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Abstract

Actionness [3] was introduced to quantify the likelihood

of containing a generic action instance at a specific lo-

cation. Accurate and efficient estimation of actionness is

important in video analysis and may benefit other rele-

vant tasks such as action recognition and action detection.

This paper presents a new deep architecture for actionness

estimation, called hybrid fully convolutional network (H-

FCN), which is composed of appearance FCN (A-FCN)

and motion FCN (M-FCN). These two FCNs leverage the

strong capacity of deep models to estimate actionness maps

from the perspectives of static appearance and dynamic mo-

tion, respectively. In addition, the fully convolutional na-

ture of H-FCN allows it to efficiently process videos with

arbitrary sizes. Experiments are conducted on the chal-

lenging datasets of Stanford40, UCF Sports, and JHMDB

to verify the effectiveness of H-FCN on actionness estima-

tion, which demonstrate that our method achieves superior

performance to previous ones. Moreover, we apply the esti-

mated actionness maps on action proposal generation and

action detection. Our actionness maps advance the current

state-of-the-art performance of these tasks substantially.

1. Introduction

Action understanding in videos is an important prob-

lem in computer vision and has received extensive research

attention in this community rencently. Most of the re-

search works focused on the problem of action classifica-

tion [7, 9, 22, 37, 38, 41], which aims at predicting an ac-

tion label given a video. State-of-the-art classification meth-

ods [30, 36, 40, 42] have achieved relatively good perfor-

mance on several challenging datasets, such as HMDB51

[20] and UCF101 [32]. However, these classification meth-

ods are only able to answer “is there an action of certain

type present in the video”, but fail to provide the informa-

tion about “where is it if there is an action in the video”. To

overcome this limitation, the problem of action detection

has been studied by several recent works [11, 13, 34, 39],
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Figure 1. An example of actionness maps. Our Hybrid-FCN

(H-FCN) is composed of Appearance-FCN (A-FCN) and Motion-

FCN (M-FCN). A-FCN captures appearance information from

static RGB image, while M-FCN extract motion cues from opti-

cal flow fields. The two FCNs are complementary to each other

for the task of actionness estimation.

but these methods still perform relatively poorly on the re-

alistic datasets, such as UCF Sports [26] and JHMDB [14].

For action detection in videos, we need to estimate

bounding boxes of the action of interest at each frame,

which together form a spatio-temporal tube in the in-

put video. Sliding window becomes computationally pro-

hibitive due to the huge numbers of candidate windows

in the video space. For example, give a video of size

W ×H × T , the number of possible boxes for each frame

is around O((WH)2) and the number of possible tubes for

the video is as large as O((WH)2T ). Motivated by fast

object detection using proposals [10], the idea of “action

proposal” [25, 46] has been introduced for efficient action

detection [11, 13]. Like object proposal algorithms, most of

these methods depend on low-level visual cues, such as spa-

tial edges and motion boundaries, and generate action can-

didates by hierarchically merging super-voxels [44]. There-

fore, these methods usually require heuristic designs and

sophisticated merging algorithms, which are difficult to be

optimized for action detection and may be sensitive to input
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noise. Besides, a large amount of candidate regions (around

0.1K-1K) are usually generated by these methods for each

frame, which still leads to large computational cost in the

subsequent processing.

In this paper we focus on a more general problem regard-

ing action understanding and try to estimate the interesting-

ness maps of generic action given the raw frames, called

as actionness estimation [3]. Each value of the actionness

maps describes the confidence of containing an action in-

stance at this place, where higher value indicates larger

probability. According to the recent work [3], from the per-

spective of computer vision, action is defined as intentional

bodily movement of biological agents (such as people,

animals). Therefore, there are two important visual cues for

actionness estimation: appearance and motion. Appearance

information is helpful to locate the biological agents, while

motion information contributes to detect bodily movements.

In addition, the visual cues of appearance and motion are

complementary to each other and fusing them may lead to

more accurate actionness estimation.

