
Actions and Programs over Description Logic
Ontologies

Diego Calvanese1, Giuseppe De Giacomo2, Maurizio Lenzerini2, Riccardo Rosati2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3,
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113,
I-00198 Roma, Italy

lastname@dis.uniroma1.it

Abstract. We aim at representing and reasoning about actions and (high level)
programs over ontologies expressed in Description Logics. This is a critical is-
sue that has resisted good solutions for a long time. In particular, while well-
developed theories of actions and high-level programs exist in AI, e.g., the ones
based on SitCalc, these theories do not apply smoothly to Description Logic on-
tologies, due to the profoundly non-definitorial nature of such ontologies (cf.
cyclic TBoxes). Here we propose a radical solution: we assume a functional view
of ontologies and see them as systems that allow for two kinds of operations: ASK,
which returns the (certain) answer to a query, and TELL, which produces a new
ontology as a result of the application of an atomic action. We base atomic ac-
tions on instance level update and instance level erasure on the ontology. Building
on this functional view, we introduce Golog/ConGolog-like high-level programs
on ontologies. This paper demonstrates the effectiveness of the approach in gen-
eral, and presents the following specific results: we characterize the notion of
single-step executability of such programs, devise methods for reasoning about
sequences of actions, and present (nice) complexity results in the case where the
ontology is expressed in DL-Lite.

1 Introduction

Description Logics (DLs) [1] are generally advocated as the right tool to express ontolo-
gies, and this belief is one of the cornerstones of the Semantic Web [31, 15]. Notably,
semantic web services [22] constitute another cornerstone of the Semantic Web. These
are essentially high-level descriptions of computations that abstract from the technolog-
ical issues of the actual programs that realize them. An obvious concern is to combine
in some way the static descriptions of the information provided by ontologies with the
dynamic descriptions of the computations provided by semantic web services. Interest-
ingly, such a critical issue has resisted good solutions for a long time. Indeed even big
efforts such as OWL-S [22] have not really succeeded.

In AI, the importance of combining static and dynamic knowledge has been recog-
nized early [23, 24]. By now, well developed theories of actions and high level programs
exist in AI, e.g., the ones based on Reiter’s variant of SitCalc [28]. Note that high-level
programs [19, 10] share with semantic web services the emphasis on abstracting from

the technological issues of actual programs, and are indeed abstract descriptions of
computations over a domain of interest.

Unfortunately, these theories do not apply smoothly to DL ontologies, due to the
profoundly non-definitorial nature of such ontologies. Indeed, concepts and roles ex-
pressions in a DL do not provide definitions of concepts and roles in general, but usu-
ally only describe interrelations between them (cf. cyclic TBox interpreted according
to the usual descriptive semantics [1]). Such non-definitorial nature of DL ontologies
makes them one of the most difficult kinds of domain descriptions for reasoning about
actions [2, 20].

Here we propose a radical solution: we assume a functional view [17] of ontologies
and see them as systems that allow for two kinds of operations: ASK, which returns the
(certain) answer to a query, and TELL, which produces a new ontology as a result of
the application of an atomic action. Observe that this approach, whose origins come
from [7, 13, 25, 32], has some subtle limitations, due to the fact that we lose the possi-
bility of distinguishing between “knowledge” and “truth” as pointed out in [30]. On the
other hand, it has a major advantage: it decouples reasoning on the static knowledge
from the one on the dynamics of the computations over such knowledge. As a result,
we gain the ability of lifting to DLs many of the results developed in reasoning about
actions in the years.

We demonstrate such an approach in this paper. Specifically, we base atomic actions
used by the TELL operation on instance level update and instance level erasure on the
ontology [8, 9]. Building on this functional view, we introduce Golog/ConGolog-like
high level programs over ontologies. We characterize the notion of single-step exe-
cutability of such programs, devise methods for reasoning about sequences of actions,
and present (nice) complexity results in the case where the ontology is expressed in
DL-Lite. We stress that this paper is really an illustration of what a functional view
on ontologies can bring about in combining static and dynamic aspects in the context
of DL ontologies, and that many extensions of this work can be investigated (we will
mention some of them in the conclusions).

