semantic embed-

ding space. In this paper, we also employ word embeddings

to map source classes to target classes while precisely fol-

lowing the zero-shot regime.

3. Method

In this section, we explain our proposed method that

learns from short trimmed videos to temporally localize ac-

tions in long untrimmed videos. We first formally define

the problem of What2When action localization. Then, we

explain our method illustrated in Figure 2 and its compo-

nents. We start by introducing ActionBytes, the basic build-

ing block of our method and give an explanation on how to

extract them from videos. Next, we explain our two-step

iterative pipeline that leverages ActionBytes to train local-

ization models on short videos in a self-training fashion.

Finally, we discuss the potential of ActionBytes by itself as

action proposals in the video localization context.

Problem statement. Given a long test video, we aim

to predict a set of action categories present in that video,

together with their start and end time. During training, a

set of n short, single-action videos χshort = {xi}
n
i=1 is

given where each video x has a single label c, belonging

to label set Cshort = {ci}
nc

i=1. During testing, a set of long

untrimmed videos χlong = {x′
i}

n′

i=1 is given, where for each

video x′, the goal is to find the boundary of all action in-
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Figure 2: The proposed mining pipeline segments a video into ActionBytes. These are then clustered and assigned pseudo-

labels, which are used as a supervision signal to train the localization model. Action classes labels are from Cshort.

stances and predict their category labels, c′, from the label

set Clong = {c′i}
n′
c

i=1. In this paper, unless explicitly other-

wise stated, we train on χshort and evaluate on χlong.

3.1. ActionBytes

It is well-known that high-level features of consecutive

frames, extracted from a CNN, usually vary smoothly over

time [13, 35]. Therefore, any abrupt change in feature space

can represent a high-level change in the pixel space. We

leverage this property to segment videos into interpretable

fragments, we call ActionBytes.

Suppose F = {ftftft}
T
t=1 are d-dimensional features ex-

tracted using a deep model for each time instant t, where T
is the temporal sequence length. We learn to map these fea-

tures to a latent space using a latent projection module. The

output of the latent projection module, L ∈ R
l×T , keeps the

affinity to l latent concepts for each time instant (Figure 3).

For a given video, we find ActionByte boundaries B by

looking for time instants where affinities to latent concepts

change abruptly compared to the previous time instant:

B = {t|t :

l∑

i=1

|L[i, t]− L[i, t− 1]| > τ} (1)

where τ is set to the pth percentile, so the number of Action-

Bytes in a video is directly proportional to its length T . In

general, the pth percentile leads to T × 100−p
100

ActionBytes.

The length of each of them varies with the video content,

with average length equal to 100

100−p
.

Each boundary in the set B starts an ActionByte, Ai =
(Bi, Bi+1 − 1), resulting in |B| − 1 ActionBytes. Such

boundaries are obtained in a class-agnostic way, but they

segment a video into interpretable fragments. These Ac-

tionBytes are temporally scale-invariant as their lengths are

adapted to the video content. For example, a single Action-

Byte can capture an atomic action regardless of the action

speed. Some ActionBytes examples are shown in Figure 4.
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Figure 3: Localization model and ActionByte extraction.

The localization model is trained with classification and lo-

calization losses on pseudo-labels. The latent output L is

used to extract ActionBytes. Classes labels are from Cshort.

3.2. Mining ActionBytes

Next, we discuss how we learn a model from short

videos. One can train a classification model on short videos

and slide it on long test videos. However, such a model is

agnostic to boundaries within the short videos, and might

not be able to generate good class activation scores for lo-

calization. Here, we leverage ActionBytes, to train a dis-

criminative, boundary-aware model from short videos. This

is done by decomposing a video into multiple ActionBytes,

from which we generate pseudo-labels to train our model.