To accomplish the goal of actionness estimation, we pro-

pose a two-stream fully convolutional architecture to trans-

form the raw videos into the map of actionness, called as

hybrid fully convolutional network (H-FCN). Our H-FCN is

composed of two separate neural networks: (i) appearance

fully-convolutional network (A-FCN), taking RGB image

as input, which captures the spatial and static visual cues,

(ii) motion fully-convolutional neural network (M-FCN),

using optical flow fields as input, that extracts the tem-

poral and motion information. The actionness maps from

these two different FCNs are complementary to each other

as shown in Figure 1. Each FCN is essentially a discrim-

inative network trained in an end-to-end and pixel-to-pixel

manner. By using fully-convolutional architecture, our H-

FCN allows for input with arbitrary size and produces the

actionness map of corresponding size.

Specifically, we adopt the contemporary classification

networks (ClarifaiNet [49]) into fully-convolutional archi-

tecture and transfer the pre-trained model parameters from

the large dataset (e.g. ImageNet [5], UCF101 [32]) to the

task of actionness estimation by fine tuning. We verify the

performance of H-FCN for actionness estimation on both

images and videos. For image data, there is no motion in-

formation available and we only use the A-FCN to produce

the actionness map on the dataset of Stanford40 [45]. For

video data with human movement, we use the H-FCN to

estimate the actionness on the datasets of UCF Sports [26]

and JHMDB [14]. The experimental results on these two

datasets demonstrate that our proposed actionness estima-

tion method outperforms previous methods.

Moreover, actionness map can be viewed as a new kind

of feature and could be exploited to assist many video based

tasks such as action classification, action detection, and ac-

tor tracking. In this paper we incorporate our estimated ac-

tionness maps into the successful RCNN-alike [10] detec-

tion framework to perform action detection in videos. We

first design a NMS score sampling method to produce action

proposals based on actionness maps for each frame. Then,

we choose the two-stream convolutional networks [30] as

classifiers to perform action detection. We extensively eval-

uate the effectiveness of our proposed method on two tasks:

action proposal generation on the datasets of Stanford 40

[45] and JHMDB [14], and action detection on the dataset

of JHMDB [14].

2. Related Works

Actionness and action proposals. Chen et al. [3] first

studied the problem of actionness from the philosophical

and visual perspective of action. They proposed Lattice

Conditional Ordinal Random Fields to rank actionness. Our

definition of actionness is consistent with theirs but we in-

troduce a new method called hybrid fully convolutional net-

works to estimate actionness. Besides, we further apply

our actionness map for the task of action detection. Mo-

tivated by object proposals in images [1, 35], several meth-

ods have been developed to generate action proposals in

video domain [4, 25, 46, 13]. Most of these methods gener-

ated action proposals based on low-level segmentation and

hierarchically merge super-voxels [44] in spatio-temporal

domain. However, video segmentation itself is a difficult

problem and still under research. Yu et al. [46] exploited

human and motion detection algorithms to generate candi-

date bounding boxes as action proposals. Our method does

not rely on any pre-processing technique and directly trans-

form raw images into actionness map with fully convolu-

tional networks.

Action detection. Action detection has been compre-

hensively studied in previous works [21, 18, 47, 34, 39, 13,

11, 24]. Methods in [47, 21] used Bag of Visual Words

(BoVWs) representation to describe action and utilized slid-

ing window scheme for detection. Ke et al. [18] utilized

global template matching with the volume features for event

detection. Lan et al. [21] resorted to latent learning to lo-

cate action automatically. Tian et al. [34] extended the

2D deformable part model to 3D cases for localizing ac-

tions and Wang et al. [39] proposed a unified approach

to perform action detection and pose estimation by using

dynamic-poselets and modeling their relations. Lu et al.

[24] proposed a MRF framework for human action segmen-

tation with hierarchical super-voxel consistency. Jain et al.

[13] produced action proposals using super-voxels and uti-

lized hand-crafted features. Gkioxari et al. [11] proposed

a similar proposal-based action detection method, but re-

placed hand-crafted features with deep-learned representa-

tions. Our method focuses on actionness estimation and

is complementary to these proposal-based action detection
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Figure 2. Pipeline of our approach. We propose a new architecture, called hybrid full convolutional network (H-FCN), for the task of

actionness estimation. H-FCN contains two parts, namely appearance fully convolutional network (A-FCN) and motion fully convolutional

network (F-FCN), which captures the visual cues from the perspectives of static appearance and dynamic motion, respectively. Based the

estimated actionness maps, we design a RCNN-alike [10] action detection system, by first using actionness to generate action proposals

and then applying two-stream convolutional networks to classify these proposals.

methods in sense that our actionness map can be used to

generate proposals.