2 Preliminaries

DL ontologies. Description Logics (DLs) [1] are knowledge representation formalisms
that are tailored for representing the domain of interest in terms of concepts (or classes),
which denote sets of objects, and roles (or relations), which denote denote binary rela-
tions between objects. DLs ontologies (aka knowledge bases) are formed by two distinct
parts: the so-called TBox, which represents the intensional level of the ontology, and
contains an intensional description of the domain of interest; and the so-called ABox,
which represents the instance level of the ontology, and contains extensional informa-
tion.

We give the semantics of a DL ontology in terms of interpretations over a fixed in-
finite domain ∆ of objects. We assume to have a constant for each object in ∆ denoting
exactly that object. In this way we blur the distinction between constants and objects, so
that we can use them interchangeably (with a little abuse of notation) without causing
confusion (cf. standard names [18]).

An interpretation I = 〈∆, ·I〉 consists of a first order structure over ∆, where ·I is
the interpretation function, i.e., a function mapping each concept to a subset of ∆ and
each role to a subset of ∆×∆. We say that I is a model of a (TBox or ABox) assertion
α, or also that I satisfies α, if α is true in I. We say that I is a model of the ontology
s = 〈T ,A〉, or also that I satisfies the ontology s, if I is a model of all the assertions in
T and A. Given a set S of (TBox or ABox) assertions, we denote as Mod(S) the set of
interpretations that are models of all assertions in S. In particular, the set of models of
an ontology s, denoted as Mod(s), is the set of models of all assertions in T andA, i.e.,
Mod(s) = Mod(〈T ,A〉) = Mod(T ∪ A). An ontology s is consistent if Mod(s) 6= ∅,
i.e., it has at least one model. We say that an ontology s logically implies an expression
α (e.g., an assertion, an instantiated union of conjunctive queries, etc.), written s |= α,
if for every interpretation I ∈ Mod(s), we have I ∈ Mod(α), i.e., all the models of s
are also models of α. When dealing with queries, we are interested in query answering
(for CQs and UCQs): given an ontology s and a query q(x) over s, return the certain
answers to q(x) over s, i.e., all tuples t of elements of ∆I such that, when substituted
to x in q(x), we have that s |= q(t).

DL-LiteF . In this paper, we focus on a particular DL, namely DL-LiteF , belonging to
the DL-Lite family [4, 5] of DLs, which are tailored towards capturing conceptual mod-
eling constructs (such as those typical of UML Class Diagrams or Entity-Relationship
Diagrams), while keeping reasoning, including conjunctive query answering, tractable
and first-order reducible (i.e., LOGSPACE in data complexity). In DL-LiteF , which is
the logic originating the whole DL-Lite family, concepts are defined as follows:

B ::= A | ∃R C ::= B | ¬B R ::= P | P−

where A denotes an atomic concept, P an atomic role, B a basic concept, and C a
general concept. A basic concept can be either an atomic concept, a concept of the form
∃P , i.e. the standard DL construct of unqualified existential quantification on roles, or
a concept of the form ∃P−, which involves inverse roles. A DL-LiteF TBox is a finite
set of universal assertions of the form

B v C inclusion assertion

(funct R) functionality assertion

Inclusion assertions are interpreted as usual in DLs, while functionality assertions ex-
press the (global) functionality of atomic roles or of inverses of atomic roles.

A DL-LiteF ABox is a finite set of membership assertions of the form, B(a) or
R(a, b), which state, respectively, that the object a is an instance of the basic concept
B, and that the pair of objects (a, b) is an instance of the role R.

Query answering of EQL-Lite(UCQ) queries over DL-LiteF ontologies. As query
language, here we consider EQL-Lite(UCQ) [6]. This is essentially formed by full
(domain-independent) FOL query expressions built on top of atoms that have the form
Kα, where α is a union of conjunctive queries1. The operator K is a minimal knowl-

1 For queries consisting of only one atom Kα, the K operator is omitted.

edge operator [17, 27, 18], which is used to formalize the epistemic state of the ontol-
ogy. Informally, the formula Kα is read as “α is known to hold” or “α is logically
implied by the ontology”. Answering EQL-Lite(UCQ) queries over DL-LiteF ontolo-
gies is LOGSPACE, and, notably, can be reduced to evaluating (pure) FOL queries over
the ABox, when considered as a database. We refer to [6] for more details.

