Synlett R. Hassaine et al.

Actions of Bisnucleophiles on (E)-3-[3-(2-Hydroxyaryl)-3-oxoprop-
1-en-1-yl]Jchromones: Versatile Transformations into Oxygen- and
Nitrogen-Containing Heterocycles

Ridha Hassaine®b
Oualid Talhij*b<
Nadia Taibi®

Filipe A Almeida Paz¢
Okkacha Bensaid*?
Khaldoun Bachari®
Artur M. S. Silva*c

3 Laboratoire de Substances Naturelles et Bio-Actives,
Département de Chimie, Faculté des Sciences, Université
de Abou Bakr Belkaid Tlemcen, BP 119, 13000, Tlemcen,
Algeria
ok_bensaid@yahoo.com

b Centre de Recherche Scientifique et Technique en
Analyses Physico-Chimiques CRAPC, BP 384, Bou-Ismail,
42004, Tipaza, Algeria

€ QOPNA, Department of Chemistry, University of Aveiro,
3810-193 Aveiro, Portugal
oualid.talhi@ua.pt
artur.silva@ua.pt

4 CICECO - Aveiro Institute of Materials, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro,
Portugal

Received: 11.08.2015

Accepted after revision: 04.10.2015

Published online: 05.11.2015

DOI: 10.1055/5-0035-1560829; Art ID: st-2015-d0631-I

Abstract The transformations of (E)-3-[3-(2-hydroxyaryl)-3-oxoprop-
1-en-1-yl]chromones in the presence of methylhydrazine and aromatic
bisnucleophiles are described. The reactions generally lead to chro-
mone ring transformation via pyrone ring-opening and heterocycliza-
tion to give novel diazoles and (2)-3-aminomethylenechromanones, re-
spectively. Piperazine catalyzes chromanone ring closure of the starting
substrate to afford chromone-chromanone dyads.
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Chromones and chromanones (2,3-dihydrochromones)
are generally recognized as medicinally active heterocy-
cles.’-3 Hence, the important biological properties of these
compounds explain their use in many synthetic scaffolds.*
Indeed, these types of compounds have long been em-
ployed in cancer therapy and anti-inflammatory drug de-
sign, especially the flavones.’ In addition to their bioactivi-
ty, chromones are used as synthetic precursors due to their
ability to undergo versatile ring transformations that utilize
the intracyclic o,B-unsaturated carbonyl system of the py-
rone ring, leading to enaminochromanones,® aurones’ and
polyheterocyclic compounds.?
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In an effort to develop novel biologically active chroma-
nones following new synthetic methods,%° a considerable
amount of work was focused on chromone ring modifica-
tions and transformations involving conformational rear-
rangements'® and various cyclizations through hetero-Mi-
chael additions."'2P The large majority of reactions are ni-
trogen and oxygen nucleophilic additions promoting ring
opening of the pyrone leading to a large diversity of hetero-
cycles.>-1" A good example concerns 2-(N-methylanilino)-3-
formylchromones which have demonstrated broad synthet-
ic applications, especially when incorporating a chromone
moiety. A variety of heterocyclized chromones, novel mac-
rocycles, and tetradentate ligands can be prepared upon re-
actions with bisnucleophiles, such as hydrazines and
phenylenediamines, via substitution of the N-methylanilino
moiety and/or condensations with the 3-formyl group.!?
Other studies have involved the reaction of 3-formylchro-
mones with active methylene compounds to access differ-
ent heterocyclic systems, mainly via pyrone ring-opening
upon nucleophilic attack'® with thiosemicarbazine. Further
chelation with nickel(Il) yields cytotoxic and DNA-binding
agents,'# or with diazoles under microwave-assisted condi-
tions to prepare a series of chromone-diazole dyads.!>

