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Abstract. Self-attention based Transformer models have demonstrated
impressive results for image classification and object detection, and more
recently for video understanding. Inspired by this success, we investi-
gate the application of Transformer networks for temporal action lo-
calization in videos. To this end, we present ActionFormer—a simple
yet powerful model to identify actions in time and recognize their cat-
egories in a single shot, without using action proposals or relying on
pre-defined anchor windows. ActionFormer combines a multiscale fea-
ture representation with local self-attention, and uses a light-weighted
decoder to classify every moment in time and estimate the correspond-
ing action boundaries. We show that this orchestrated design results in
major improvements upon prior works. Without bells and whistles, Ac-
tionFormer achieves 71.0% mAP at tIoU=0.5 on THUMOS14, outper-
forming the best prior model by 14.1 absolute percentage points. Further,
ActionFormer demonstrates strong results on ActivityNet 1.3 (36.6% av-
erage mAP) and EPIC-Kitchens 100 (+13.5% average mAP over prior
works). Our code is available at https://github.com/happyharrycn/

actionformer_release.

Keywords: temporal action localization; action recognition; egocentric
vision; vision transformers; video understanding

1 Introduction

Identifying action instances in time and recognizing their categories, known as
temporal action localization (TAL), remains a challenging problem in video
understanding. Significant progress has been made in developing deep models
for TAL. Most previous works have considered using action proposals [36] or
anchor windows [50], and developed convolutional [85,56], recurrent [7], and
graph [4,75,78] neural networks for TAL. Despite a steady progress on major
benchmarks, the accuracy of existing methods usually comes at a price of mod-
eling complexity, with increasingly sophisticated proposal generation, anchor
design, loss function, network architecture, and output decoding process.

⋆ Work was done when visiting UW Madison.
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Fig. 1. An illustration of our Action-
Former. We propose a Transformer based
model to localize action instances in time
(top) by (1) classifying every moment into
action categories and (2) estimating their dis-
tances to action boundaries (bottom).

In this paper, we adopt a mini-
malist design and develop a Trans-
former based model for TAL, in-
spired by the recent success of
Transformers in NLP [64,19] and
vision [20,48,11]. Originally devel-
oped for sequence data, Transform-
ers use self-attention to model long-
range dependencies, and thus are a
natural fit for TAL in untrimmed
videos. Our method, illustrated in
Fig. 1, adapts local self-attention to
model temporal context in an in-
put untrimmed videos, classifies ev-
ery moment, and regresses their cor-
responding action boundaries. The
result is a deep model trained us-
ing standard classification and re-

gression loss, and can localize moments of actions in a single shot, without using
action proposals or pre-defined anchor windows.

Specifically, our model, dubbed ActionFormer, integrates local self-attention
to extract a feature pyramid from an input video. Each location in the output
pyramid represents a moment in the video, and is treated as an action candidate.
A lightweight convolutional decoder is further employed on the feature pyramid
to classify these candidates into foreground action categories, and to regress
the distance between a foreground candidate and its action onset and offset.
The results can be easily decoded into actions with their labels and temporal
boundaries. Our method thus provides a single-stage anchor-free model for TAL.

We show that such a simple model, with proper design, can be surprisingly
powerful for TAL. In particular, ActionFormer establishes a new state of the art
across several major TAL benchmarks, surpassing previous works by a significant
margin. For example, ActionFormer achieves 71.0% mAP at tIoU=0.5 on THU-
MOS14, outperforming the best prior model by 14.1 absolute percentage points.
Further, ActionFormer reaches an average mAP of 36.6% on ActivityNet 1.3.
More importantly, ActionFormer shows impressive results on EPIC-Kitchens 100
for egocentric action localization, with a boost of over 13.5 absolute percentage
points in average mAP.

Our work is based on simple techniques, supported by favourable empirical
results, and validated by extensive ablation experiments, at our best. Our main
contributions are summarized as follows. First, we are among the first to propose
a Transformer based model for single-stage anchor-free TAL. Second, we study
key design choices of developing Transformer models for TAL, and demonstrate
a simple model that works surprisingly well. Finally, our model achieves state-
of-the-art results across major benchmarks and offers a solid baseline for TAL.
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2 Related Works

Two-stage TAL. These approaches first generate candidate video segments
as action proposals, and further classify the proposals into actions and refine
their temporal boundaries. Previous works focused on action proposal genera-
tion, by either classifying anchor windows [9,22,8] or detecting action bound-
aries [38,36,47,26,84], and more recently using a graph representation [4,75] or
Transformers [59,13,66]. Others have integrated proposal generation and classifi-
cation into a single model [57,85,56,14]. More recent effort investigates the model-
ing of temporal context among proposals using graph neural networks [80,75,83]
or attention and self-attention mechanisms [89,52,58]. Similar to previous ap-
proaches, our method considers the modeling of long-term temporal context,
yet uses a self-attention within a Transformer model. Different from previous
approaches, our model detects actions without using proposals.

Single-stage TAL. Several recent works focused on single-stage TAL, seeking
to localize actions in a single shot without using action proposals. Many of them
are anchor-based (e.g., using anchor windows sampled from sliding windows).
Lin et al. [37] presented the first single-stage TAL using convolutional networks,
borrowing ideas from a single-stage object detector [44]. Buch et al. [7] presented
a recurrent memory module for single-stage TAL. Long et al. [50] proposed to
use Gaussian kernels to dynamically optimize the scale of each anchor, based
on a 1D convolutional network. Yang et al. [77] explored the combination of
anchor-based and anchor-free models for single-stage TAL, again using convo-
lutional networks. More recently, Lin et al. [35] proposed an anchor-free single-
stage model by designing a saliency-based refinement module incorporated in
convolutional network. Similar ideas were also explored in video grounding [81].

Our model falls into the category of single-stage TAL. Indeed, our formula-
tion follows a minimalist design of sequence labeling by classifying every moment
and regressing their action boundaries, previously discussed in [77,35]. The key
difference is that we design a Transformer network for action localization. The
result is a single stage anchor-free model that outperforms all previous meth-
ods. A concurrent work from Liu et al. [46] also used Transformer for TAL, yet
considered a set prediction problem similar to DETR [11].

Spatial-temporal Action Localization. A related yet different task, known
as spatial-temporal action localization, is to detect the actions both temporally
and spatially, in the form of moving bounding boxes of an actor. It is possible that
TAL might be used as a first step for spatial-temporal localization. Girdhar et al.
[25] proposed to use Transformer for spatial-temporal action localization. While
both our work and [25] use Transformer, the two models differ significantly. We
consider a sequence of video frames as the inputs, while [25] used a set of 2D
object proposals. Moreover, our work addresses a different task of TAL.