DL instance-level updates and erasure. Following the work in [8, 9], we adopt
Winslett’s notion of update [33, 34] and its counterpart, defined in [16], as the notion
of erasure. However, we refine such notions to take into account that we are interested
in studying changes at the instance level, while we insist that the intensional level of
the ontology is considered stable and hence remains invariant. Intuitively, the result of
updating (resp., erasing) an ontology s with a finite set F of membership assertions is a
new ontology that logically implies (resp., does not logically imply) all assertions in F ,
and whose set of models minimally differs from the set of models of s. Unfortunately,
as shown in [21, 8, 9], in general the result of update and erasure cannot be expressed in
the same language as the original ontology.2 Hence, we focus on maximally approxi-
mated update and erasure. The maximally approximated update (erasure) is an ontology
in the same language as the original one and whose models are the models of the update
(erasure) which minimally differ from the models of the original ontology.

Below, when we talk about update and erasure, we always consider their approx-
imated versions. More precisely, let s = 〈T ,A〉 be an ontology and F a finite set of
membership assertions such that Mod(T ∪ F) 6= ∅: we denote by s ◦T F the (max-
imally approximated) update of s with F . Similarly, assuming Mod(T ∪ ¬F) 6= ∅,
where ¬F denotes the set of membership assertions {¬Fi | Fi ∈ F}3: we denote by
s•T F the (maximally approximated) erasure of s with F . Computing both (maximally
approximated) update and erasure of a DL-LiteF ontology swith a setF of membership
assertions is polynomial in the sizes of s and F [9].

3 Atomic actions

Under a functional view [17], ontologies are seen as systems that are able to perform
two basic kinds of operations, namely ASK and TELL operations (cf. [17, 18]):

– ASK: given an ontology and a query (in the query language recognized by the ontol-
ogy), returns a finite set of tuples of objects (constituting the answers to the query
over the ontology).

– TELL: given an ontology and an atomic action, returns a new ontology resulting
from executing the action, if the action is executable wrt the given ontology.

2 The form of the DL-LiteF ABox considered above is that of the original proposal in [4], and
is a restriction w.r.t. the one studied in [8], where instance-level updates in DLs of the DL-Lite
family were first introduced. Specifically, here we do not allow for negation and “variables”
in the membership assertions, cf. [8]. With this restriction DL-LiteF becomes akin to the vast
majority of DLs, see [21], in that the result of updates and erasure is not expressible as a new
DL-LiteF ABox, thus requiring approximation [9].

3 Observe that ¬Fi might not be in the language of ABoxes, see [9].

In this paper, we focus on DL-LiteF [4, 5] as ontology language, and EQL-
Lite(UCQ) [6] as query language. Hence, we base ASK on certain answers to such
queries. Specifically, we denote by q(x) an (EQL-Lite(UCQ)) query with distinguished
variables x. We define ASK(q(x), s) = {t | s |= q(t)}, where s is an ontology and t
is a tuple of constants of the same arity as x. We denote by φ queries with no distin-
guished variables. Such queries are called boolean queries and return either true (i.e.,
the empty tuple) or false (i.e., no tuples at all).

As for TELL, we base atomic actions on instance level update and erasure [8, 9].
Specifically, we allow for atomic actions of the following form:

updateL(x) where q(x)

eraseL(x) where q(x)

where q(x) stands for a query with x as distinguished variables and L(x) stands for a
set of membership assertions on constants and variables in x. We define

TELL([updateL(x) where q(x)], s) = s ◦T
⋃

t∈ASK(q(x),s) L(t)

if Mod(T ∪
⋃

t∈ASK(q(x),s) L(t)) 6= ∅

TELL([eraseL(x) where q(x)], s) = s•T
⋃

t∈ASK(q(x),s) L(t)

if Mod(T ∪ ¬
⋃

t∈ASK(q(x),s) L(t)) 6= ∅

If the conditions in the equivalences above are not satisfied, we say that the
atomic action a is not executable in s. We extend ASK to expressions of the form
ASK([executable(a)], s), so as to be able to check executability of actions. Observe that
the executability of actions as defined above can indeed be checked on the ontology.