We envisaged that (E)-3-[3-(2-hydroxyaryl)-3-oxoprop-
1-en-1-yljchromones 1a,b might undergo further transfor-
mations on reactions with bisnucleophiles at their different
electrophilic centers, namely the intracyclic o,B-unsaturat-
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ed carbonyl system (the pyrone ring) along with the exocy-
clic 3-oxoprop-1-enyl moiety. In this study, methylhydra-
zine and aromatic-derived bisnucleophiles exhibited differ-
ent reactivity toward chromones 1a,b leading to diazoles
2a,b and 3-aminomethylenechromanones 3aa,ab, respec-
tively (Scheme 1). Moderate to good yields (43-76%) were
achieved overnight at room temperature using tetrahydro-
furan as the solvent. Monitoring the reaction progress by
thin-layer chromatography showed that the best results
were obtained after stirring the reaction for 20 hours at
room temperature. Longer reaction times and higher tem-
peratures led to the formation of several other minor prod-
ucts.

general conditions:
THF, r.t., overnight
aR=H

b R =OMe
aaR=H,X=NH,
abR=H,X=0H

Scheme 1 Synthesis of diazoles 2a,b, 3-aminomethylenechromanones
3aa,ab, and chromone-chromanone dyads 4a,b'®

The two transformations of interest involve a domino
sequence of nucleophilic attack at the chromone C-2 with
pyrone ring opening and pyrazole ring closure,'® together
with a 1,4-aza-Michael addition to the exocyclic 3-oxo-
prop-1-enyl moiety followed by formation a 2-pyrazoline
ring,!” and subsequent nucleophilic attack at the chromone
C-2 with pyrone ring opening followed by chromanone ring
closure (Scheme 2).°

It is worth noting that C-2 of chromones 1 is highly re-
active toward nucleophiles due to the presence of the oxy-
gen atom at position 1 and the mesomeric electron-with-
drawing effects caused by the two carbonyl groups. The
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presence of a second electrophilic center at C-1’ on the 3-
[(2-hydroxyaryl)-3-oxoprop-1-en-1-yl] moiety of 1, even
though relatively less electrophilic, allows its participation
in a consecutive (or simultaneous) attack of a second mole-
cule of methylhydrazine to form the intermediate A. These
events are followed by heterocyclization to afford the di-
azoles 2 (Scheme 2).

The reactions of aromatic bisnucleophiles, such as
phenylenediamine and 2-aminophenol, with chromones 1
are expected to proceed through a similar mechanistic
pathway, thus favoring the initial nucleophilic attack of ni-
trogen on the chromone C-2 of the pyrone ring affording in-
termediate B. Due to the weaker nucleophilic character and
bulky nature of these bisnucleophiles, the heterocyclization
and/or attack of a second molecule on the electrophilic C-1
center of 3-[(2-hydroxyphenyl)-3-oxoprop-1-enyl] moiety
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is not possible. Nevertheless, intermediate B was able to un-
dergo regioselective intramolecular heterocyclization via an
oxa-Michael addition using the hydroxy group of the 2-hy-
droxyphenyl side chain (resulting from the ring-opening of
the pyrone) to yield the corresponding 3-aminomethy-
lenechromanones 3 (Scheme 2).

Piperazine, taken as an example of a secondary cyclic
diamine, catalyzed the chromanone ring closure of sub-
strates 1 giving rise to the novel chromone-chromanone
dyads 4 (Schemes 1 and 2).18

