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Abstract

Action analysis in image and video has been attracting

more and more attention in computer vision. Recognizing

specific actions in video clips has been the main focus. We

move in a new, more general direction in this paper and ask

the critical fundamental question: what is action, how is

action different from motion, and in a given image or video

where is the action? We study the philosophical and vi-

sual characteristics of action, which lead us to define ac-

tionness: intentional bodily movement of biological agents

(people, animals). To solve the general problem, we pro-

pose the lattice conditional ordinal random field model that

incorporates local evidence as well as neighboring order

agreement. We implement the new model in the continuous

domain and apply it to scoring actionness in both image and

video datasets. Our experiments demonstrate not only that

our new model can outperform the popular ranking SVM

but also that indeed action is distinct from motion.

1. Introduction

Human and other biological motion, such as a cat climb-

ing a tree, present an intricate visual pattern that is of far

higher complexity than most non-biological motion, such

as a rolling ball or car, or simple bar and dot stimuli used

in many psychophysical studies [15]. Indeed these intri-

cate visual patterns are complex (and apparently important)

enough that we humans have highly specialized parts of our

brain dedicated specifically to biological motion perception

(the superior temporal sulcus) [25].

Likewise, the computer vision community has achieved

marked success in automatic action recognition from video.

Notable examples include the introduction of local action

features with bags-of-words framework [35], such as spatio-

temporal interest points [21], trajectory-based representa-

tions [23, 34], and motion interchange patterns [17] and the

more holistic action bank representation which embeds a

video into an action space by responses of individual action

detectors [31]. These methods are enabling futuristic vision

applications like automatic video-to-text [5, 18] and smart

Time

Action

running kids

Agent

Motion

rolling

ball

panning

camera

waves

crashing

Figure 1: The key idea in our paper is to distinguish inten-

tional action of an unknown agent (the kids in this exam-

ple) from various other motions, such as the rolling ball,

the crashing waves and the background motion from the

panning camera. Our paper proposes a self-ordering CRF

model that ranks regions of the image/video according to

its agent and category independent “actionness.”

classrooms [28].

However, in all of this so-called action recognition work

in our field, the very notion of action has not been care-

fully defined or explicitly studied, although a hierarchy of

actions and activities has been discussed [24]. Instead, ac-

tion is defined implicitly by examples in a dataset. UCF

Sports [29], for example, emphasizes olympic sports as ac-

tion whereas HMDB51 [19] focuses more on everyday hu-

man actions such as brushing hair and hugging.

There are more explicit general notions of action [6];

most commonly, an action involves intentional biological

motion. In other words, action is a specific subclass of gen-

eral motion requiring an agent who has a particular goal or

intention and is moving to achieve the goal. See Fig. 1,

for example, where the two kids are chasing a beach ball

near the crashing waves. There are four distinct motions in

the scene but only one action: the kids running. The crash-

ing waves, the panning camera and the rolling ball are all

various motions.
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Furthermore, it may be beneficial simply to detect action

in a way agnostic to the specific agent carrying out the ac-

tion as well as the type of action itself. For example, it has

been empirically demonstrated that action classifiers per-

form better when they use features from foreground moving

regions rather than the full video [17].

To these ends, our paper seeks to extract a rank order-

ing of video regions according to the degree to which they

contain an action. We call this notion actionness. We tar-

get a rank ordering of actionness by regions rather than a

direct classification of whether or not a region contains an

action for two primary reasons. First, the foundational no-

tion of action as an agent’s intentional motion immediately

presents a difficulty: agent (e.g, person, animal) detection

remains a challenging and open problem [8]. There exist

comparatively strong methods like deformable parts mod-

els [9], but the average precision remains too low for robust

use (e.g., about 49.5 for person is the state of the art [11]).

Ranking makes it plausible to forego agent detection and

segmentation prior to actionness classification; rather, di-

rectly ranking various regions of the image/video is more

robust. Second, in any given image or video there may be

more than one agent performing an action. Ranking which

is more likely an action is hence more informative than sim-

ple classification.