Fully convolutional networks. Convolutional neural

networks (CNNs) have achieved remarkable successes for

various tasks, such as object recognition [19, 31, 33, 49],

event recognition [43, 8], crowd analysis [27, 28] and so

on. Recently, several attempts have been made in applying

CNN for action recognition from videos [30, 17, 40, 50].

Fully convolutional networks (FCN) were originally intro-

duced for the task of semantic segmentation in images [23].

One advantage of FCN is that it can take input of arbitrary

size and produce semantic maps of corresponding size with

efficient inference and learning. To our best knowledge, we

are the first to apply FCN into video domain for actionness

estimation. In particular, we propose an effective hybrid

fully convolutional network which leverages both appear-

ance and motion cues for detecting actionness.

3. Our Approach

In this section, we introduce our approach for actionness

estimation and show how to apply actionness maps for ac-

tion proposal generation and action detection. In particu-

lar, a brief introduction of fully convolutional networks is

firstly described as preparation. Then, we propose hybrid

fully convolutional networks to estimate the actionness map

from raw frames and optical flow fields. Finally, based on

the estimated actionness maps, we develop a RCNN-alike

[10] framework for action detection in videos.

3.1. Fully convolutional networks

The feature map processed in each convolutional layer

of CNN can be seen as a three-dimensional volume of size

h × w × c, where h and w are the height and width of the

map respectively, and c is the number of map channels (fil-

ters). The input of CNN is a raw image, with h × w pixels

and c colors. The basic components in CNN contain convo-

lutional operation, pooling operation, and activation func-

tion. These basic operations are performed at specific local

regions and their parameters are shared across the whole

spatial domain of input image or feature map. Hence, this

structure allows CNN to have the desired property of trans-

lation invariance.

Let f ti,j ∈ R
ct denote the feature vector at location (i, j)

in a particular layer t, and f
t+1
i,j be the feature vector of fol-

lowing layer t + 1 at location (i, j). Then, we obtain the

following formula for the basic calculation:

f
t+1
i,j = hk,s({f tsi+∆i,sj+∆j}0≤∆i,∆j≤k), (1)

where k is the kernel size, s is the stride, and hk,s deter-

mines the layer type: matrix multiplication for convolu-

tional layer, average or max operation for pooling layer,

an element-wise nonlinear operation for activation func-

tion. When deep convolutional networks are constructed

by stacking these basic components layer by layer, a net-

work that only contains the nonlinear filter in Equation (1)

is called fully convolutional network (FCN) [23]. A FCN

can be viewed as performing convolutional operation with

a deep filter built by a series of local filters, whose receptive

field is determined by the network connections.

We can convert these successful classification convolu-

tional architectures, for example AlexNet [19], ClarifaiNet

[49], GoogLeNet [33], and VGGNet [31], into fully con-

volutional networks by replacing the top fully connected

layers with convolutional layers. This replacement leads

to two advantages: (i) It allows for input of arbitrary sizes

and outputs the corresponding-sized semantic map. (ii) It is

very efficient for processing images of large sizes compared
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with applying sliding window with these classical CNNs.

Thanks to these advantages, we choose the architecture of

fully convolutional networks for actionness estimation, with

a loss function defined as follows:

ℓ(x,m; θ) =
∑

i,j

ℓ′(x,mij ; θ), (2)

where x is the input, m is dense map we need to estimate,

and θ is model parameter. The loss is a sum of each indi-

vidual loss ℓ′(x,mij ; θ) at a specific location (i, j) over the

spatial domain.

3.2. Actionness estimation

After the introduction of fully convolutional networks

(FCNs), we now describe how to exploit this architecture

for the problem of actionness estimation. Actionness essen-

tially describes the likelihood of having an action instance

at a certain location. The sizes of action instance vary for

different videos and there may be multiple action instances

in a single input video. Therefore, it is reasonable to treat

the detection of actionness as a dense estimation problem,

where the value at each location represents the confidence

of containing an action instance there.