2D NMR spectroscopic analysis and single-crystal X-ray
diffraction studies were employed to reveal the exact spa-
tial description of structures 2-4. Distinguishing between
the 2-(3,4-dihydro-1H-pyrazol-3-yl)phenol and 2-(1H-pyr-
azol-3-yl)phenol moieties of the diazoles 2a,b was rather
straightforward.!®?° 'TH NMR spectroscopic analysis clearly
showed the AMX spin-system resulting from the asymmet-
ric carbon C-3 (8. 63.8-63.9) with three doublets of dou-
blets at dy 2.97-2.98 (H-4[A]), 3.65-3.69 (H-4[M]), and
4.40-4.42 (H-3[X]). The vinylic proton H-5' of the 1H-pyra-
zole was assigned to a singlet at 8, 7.61. Nevertheless, only
analysis of the HMBC connectivities permitted the assign-
ment of the imino carbons at §q5_y 152.9-153.1 for the 3,4-
dihydro-1H-pyrazole, and at §¢3..y 148.0-147.9 for the 1H-
pyrazole, as both are involved in intramolecular hydrogen
bonding with phenolic hydroxy groups (8,~_oy 10.56-10.73
and §,-.oy 10.56-10.97) as was clearly observed from the
crystallographic studies (vide infra). The latter proton sig-
nals could also be differentiated from their HMBC cross-
peak correlations as depicted in Figure 1.

Figure 1 Important HMBC correlations observed in the spectra of
compounds 2a, 3aa and 4b

The 3-aminomethylenechromanones 3aa,ab?'?? dis-
played an ABX spin-system in their '"H NMR spectra (&
3.38-3.43 and 3.69-3.71 for H-1'[AB], and 5.73-5.74 for
H-2[X]) attributed to the 2-(2-hydroxyaryl)-2-oxoethyl side
chain. It was found that the amino protons 1”-NH appeared
as a doublet at 8;-.yy 11.80-11.99 due to coupling with the
vinylic proton H-1" (J;_;-ny = 12.0 Hz) which appear under
a multiplet of the aromatic protons (dy," 7.35-7.57). The
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HMBC connectivities allowed the unequivocal assignment
of all the non-protonated carbons (Figure 1). For example,
H-2[X] showed correlations with the neighboring carbons
C-4 (8- 181.4-181.6), C-2' (8. 203.2-203.3), C-3 (5. 103.8-
103.9) and C-9 (8, 157.3-157.5) of the chromanone ring.

The structures of the novel chromone-chromanone dy-
ads 4a,b?3%* were established unequivocally on the basis of
'H NMR spectroscopic analysis, showing an ABX spin-sys-
tem for the intracyclic aliphatic protons H-3’[AB] and
H-2'[X] resulting from the presence of the asymmetric car-
bon at C-2’ (6. 73.0-73.1) of the chromanone unit. Carbon-
yls C-4' (8. 191.3-191.5) and C-4 (8, 175.7) could be distin-
guished using HMBC cross-peak correlations with H-5" and
H-5, respectively, as shown in Figure 1.

Single-crystal X-ray diffraction studies provided addi-
tional insight on the 3D structures of the chelating hexacy-
clic iminenol and enaminone systems in diazoles 2 and 3-
aminomethylenechromanones 3, respectively.

Crystals of 2a* were isolated by slow evaporation at
6 °C from a solution of a 1:1 mixture of hexane-dichloro-
methane. The crystallographic structural features of the di-
azole 2a were in good agreement with those derived from
the 2D NMR studies (Figure 2, top). The 3,4-dihydro-1H-
pyrazole group was almost co-planar with the attached
phenol group, with the two rings subtending a dihedral an-
gle of 5.18(7)°. On the other hand, the 1H-pyrazole group
subtended a prominent 25.66(7)° angle with its corre-
sponding phenol ring. Nevertheless, as depicted in Figure 2,
both groups were engaged in O-H--N intramolecular hy-
drogen bonds. It is worth emphasizing that the bulky (3,4-
dihydro-1H-pyrazol-3-yl)phenol =~ and  (1H-pyrazol-3-
yl)phenol groups of the molecular unit of compound 2a
were located in different planes subtending a dihedral angle
of 68.10(4)°.