To accomplish the actionness ranking, we first propose

an explicit definition of action that is based on the philoso-

phy of action [6]. Then, we propose and implement a novel

self-ordering conditional random field model that can ex-

tract the actionness ranking. Our model, called the lattice

conditional ordinal random field (L-CORF), solves the lin-

ear ordering problem approximately using local features to

score a given region by a generalized Hough voting frame-

work and an unary classifier as well as pairwise relation-

ships between neighboring regions. The pairwise term uses

an AdaBoost classifier to predict the local ranking prefer-

ence of two regions and penalizes the current ranking when

it violates the classifier prediction. To provide an effective

situation for learning and inference, we relax the discrete or-

dering problem in the random field to a continuous one and

derive exact solutions for inference and a gradient descent

method for learning.

We implement and test our model on both images and

videos. In video, the agent’s intentional bodily movement

can be directly observed; in images, we need to rely instead

on the appearance of the agent’s body (i.e., the pose [39])

to infer actionness because static images have no observable

motion information. In summary, action understanding ben-

efits from motion information. However, not all motion in-

formation contributes to action understanding. Distinguish-

ing meaningful and meaningless motion is important and

will lead to better video understanding methods [12, 17].

Although we were inspired by the recent work in rank-

ing category independent objects proposals [1, 7], our pa-

per is the first to work on this important problem of agent

and category independent actionness. Furthermore, our lat-

tice conditional ordinal random field is an innovation on top

of the conditional ordinal random field [16] that takes into

account the spatial relations of regions in the lattice. Our

results on both image and video actionness demonstrate the

benefit of this spatial information in actionness against all

baselines.

2. Actionness: What is an Action?

In this paper, we propose the notion of actionness, which

seeks to distinguish different motions (intentional motion

from general motion). Before concretely formulating the

problem, we first make a definition of action suitable for

computer vision, which cares more about what visual pat-

terns an action may present than the philosophy of action.

There are four aspects to define action in the philosophy

of action [6]: first, action is what an agent can do; second,

action requires an intention; third, action requires a bodily

movement guided by an agent or agents; and fourth, action

leads to side-effects. For example, playing with a ball is

an instance of action. A person is able to play with a ball.

Doing this action needs the movement of the human body;

the person moves the ball by moving his or her hands and/or

feet. When a person plays with a ball, a ball movement from

left to right and up to down is just a side-effect since the ball

has no intention. Its movement is barely the result of the

action (playing) of the person.

Above, we highlighted the key words for the four aspects

of action: agent, intention, bodily movement, side-effects.

Two of these are directly observable in video: agent and

bodily movement (in an image, one can only observe agent

pose but not the bodily movement). Intention is not directly

observable but not irrelevant from a computer vision point

of view: a non-biological agent, such as a bicycle can not

have intention, and hence the agents we care about are peo-

ple and animals. We note the discussion made in the intro-

duction regarding the current reliability of person detectors

in images. Finally, side-effects may be directly observed in

images, but these would involve a complex inference even

farther beyond the reliable capability of our field than per-

son and animal detection. Therefore, we define actionness

as intentional bodily movement of biological agents. Ac-

tionness is a subclass of general motion and a direct presen-

tation of action.

Actionness provides a non-specific definition for action

that does not rely on an absolute scale for action nor a cer-

tain type of action, which is well beyond the scope of this

paper. Here, we formulate the useful goal of ranking im-

age/video regions according to their actionness, or the de-

gree to which an agent is doing intentional bodily move-

ment within them. In the next section, we make this prob-



lem statement more concrete and then further develop a new

self-ordering CRF model to perform the ranking task.

3. Lattice Conditional Ordinal Random Field

Problem Statement Given an image or video V , let R
.
=

{ri}
n
i=1 be a partitioning of V with n regions in the parti-

tioning. Strictly, R is a partitioning of the pixel/voxel lattice

underlying V . The partitioning can easily be computed by

rectilinear patches or cubes, which we do in this work, or by

common superpixel [10] or supervoxel [37] methods, which

is not the main emphasis of our work.