Object Detection. TAL models have been heavily influenced by the develop-
ments of object detection models. Some of our model design, including the mul-
tiscale feature representation and convolutional decoder, is inspired by feature
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pyramid network [39] and RetinaNet [40]. Our training using center sampling
also stems from recent single-stage object detectors [21,60,82].

Vision Transformer. Transformer models were originally developed for NLP
tasks [64], and has demonstrated recent success for many vision tasks. ViT [20]
presented the first pure Transformer-based model that can achieve state-of-the-
art performances on image classification. Subsequent works, including DeiT [61],
T2T-ViT [79], Swin Transformer [48], Focal Transformer [76] and PVT [69], have
further pushed the envelope, resulting in vision Transformer backbones with im-
pressive results on classification, segmentation, and detection tasks. Transformer
have also been explored in object detection [11,88,17,68], semantic segmenta-
tion [70,72,15], and video representation learning [3,49,23]. Our model builds on
these developments and presents one of the first Transformer models for TAL.

3 ActionFormer: A Simple Transformer Model for
Temporal Action Localization

Given an input video X, we assume that X can be represented using a set
of feature vectors X = {x1,x2, . . . ,xT } defined on discretized time steps t =
{1, 2, . . . , T}, where the total duration T varies across videos. For example, xt

can be the feature vector of a video clip at moment t extracted from a 3D
convolutional network. The goal of temporal action localization is to predict
the action label Y = {y1,y2, . . . ,yN} based on the input video sequence X.
Y consists of N action instances yi, where N also varies across videos. Each
instance yi = (si, ei, ai) is defined by its starting time si (onset), ending time
ei (offset) and its action label ai, where si ∈ [1, T ], ei ∈ [1, T ], ai ∈ {1, .., C}
(C pre-defined categories) and si < ei. The task of TAL is thus a challenging
problem of structured output prediction.

A Simple Representation for Action Localization. Our method builds on
an anchor-free representation for action localization, inspired by [77,35]. The
key idea is to classify each moment as either one of the action categories or
the background, and further regress the distance between this time step and
the action’s onset and offset. In doing so, we convert the structured output
prediction problem (X = {x1,x2, ...,xT } → Y = {y1,y2, . . . ,yN}) into a more
approachable sequence labeling problem

X = {x1,x2, ...,xT } → Ŷ = {ŷ1, ŷ2, ..., ŷT }. (1)

The output ŷt = (p(at), d
s
t , d

e
t ) at time t is defined as

• p(at) consists of C values, with each representing a binomial variable indi-
cating the probability of action category at (∈ {1, 2, . . . , C}) at time t. This
can be considered as the outputs of C binary classification.

• dst > 0 and det > 0 are the distance between the current time t to the action’s
onset and offset, respectively. dst and det are not defined if the time step t lies
on the background.
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Fig. 2. Overview of our ActionFormer. Our method builds a Transformer based model
to detect an action instance by classifying every moment and estimating action bound-
aries. Specifically, ActionFormer first extracts a sequence of video clip features, and
embeds each of these features. The embedded features are further encoded into a fea-
ture pyramid using a multi-scale Transformer (right). The feature pyramid is then
examined by shared classification and regression heads, producing an action candidate
at every time step. Our method provides a single-stage anchor-free model for temporal
action localization with strong performance across several datasets.

Intuitively, this formulation considers every moment t in the video X as an
action candidate, recognizes the action’s category at, and estimates the distances
between current step and the action boundaries (dst and det ) if an action presents.
Action localization results can be readily decoded from ŷt = (p(at), d

s
t , d

e
t ) by

at = argmax p(at), st = t− dst , et = t+ det . (2)

Method Overview. Our model — ActionFormer learns to label an input video
sequence f(X) → Ŷ. Specifically, f is realized using a deep model. ActionFormer
follows an encoder-decoder architecture proven successful in many vision tasks,
and decomposes f as h◦g. Here g : X → Z encodes the input into a latent vector
Z, and h : Z → Ŷ subsequently decodes Z into the sequence label Ŷ.

Fig. 2 presents an overview of our model. Importantly, our encoder g is pa-
rameterized by a Transformer network [64]. Our decoder h adopts a lightweight
convolutional network. To capture actions at various temporal scales, we de-
sign a multi-scale feature representation Z = {Z1,Z2, . . . ,ZL} forming a feature
pyramid with varying resolutions. Note that our model operates on a temporal
axis defined by feature grids rather than the absolute time, allowing it to adapt
to videos with different frame rates. We now describe the details of our model.

3.1 Encode Videos with Transformer

Our model first encodes an input video X = {x1,x2, . . . ,xT } into a multiscale
feature representation Z = {Z1,Z2, . . . ,ZL} using an encoder g. The encoder g
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consists of (1) a projection function using a convolutional network that embeds
each feature (xt) into a D-dimensional space; and (2) a Transformer network
that maps the embedded features to the output feature pyramid Z.

Projection. Our projection E is a shallow convolutional network with ReLU as
the activation function, defined as

Z0 = [E(x1),E(x2), . . . ,E(xT )]
T , (3)

where E(xi) ∈ RD is the embedded feature of xi. Adding convolutions before
a Transformer network was recently found helpful to better incorporate local
context for time series data [32] and to stabilize the training of vision Trans-
formers [71]. An position embedding [64] Epos ∈ RT×D can be optionally added.
However, we find that doing so will decrease the performance of the model, and
have thus removed position embeddings in our model by default.

Local Self-Attention. The Transformer network further takes Z0 as input. The
core of a Transformer is self-attention [64]. We briefly introduce the key idea to
make the paper self-contained. Concretely, self-attention computes a weighted
average of features with the weight proportional to a similarity score between
pairs of input features. Given Z0 ∈ RT×D with T time steps of D dimensional
features, Z0 is projected usingWQ ∈ RD×Dq ,WK ∈ RD×Dk , andWV ∈ RD×Dv

to extract feature representations Q, K, and V, referred to as query, key and
value respectively with Dk = Dq. The outputs Q, K, V are computed as

Q = Z0WQ, K = Z0WK , V = Z0WV . (4)

The output of self-attention is given by

S = softmax
(
QKT /

√
Dq

)
V, (5)

where S ∈ RT×D and softmax is performed row-wise. A multiheaded self-
attention (MSA) further adds several self-attention operations in parallel.