Action is defined as intentional bodily movement of bio-

logical agents. This definition contains two key elements:

(i) “movement” and (ii) “agent”. Bodily movement ad-

dresses motion procedure contained in action, while agent

refers to the actor performing the action. According to this

definition, two visual cues are crucial for estimating action-

ness, namely appearance and motion. The motion cues de-

scribe the visual patterns of bodily movement and the ap-

pearance cues capture the static image information about

actors. Following the two-stream convolutional networks

[30] for action recognition, we propose a hybrid fully con-

volutional networks (H-FCN) for the task of actionness es-

timation, as illustrated in Figure 2. H-FCN is composed of

two networks: Appearance fully convolutional network (A-

FCN) and Motion fully convolutional network (M-FCN).

The appearance fully convolutional network (A-FCN)

uses a single frame as input, which is a W × H × 3 vol-

ume. A-FCN aims to learn useful features from the appear-

ance cues for actionness estimation. The input of motion

fully convolutional network (M-FCN) is a stack of the opti-

cal flow fields from two consecutive frames, thus its size is

W ×H × 4. The goal of M-FCN is to extract effective rep-

resentation from motion patterns. Hopefully, A-FCN and

M-FCN capture visual cues from two different perspectives

and the combination of them is expected to be more power-

ful due to their complementarity. The final estimated action-

ness map is an average of the two maps from A-FCN and

M-FCN. Most of action datasets provide only the bounding

boxes of action instances instead of the actor segmentation

masks. The bounding boxes can be viewed as a kind of

weak supervision for actionness map. We convert the an-

notations of bounding boxes into binary actionness maps,

simply by setting the actionness value of pixels inside the

bounding box as 1 and otherwise as 0. Although this weak

supervision is not accurate, we observe that it is sufficient

to perform H-FCN training from the experimental results in

Section 4.

Specifically, the architectures of A-FCN and M-FCN are

similar to each other except for the input layers, and the

network details are shown in Figure 2. Basically, we adapt

the successful ClarifaiNet [49] to build our H-FCN. But we

make three important modifications to make the network

structure more suitable for the task of actionness estima-

tion. First, we replace the fully connected layers (fc6, fc7,

and fc8) with the convolutional layers (conv6, conv7, and

conv8), where the kernel size is 1 × 1 and convolutional

stride is 1 × 1. Second, we change the pooling stride from

2 × 2 to 1 × 1 after the 5th convolutional layer. As our

goal is to estimate the dense map of actionness, we need

to reduce the down sampling ratio caused by the pooling

operation. Third, the H-FCN output at each position is two-

dimensional, since we only need estimate the presence like-

lihood of an action instance. We choose cross-entropy loss

in Equation (2) to train our H-FCN and the implementation

details about network training can be found in Section 4.

Extension to multi-scale actionness estimation. The

above description on actionness estimation is based on a

single scale. However, in realist videos, action instances

may vary in scales and we propose an effective and effi-

cient method to handle the issue of scale variance. The

fully convolutional nature of H-FCN allows for handling

input images of different sizes and producing the action-

ness maps of corresponding sizes. As shown in Figure 2,

we construct multi-scale pyramid representations of video

frames and optical flow fields. We then feed these pyramid

representations into H-FCN to obtain multi-scale actionness

maps. Finally, these multi-scale actionness maps are resized

to the same size and averaged to produce the final estimated

maps. In practice, we use 4 scales for pyramid representa-

tions with scale set to 1/
√
2, 1,

√
2, 2. It is worth noting that

we just adopt this multi-scale actionness estimation during

test phase of H-FCN and we only train H-FCN from a single

scale determined by the ground truth.

3.3. Application on action detection

In this subsection we will show how to use the estimated

actionness maps for action detection in videos. Generally

speaking, our estimated actionness maps can be viewed as

new kind of features and can also benefit other relevant

problems, such as action classification, actor tracking and so

on. More specifically, we adopt an RCNN-alike [11] action

detection framework to verify the effectiveness of action-

ness maps. RCNN-alike action detection framework con-
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(a) Frame image (b) Actionness map (c) Actionness integral image (d) Bounding box score (e) Action proposals

Figure 3. Procedure of generating action proposals. We design an NMS sampling method to generate action proposals based on action-

ness maps. We resize each map into 32 × 32 and compute actionness score of any bounding boxes using integral image representation.

Totally, there are 32
4/2 possible boxes and sample proposal boxes according to their scores and the overlaps between them.

sists of two steps: generating action proposals and classify-

ing the obtained proposals. Here we aim to design a more

unified framework for action detection, where we produce

action proposals based the outputs of our H-FCNs rather

than using traditional proposal generation method like se-

lective search [35].