Given any two regions ri and rj , we seek an ordering

of them according to their relative actionness. Although we

do not seek the absolute actionness score of a region, let

A(ri) denote the actionness of region ri. Define a predicate

function λij to represent the local actionness ordering of

regions ri and rj :

λij =

{

1 A(ri) > A(rj)

0 otherwise
. (1)

And define the ordering predicate matrix Λ as the dense or-

dering matrix for all pairs of regions. There are 2n
2

possi-

ble Λ matrices but only a (still very large) fraction of these

(2(n
2−n)/2) are valid orderings of the regions. A valid or-

dering is captured by two properties on Λ. First, Λ is anti-

symmetric, i.e., λij + λji = 1 for all regions i 6= j. Sec-

ond, there exists a permutation matrix P that will reorder

the rows, λi, such that Λ is a strictly upper triangular binary

matrix U : P · Λ = U .

Our problem is thus to seek a valid Λ given the video V
and its partitioning R under a local ordinal model φ:

Λ∗ =argmax
Λ,P

∑

i,j

φ(ri, rj , λij) (2)

s.t. λij ∈ {0, 1}, P · Λ = U ,

where the ordinal model φ captures the local ordering com-

patibility of λij with the evidence in ri and rj . This local

ordinal model φ pushes the ordering to obey the data R and

the two constraints maintain a valid ordering.

However, the program in Eq. 2 is an instance of the lin-

ear ordering problem, which is known to be NP hard [13].

To understand this point, consider the impact of changing

only one off-diagonal entry of Λ. If the entry in question

relates, say, the first and second ordered regions then this

is an easy and local swap with no global impact. On the

other hand, if the entry relates the first and the last ordered

regions then this has maximal impact (although it remains

a valid ordering, every other region is now is potentially in

conflict with the ordering). In general, the longer the dis-

tance in the ordering between the entry in Λ that would be

swapped, the more global the impact on the ordering Λ.

3.1. The Model

Consider again the relationship upper triangular con-

straint: i.e., there exists a strictly upper triangular binary

matrix U such that P · Λ = U . This constraint implies two

facts that will lead us to making an approximation to the NP

hard problem. First, clearly there is a one-to-one relation-

ship between Λ and P . Second, the sum of any row λi is

its ordinal index oi =
∑

j λij . Equation 1 specifies that if

λij = 1 then A(ri) > A(rj). So, when A(ri) is the highest

actionness, then each element of row λi will be one (except

for λii, which is always 0). In this case, oi = n− 1. A sim-

ilar exercise can be conducted to demonstrate this for other

ordinal indices: i.e., if region rj is the kth index, then row

λj will have k − 1 entries that are 1.

Therefore, we can reformulate our original objective to

directly seek the ordinal index in a manner more readily

soluble. Inspired by the recent conditional ordinal ran-

dom fields [16, 30], which are defined on one-dimensional

streams, we present a new model called the lattice condi-

tional ordinal random field (L-CORF).

We propose a conditional random field model M that

captures the ordering as its random variables:

Md({oi}
n
i=1|V,R, θ) = (3)

1

Z[R]
exp

[

∑

i

αfd(oi, ri) +
∑

i,j

βgd(oi, oj , ri, rj)

]

,

where Z[R] is the normalization function and θ = (α, β)
are model parameters. Recall, oi is the ordinal index of

region ri; these indices take values from {1, 2, . . . , n} and

satisfy a strict ordering o1 > o2 > · · · > on. Functions

fd and gd capture the unary ordinal preference and pairwise

ordinal agreement, which we will make explicit below.

Satisfying the strict ordering constraint on {oi}
n
i=1 and

the discrete nature of this ordering make learning and infer-

ence intractable. So, we relax our model to be a continuous

CRF and replace oi with a real-valued variable ai for each

region ri. Furthermore, we relax the strict ordering to be a

partial ordering such that a1 ≥ a2 ≥ · · · ≥ an. The relaxed

model is written

M({ai}
n
i=1|V,R, θ) = (4)

1

Z[R]
exp

[

∑

i

αf(ai, ri) +
∑

i,j

βg(ai, aj , ri, rj)

]

.

Functions fd and gd are continuous version of fd and gd.

In the following subsections, we formulate the terms

of the model and derive a maximum likelihood learning

method for the L-CORF.