Notice that both ASK and TELL for DL-LiteF defined above can be computed in
polynomial time, considering the size of the query fixed [6, 9].

4 Programs

We now consider how atomic actions can be organized within a program. In particular,
we focus on a variant of Golog [19, 10, 29] tailored to work on ontologies. Instead of
situations, we consider ontologies, or, to be more precise, ontology states. We recall
that when considering ontologies we assume the TBox to be invariant, so the only part
of the ontology that can change as a result of an action (or a program) is the ABox.

While all constructs of the original Golog/ConGolog have a counterpart in our vari-
ant, here for brevity we concentrate on a core fragment only, namely:

a atomic actions

ε the empty sequence of actions

δ1; δ2 sequential composition

if φ then δ1 else δ2 if-then-else

while φ do δ while

pick q(x).δ[x] pick

where a is an atomic instruction which corresponds to the execution of the atomic
action a; ε is an empty sequence of instructions (needed for technical reasons)
if φ then δ1 else δ2 and while φ do δ are the standard constructs for conditional choice
and iteration, where the test condition is a boolean query (or an executability check) to
be asked to the current ontology; finally pick q(x).δ[x] picks a tuple t in the answer
to q(x), instantiates the rest of the program δ by substituting x with t and executes
δ. The latter construct is a variant of the pick construct in Golog: the main difference
being that t is bounded by a query to the ontology. Also, while in Golog such a choice
is nondeterministic, here we think of it as possibly made interactively, see below.

The general approach we follow is the structural operational semantics approach
based on defining a single step of program execution [26, 10]. This single-step seman-
tics is often called transition semantics or computation semantics. Namely, to formally
define the semantics of our programs we make use of a transition relation, named
Trans , and denoted by “−−−→”:

(δ, s) a−−−→(δ′, s′)

where δ is a program, s is an ontology in which the program is executed, a is the
executed atomic action, s′ is the ontology obtained by executing a in δ and δ′ is what
remains to be executed of δ after having executed a.

We also make use of a final predicate, named Final , and denoted by “
√

”:

(δ, s)
√

where δ is a program that can be considered (successfully) terminated with the ontology
s.

Such a relation and predicate can be defined inductively in a standard way, using
the so called transition (structural) rules. The structural rules for defining the transition
relation and the final predicate are given in Figure 1 and Figure 2 respectively. All
structural rules have the following schema:

CONSEQUENT

ANTECEDENT
if SIDE-CONDITION

act :
(a, s)

a−−−→(ε, TELL(a, s))

true
if a is executable in s

seq :
(δ1; δ2, s)

a−−−→(δ′1; δ2, s
′)

(δ1, s)
a−−−→(δ′1; s

′)

(δ1; δ2, s)
a−−−→(δ′2, s

′)

(δ2, s)
a−−−→(δ′2; s

′)
if (δ1, s)

√

if :
(if φ then δ1else δ2, s)

a−−−→(δ′1, s
′)

(δ1, s)
a−−−→(δ′1, s

′)
if ASK(φ, s) = true

(if φ then δ1else δ2, s)
a−−−→(δ′2, s

′)

(δ2, s)
a−−−→(δ′2, s

′)
if ASK(φ, s) = false

while :
(while φ do δ, s) a−−−→(δ′; while φ do δ, s′)

(δ, s)
a−−−→(δ′, s′)

if ASK(φ, s) = true

pick :
(pick q(x). δ[x], s)

a−−−→(δ′[t], s′)

(δ[t], s)
a−−−→(δ′[t], s′)

(for t = CHOICE[ASK(q(x), s)])

Fig. 1. Transition rules

ε :
(ε, s)

√

true
seq :

(δ1; δ2, s)
√

(δ1, s)
√
∧ (δ2; s)

√

if :
(if φ then δ1else δ2, s)

√

(δ1, s)
√ if ASK(φ, s) = true

(if φ then δ1else δ2, s)
√

(δ2, s)
√ if ASK(φ, s) = false

while :
(while φ do δ, s)

√

true
if ASK(φ, s) = false

(while φ do δ, s)
√

(δ, s)
√ if ASK(φ, s) = true

pick :
(pick q(x). δ[x], s)

√

(δ[t], s)
√ (for t = CHOICE[ASK(q(x), s)])

Fig. 2. Final rules

which is to be interpreted logically as:

∀(ANTECEDENT ∧ SIDE-CONDITION → CONSEQUENT)

where ∀Q stands for the universal closure of all free variables occurring in Q, and, typ-
ically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables. The
structural rules define inductively a relation, namely: the smallest relation satisfying the
rules.