The proposed pipeline for mining ActionBytes is shown

in Figure 2. It has two steps that iterates between Gener-

ating pseudo-labels from ActionBytes and Training the lo-

calization model with pseudo-labels. For the creation of the

pseudo-labels we take inspiration from Caron et al. [2]. We

first extract N ActionBytes from a set of training videos and

represent each of them by averaging latent features within

its boundaries. Next, we group all the ActionBytes into K
clusters using the k-means algorithm by solving

min
C∈IRl×K

1

N

N∑

n=1

min
yn∈{0,1}K

‖an − Cyn‖
2
2
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Figure 4: Extracted ActionBytes, highlighted in different colors, for two examples of Baseball Pitch. The ActionBytes

capture the action in four parts that are interpretable as (1) ‘get into wind-up position‘ (red), (2) ’loading to deliver’ (blue),

(3) ‘delivery’ (pink) and (4) ‘follow-through’ (green). ActionBytes are scale-invariant and can adapt to varying temporal

scale, e.g., the ‘follow-through’ extends to different number of snippets in the two examples.

where an is feature vector obtained from ActionByte n.

Solving this problem provides a centroid matrix C that is

used to assign a cluster id to each ActionByte in a video.

Finally, the pseudo-label vector for a video is defined as all

the cluster ids assigned to ActionBytes of that video.

Having obtained the multiple pseudo-labels for each

training video, we update the parameters of the localiza-

tion network in the second step for classifying and local-

izing ActionBytes in the video (shown in Figure 3). Such

training leads to a better representation of latent concepts,

L, of the model that in turn result in a better set of Ac-

tionBytes. Therefore, we iterate over these two steps of

extracting ActionBytes and training the localization model.

This approach can be seen as a regularization technique. By

training the model with pseudo-labels, we avoid the risk of

overfitting the model to class labels.

Localization model. Our full localization model, used

in the second step of our pipeline, is shown in Figure 3.

The role of this model is to learn to classify and localize

ActionBytes into the assigned pseudo-labels. This is rem-

iniscent of a model for weakly-supervised temporal local-

ization, where each video has multiple instances of actions

and temporal annotations are not available. With this moti-

vation, we now describe our localization.

We first extract features F = {ftftft}
T
t=1 from a pretrained

deep network where d is the feature dimension and T is

the temporal sequence length. We pass extracted features

to a latent projection module to map the features to a set of

latent concepts, from which we extract ActionBytes. For the

latent projection module, we simply use a fully connected

layer followed by ReLU [25].

L = ReLU(WprojF )

where Wproj ∈ R
l×d is the latent projection matrix and

l is number of latent concepts. The output of the latent

projection layer, L, is passed through a linear classifier to

obtain activation scores over time for pseudo-classes. On

these activation sequences, following [28], we apply k-max

multiple-instance learning loss for classification and co-

activity similarity loss for localization. For k-max MIL loss,

the prediction score corresponding to a class is computed as

the average of its k-max activations over the temporal di-

mension. The co-activity similarity loss is computed over

class activation sequences and L. For a given video and a

class, a vector of similarities between class activation se-

quence and each row of L (lth latent concept) is computed.

A pair of videos with a common class label will have higher

similarities with the same latent concepts. This is what is

enforced by this loss, which makes it a suitable localization

loss in our method.

Using this model in our mining, we get predictions for

the pseudo-labels. In order to translate this into predictions

for the training classes, Cshort, we add a transfer layer on

top of the linear classifier. This is an FC layer learned again

with a k-max MIL loss, but using class labels (see Figure 3).

For localization at test time, we follow the two-stage thresh-

olding scheme of [28] on the output of the transfer layer.

Knowledge transfer. In cross-dataset evaluation, the la-

bel set of seen short videos, Cshort can be different from

the label set of unseen long videos, Clong. For knowledge

transfer in such cases, we follow Objects2Action [12]. We

employ the skip-gram model of word2vec [21, 22] as a se-

mantic embedding function to embed each word of a given

class label as a vector. For multi-word class labels, we take

the average vector of the embedded words [12, 23] to rep-

resent the label. The affinities between class labels from

Cshort and Clong are computed by cosine similarity between

their embeddings. Thus, the class activation score for Cshort

is transferred to that for Clong.

The two sets of class-labels, though different, may have

some overlap. To evaluate in a pure zero-shot localization

set-up, we also conduct an experiment where training is

done on a subset of Cshort, such that this subset does not

overlap with test label set Clong.