3.2. Partitioning and Annotating

To partition each sample V and compute the lattice, we

simply divide the image (video) into a rectilinear set of



patches (cuboids). We also need to associate an action-

ness evidence score with each region. Arbitrarily gathering

actionness ranks / scores from humans would be prone to

noise, so we instead developed an automatic scheme that

requires one or more bounding boxes (or cubes in video)

around the action region. Denote the set of bounding boxes

as {Bj}
b
j=1. We then define the annotated actionness score

ai for region ri ∈ R as

ai = 1−min
j

(

D (pos[ri], pos[Bj ])
)

, (5)

where pos[·] indicates the centroid of the region or the

bounding box and D(·) is the Euclidean distance. Since the

size of the images/videos can differ, we normalize the dis-

tance of any two bounding boxes between 0 and 1. And this

distance contributes to the actionness score computation.

3.3. Unary Term

The unary term scores the actionness for each region

based on its evidence. A trained AdaBoost classifier [33] is

used to measure the degree that the region includes action-

ness information with local appearance and spatial infor-

mation. Since the underlying appearance of actionness will

greatly vary, we also incorporate the non-parametric gener-

alized Hough transform [2, 36]. Assume we have training

data Tr = {(Vs,Rs, As)}
t
s=1} with t samples, where each

As is the annotated actionness map (i.e., a known actionness

ai at each region in Rs) from Sec. 3.2. Let (Vq,Rq) de-

note a test image/video and its partitioning. For the general-

ized Hough transform, we define a scoring function h(r
(q)
i )

based on the regions and their relative positions that votes

on a full actionness map Aq for the test data Vq given a

single region r
(q)
i (the superscript (q) denotes which im-

age/video the region is from).

To compute the voting model, we learn a codebook for

each position based on appearance information. Each code-

book entry cj comprises a feature descriptor vcj ; the code-

book C is learned via k-means method. With the learned

codebook C, we define the Hough scoring function as

h
(

r
(q)
i

)

∝ (6)

∑

j

mcjp(cj |vri) exp

[

−
1

σ
D2(vri , vcj )

]

,

where mcj corresponds to an actionness map of cj . Finally,

we compute the Hough scored actionness map for the test

data Vq as the mean over region hough scores in Eq. 6:

Âq =
1

|Rq|

∑

r
(q)
i

h
(

r
(q)
i

)

(7)

We define the unary function as

f(ai, r
(q)
i ) = −(ai − â

(q)
i )2. (8)

where â
(q)
i is the product of the Hough voting actionness

score for region ri in map Âq computed by Eq. 7 and the

normalized AdaBoost classifier response.

3.4. Pairwise Term

The pairwise term enforces a certain ordering locally

between two region ri and rj based on the features at

those regions vi and vj . The local order preference is then

computed by a trained AdaBoost classifier on the possible

neighboring relations on the lattice (horizontal and verti-

cal directions). For each neighboring relation, the classi-

fier takes the relative actionness score for the neighboring

training regions as the label (i.e., 1 if ri has higher action-

ness than rj and 0 otherwise, similar to λij from Eq. 1). It

then trains a classifier based on the features of the regions,

w(vi, vj), to predict the preferred ordered.

The pairwise term penalizes the current actionness

scores of the two regions when they disagree with the pre-

dicted relationship from the AdaBoost classifier w(vi, vj):

g(ai, aj , ri, rj) = Rij(ai − aj)

= δijw(vi, vj)(ai − aj) , (9)

where the δij function is 1 if the regions are neighbors and

0 otherwise. This function operates as desired: when ai is

larger than aj , Rij is greater than 0 and contributes pos-

itively to the difference between ai and aj . When ai is

smaller than aj , Rij should be smaller than 0, and con-

tribute negatively to the difference between li and lj . These

are modulated by the classifier prediction w(vi, vj).

3.5. Learning and Inference

Given the training dataset Tr = {(Vs,Rs, As)}
t
s=1}

with t samples, where each As is the actionness map, we es-

timate the parameters θ = (α, β) by maximum likelihood.