Action proposals. Based on actionness maps, we design

a simple yet effective method to generate action proposals

for each frame. Specifically, in our current implementation,

we propose a non-maximum suppression (NMS) sampling

method to produce boxes based on actionness map. As

shown in Figure 3, we first resize the actionness map into

scale 32 × 32. Then, we use integral image representation

to speed up the calculation of average actionness score in

the bounding boxes of any sizes. Finally, we sample boxes

according to their scores and the spatial overlaps between

them. This NMS sampling method has two benefits: sam-

pling boxes with high actionness scores and covering di-

verse locations.

Action classifiers. Regarding action classifiers, we

choose the two-stream convolutional networks [30] and

adapt the pre-trained models to the specific classification

task for the target dataset. For positive examples, we crop

the frame regions or optical flow fields using the ground

truth bounding boxes. For negative examples, we choose

these action proposals that overlap less than 0.25 with

ground truth regions. The last layer of two-stream convo-

lutional networks has |A| + 1 outputs, classifying the ac-

tion proposals into a pre-defined action category or a back-

ground class. At test time, we directly use the kth output

of two-stream convolutional networks as the score of kth

action detector.

4. Experiments

In this section, we first introduce the evaluation datasets

and their experimental settings. Then, we describe the im-

plementation details of training H-FCNs. Finally, we eval-

uate our proposed method and perform comparison with

other approaches on three tasks, namely actionness estima-

tion, action proposal generation, and action detection.

4.1. Datasets

In order to evaluate our proposed method, we conduct

experiments on both images and videos. Specifically, we

choose three datasets, namely Stanford40 Actions dataset

[45], UCF Sports dataset [26], and JHMDB dataset [14].

The Stanford40 Action dataset contains 9, 532 images of

human performing 40 diverse daily actions, such as riding-

bike, playing guitar, calling, and so on. In each image, a

bounding box is provided to annotate the actor. The whole

dataset is divided into 4, 000 training images and 5, 532 test-

ing images. We use these bounding boxes in training images

to learn our A-FCN and the bounding boxes of testing im-

ages to evaluate the performance of trained model.

The UCF Sports dataset [26] is composed of broadcast

videos. It has 150 video clips and contains 10 action classes,

such as diving, golfing, swinging, and so on. It provides

the bounding boxes of actors for all the frames. The whole

dataset is split into 103 samples for training and 47 sam-

ples for testing. We follow the standard split of training and

testing to learn and evaluate our H-FCN.

The JHMDB dataset [26] is a much larger dataset with

full annotations of human joints and body masks, contain-

ing 928 videos and 21 action classes. The dataset provides

three different splits of training and testing, and we report

the average performance over these three splits. It should be

noted that, like other datasets, we simply use the bounding

boxes generated from the body masks as weak supervision

to train and evaluate our H-FCN.

The UCF Sports and JHMDB are two large public

datasets with bounding box annotations and actionness

ground truth. Although these datasets contain temporally

trimmed videos, they exhibit complex background and large

intra-class variations. Therefore, estimating actionness on

these realistic videos are still very challenging.

4.2. Implementation details

In this subsection, we describe the training details of the

H-FCN introduced in Section 3.2 and the two-stream action

classifiers introduced in Section 3.3. Training deep convo-

lutional networks is extremely challenging for these action

datasets, as the their sizes are much smaller compared with
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that of the ImageNet dataset [5]. Therefore, we choose the

strategy of “supervised pre-training and careful fine-tuning”

to relieve the over-fitting risk caused by small training data.

For appearance fully convolutional network (A-FCN),

we choose the model pre-trained on the ImageNet dataset,

which is released by paper [2]. Then, we transfer the model

parameters of convolutional layers to A-FCN and fine tune

the network weights on the target dataset for actionness es-

timation. To reduce the risk of over-fitting, we fix the pa-

rameters of the first three convolutional layers and set the

learning rate of fourth and fifth convolutional layer as 0.1
times of network learning rate. The learning rate for the

whole network is set as 10−2 initially, decreased to 10−3

after 1K iterations, and to 10−4 after 2K iterations, and

training is stopped at 3K iterations. The network weights

are learned using the mini-batch (set to 100) stochastic gra-

dient descent with momentum (set to 0.9). During train-

ing phase, we resize the training images as 224 × 224 and

their corresponding actionness map as 14× 14. For testing,

we use the multi-scale pyramid representations of images

to produce the multi-scale actionness maps as described in

Section 3.2. These actionness maps from different scales

are first up-sampled to that of original image and then aver-

aged.