Observe the use of the parameter CHOICE, which denotes a choice function, to
determine the tuple to be picked in executing the pick constructs of programs. More
precisely, CHOICE stands for any function, depending on an arbitrary number of pa-
rameters, returning a tuple from the set ASK(q(x), s). In the original Golog/ConGolog
proposal [19, 10] such a choice function (there also extended to other nondeterministic
constructs) is implicit, the idea there being that Golog executions use a choice function
that would lead to the termination of the program (angelic nondeterminism). In [29], a
choice function is also implicit, but based on the idea that choices are done randomly
(devilish nondeterminism). Here, we make use of choice functions explicitly, so as to
have control on nondeterministic choices. Indeed, one interesting use of CHOICE is to
model the delegation of choices to the client of the program, with the idea that the pick
construct is interactive: it presents the result of the query to the client, who chooses
the tuple s/he is interested in. For example, if the query is about hotels that are avail-
able in Rome, the client sees the list of available hotels resulting from the query and
chooses the one s/he likes most. We say that a program is deterministic when no pick
instructions are present or a fixed choice function for CHOICE is considered.

Examples Let us look at a couple of simple examples of programs. Consider the fol-
lowing ontology on companies and grants.

∃owns v Company
∃owns− v Company

PublicCompany v Company
PrivateCompany v Company
∃grantAsked v exResearchGroup
∃grantAsked− v Company
IllegalOwner v Company

The first program we write aims at populating the concept IllegalOwner with those
companies that own themselves, either directly or indirectly. We assume temp to be an
additional role in the alphabet of the TBox. Then, the following deterministic program
ComputeIllegalOwners can be used to populate IllegalOwner :

ComputeIllegalOwners =
erase temp(x1,x2) where q(x1,x2) <- temp(x1,x2);
erase IllegalOwner(x) where q(x) <- IllegalOwner(x);
update temp(x1,x2) where q(x1,x2) <- owns(x1,x2);
while (q() <- K(temp(y1,z), owns(z,y2)), not K(temp(y1,y2))) do (
update temp(x1,x2) where

q(x1,x2) <- K(temp(x1,z), owns(z,x2)), not K(temp(x1,x2))
);

update IllegalOwner(x) where q(x) <- temp(x,x)

The second program we look at is a program that, given a research group r and
a company c, interactively –through a suitable choice function for CHOICE– selects a

public company owned by c to ask a grant to; if c does not own public companies, then
it selects the company c itself:

askNewGrant(r,c) =
if (q() <- owns(c,y), PublicCompany(y)) then (
pick (q(x) <- owns(c,x), PublicCompany(x)). (
update grantAsked(r,x) where true

)
)
else update grantAsked(r,c) where true

5 Results

In this section, we assume that ontologies are expressed in DL-LiteF and that the ASK
and TELL operations are those defined for DL-LiteF in Section 3.

Given an ontology s and a program δ, we define the set next step, denoted by Next ,
as:

Next(δ, s) = {〈a, δ′, s′〉 | (δ, s) a−−−→(δ′, s′)}

The following two theorems tell us that programs are indeed computable.

Theorem 1. Let s be an ontology and δ a program. Then, the set Next(δ, s) has a finite
cardinality, and can be computed in polynomial time in s and δ (considering the size of
the queries in δ fixed). Moreover, if δ is deterministic then, for each action a, the number
of tuples 〈a, δ′, s′〉 ∈ Next(δ, s) is at most one (one if a is executable, zero otherwise).

Theorem 2. Let s be an ontology and δ a program. Then, checking (δ, s)
√

can be done
in polynomial time in s and δ (considering the size of the queries in δ fixed).

Given an ontology s0 and a sequence ρ = a1 · · · an of actions, we say that ρ is a
run of a program δ0 over the ontology s0 if there are (δi, si), for i = 1, . . . , n, such that

(δ0, s0)
a1 > (δ1, s1)

a2−−−→· · · an−−−→(δn, sn)

We call δn and sn above respectively the program and the ontology resulting from
the run ρ. If (δn, sn) is final (i.e., (δn, sn)

√
), then we say that ρ is a terminating run.