Concretely, the conditional log likelihood of the data is

L(θ|Tr) =
∑

s

logM(As|Vs,Rs, α, β) (10)

=
∑

s

[

∑

i

αf(a
(s)
i , r

(s)
i )+

∑

i,j

βg(a
(s)
i , a

(s)
j , r

(s)
i , r

(s)
j )−

∑

i

logZ[Rs]

]

where we use the (s) superscript to denote training sample

s. We seek the parameter θ̂ that can maximize this log like-

lihood function. The key to the solution is to integrate Z(P )
and then use gradient descent to generate the iteration rules

to compute θ̂. By transforming Z to the quadratic formula,



we get (dropping the subscript s on R for clarity)

Z[R] =

∫

z

(

−αz2i +DT zi + E
)

dz , (11)

D = 2αai + β





∑

j

Rij −
∑

i

Rij



 ,

E = −αa2i .

Based on the properties of the Gaussian distribution, the in-

tegration result is

Z[R] =
(α

π

)
t
2

exp

(

1

4α
DTD −

∑

i

αa2i

)

. (12)

We then use the gradient descent algorithm to maximize

the log likelihood. By maximizing L(θ|Tr) with respect

to logα and β, the problem is transformed to an uncon-

strained optimization problem, allowing the direct applica-

tion of gradient descent. The derivative of L(θ|Tr) with

respect to logα and β are as follows:

∂L(θ)

∂ logα
= α

∑

s

[

∑

i

−(a
(s)
i − â

(s)
i )2 −

∂ logZ[Rs]

∂α

]

(13a)

∂L(θ)

∂β
=

nt
∑

s





∑

ij

R
(s)
i,j (a

(s)
i − a

(s)
j )−

∂logZ[Rs]

∂β
)





(13b)

The partial derivative
∂ logZ[Rs]

∂α and
∂ logZ[Rs]

∂β are

∂ logZ[Rs]

∂α
=

t

2α
−

DTD

4α2
+

DTai

α
−
∑

i

a2i (14a)

∂ logZ[Rs]

∂β
=

DT (
∑

j R
(s)
ij −

∑

i R
(s)
ij )

2α
(14b)

We incorporate these derivations into the gradient descent

algorithm to compute α and β according to Algorithm 1.

Inference Inference on our lattice conditional ordinal ran-

dom field is straightforward. Since it is a continuous model,

we apply the learned parameters and input the test data

(Ve,Re) into our model, for a direct solution:

Âe = argmax
Ae

M(Ae|Ve,Re, α, β) . (15)

We can take the derivative of Eq. 15, set it equal to zero and

derive a closed form solution. Each region’s actionness is

then

â
(e)
i =

2h(r
(e)
i )α+ β

(

∑

j R
(e)
ij −

∑

i R
(e)
ij

)

α
. (16)

Algorithm 1: Learning Algorithm of L-CORF

1: Input: training data Tr, and its associated Actionness

score A = {As}
t
s=1, maximal iteration Iter and learn-

ing rate η

2: Output: logα and β

3: for i = 1 to Iter do

4: for k = 1 to t do

5: Compute
∂L(θ|Tr)
∂ logα and

∂L(θ|Tr)
∂β by Eq 13

6: Update logα = logα+ η
∂L(θ|Tr)
∂ logα

7: Update β = β + η
∂L(θ|Tr)

∂β
8: end for

9: end for

3.6. Related Work in Linear Ordering

The linear ordering problem is an NP-hard combinatorial

optimization problem with a number of applications such

as archaeological seriation and aggregation of individual

preferences[13]. Based on the relation between objects to

be ranked, Cao et al. [3] proposes a ranking model for the

ordering problem in document retrieval setting. The ranking

SVM [14] proposes an svm-based ranking method. Both of

these two papers rely on local information only for ranking.

Kim and Pavlovic [16, 30] introduce a conditional ordinal

random field model for dynamic facial emotion prediction

and temporal segmentation. Unlike our lattice conditional

ordinal random field model, their method only works on the

chain-based graphical structure, e.g. temporal segmenta-

tion. Qin Tao et al. [26] also propose a continuous Ranking

CRF model. The motivation of the model is different from

ours and our binary term is more general.

4. Experiments

Data and Features We implement and test our method

L-CORF for actionness on both images and videos. For the

images, we use Stanford 40 Actions [40], and for videos,

we use UCF Sports [29] and Hollywood1 Human Action

(HOHA) datasets [22]. Actionness is a new problem; all of

these datasets were previously used for action recognition,

but they include action bounding boxes and this is what we

use for actionness.