For motion fully convolutional network (M-FCN), the

input is 3D volume of stacking two-frame optical flow

fields. We choose the TVL1 optical flow algorithm [48]

and use OpenCV implementation, due to its balance be-

tween accuracy and efficiency. For fast computation, we

discretize the values of optical flow fields into integers and

set their range as 0-255 just like images. We choose to

pre-train the M-FCN on the UCF101 dataset [32], which

contains 13, 320 videos and 101 action classes. We first

train the ClarifaiNet on UCF101 from scratch for the task

of action recognition. As the dataset is relatively small,

we use high dropout ratios to improve the generalization

capacity of learned model (0.9 for fc6 layer and 0.8 for

fc7 layer). The training procedure of ClarifaiNet on the

UCF101 dataset is similar to that of two-stream convolu-

tional networks [30]. After the training on the UCF101

dataset, we transfer the weights of convolutional layers of

ClarifaiNet to M-FCN, and fine tune the whole network on

the target dataset for actionness estimation. The fine tuning

procedure is the same with that of A-FCN.

The architecture of two-stream action classifier in Sec-

tion 3.3 is the same with that of its original version [30] ex-

cept the final output layer. Specifically, we follow our previ-

ous works on action recognition with deep learning [40, 42],

and the training procedure of two-stream action classifier on

target dataset is the same with theirs. The training code with

multi-GPU extension is publicly available 1.

1https://github.com/yjxiong/caffe
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Figure 4. Exploration of multi-scale image representation for ac-

tionness estimation on the Standard40 dataset. Left: Performance

of different scales and their combination. Right: Computational

costs of different scales.

Method Stanford 40 UCF Sports JHMDB

L-CORF [3] 72.5% 60.8% 69.1%

DPM [6] 85.6% 54.9% 58.2%

RankSVM [16] 55.8% 21.9% -

MBS [29] - 22.8% -

A-FCN 79.7% 75.0% 80.7%

M-FCN - 77.2% 80.6%

H-FCN - 82.7% 86.5%

Table 1. Evaluation of actionness estimation. We report mAP val-

ues on three datasets and compare with the previous methods.

4.3. Evaluation on actionness estimation

Evaluation protocol. We first evaluate the performance

of our method on actionness estimation. Following [3], we

select the mean average precision (mAP) to evaluate our ap-

proach. First, we plot 16×16 grids for images or 16×16×4
grids for videos. Then, we score the patch or cuboid of each

grid using the average of actionness confidence in this patch

or cuboid. The patch or cuboid is treated as positive sam-

ple if its intersection over union (IoU) with respect to the

ground truth bounding box is larger than 0.5 threshold. Fi-

nally, based on the scores and labels of patches or cuboids,

we plot precision-recall (PR) curve and report average pre-

cision (AP) as the area under this curve for each test sample.

mAP is obtained by taking average over all the test samples.

Results. We conduct experiments on images (Stan-

ford40) and videos (UCF Sports and JHMDB). We first

study the effect of multi-scale pyramid representation of im-

age on actionness estimation and the results are reported in

Figure 4. From these results, we see that the actionness

maps of different scales are complementary to each other

and the combination of them is useful for improving perfor-

mance. We also report the computational time of different

scales on the right of Figure 4. Thanks to the CUDA im-

plementation of Caffe toolbox [15], it is efficient and only

requires about 30ms to process an image with multi-scale

pyramid representations using Tesla K40 GPU.

Table 1 shows the quantitative results of our method and

the comparison with other approaches on three datasets.