A main advantage of MSA is the ability to integrate temporal context across
the full sequence, yet such a benefit comes at the cost of computation. A vanilla
MSA has a complexity of O(T 2D+D2T ) in both memory and time, and is thus
highly inefficient for long videos. There has been several recent work on efficient
self-attention [73,5,67,16]. Here we adapt the local self-attention from [16] by
limiting the attention within a local window. Our intuition is the temporal con-
text beyond a certain range is less helpful for action localization. Such a local
self-attention significantly reduces the complexity to O(W 2TD+D2T ) with W
the local window size (≪ T ). Importantly, local self-attention is used in tandem
with the multiscale feature representation Z = {Z1,Z2, . . . ,ZL}, using the same
window size on each pyramid level. With this design, a small window size (19)
on a downsampled feature map (16x) will cover a large temporal range (304).

Multiscale Transformer. We now present the design of our Transformer en-
coder. Our Transformer has L Transformer layers with each layer consisting of
alternating layers of local multiheaded self-attention (MSA) and MLP blocks.
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Moreover, LayerNorm (LN) is applied before every MSA or MLP block, and
residual connection is added after every block. GELU is used for the MLP. To
capture actions at different temporal scales, a downsampling operator ↓(·) is
optionally attached. This is given by

Z̄ℓ = αℓ MSA(LN(Zℓ−1)) + Zℓ−1, Ẑℓ = ᾱℓ MLP(LN(Z̄ℓ)) + Z̄ℓ,

Zℓ = ↓(Ẑℓ), ℓ = 1 . . . L,
(6)

where Zℓ−1, Z̄ℓ, Ẑℓ ∈ RT ℓ−1×D and Zℓ ∈ RT ℓ×D. T ℓ−1/T ℓ is the downsampling
ratio. αℓ and ᾱℓ are learnable per-channel scaling factors as in [62].

The downsampling operator ↓ is implemented using a strided depthwise 1D
convolution due to its efficiency. We use 2x downsampling for our model. Our
Transformer block is shown in Fig. 2 (right). Our model further combines sev-
eral Transformer blocks with downsampling in between, resulting in a feature
pyramid Z = {Z1,Z2, . . . ,ZL}.

3.2 Decoding Actions in Time

Next, our model decodes the feature pyramid Z from the encoder g into the
sequence label Ŷ = {ŷ1, ŷ2, . . . , ŷT } using the decoder h. Our decoder is a
lightweight convolutional network with a classification and a regression head.

Classification Head. Given the feature pyramid Z, our classification head
examines each moment t across all L levels on the pyramid, and predicts the
probability of action p(at) at every moment t.4 This is realized using a lightweight
1D convolutional network attached to each pyramid level with its parameters
shared across all levels. Our classification network is implemented using 3 layers
of 1D convolutions with kernel size=3, layer normalization (for the first 2 layers),
and ReLU activation. A sigmoid function is attached to each output dimension
to predict the probability of C action categories. Adding layer normalization
slightly boosts the performance as we will demonstrate in our ablation.

Regression Head. Similar to our classification head, our regression head exam-
ines every moment t across all L levels on the pyramid. The difference is that the
regression head predicts the distances to the onset and offset of an action (dst ,
det ), only if the current time step t lies in an action. An output regression range is
pre-specified for each pyramid level. The regression head, again, is implemented
using a 1D convolutional network following the same design of the classification
network, except that a ReLU is attached at the end for distance estimation.

3.3 ActionFormer: Model Design

Putting things together, ActionFormer is conceptually simple: each feature on
the feature pyramid Z outputs an action score p(a) and the corresponding tem-
poral boundaries (s, e), which are then used to decode an action candidate.

4 Without loss of clarity, we drop the index of the pyramid ℓ.
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Notwithstanding the simplicity, we find that several key architecture designs are
important to ensure a strong performance. We discuss these design choices here.

Design of the Feature Pyramid. A critical component of our model is the de-
sign of the temporal feature pyramid Z = {Z1,Z2, . . . ,ZL}. The design choices
include (1) the number of levels within the pyramid; (2) the downsampling ratio
between successive feature maps; and (3) the output regression range of each
pyramid level. Inspired by the design of feature pyramid in modern object de-
tectors (FPN [39] and FCOS [60]), we simplify our design choices by using a 2x
downsampling of the feature maps, and roughly enlarging the output regression
range by 2 accordingly. We explore different design choices in our ablation.

Loss Function. Our model outputs (p(at), d
s
t , d

e
t ) for every moment t, including

the probability of action categories p(at) and the distances to action boundaries
(dst , d

e
t ). Our loss function, again following minimalist design, only has two terms:

(1) Lcls a focal loss [40] for C way binary classification; and (2) Lreg a DIoU
loss [87] for distance regression. The loss is defined for each video X as

L =
∑
t

(Lcls + λreg1ctLreg) /T+, (7)

where T+ is the total number of positive samples. 1ct is an indicator function that
denotes if a time step t is within an action, i.e., a positive sample. L is applied to
all levels on the output pyramid, and averaged across all video samples during
training. λreg is a coefficient balancing the classification and regression loss. We
set λreg=1 by default and study the choice of λreg in our ablation.

Importantly, Lcls uses Focal loss [60] to recognize C action categories. Focal
loss naturally handles imbalanced samples — there are much more negative
samples than positive ones. Moreover, Lreg adopts a differentiable IoU loss [55].
Lreg is only enabled when the current time step contains a positive sample.

Center Sampling. During training, we find it helpful to adapt a center sampling
strategy similar to [60,82], as we will show in our ablation study. Specifically,
when determining the positive samples, only time steps within an interval around
the center of an action are considered positive, where the duration of interval is
proportional to the feature stride of the current pyramid level ℓ. More precisely,
given an action centered at c, any time step t ∈ [c − αT/T ℓ, c + αT/T ℓ] at the
pyramid level ℓ is considered as positive, where α = 1.5. Center sampling does
not impact model inference, yet encourages higher scores around action centers.

3.4 Implementation Details

Training. Following [25], we use Adam [31] with warm-up for training. The
warm-up stage is critical for model convergence and good performance, as also
pointed out by [42]. When training with variable length input, we fix the max-
imum input sequence length, pad or cropped the input sequences accordingly,
and add proper masking for operations in the model. This is equal to training
with sliding windows as in [77]. Varying the maximum input sequence length
during training has little impact to the performance, as shown in our ablation.
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Inference. At inference time, we feed the full sequences into the model, as no
position embeddings are used in the model. Our model takes the input video X,
and outputs {(p(at), dst , det ))} for every time step t across all pyramid levels. Each
time step t further decodes an action instance (et = t− dst , st = t+ det , p(at)). et
and st are the onset and offset of the action, and p(at) is an action confidence
score. The result action candidates are further processed using Soft-NMS [6] to
remove highly overlapping instances, leading to the final outputs of actions.