Note that, if the program δ0 is deterministic, then (δn, sn) is functionally determined
by (δ0, s0) and ρ.

Theorem 3. Let s0 be an ontology, δ0 a deterministic program, and ρ = a1 · · · an a
sequence of actions. Then checking whether ρ is a run of δ0 starting from s0 can be
done in polynomial time in the size of s0, ρ, and δ0 (considering the size of the queries
in δ0 fixed)

Theorem 4. Let s0 be an ontology, δ0 a deterministic program, and ρ a run of δ0 start-
ing from s0. Then, computing the resulting program δn and the resulting ontology sn,
as well as checking (δn, sn)

√
and computing a query q(x) over sn, can be done in

polynomial time in the size of s0, ρ, and δ0 (considering the size of the queries in δ0
fixed).

For nondeterministic programs, i.e., when we do not fix a choice function for
CHOICE, Theorems 3 and 4 do not hold anymore. Indeed, it can be shown the prob-
lems in the theorems become NP-complete.

We conclude this section by turning to the two classical problem in reasoning about
actions, namely the executability problem and the projection problem [28]. In our set-
ting such problems are phrased as follows:

– executability problem: check whether a sequence of actions is executable in an
ontology;

– projection problem: compute the result of a query in the ontology obtained by exe-
cuting a sequence of actions in an initial ontology.

Now, considering that a sequence of actions can be seen as a simple deterministic pro-
gram, from the theorems above we get the following result:

Theorem 5. Let s0 be an ontology and ρ a sequence of actions. Then, checking the
executability of ρ in s0, and computing the result of a query q(x) over the ontology
obtained by executing ρ in s0, can both be done in polynomial time in the size of s0 and
ρ.

In fact, all the above results can be immediately extended (with different complexity
bounds) to virtually every DL and associated ASK and TELL operations, as long as ASK
and TELL are both decidable.

6 Conclusion

In this paper we have laid the foundations for an effective approach to reasoning about
actions and programs over ontologies, based on a functional view of the ontology.
Namely, the ontology is seen as a system that can perform two kinds of operations:
ASK and TELL. We have focused on DL-Lite, but the approach applies to more expres-
sive DLs. It suffices to have a decidable ASK, i.e., decidable query answering on the
chosen query and ontology languages, and a decidable TELL, i.e., define atomic actions
so that, through their effects, they produce one successor ontology (or, in fact, a finite
number of successor ontologies) and such that their executability can be decided. Works
such as those reported in [2, 20, 14] are certainly relevant.

Our approach (and the results for DL-LiteF) can be extended to all other program-
ming constructs studied within Golog (i.e., non determinism, procedures) [19], Con-
Golog (i.e., concurrency, prioritized interrupts) [10] and, with some care –see the dis-
cussion on analysis and synthesis below– even to those in IndiGolog (search) [29].

Also, the works on forms of execution developed within
Golog/ConGolog/IndiGolog can be lifted to DL ontologies by applying the pro-
posed approach. Specifically, notions like online execution [29], offline execution [19,
10], monitored execution [11], can all be lifted to the setting studied here.

Golog/ConGolog-like programs do not have a store to keep memory of previous
results of queries to the ontology. An interesting extension would be to introduce such a
store, i.e., variables for storing results of queries or partial computations. Notice that this

would make also the program infinite state in general (the ontology is already infinite
state). Also, this would make such programs much more alike programs in standard
procedural languages such as C or Java, which manipulate global data structures –in
our case the ontology– and local data structures –in our case the information stored in
the variables of the program.

Finally, we can adopt the functional view of ontologies also to specify interactive
and nonterminating processes acting on them, similarly to what is currently done when
specifying web services on relational databases [3, 12].

We close the paper by noticing that, since the ontology is not finite state, tasks
related to automated analysis and automated synthesis of programs (e.g., verifying ex-
ecutability on every ontology, verifying termination, synthesizing a plan that achieves
a goal, or synthesizing a service that fulfills a certain specification) are difficult in gen-
eral. This difficulty is shared with SitCalc-based and Golog/ConGolog-like high-level
programs. One of the most promising techniques to effectively tackle such tasks is to
rely on a suitable finite state abstraction (cf. [35]) of the ontology, and use such an
abstraction in the analysis and in the synthesis.