The Stanford 40 Action Dataset contains 9532 images of

humans performing 40 diverse daily actions, such as rid-

ing a bike, playing with guitar and so on. In each im-

age, a bounding box of the person performing the action

is provided. All these images come from web resources.

The UCF Sports dataset contains 150 videos from 10 action

classes, such as diving, golf swinging, walking and so on.

The videos are taken from sports broadcasts. The bound-

ing boxes of actions are provided in [38]. HOHA dataset



Table 1: Quantitative comparisons against baselines (mAP).

Stanford 40 UCF Sports HOHA

L-CORF 72.5 60.8 68.5

DPM [9] 85.6 54.9 60.8

RankSVM [14] 55.8 21.9 26.8

MBS [32] - 22.8 57.4

includes 430 videos with 8 actions, such as answer phone,

get out of a car and so on. This dataset is very challenging;

significant camera motion, rapid scene changes and back-

ground clutter are very common in the videos. Many ac-

tions are performed by multiple agents and involve the in-

teractions of them. The bounding boxes1 of actions in 392

videos are provided by [27]. In these videos, the clips with

interesting agents are selected to train and test all the meth-

ods.

For computing features, we use basic histograms of ori-

ented gradients (HOG) [4]. On video, we apply the HOG

frame-by-frame and the sum and the difference of HOG fea-

tures are used to represent each cuboid. We select only these

features to allow for a fair comparison between our method

and baselines, and to emphasize the power of the ordinal

random field. Our results show that we achieve a greater of

improvement of the proposed models better than the strong

baseline of ranking SVM [14], which was used in the ob-

jectness paper [7] (see below for a discussion).

Evaluation Protocol In order to evaluate the ranking per-

formance of different methods, we select the mean av-

erage precision (mAP) to judge how well the actionness

score agrees with the annotation. First, we score each

patch / cuboid according to the intersection over union w.r.t.

groundtruth (ie, if a patch overlaps the groundtruth by more

than 0.5 then it is scored as positive). Then, PR curves are

generated: a recall of k selects the top k ranked patches /

cuboids. For these k patches, we compute precision. Each

test sample will generate an AP score, which is the area un-

der the PR curve. mAP is the average of all the test samples.

We follow the protocol defined by Stanford 40 dataset to

assign the training and test examples. The splits for UCF

sports and HOHA datasets follows the previous work [20,

22]. In these datasets, we do not distinguish the categories

of actions, all the actions are considered as positive samples,

non-actions are considered as a negative samples. In all the

experiments, we divide the image and video to 16×16 grids

in space. For video data, the cuboid lasts 4 frames.

4.1. Comparisons with Baselines

Table 1 shows the quantitative comparisons of our L-

CORF method against baselines methods. This is the first

1http://vision.ucla.edu/˜raptis/action_part/

hoha1_annotations.tar

Figure 2: Visual examples of actionness on images from

Stanford 40. There are 8 examples (4× 2). For each exam-

ple, the left to right columns are original image, results of

L-CORF, DPM and Ranking SVM. DPM is able to effec-

tively detect the human in the image. However, L-CORF is

good at finding where where the action happens. The bot-

tom left image is not good result of our method.

paper on actionness, so our quantitative comparisons are

against relevant baseline methods that could have been used

in place of pieces of our method. We use the ranking SVM

[14] as a baseline since it was used in a similar visual rank-

ing problem (objectness) [7]. The ranking SVM used the

same features as our L-CORF method for this comparison.

In both the images and videos, there is a 15+% improvement

in our method. For an additional baseline on the video, we

apply the moving background subtraction (MBS) method

from Shiekh et al. [32], which does not seek to differenti-

ate between general motion and action at all. As we would

expect it is unable to perform as well as our method, since

intentional motion does not equate to general motion. But it

does perform better than the ranking SVM method. This re-

sult is also an indicator of the important distinction between

motion and action. DPM is another important baseline for

both images and videos. It is the state of the art human de-

tector and can be viewed as a method to find actionness by

detecting agents. It achieves the best performance on Stan-

ford 40 dataset, so agent detection is useful for actioness

detection, although Stanford 40 has limited pose variability.