Network Architecture. We used 2 convolutions for projection, 7 Transformer
blocks for the encoder (all using local attention and with 2x downsampling for
the last 5), and separate classification and regression heads as the decoder. The
regression range on each pyramid level was normalized by the stride of the fea-
tures. More details are presented in the appendix C.

4 Experiments and Results

We now present our experiments and results. Our main results include bench-
marks on THUMOS14 [29], ActivityNet-1.3 [10] and EPIC-Kitchens 100 [18].
Moreover, we provide extensive ablation studies of our model.

Evaluation Metric. For all datasets, we report the standard mean average
precision (mAP) at different temporal intersection over union (tIoU) thresh-
olds, widely used to evaluate TAL methods. tIoU is defined as the intersection
over union between two temporal windows, i.e., the 1D Jaccard index. Given a
tIoU threshold, mAP computes the mean of average prevision across all action
categories. An average mAP is also reported by averaging across several tIoUs.

Baseline and Comparison. For our main results on THUMOS14 [29] and
ActivityNet-1.3 [10]. We compare to a strong set of baselines, including both
two-stage (e.g., G-TAD [75], BC-GNN [4], TAL-MR [84]) and single-stage (e.g.,
A2Net [77], GTAN [50], AFSD [35], TadTR [46]) methods for TAL. Our close
competitors are those single-stage methods. Despite our best attempt for a fair
comparison, we recognize some of our baselines used different setups (e.g., video
features). Our experiment setup follows previous works [41,84]. And our intention
here is to compare our results to the best results previously reported.

4.1 Results on THUMOS14

Dataset. THUMOS14 [29] dataset contains 413 untrimmed videos with 20 cat-
egories of actions. The dataset is divided into two subsets: validation set and
test set. The validation set contains 200 videos and the test set contains 213
videos. Following the common practice [75,84,38,36], we use the validation set
for training and report results on the test set.

Experiment Setup. We used two-stream I3D [12] pretrained on Kinetics to
extract the video features on THUMOS14, following [41,84]. mAP@[0.3:0.1:0.7]
was used to evaluate our model. A window size of 19 was used for local self-
attention based on our ablation. Further details are described in the appendix C.
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Table 1. Results on THUMOS14 and ActivityNet1.3. We report mAP at
different tIoU thresholds. Average mAP in [0.3:0.1:0.7] is reported on THUMOS14 and
[0.5:0.05:0.95] on ActivityNet1.3. Best results are in bold and second best underlined.
Our method outperforms previous methods on THUMOS14 by a large margin, and
beats previous methods when using the same features on ActivityNet1.3.

Type Model Feature
THUMOS14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Two-Stage

BMN [36] TSN [65] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9
DBG [34] TSN [65] 57.8 49.4 39.8 30.2 21.7 39.8 — — — —
G-TAD [75] TSN [65] 54.5 47.6 40.3 30.8 23.4 39.3 50.4 34.6 9.0 34.1
BC-GNN [4] TSN [65] 57.1 49.1 40.4 31.2 23.1 40.2 50.6 34.8 9.4 34.3
TAL-MR [84] I3D [12] 53.9 50.7 45.4 38.0 28.5 43.3 43.5 33.9 9.2 30.2
P-GCN [80] I3D [12] 63.6 57.8 49.1 — — — 48.3 33.2 3.3 31.1
P-GCN [80]+TSP [2] R(2+1)D [63] 69.1 63.3 53.5 40.4 26.0 50.5 — — — —
TSA-Net [26] P3D [53] 61.2 55.9 46.9 36.1 25.2 45.1 48.7 32.0 9.0 31.9
MUSES [45] I3D [12] 68.9 64.0 56.9 46.3 31.0 — 50.0 35.0 6.6 34.0
TCANet [52] TSN [65] 60.6 53.2 44.6 36.8 26.7 44.3 52.3 36.7 6.9 35.5
TCANet [52] SlowFast [24] — — — — — — 54.3 39.1 8.4 37.6
BMN-CSA [58] TSN [65] 64.4 58.0 49.2 38.2 27.8 47.7 52.4 36.2 5.2 35.4
ContextLoc [89] I3D [12] 68.3 63.8 54.3 41.8 26.2 50.9 56.0 35.2 3.6 34.2
VSGN [83] TSN [65] 66.7 60.4 52.4 41.0 30.4 50.2 52.4 36.0 8.4 35.1
VSGN [83] I3D [12] — — — — — — 52.3 35.2 8.3 34.7
VSGN [83]+TSP [2] R(2+1)D [63] — — — — — — 53.3 36.8 8.1 35.9
RTD-Net [59] I3D [12] 68.3 62.3 51.9 38.8 23.7 49.0 47.2 30.7 8.6 30.8

Single-Stage

A2Net [77] I3D [12] 58.6 54.1 45.5 32.5 17.2 41.6 43.6 28.7 3.7 27.8
GTAN [50] P3D [53] 57.8 47.2 38.8 — — — 52.6 34.1 8.9 34.3
PBRNet [43] I3D [12] 58.5 54.6 51.3 41.8 29.5 — 54.0 35.0 9.0 35.0
AFSD [35] I3D [12] 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4
TadTR [46] I3D [12] 62.4 57.4 49.2 37.8 26.3 46.6 49.1 32.6 8.5 32.3
Ours I3D [12] 82.1 77.8 71.0 59.4 43.9 66.8 53.5 36.2 8.2 35.6
Ours+TSP [2] R(2+1)D [63] 73.4 67.4 59.1 46.7 31.5 55.6 54.7 37.8 8.4 36.6

To show that our method can adapt to different video features, we also consider
the pre-training method from [2] using an R(2+1)D network [63].

Results. Table 1 (left) summarizes the results. Our method achieves an average
mAP of 66.8% ([0.3 : 0.1 : 0.7]), with an mAP of 71.0% at tIoU=0.5 and an
mAP of 43.9% at tIoU=0.7, outperforming all previous methods by a large
margin (+14.1% mAP at tIoU=0.5 and +12.8% mAP at tIoU=0.7). Our results
stay on top of all single-stage methods, and also beats all previous two-stage
methods, including the latest ones from [84,52,33,58]. Note that our method
significantly outperforms the concurrent work of TadTR [46], which also designed
a Transformer model for TAL. With the combination of a simple design and
a strong Transformer model, our method establishes new state of the art on
THUMOS14, crossing the 65% average mAP for the first time.