Acknowledgements. This research has been partially supported by the FET project
TONES (Thinking ONtologiES), funded within the EU 6th Framework Programme
under contract FP6-7603.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

2. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description logics and
action formalisms: First results. In Proc. of AAAI 2005, pages 572–577, 2005.

3. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic composition
of transition-based Semantic Web services with messaging. In Proc. of VLDB 2005, pages
613–624, 2005.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
description logics for ontologies. In Proc. of AAAI 2005, pages 602–607, 2005.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of
query answering in description logics. In Proc. of KR 2006, pages 260–270, 2006.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite: Effective
first-order query processing in description logics. In Proc. of IJCAI 2007, pages 274–279,
2007.

7. G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Moving a robot: the KR&R approach at
work. In Proc. of KR’96, pages 198–209, 1996.

8. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the update of description logic
ontologies at the instance level. In Proc. of AAAI 2006, 2006.

9. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the approximation of instance
level update and erasure in description logics. In Proc. of AAAI 2007, 2007.

10. G. De Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence, 121(1–2):109–169, 2000.

11. G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level robot
programs. In Proc. of KR’98, pages 453–465, 1998.

12. A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-driven web
services. In Proc. of PODS 2006, pages 90–99, 2006.

13. D. G. Giuseppe and R. Rosati. Minimal knowledge approach to reasoning about actions and
sensing. ETAI, 3, Section C, 1999.

14. Y. Gu and M. Soutchanski. Decidable reasoning in a modified situation calculus. In Proc. of
IJCAI 2007, pages 1891–1897, 2007.

15. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. J. of Web Semantics, 1(1):7–26, 2003.

16. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge base and
revising it. In Proc. of KR’91, pages 387–394, 1991.

17. H. J. Levesque. Foundations of a functional approach to knowledge representation. Artificial
Intelligence, 23:155–212, 1984.

18. H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. The MIT Press, 2001.
19. H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A logic program-

ming language for dynamic domains. J. of Logic Programming, 31:59–84, 1997.
20. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Reasoning about actions using description logics

with general TBoxes. In Proc. of JELIA 2006, 2006.
21. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ABoxes. In Proc. of

KR 2006, pages 46–56, 2006.
22. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia,

T. Payne, M. Sabou, Solanki, N. Srinivasan, and K. Sycara. Bringing semantics to web
services: The OWL-S approach. In Proc. of the 1st Int. Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), 2004.

23. J. McCarthy. Towards a mathematical science of computation. In Proc. of the IFIP Congress,
pages 21–28, 1962.

24. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of aritificial
intelligence. Machine Intelligence, 4:463–502, 1969.

25. R. P. A. Petrick and F. Bacchus. Extending the knowledge-based approach to planning with
incomplete information and sensing. In Proc. of KR 2004, pages 613–622, 2004.

26. G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

27. R. Reiter. What should a database know? J. of Logic Programming, 14:127–153, 1990.
28. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. The MIT Press, 2001.
29. S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On the semantics of delib-

eration in IndiGolog - from theory to implementation. Ann. of Mathematics and Artificial
Intelligence, 41(2–4):259–299, 2004.

30. S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On the limits of planning
over belief states under strict uncertainty. In Proc. of KR 2006, pages 463–471, 2006.

31. M. K. Smith, C. Welty, and D. L. McGuiness. OWL Web Ontology Language guide. W3C
Recommendation, Feb. 2004. Available at http://www.w3.org/TR/owl-guide/.

32. M. B. van Riemsdijk, F. S. de Boer, M. Dastani, and J.-J. C. Meyer. Prototyping 3APL in the
Maude term rewriting language. In Proc. of 5th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2006), pages 1279–1281, 2006.

33. M. Winslett. Reasoning about action using a possible models approach. In Proc. of AAAI’98,
1988.

34. M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.
35. L. D. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized

systems (a survey). Computer Languages, Systems & Structures, 30(3–4):139–169, 2004.