3.3. Action proposals from ActionBytes

Segmenting video into ActionBytes is critical to learn a

reliable localization model from short videos. In addition
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to this, ActionByte by itself is also suited for action local-

ization as an informative action unit. We show how they

can be used to form action proposals in long videos dur-

ing testing. Consequently, we also demonstrate the utility

of ActionBytes is not limited to the What2When set-up but

also extends to the weakly-supervised set-up.

Since an ActionByte represents an interpretable part of

an action, one or more ActionBytes together form a good

action proposal. For a given test video, we generate action

proposals, PAB , by merging m ∈ M ActionBytes, where

set M contains the numbers of ActionBytes to be merged.

PAB =
⋃

m∈M

|B|−m⋃

i=1

(Bi, Bi+m − 1) (2)

where Bi is the start of ActionByte i. (Bi, Bi+m − 1)
is an action proposal from Bi to Bi+m − 1. Each of these

proposals is temporally jittered to include up to one neigh-

boring time-step. This is to make sure the immediate neigh-

borhood of boundaries is included in the action proposals.

ActionBytes for weakly-supervised localization.

Weakly-supervised action localization is a popular task

where training and testing are done on long videos i.e.

Lshort = Llong. The ActionByte mining explained in

Section 3.2 is critical to learn from short videos. But,

when learning on long videos in a weakly-supervised

set-up, generating pseudo-labels is not needed, as the long

videos are already untrimmed w.r.t. the actual action labels.

Therefore, only the localization model, without the transfer

layer, is enough to learn good quality classification score

sequences and ActionBytes.

4. Experiments

In this section, we first explain the datasets we train and

evaluate our proposed method on, following the implemen-

tation details. Then we present an ablation study of our

method, and next we compare our model with baselines in

the What2When setup. We also conduct an experiment in

a zero-shot setup and compare our model with the state-of-

the-art models in the weakly-supervised regime.

Datasets. We use the validation set of Kinetics-400 [4]

for training our model. It contains 17, 281 single trimmed

action videos belonging to 400 action classes with a maxi-

mum length of 10 seconds. For evaluation, we report on the

untrimmed Thumos14 [10], MultiThumos [38] and Ac-

tivityNet1.2 [1]. Thumos14 contains 200 validation videos

and 212 test videos with temporal annotations belonging to

20 action classes, with about 15.5 action instances per video

on average. The length of the videos in this dataset is on av-

erage 212 seconds. MultiThumos has the same set of videos

as in Thumos14, but it extends the latter from 20 action

classes with 0.3 labels per frame to 65 classes with 1.5 la-

bels per frame. Also, the average number of distinct action

classes in a video is 10.5 (compared to 1.1 in Thumos14),

making it a more challenging multi-label dataset. Activi-

tyNet1.2 has 4, 819 videos for training and 2, 383 videos

for validation, which in the literature is used for evaluation.

It has 100 classes, with on an average 1.5 action instances

per video. The average length of the videos in this dataset

is 115 seconds.

Implementation details. As a base network we use

I3D [4] pretrained on Kinetics-400. We extract RGB and

flow features from the last average-pooled layer (1024 di-

mensions for each stream). We use TVL1 to compute opti-

cal flow. Features are extracted from non-overlapping 16-

frame chunks of video. We do not finetune the feature

extractors. The network is implemented in PyTorch and

trained with Adam optimizer with a learning rate of 0.001.

We initialize the localization model by training on the val-

idation set of Kinetics-400 dataset. For k-max MIL loss,

we set k to 1/8 of the length of the video. In all the ex-

periments, we iterate over our pipeline for 3 iterations. The

value of the p percentile (sets τ in Eq. 1) determines how

many ActionBytes are extracted from a given video. For

Thumos14 and MultiThumos we set p = 50, and for Ac-

tivityNet1.2 we use p ∈ {92, 95, 97.5, 99, 99.5}. In all the

experiments we set M = {1, 2} in Eq. 2. We report the

commonly used mean Average Precision (mAP) metric on

snippet-level granularity for evaluating detections. For the

weakly-supervised setup, experiment settings are kept sim-

ilar to [28].

Localization at test time. For localization at test time,

we use our trained model to generate class-activation se-

quences over the untrimmed test video. We follow the two-

stage thresholding scheme of [28] for localizing actions.