4.2 Results on ActivityNet-1.3

Dataset. ActivityNet-1.3 [10] is a large-scale action dataset which contains 200
activity classes and around 20,000 videos with more than 600 hours. The dataset
is divided into three subsets: 10,024 videos for training, 4,926 for validation, and
5,044 for testing. Following the common practice in [38,36,75], we train our model
on the training set and report the performance on the validation set.
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Table 2. Results on EPIC-Kitchens 100 validation set. We report mAP at
different tIoU thresholds and the average mAP in [0.1:0.1:0.5]. All methods used the
same SlowFast features. Our method outperforms all baselines by a large margin.

Task Method 0.1 0.2 0.3 0.4 0.5 Avg

Verb
BMN [36,18] 10.8 9.8 8.4 7.1 5.6 8.4
G-TAD [75] 12.1 11.0 9.4 8.1 6.5 9.4
Ours 26.6 25.4 24.2 22.3 19.1 23.5

Noun
BMN [36,18] 10.3 8.3 6.2 4.5 3.4 6.5
G-TAD [75] 11.0 10.0 8.6 7.0 5.4 8.4
Ours 25.2 24.1 22.7 20.5 17.0 21.9

Experiment Setup. We used two-stream I3D [12] for feature extraction.Following
[38,36,75], the extracted features were downsampled into a fixed length of 160
using linear interpolation. For evaluation, we used mAP@[0.5:0.05:0.95] and also
reported the average mAP. A window size of 11 was used for local self-attention.
Further implementation details can be found in the appendix C. Moreover, we
combined external classification results from [86] following [84,75,4,80]. Similarly,
we consider the pre-training method from [2].

Results. Table 1 (right) shows the results. With I3D features, our method
reaches an average mAP of 35.6% ([0.5 : 0.05 : 0.95]), outperforming all pre-
vious methods using the same features by at least 0.6%. This boost is significant
as the result is averaged across many tIoU thresholds, including those tight ones
e.g., 0.95. Using the pre-training method from TSP [2] largely improves our re-
sults (36.6% average mAP). Our model thus outperforms the best method with
the same features [83] by a major margin (+0.7%). Again, our method outper-
forms TadTR [46]. Our results are worse than TCANet [52]—a latest two-stage
method using stronger SlowFast features [24] that are not publicly available. We
conjecture our method will also benefit from better features. Nonetheless, our
model clearly demonstrates state-of-the-art results on this challenging dataset.

4.3 Results on EPIC-Kitchens 100

Dataset. EPIC-Kitchens 100 is the largest egocentric action dataset. The dataset
contains 100 hours of videos from 700 sessions capturing cooking activities in
different kitchens. In comparison to ActivityNet-1.3, EPIC-Kitchens 100 has
less number of videos, yet many more instances per video (average 128 vs. 1.5
on ActivityNet-1.3). In comparison to THUMOS14, EPIC-Kitchens is 3 times
larger in terms of video hours and more than 10 times larger in terms of action
instances. These egocentric videos also include significant camera motion. This
dataset thus poses new challenges for TAL.

Experiment Setup. We used a SlowFast network [24] pre-trained on EPIC-
Kitchens for feature extraction. This model is provided by [18]. Our model was
trained on the training set and evaluated on the validation set. A window size
of 9 was used for local self-attention. For evaluation, we used mAP@[0.1:0.1:0.5]
and report the average mAP following [18]. In this dataset, an action is defined
as a combination of a verb (action) and a noun (object). As this dataset was
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recently released, we are only able to compare our methods to BMN [36] and
G-TAD [75], both using the same SlowFast features provided by [18]. Again,
implementation details are described in the appendix C.

Results. Table 2 presents the results. Our method achieves an average mAP
([0.1:0.1:0.5]) of 23.5% and 21.9% for verb and noun, respectively. Our results
again largely outperform the strong baselines of BMN [36] and G-TAD [75] by
over 13.5% in absolute percentage points. An interesting observation is that the
gaps between our results and BMN / G-TAD are much larger on EPIC-Kitchens
100. A possible reason is that ActivityNet has a small number of actions per video
(1.5), leading to imbalanced classification for our model; only a few moments
(around the action center) are labeled positive while all rest are negative.

We adapt ActionFormer for EPIC-Kitchens 100 2022 Action Detection chal-
lenge. By combining features from SlowFast [24] and ViViT [3], ActionFormer
achieves 21.36% / 20.95% average mAP for actions on the validation / test set.
Our results ranked 2nd with a gap of 0.32 average mAP to the top solution.

4.4 Ablation Experiments

We conduct extensive ablations on THUMOS14 to understand our model design.
Results are reported using I3D features with a fixed random seed for training.
Further ablations on loss weight, maximum input length during training, input
temporal feature resolution and error analysis can be found in the appendix A.

Baseline: A Convolutional Network. Our ablation starts by re-implementing
a baseline anchor-free method (AF Base) as described in [77,35] (Table 3a row
1-2). This baseline shares the same action representation as our model, yet uses
a 1D convolutional network as the encoder. We roughly match the number of
layers and parameters of this baseline to our model. See the appendix C for
more details. This baseline achieves an average mAP of 46.6% on THUMOS14
(Table 3a row 3), outperforms the numbers reported in [35] by 6.2%. We attribute
the difference to variations in architectures and training schemes. This baseline,
when using score fusion, reaches 52.9% average mAP (Table 3a row 4).

Transformer Network. Our next step is to simply replace the 1D convolutional
network with our Transformer model using vanilla self-attention. This model
achieves an average mAP of 62.7% (Table 3a row 5) — a major boost of 16.1%.
We note that this model already outperforms the best reported results (56.9%
mAP at tIoU=0.5 from [45]). This result shows that our Transformer model is
very powerful for TAL, and serves as the main course of performance gain.

Layer Norm, Center Sampling, Position Encoding, & Score Fusion. We
further add layer norm in the classification and regression heads, apply center
sampling during training, and explore position encoding as well as score fusion
(Table 3a row 6-9). Adding layer norm boosts the average mAP by 2.7%, and
using center sampling further improves the performance by 1.4%. The commonly
used position encoding, however, does not bring performance gain. We postulate
that our projection using convolutions as well as the depthwise convolutions in
our Transformer blocks already leak the location information, as also pointed
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Table 3. Ablation studies on THUMOS14. We report mAP at tIoU=0.5 and 0.7, and
the average mAP in [0.3 : 0.1 : 0.7]. Results are without score fusion unless specified.