However, actionness detection is quite different from hu-

man detection. It does not perform as good as our method

on UCF Sports and HOHA datasets.

We show visual comparisons of our method for both im-

age and video datasets in Figures 2 and 3. We have selected

both good and bad cases for our method to present it fairly.

In these examples, DPM successfully locates the positions

of human, especially for the upright pedestrians, however,

some of these persons are not the ones doing the right ac-

tions. MBS is able to find the place where the motion is



(a) UCF Sports (b) HOHA

Figure 3: Visual examples of actionness on videos from UCF Sports and HOHA. There are 8 examples (4 × 2) for each

dataset. The first row images are 4 sequential frames within the same cuboid. In the second row, the images are results of L-

CORF, DPM, Ranking SVM and MBS from the left to right columns. In these images, we can find that DPM can accurately

locate the person, but without considering who is doing the action. MBS is able to accurately detect the motion, but without

considering intentional motion. The bottom left images are not good results of our method.

intense. However, general motion is far away from inten-

tional motion (actionness). The bottom left images of all

the datasets are bad examples of our method. The one in

HOHA dataset is very interesting. The movement of the

feet leads to standing up action. Agent body detection is

more appropriate here than agent detection. Although DPM

performs better than MBS in all the datasets, MBS performs

well in this case.

4.2. Performance of Unary Term

We analyze the unary term by exploring the impact of

unary AdaBoost classifier and Hough voting. The num-

ber of weak classifiers and the number of the clusters are

key parameters for these two methods. We show the per-

formance on both images and video. Figures 4(a) – 4(c)

plot the mAP for these two methods seperately and their

combination with variant parameters. The variation across

the parameter settings is small. From Figure 4(a) and 4(b),

we can find that both classifier and hough voting works

well for actioness detection on Stanford 40 and UCF Sports

datasets. The performance of unary classifier improves with

more number of weak classifiers. The performance of unary

Hough voting is stable, since it increases slightly with more

clusters. The actionness detection on UCF Sports is more

difficut than on Stanford 40 dataset, since its mAP is lower.

We believe that the actions in UCF Sports have a high vari-

ablity than in Stanford 40. Figures 4(a) shows the mAP

of only the unary term. The combination of these two de-

creases the whole performance, comparing to figures 4(a)

and 4(b). But when increasing these two numbers, the per-

formance of fusion improves. It is possible that both unary

AdaBoost classifier and Hough voting have different advan-

tages.

4.3. Performance of Pairwise Term

An AdaBoost classifier is used to determine the local

ranking preference between neighboring regions based on

their features. In this experiment, we study the contribution

from the binary term for the whole CRF model. We fix the

binary AdaBoost classifier with 8 weak classifiers and inte-

grate it into our CRF model. Figure 4(d) demonstrates that

the binary term is helpful for the whole CRF model. The

improvement is more significant when the unary term has

small numbers of weak classifiers and codebook size.

5. Conclusion

Our paper builds on the marked progress in action under-

standing that has occurred over the last decade. Although

this promising work has led to important new methods, our

community has not yet studied the interplay between gen-

eral motion and action. In this paper, we ask exactly that

question, define a new notion of actionness and then pro-

pose an appropriate ordinal random field model. Our new

model incorporates not only local evidence to score a given

region’s actionness but also takes a rich spatially keyed ap-

proach to pairwise order agreement. We have implemented

the model on both image and video datasets and achieve

strong performance. Our work is the first in this direction

and we expect our paper to pave the way for new works on

class-independent action analysis and video parsing. In the

future, we plan to study the impact of actionness for action
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Figure 4: The performance of each element in our method. 4(a) shows mAP of the only AdaBoost classifier in the unary

term with different numbers of weak classifiers. 4(b) shows mAP of the only Hough Voting in the unary term with different

numbers of codebook. 4(c) shows mAP of only the unary term as we variate codebook size and weak classifier numbers.

4(d) shows the performance of our method with binary classifiers, the number of weak classifiers for binary term sets to 8.

detection and recognition tasks. Code for our method and

all experiments is available from the author’s website.
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