The first threshold is applied to filter out classes that have

confidence score less than the mean confidence score. The

second threshold is applied along the temporal axis to ob-

tain the detections. When ActionByte proposals are added,

non-maximum suppression is also applied.

4.1. Ablation study

In the ablation, we test on untrimmed Thumos14, and

train on the validation set of trimmed Kinetics-400 dataset.

Fixed length versus scale-invariant ActionBytes.

First, we evaluate the effect of ActionBytes. We run two

setups: the first uses fixed-size segments, uniformly sam-

pled along the video, and the second uses our automatically-

extracted ActionByte boundaries. For the first setup we uni-

formly segment the video into chunks of two snippets, in

order to make it comparable with the average length of Ac-

tionBytes. The final localization performance at IoU= 0.5
is 14.1% for fixed-size segments and 15.5% for Action-

Bytes. Automatically extracted ActionByte boundaries are

preferred over uniformly sampled boundaries.

Influence of number of clusters. Next, we evaluate the
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Figure 5: Influence of the number of clusters on localiza-

tion performance. The performance increases up to 500 and

decreases afterward, as over-granular clusters might not be

able to represent a single ActionByte.

influence of the number of clusters for generating pseudo-

labels on the final localization performance. Figure 5 shows

that the performance increases by increasing the number of

clusters up to 500 and then decreases. This makes sense as

with a large number of clusters, an ActionByte might not be

represented by a single cluster centroid. Therefore, during

all the experiments, we fix the number of clusters to 500.

Number of mining iterations. In Figure 6 (Left), we

show how performance changes over training iterations. It

increases up to a point, and then decreases slightly. This

is mainly because, after few epochs, our iterative mining

reaches an equilibrium point where the clustering loss stops

decreasing (see Figure 6 (Right)) and the model converges

to an optimum.

Figure 6: Iterative mining. (Left) Action localization mAP

over mining iterations. Performance increases as long as the

clustering loss (Right) decreases, then both get saturated.

ActionByte as proposals. As explained in Section 3.3,

ActionBytes, when merged together, can act as action pro-

posals. In this ablation, we show how the number of

merged ActionBytes influences localization performance.

As shown in Figure 7, using single ActionByte proposals

(M = {1}) can improve the performance by more than 3%
compared to not using ActionByte proposals. This shows

the effectiveness of ActionBytes as proposals. Merging up

to 4 ActionBytes (M = {1, 2, 3, 4}) can improve localiza-

tion performance further. However, it comes with the cost

Figure 7: ActionByte as proposals for localization. Single

ActionByte proposals (M = {1}) improve mAP compared

to not using ActionByte proposals. We set M = {1, 2} in

all the experiments as adding more proposals increases the

computational cost while bringing marginal improvement.

of processing more proposals. To keep the balance between

computational cost and performance, we set M = {1, 2}
in the remaining experiments. Since the ActionBytes vary

in length, the proposal length also varies. This is reminis-

cent of commonly used anchor lengths [32]. The proposal

length, for chosen M and p, ranges from 1 to 70 for Thu-

mos14/MultiThumos and from 6 to 369 for ActivityNet.

4.2. What2When action localization

In the What2When action localization experiments, we

show the benefit of our mined ActionBytes compared to the

baseline. For training, we use the validation set of Kinetics-

400 dataset. For evaluation, we follow the common pro-

tocol from the literature and evaluate on the test sets of

Thumos14 and MultiThumos, and validation set of Activ-

itynet1.2. Baseline is the localization model trained on the

Kinetics-400 validation set, without ActionBytes and iter-

ative training. This model generates confidence scores for

400 classes over untrimmed long videos. Then we transfer

the class scores to target classes as explained in Section 3.2,

and localize actions using the two-stage thresholding. Ours

is our proposed deep mining method, that is similar to the

baseline (and trained on the same dataset) except that we

use pseudo-labels during training to regularize the model.

To have a fair comparison, we keep all the hyper-parameters

fixed during evaluation. Finally, for Ours (+ Proposals) we

add ActionByte proposals to the pool of proposals during

localization.