Method Backbone LN CTR PE Fusion 0.5 0.7 Avg
AF Base [77] Conv 36.6 15.0 34.2
AF Base [35] Conv 31.0 19.0 40.4
AF Base (Our Impl) Conv 48.0 29.4 46.6
AF Base (Our Impl) Conv ✓ 54.6 33.4 52.9
Ours Trans 66.8 38.4 62.7
Ours Trans ✓ 69.0 43.0 65.4
Ours Trans ✓ ✓ ✓ 70.4 43.6 66.7
Ours Trans ✓ ✓ ✓ 66.0 41.7 62.1
Ours Trans ✓ ✓ 71.0 43.9 66.8
Ours (win size=19) Trans ✓ ✓ 71.0 43.9 66.8

(a) Model Design: We start from a baseline 1D convolutional
network (AF Base), and gradually replace convolutions with our
Transformer model, add layer norm to heads (LN), enable center
sampling during training (CTR), explore position encoding (PE),
and fuse classification scores (Fusion).

Method Win Size 0.5 0.7 Avg GMACs Time

AF Base N/A 48.0 29.4 46.6 45.6 1.0x

Ours 9 70.5 42.7 66.5 45.2 2.0x
Ours 19 71.0 43.9 66.8 45.3 2.0x
Ours 25 70.3 43.9 66.4 45.4 2.0x
Ours 37 71.0 43.1 66.7 45.5 2.0x
Ours Full 71.0 43.9 66.8 57.8 2.2x

(b) Local Window Size: We additionally report MACs
and normalized run time by varying the local window
size for self-attention in our model, using an input of
2304 time steps (5 minutes on THUMOS14). Time is
normalized by setting AF Base to 1.0x.

Method # Levels Init Range 0.5 0.7 Avg

Ours 1 [0, +∞) 51.8 15.8 47.6

Ours 3 [0, 4) 64.4 31.5 60.1
Ours 3 [0, 8) 61.4 30.0 57.6
Ours 3 [0, 16) 54.2 19.2 50.2

Ours 4 [0, 4) 67.4 39.7 63.7
Ours 5 [0, 4) 70.2 42.2 65.5
Ours 6 [0, 4) 71.0 43.9 66.8
Ours 7 [0, 4) 70.6 43.2 66.2

(c) Design of Feature Pyramid: We vary (1) the
number of pyramid levels and (2) the initial regres-
sion range, and report mAP and the average mAP.

out in [72]. Further fusing the classification scores will decrease the largely per-
formance. As a reference, when replacing the vanilla self-attention with a local
version (window size=19), the average mAP remains the same.

Window Size for Local Self-Attention. Next, we study the effects of window
size for local self-attention in our model. We vary the window size, re-train the
model, and present both model accuracy, complexity (in GMACs), and run time
in Table 3b. All results are reported without score fusion. Due to our design of
a multiscale feature pyramid, even using the global self-attention only leads to
26% increase in MACs when compared to the baseline convolutional network.
Reducing the window size cuts down the MACs yet maintains a similar accuracy.
In addition to MACs, we also evaluate the normalized run time of these models
on GPUs, where the base convolutional model is set to 1.0x. In spite of similar
MACs, Transformer-based models are roughly 2x slower in run time compared
to a convolution-based model (AF Base). It is known that self-attention is not
easily parallelizable on GPUs. Also, our current implementation of Transformer
used PyTorch primitives [51] without leveraging customized CUDA kernels.

Feature Pyramid. Further, we study the design of the feature pyramid. As
discussed in Sec. 3.3, our design space is specified by (1) the number of pyramid
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Fig. 3. Visualization of our results. From top to bottom: (1) input video frames; (2)
action scores at each time step; (3) histogram of action onsets and offsets computed
by weighting the regression outputs using action scores. See more in the appendix D

levels and (2) an initial regression range for the first pyramid level. We vary
these parameters and report results in Table 3c. We follow our best design with
a local window size=19 and layer norm, and center sampling.

First, we disable the feature pyramid and attach the heads to the feature
map with the highest resolution. This is done by setting the number of pyramid
to 1 with an initial regression range of [0, +∞), Removing the feature pyramid
results in a major performance drop (-19.3% in average mAP), suggesting that
using feature pyramid is critical for our model. Next, we set the number of
pyramid levels to 3 and experiment with different initial regression ranges. The
best results are achieved with the range of [0, 4). Further increase of the range
decreases the mAP scores. Finally, we fix the initial regression range to [0, 4) and
increase the number of pyramid levels. The performance of our method generally
increases with more pyramid levels, yet is saturated when using 6 levels.

Result Visualization. Finally, we visualize the outputs of our model (before
Soft-NMS) in Fig. 3, including the action scores, and the regression outputs
weighted by the action scores (as a weighted histogram). Our model outputs a
strong peak near the center of an action, potentially due to the employment of
center sampling during training. The regression of action boundaries seems less
accurate. We conjecture that our regression heads can be further improved.

5 Conclusion and Discussion

In this paper, we presented ActionFormer—a Transformer-based method for
temporal action localization. ActionFormer has a simple design, falls into the cat-
egory of single-stage anchor-free method, yet achieves impressive results across
several major TAL benchmarks including THUMOS14, ActivityNet-1.3, and the
more recent EPIC-Kitchens 100 (egocentric videos). Through our experiments,
we showed that the power of ActionFormer lies in our orchestrated design, in
particular the combination of local self-attention and a multiscale feature repre-
sentation to model longer range temporal context in videos. We hope that our
model, notwithstanding its simplicity, can shed light on the task of temporal
action localization, as well as the broader field of video understanding.



ActionFormer: Localizing Moments of Actions with Transformers 15

6 Appendix

In the appendix, we describe (1) additional ablation experiments (Sec. A); (2)
further error analysis of our results (Sec. B); (3) implementation details and
how to reproduce our results (Sec. C); (4) additional visualizations of our results
(Sec. D); and (5) limitation of our approach and furture directions (Sec. E). For
sections, figures, tables, and equations, we use numbers (e.g.,, Sec. 1) to refer to
the main paper and capital letters (e.g.,, Sec. A) to refer to this appendix.

A Additional Ablation Experiments

Here we present additional ablation experiments, as mentioned in Sec. 4.4 of the
main paper. These are omitted from the main paper due to lack of space. All
experiments are reported on THUMOS14, consistent with our ablation exper-
iments in the main paper. We follow our best design and use a local window
size=19 with layer norm, center sampling, and score fusion enabled.

Loss Weight. We provide additional ablation on the loss weight λreg in Eq.
7. Specifically, we varied the loss weight λreg ∈ [0.2, 0.5, 1, 2, 5], retrained the
model, and reported the mAP scores. The results are presented in Table A. For
a large range of λreg, our model has quite stable results with a maximum gap
of 1.4% in average mAP. λreg = 1 yields the best results, as we used in all our
experiments.