We only use A-FCN on the Stanford40 dataset as there

is no motion information available in images. We sepa-

rately investigate both M-FCN and A-FCN in videos, which
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Figure 5. Examples of actionness maps and action proposals. We generate 5 action proposals for each image in this illustration. The first 4

images are from the dataset of Stanford 40 and the last 4 images are from the dataset of JHMDB. Best viewed in color.
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(g) 10 action proposals per image
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Figure 6. Evaluation of action proposals on the dataset of Stanford 40 (top row) and JHMDB (bottom row). We compare our method with

previous actionness estimation approach (L-CORF) [3], Spatio-temporal object detection proposal (STODP) [25], objectness [1], DPM [6]

and random sampling. Best viewed in color.

are found complementary to each other. We first compare

our method with previous actionness estimation method (L-

CORF) [3]. Our H-FCN outperforms L-CORF by around

7% to 20% on all these datasets, which indicates the ef-

fectiveness of fully convolutional networks. DPM [6] is

another important baseline for both images and videos. It

obtains the best performance on the dataset of Stanford40,

which implies agent detection is important for actionness

estimation. However, the performance of DPM on video

datasets is much lower than that of H-FCN. This result may

be ascribed to the fact that the human pose variations in im-

age dataset is much smaller than in video datasets. Besides,

the DPM lacks considering motion information.

4.4. Evaluation on action proposal generation

Evaluation protocol. Having evaluated the performance

of H-FCNs on actionness estimation, we now apply action-

ness maps to produce action proposals. In the current im-

plementation, we generate action proposals for each frame

independently and therefore we conduct evaluation in frame

level. There have been several works on action proposal

generation [25, 13, 46], but there is no standard evalua-

tion protocol to evaluate these different proposal genera-

tion algorithms. We follow a recent comprehensive study

on object proposals [12] and use proposal recall to mea-

sure the performance of action proposal methods. There are

two kinds of measurements: (i) recall-number of proposal

curve, which measures the detection rate versus the number

of windows, with fixed IoU overlap threshold; (ii) recall-

IoU overlap curve, which reports the detection rate versus

IoU overlap, with fixed number of proposals.

Results. We conduct experiments on the datasets of

Stanford40 and JHMDB, and the results are shown in Fig-

ure 6 and Figure 5. From these results, we see that our esti-
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frame-AP(%) brush-hair catch clap climb golf jump kick-ball pick pour pullup push run shoot-ball shoot-bow shoot-gun sit stand swing-baseball throw walk wave mAP

spatial-CNN [11] 55.8 25.5 25.1 24.0 77.5 1.9 5.3 21.4 68.6 71.0 15.4 6.3 4.6 41.1 28.0 9.4 8.2 19.9 17.8 29.2 11.5 27.0

motion-CNN [11] 32.3 5.0 35.6 30.1 58.0 7.8 2.6 16.4 55.0 72.3 8.5 6.1 3.9 47.8 7.3 24.9 26.3 36.3 4.5 22.1 7.6 24.3

full [11] 65.2 18.3 38.1 39.0 79.4 7.3 9.4 25.2 80.2 82.8 33.6 11.6 5.6 66.8 27.0 32.1 34.2 33.6 15.5 34.0 21.9 36.2

our s-net 56.5 34.7 40.1 43.1 76.9 2.7 17.7 15.6 71.2 51.5 17.9 12.4 12.9 65.4 53.3 5.3 16.4 22.6 27.6 13.2 15.3 32.5

our t-net 42.9 19.0 49.6 28.9 71.8 14.0 20.4 36.6 60.1 66.0 18.0 17.3 8.3 73.5 26.0 11.6 44.1 53.7 17.6 22.4 11.5 34.0

our full net 60.1 34.2 56.4 38.9 83.1 10.8 24.5 38.5 71.5 67.5 21.3 19.8 11.6 78.0 50.6 10.9 43.0 48.9 26.5 25.2 15.8 39.9

video-AP(%)

spatial-CNN [11] 67.1 34.4 37.2 36.3 93.8 7.3 14.4 29.6 80.2 93.9 17.4 10.0 8.8 71.2 45.8 17.7 11.6 38.5 20.4 40.5 19.4 37.9

motion-CNN [11] 66.3 16.0 60.0 51.6 88.6 18.9 10.8 23.9 83.4 96.7 18.2 17.2 14.0 84.4 19.3 72.6 61.8 76.8 17.3 46.7 14.3 45.7

full [11] 79.1 33.4 53.9 60.3 99.3 18.4 26.2 42.0 92.8 98.1 29.6 24.6 13.7 92.9 42.3 67.2 57.6 66.5 27.9 58.9 35.8 53.3

our s-net 66.2 45.7 54.6 42.2 83.9 4.2 33.5 31.7 75.0 76.6 24.8 18.5 28.3 82.3 70.8 18.2 32.6 31.7 31.7 23.9 18.8 42.6

our t-net 64.2 38.1 80.1 39.0 91.8 34.7 57.4 74.6 74.5 77.6 31.3 40.9 18.5 89.4 59.0 32.3 69.3 82.9 25.8 46.1 22.2 54.8

our full net 76.4 49.7 80.3 43.0 92.5 24.2 57.7 70.5 78.7 77.2 31.7 35.7 27.0 88.8 76.9 29.8 68.6 72.8 31.5 44.4 26.2 56.4