As shown in Table 1, the baseline performance on Thu-

mos14 dataset for IoU = 0.5 is 8.4% which shows the dif-

ficulty of the task. Using our model, the performance in-

creases to 11.3%. This is interesting, considering that the

state-of-the-art performance for this dataset for the weakly-

supervised regime where training and test is done on the

same dataset is just 26.5% [27] (see Table 3). Finally, by
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Table 1: What2When action localization performance on Thumos14, ActivityNet1.2 and MultiThumos.

Thumos14 ActivityNet1.2 MultiThumos

0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7

Baseline 18.8 12.7 8.4 1.7 24.0 21.7 19.4 8.0 7.5 4.9 3.2 0.6

Ours 21.1 15.6 11.3 2.8 24.4 22.4 20.1 8.2 8.1 5.7 4.1 1.0

Ours (+ Proposals) 26.1 20.3 15.5 3.7 24.7 22.7 20.3 8.3 10.8 8.1 6.1 1.4

Table 2: Zero-shot action localization performance on

Thumos14 and MultiThumos in What2When setup.

0.1 0.2 0.3 0.4 0.5

Thumos14

Baseline 13.8 11.1 7.1 4.7 3.1

Ours 14.9 12.6 8.5 6.1 4.1

Ours (+ Proposals) 17.8 15.5 11.3 8.7 6.3

MultiThumos

Baseline 6.4 5.14 3.1 2.0 1.3

Ours 7.0 5.7 3.7 2.5 1.7

Ours (+ Proposals) 9.4 8.0 5.6 4.1 3.0

adding ActionByte proposals, the performance increases to

15.5% i.e. an 84% relative improvement overall. This also

shows the effectiveness of our ActionBytes as proposals,

which is mainly due to their complementary nature to the

baseline proposals. The improvements are obtained across

the IoUs, especially for the higher ones.

For ActivityNet1.2 the baseline obtains an mAP of

19.4% at IoU= 0.5, while our full model gets to 20.3%.

The gains are less compared to Thumos14 but consistent

across the IoUs. The reduced gains can be attributed to the

nature of temporal annotations, which merge several nearby

action instances and in-between pauses into one instance.

This meant extra false-positives, as ActionByte proposals

do well at separating actions from temporal context.

For results on MultiThumos the trend is similar to Thu-

mos14, mining and then ActionByte proposals consistently

improve performance across the IoU thresholds. It is

promising that the proposed method maintains its gain on

this more challenging multi-label dataset.

4.3. Zeroshot action localization

For this set of experiments, we have a similar setup to the

previous What2When experiment, except that we adhere to

a zero-shot premise and exclude common classes between

the source Kinetics-400 dataset and the target datasets.

Thus, during training, we exclude 18 classes of Kinetics-

400 for Thumos14/MultiThumos. Similarly, 72 classes of

Kinetics-400 are excluded for ActivityNet1.2, which leaves

classes that are semantically very different from those of

Table 3: Weakly-supervised localization on Thumos14

dataset. (*) indicates I3D features.

0.3 0.4 0.5 0.7

Strong supervision

Shou et al. [31] 40.1 29.4 23.3 7.9

Xu et al. [36] 44.8 35.6 28.9 -

Zhao et al. [40] 50.6 40.8 29.1 -

Chao et al. * [5] 53.2 48.5 42.8 20.8

Weak supervision

Nguyen et al. * [26] 35.5 25.8 16.9 4.3

Shou et al. [32] 35.8 29.0 21.2 5.8

Paul et al. * [28] 40.1 31.1 22.8 7.6

Yu et al. * [39] 39.5 - 24.5 7.1

Nguyen et al. * [27] 46.6 37.5 26.5 9.0

Ours* (Proposals) 43.0 35.8 29.0 9.5

ActivityNet1.2. The remaining classes are semantically

very different from those of ActivityNet1.2, resulting in

a much lower baseline mAP of 2.6% at IoU= 0.3 com-

pared to 24.0% in the What2When experiment. As Activi-

tyNet1.2 is not suitable for zero-shot transfer from Kinetics-

400, we evaluate on the other two datasets in Table 2. Com-

pared to the What2When results there is a drop in perfor-

mance, which is expected, considering the difficulty of the

task. However, the same trend is maintained: our mining

model performs better than the baseline and adding Ac-

tionByte proposals further adds to the localization perfor-

mance. Again, we observe considerable gains over the base-

line for both Thumos14 and MultiThumos, leading to con-

sistent improvement across the IoUs. We believe that these

are the first zero-shot temporal localization results reported

on Thumos14 and MultiThumos.