Table A. Ablation study on loss weight. We report mAP at tIoU=0.5 and 0.7,
and the average mAP in [0.3 : 0.1 : 0.7] on THUMOS14 by varying the loss weight
λreg in Eq. 7.

Method λreg 0.5 0.7 Avg

Ours 0.2 69.7 40.9 65.6
Ours 0.5 71.3 42.4 66.7
Ours 1 71.0 43.9 66.8
Ours 2 69.5 43.9 66.2
Ours 5 69.1 43.0 65.4

Maximum Input Sequence Length during Training. A possible explana-
tion of our superior results is that our model might benefit from training using a
long sequence (2304 time steps as in our previous experiments). Here we examine
the effects of maximum input sequence length during training. Table B reports
mAP scores for different training sequence lengths. The results of our model re-
main fairly consistent even with much shorter input sequence length. Note that
when truncating an input sequence, our training scheme is equal to training with
sliding windows as in [77]. The differences are (1) the windows are dynamically
sampled rather than pre-generated; (2) windows without foreground actions are
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removed. When using a input sequence length of 512, similar to what was con-
sidered in [77] (512), our method only has a minor drop in average mAP (-1.1%)
and significantly outperforms [77].

Table B. Ablation study on maximum input sequence length during train-
ing. We report mAP at tIoU=0.5 and 0.7, and the average mAP in [0.3 : 0.1 : 0.7] on
THUMOS14 by varying the maximum input length Tmax for training.

Method Tmax 0.5 0.7 Avg

Ours 576 69.6 42.5 65.7
Ours 1152 71.0 42.7 66.3
Ours 2304 71.0 43.9 66.8

Temporal Feature Resolution. Some of the previous works considered video
features with lower temporal resolution. For example, a feature stride of 8 was
used by PGCN [80] and ContextLoc [89]. To understand the effects of tempo-
ral feature resolution, we downsample our input I3D features and study the
performance variation when using different feature strides. Table C report the
results. When using a lower resolution (stride=8), the results of our model only
drop slightly (-0.5% in average mAP). Further reducing the resolution (e.g.,,
stride=16) leads to larger performance degradation, yet our results remains
favourable.

Table C. Ablation study on temporal feature resolution. We report mAP at
tIoU=0.5 and 0.7, and the average mAP in [0.3 : 0.1 : 0.7] on THUMOS14 by varying
the feature stride.

Method stride 0.5 0.7 Avg

Ours 4 71.0 43.9 66.8
Ours 8 69.8 43.9 66.3
Ours 16 65.8 38.4 61.9

B Further Error Analyses

We present further analyses of our results on THUMOS14 using the tool provided
by [1]. We refer the readers to [1] for more details.

Metrics. In [1], several characteristic metrics were defined given a dataset (e.g.,
THUMOS14), including coverage, length, and the number of instances. Specifi-
cally, coverage presents the relative length of the actions (compared to the whole
video), categorized into five bins: Extra Small (XS: (0, 0.02]), Small (S: (0.02,
0.04]), Medium (M: (0.04, 0.06]), Large (L:(0.06, 0.08]), and Extra Large (XL:
(0.08, 1.0]). Length denotes the absolute length (in seconds) of actions, organized
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Fig.A. False negative (FN) profiling of our results on THUMOS14 using [1]. This
figure shows the FN rates under different video contents. From this figure we can find
that our model will suffer from extra short or extra long instances. Also, our model
will suffer from video inputs which have a large number of action instances.
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Fig. B. Sensitive analysis of our results on THUMOS14 using [1]. Left : normalized
mAP at tIoU=0.5 under different video contents. Right : The relative normalized mAP
change at tIoU=0.5 with respect to different characteristics of the ground truth in-
stances.

into five length groups: Extra Small (XS: (0, 3]), Small (S: (3, 6]), Medium (M:
(6, 12]), Long (L: (12, 18]), and Extra Long (XL: > 18). Moreover, number of
instances refers to the total count of instances (from the same class) in a video.
This number is further divided into four parts, including Extra Small (XS: 1);
Small (S: [2, 40]); Medium (M: [40, 80]); Large (L: > 80).

Results and Analyses. Fig. A presents the false negative profiling. In Fig.
A, we breakdown the false negative rates under the different coverage, length,
and the number of instances. Our results have similar false negative rates across
different coverage categories, yet have much higher false negative rates on action
instances that are either very shot or very long (length), and on videos that
contains many action instances (#instances). These action instances and videos
are naturally more challenging.

Fig. B presents the sensitivity analysis of our results, i.e.,, normalized mAP
at tIoU=0.5 under different characteristic metrics (left) and the variance of mAP
across categories (right). Our model performs better on simple context scenarios,
including XS/S/M/L coverage, S/M length and XS #instances, and worse on
more complicated scenarios. The trend is similar to the false negative profiling
in Fig. A. Moreover, our model is robust across different categories in coverage,
length and #instances with small variances.
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Fig. C. False positive (FP) profiling of our results on THUMOS14 using [1]. Left :
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C Implementation Details

We now present implementation details including the network architecture, train-
ing and inference. Further details can be found in our code.

Network Architecture. We present our network architecture in Table D, as
described in Sec. 3. In the ablation study (Sec. 4), we also considered a baseline
that replaces the Transformer Units in Table D with convolution blocks, following
the design of a bottleneck block in ResNet [27]. Specifically, a stack of three 1D
convolutional layers were used. The kernel size of three convolutional layers were
1, 3 and 1, respectively. The expansion factor of the bottleneck block was 2. We
added an extra strided convolutional layer with kernel size=1 and stride=2 to
perform downsampling when necessary.

Training Details. For training, we considered both fixed length inputs (Ac-
tivityNet) and variable length inputs (THUMOS14, ActivityNet, and EPIC-
Kitchens 100). For variable length inputs, we capped the input length to 2304
(around 5 minutes on THUMOS14 and around 20 minutes on EPIC-Kitchens
100), and randomly selected a subset of consecutive clips from an input video. Po-
sition embedding was disabled by default except for ActivityNet. Model EMA [28]
and gradient clipping were also implemented to further stabilize the training. Hy-
perparameters were slightly different across datasets and discussed later in our
experiment details.