Table 2. Action detection results on the JHMDB dataset. We report frame-AP and video-AP for the spatial net (our s-net) and temporal net

(our t-net), and their combination (our full net). We compare our method with the state-of-the-art performance [11] on this dataset.

mated actionness maps are very effective for producing ac-

tion proposals. We only need to generate 10 boxes for each

image on the dataset of Stanford40, and 4 boxes for each

frame on the dataset of JHMDB, to obtain 0.9 recall at IoU

above 0.5. For higher IoU threshold (0.7), our method still

achieves 0.5-0.6 detection rate when producing 10 boxes

for each image. We also separately report the performance

of producing action proposals with the estimated maps by

A-FCN and M-FCN on the dataset of JHMDB. We notice

that A-FCN is better than M-FCN and the combination of

them can further boost the performance.

Next, we compare our method on action proposal gener-

ation with actionness estimation algorithm (L-CORF) [3],

DPM [6], and objectness method [1]. These three meth-

ods use the same NMS score sampling to produce bound-

ing boxes and only differ in how to generate the confidence

maps for sampling. From the results in Figure 6, we see that

our method achieves comparable performance on images

but much better performance on videos. Finally, we also

compare our method with a recent action proposal method,

namely STODP [25], on videos and our method outper-

forms this approach by a large margin. We also show sev-

eral examples of actionness maps and action proposals in

Figure 5.

4.5. Evaluation on action detection

Evaluation protocol. Finally, we evaluate the perfor-

mance of action detection using our generated action pro-

posals. Following a recent work on action detection [11],

we choose two evaluation criteria: frame-AP and video-

AP. Frame-AP measures the area under the precision-recall

curve of the detection for each frame. A detection is correct

if the IoU with ground truth at that frame is greater than 0.5
and the predicted label is correct. Video-AP measures the

area under the precision-recall of the action tubes detection.

A tube is correct if the mean of per-frame IoU value across

the whole video is larger than 0.5 and the action label is

correctly predicted.

Results. We use the generated action proposals of each

frame in previous subsections and perform action classifica-

tion on these proposals. We choose the two-stream convo-

lutional networks [30] as action classifiers due to their good

performance on action recognition. As we generate action

proposals for each frame independently, we first report the

performance using frame-AP measurement and results are

shown in Table 2. We notice that temporal nets (t-net) out-

perform the spatial nets (s-net) on action detection, which is

consistent with fact that temporal nets are better than spatial

nets for action recognition [30]. Next, we generate action

tubes for the whole video and report the performance eval-

uated by video-AP. To generate action tubes, we resort to

the same temporal linking method in [11]. The linking al-

gorithm jointly considers the overlaps between detected re-

gions of consecutive frames and their detection scores, and

seeks a maximum temporal path over the video. The per-

formance regarding action tubes are shown in Table 2 and

there is a significant improvement (around 15%) over frame

based detection, which implies that the temporal structure is

of great importance for action detection in videos. Finally,

we compare our method with the state-of-the-art approach

[11] and our performance is better than theirs by about 3%
for both frame-AP and video-AP evaluation.

5. Conclusions

In this paper we have proposed a new deep architecture

for efficient actionness estimation, called hybrid fully con-

volutional networks (H-FCN). H-FCN is composed of ap-

pearance FCN (A-FCN) and motion FCN (M-FCN), which

incorporates the static and dynamic visual cues for estimat-

ing actionness, respectively. Our method obtained the state-

of-the-art performance for actionness estimation on three

challenging datasets. In addition, we applied our estimated

actionness maps on action proposal generation and action

detection, which further demonstrates the effectiveness of

estimated actionness maps on relevant video analysis tasks.
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