4.4. Comparison with the stateoftheart

Here, we demonstrate the effectiveness of our Action-

Byte proposals in a weakly-supervised setup as explained in

Section 3.3. We employ the off-the-shelf model of Paul et

al. [28] as baseline and add ActionBytes proposals on top of

it. For the Thumos14 dataset, we train the model on the val-

idation set and evaluate on the test set. Similar as before, we

use IoU between detections and ground-truth as the evalua-

1177



1

…
…

…
…

…
…

…

…

…
…

Baseline

Ours

Baseline

Ours

Figure 8: Qualitative results showing top localizations on sample videos from Soccer Penalty and Basketball Dunk. Frames

representing action instances are highlighted by the orange boxes and the ones for the background are in blue boxes. Below

these frames, ground-truth is plotted in red against time in seconds. Localization boundaries are shown in other colors for the

baseline detections as well as the detections using the ActionByte proposals. In Soccer Penalty example, there is only one

true-positive which is missed by the baseline, while it is populated by our proposals, one of which detects it. Both methods

have false positives. The second example of Basketball Dunk is a video longer than 10 minutes, with many action instances.

Out of shown 16 instances, our approach could localize 6 while getting 3 false-positives at IoU= 0.5. Two of these false-

positives are duplicate detections (in cyan near 620s and 650s). The baseline could localize two action instances with one

false-positive. There are a few false-positives and missed detection by our approach, but it could localize some very difficult

action instances. Figure best viewed in color.

tion metric. As shown in Table 3, our method outperforms

the state-of-the-art for higher overlap thresholds. Our im-

provement is particularly notable at IoU= 0.5, where we

improve the state-of-the-art by a margin of 2.4%. It val-

idates that our ActionByte proposals are suitable for both

What2When and weakly supervised tasks. In Table 4, re-

sults on ActivityNet1.2 are reported. We outperform state-

of-the-art for all IoUs except 0.7. In Table 5, we report re-

sults for MultiThumos. To our knowledge, the only video-

level localization results reported on MultiThumos is by Ye-

ung et al. [38]. While they report 32.4% at IoU = 0.1, with

frame-level supervision, we reach this mAP with weak su-

pervision only. To the best of our knowledge, this is the first

weakly-supervised evaluation on MultiThumos. We also

evaluate our baseline [28] on this dataset and consistently

improve it over the IoU thresholds. In summary, our method

could improve over the baselines and achieve promising re-

sults on all three datsets. This shows the effectiveness of the

ActionByte proposals. We show some qualitative results of

our detections in Figure 8.

5. Conclusions

We introduced the new task of learning from short

trimmed videos to localize actions in long untrimmed

videos. To tackle the new task, our proposed pipeline is

jointly trained to segment the videos into ActionBytes and

localize them in the short video. Our method can be consid-

Table 4: Weakly-supervised localization on Activi-

tyNet1.2 dataset. (*) indicates I3D features.

0.3 0.4 0.5 0.7

Wang et al. [34] - - 7.4 3.9

Shou et al. [32] - - 27.3 17.5

Paul et al. * [28] 45.5 41.6 37.0 14.6

Yu et al. * [39] - - 28.3 18.9

Ours* (Proposals) 47.8 44.0 39.4 15.4

Table 5: Weakly-supervised localization on MultiThumos

dataset. (*) indicates I3D features. †Our evaluation of [28].

0.1 0.2 0.3 0.4 0.5

Strong supervision

Yeung et al. [38] 32.4 - - - -

Weak supervision

Paul et al. *† 30.7 24.0 17.1 12.6 8.9

Ours* (Proposals) 32.4 26.8 20.5 15.7 12.1

ered as a technique to regularize action boundaries during

training. Experiments on the three datasets show the effec-

tiveness of our method not only for the proposed task, but

also for zero-shot action localization and weakly supervised

action localization. This demonstrates the adaptability of

the models trained by our method, as we considerably im-

prove over the baselines and achieve state-of-the-art results.
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