Inference Details. For fixed length inputs (ActivityNet-1.3), we fed the full
sequence into our model. For variable length inputs (THUMOS14 and EPIC-
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Table D. The architecture of our model. Our network consists of (1) a Trans-
former encoder (first row block) and (2) a lightweight convolutional decoder with the
classification / regression heads (last row block). For each layer, we list the layer name,
layer parameters, the input to the layer, and the output feature size. We also include
its regression range (in seconds for THUMOS14 and EPIC-Kitchens 100 and in number
of time steps for ActivityNet-1.3). For convolutional layers, k is the kernel size of 1D
convolutions and s is the stride, and ci, co is the input and output feature channel,
respectively. For Transformer Unit, ds is the downsampling ratio. T is the temporal
length of input sequence and D is the input feature dimension. For classification head,
the output dimension is the number of action categories. For regression head, the out-
put dimension is 2, i.e.,, distances to action onset and offset.

Name Layer Input
Output Size

(T × D)
Regression

Range

encoder

input clip - - T×D -
projection1 conv k=3, s=1 (ci = D, co = 512) input clip T × 512 -
projection2 conv k=3, s=1 (ci = 512, co = 512) projection1 T × 512 -

transformer0 Transformer Unit, ds=1 projection2 T × 512 -
transformer1 Transformer Unit, ds=1 transformer0 T × 512 [0, 4)
transformer2 Transformer Unit, ds=2 transformer1 T/2 ×512 [4, 8)
transformer3 Transformer Unit, ds=2 transformer2 T/4 ×512 [8, 16)
transformer4 Transformer Unit, ds=2 transformer3 T/8 ×512 [16, 32)
transformer5 Transformer Unit, ds=2 transformer4 T/16 ×512 [32, 64)
transformer6 Transformer Unit, ds=2 transformer5 T/32 ×512 [64, +∞)

decoder
(heads)

cls / reg nets
conv k=3, s=1 (ci = 512, co = 512) transformer1,...,transformer6 [T/32×512,. . ., T×512] -
conv k=3, s=1 (ci = 512, co = 512) transformer1,...,transformer6 [T/32×512,. . ., T×512] -

conv k=3, s=1 (ci = 512, co = output) transformer1,...,transformer6 [T/32×output,. . ., T×output] -

Kitchens 100), we sent the full sequence into the model. When using position
embeddings in our ablation study, we adopted the technique from [20]. Specifi-
cally, for input sequences shorter than the training sequence length (2304), we
fed the full sequence into our model and clipped the position embedding using
the actual length of the video. For input sequences longer than the training se-
quence length, we again fed the full sequence into our model, yet used linear
interpolation to upsample the position embeddings.

Score Fusion. For our experiments on THUMOS14 and ActivityNet-1.3, we
sometimes consider score fusion using external classification scores. Specifically,
given an input video, the top-2 video-level classes given by external classification
scores were assigned to all detected action instances in this video, where the ac-
tion scores from our model were multiplied with the external classification scores.
Each detected action instance from our model thus creates two action instances.
We refer the readers to [80] (Appendix E) for a more detailed description of the
score fusion strategy.

Experiment Details. Our experiment details vary across datasets, as each
dataset includes videos of different resolution and frame rate, and considers dif-
ferent types of features. We now describe our experiment details for THUMOS14,
ActivityNet-1.3, and EPIC-Kitchens 100.

• THUMOS14: We used two-stream I3D [12] pretrained on Kinetics to ex-
tract the video features on THUMOS14, following [41,84]. We fed 16 con-
secutive frames as the input to I3D, used a sliding window with stride 4
and extracted 1024-D features before the last fully connected layer. The
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two-stream features were further concatenated (2048-D) as the input to our
model. mAP@[0.3:0.1:0.7] was used to evaluate our model. Our model was
trained for 50 epochs with a linear warmup of 5 epochs. The initial learning
rate was 1e-4 and a cosine learning rate decay is used. The mini-batch size
was 2, and a weight decay of 1e-4 was used.

• ActivityNet-1.3: We used two-stream I3D [12] and TSP [2] for feature
extraction, and increased the stride of the sliding window to 16. Following
[38,36,75], the extracted features were downsampled into a fixed length of 160
and 192 using linear interpolation for I3D and TSP features, respectively. For
evaluation, we usedmAP@[0.5:0.05:0.95] and also reported the averagemAP.
Our model was trained for 15 epochs with a linear warmup of 5 epochs. The
learning rate was 1e-3, the mini-batch size was 16, and the weight decay was
1e-4. For ActivityNet, we find it is helpful to train our model to generate
proposals by considering all actions from a single category, and then use
external classification scores for the recognition. This strategy was also used
in previous single-stage TAL methods [35].

• EPIC-Kitchens 100: We used a SlowFast network [24] pre-trained on
EPIC-Kitchens for feature extraction. This model is provided by [18]. We
fed 32 frame window with a stride of 16 to extract 2304-D features. Our
model was trained on the training set and evaluated on the validation set.
A window size of 9 was used for local self-attention. For evaluation, we used
mAP@[0.1:0.1:0.5] and report the average mAP following [18]. Our model
was trained for 30 epochs with learning rate 1e-4, mini-batch size 2, and
weight decay of 1e-4.

Reproducibility of Our Results. All results reported in the paper were ob-
tained with the same random seed using PyTorch 1.10, CUDA 10.2 and CUDNN
7.6.5 on an NVIDIA Titan Xp GPU, using deterministic GPU computing rou-
tines. On the same machine, our code will always produce the same results when
using the same random seed. Across machines/GPUs and computing environ-
ments, we have observed minor variation of average mAP scores (up to 0.5%
average mAP on THUMOS, less than 0.2% average mAP on ActivityNet, and
under 0.8% average mAP on EPIC Kitchens), yet those minor variations do not
erode the clear performance gains of our method. Our code is made publicly
available.

D Additional Visualizations

Further, we present more visualizations of our results in Fig. D, extending Fig.
3 of the main paper. Our model is able to detect the occurrence of actions
and estimate their temporal boundaries for the most of the cases (see the first
column of Fig. D). The major failure modes of our model, as demonstrated in
the second column of Fig. D, include (1) incorrect classification of action centers,
i.e., background confusion (classification errors); (2) inaccurate regression of the
action’s onset and offset (localization errors). We plan to address these issues in
our future work.
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Fig.D. More visualization of our outputs. For each item from top to bottom: (1) the
input video frames; (2) action scores at each time step; (3) histogram of action onsets
and offsets computed by weighting the regression outputs using the action scores. Left :
successful cases; Right : failure cases. This figure is best viewed in color and when
zoomed in.

E Limitations and Future Work

A main limitation of our method is the use of pre-extracted video features,
also faced by many previous approaches. Another limitation is the need for
many human labeled videos for training and the constraint of a pre-defined
vocabulary of actions. Interesting future directions include pre-training for action
localization [2,74], and learning from videos and text corpus [54,30] without
human labels.
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