Crystals of 3-aminomethylenechromanone 3aa®® were
obtained from a mixture of hexane-dichloromethane (1:1)
by slow evaporation at 6 °C. Crystallographic studies clearly
showed that the chromanone and the phenylenediamine
groups were almost coplanar, with their average planes
subtending a dihedral angle of only 5.83(5)°. In addition,
the intramolecular hydrogen bonding interaction involving
these two moieties further promoted the typical Z-configu-
ration, ultimately delineating a hexacyclic enaminone ring
(Figure 2, middle). Attached to the C-2 asymmetric center,
the 2-(2-hydroxyaryl)-2-oxoethyl side chain subtended a
dihedral angle of 31.27(4)° with that formed by the conju-
gation of both the chromanone and the phenylenediamine
groups.

A similar recrystallization procedure [hexane-dichloro-
methane (1:1) at 6 °C] allowed the isolation of good quality
crystals of the novel chromone-chromanone dyad 4b.?”
Crystallographic studies showed that the chromone and
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Figure 2 Schematic representations of the molecular units present in
compounds 2a, 3aa and 4b. Asymmetric centers are indicated by an as-
terisk and intramolecular hydrogen bonding interactions as dashed
green lines. Non-hydrogen atoms are represented as thermal ellipsoids
drawn at the 50% probability level and hydrogen atoms as small spheres
with arbitrary radii.

chromanone average planes, joined together by the asym-
metric carbon atom, subtended an average dihedral angle
of 72.18(7)° (Figure 2, bottom).

In conclusion, (E)-3-[3-(2-hydroxyaryl)-3-oxoprop-1-
en-1-ylJchromones are very reactive substrates toward
bisnucleophiles, due to their different electron-deficient
centers. The diverse nature of their properties is notably
observed from the activated push-pull alkene systems (a,3-
unsaturated carbonyl systems), providing the ability to un-
dergo nucleophilic additions, followed by pyrone ring
opening, ultimately producing versatile intermediates
ready for heterocyclizations, thereby allowing the prepara-
tion of diazoles 2a,b, (Z)-3-aminomethylenechromanones
3aa,ab and chromone-chromanone dyads 4.
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(20) 2-[3"-(2-Hydroxyphenyl)-1',2-dimethyl-3,4-dihydro-1'H,2H-

[3,4'-bispyrazol]-5-yl]-4-methoxyphenol (2b)

Yield: 0.19 g (50%); M, = 378.43 g/mol; white solid; mp 182-
183 °C. 'H NMR (300 MHz, CDCl;): 6 =2.87 (s, 3 H, 1-N-CH;),
2.97 (dd, J=18.0, 14.0 Hz, 1 H, H-4[A]), 3.65 (dd, J = 18.0, 10.0
Hz, 1 H, H-4[M]), 3.74 (s, 3 H, 5"-0CHj;), 3.95 (s, 3 H, 1'-N-CH3),
442 (dd, J=14.0, 10.0 Hz, 1 H, H-3[X]), 6.62 (d, J=2.9 Hz, 1 H,
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Hz, 1 H, H-6""), 7.61 (s, 1 H, H-5"), 10.56 (br s, 2 H, 2""-OH and
2"-0H). 3C NMR (75 MHz, CDCl;): 8 = 39.2 (1'-N-CHs), 42.1 and
42.3 (1-N-CH; and C-4), 55.9 (5"-0-CH;), 63.9 (C-3), 112.2 (C-
6"),116.3(C-4"),117.1 (C-3"),117.3 (C-1""),117.4(C-3""),118.4
(C-5"), 119.4 (C-4"), 127.3 (C-6"), 129.2 (C-4"), 130.7 (C-5"),
148.0 (C-3'), 151.9 (C-5"), 152.3 (C-1"), 152.9 (C-5), 155.8 and
156.0 (C-2" and C-2""). HRMS (ESI): m/z [M + Na]* calcd for
C,;H,,N,0;5Na: 401.1590; found: 401.1581.

(21) (2)-3-{[(2-Aminophenyl)amino]methylene}-2-[2-(2-

hydroxyphenyl)-2-oxoethylJchroman-4-one (3aa)

Yield: 0.27 g (68%), M, = 400.43 g/mol; orange crystals; mp 140-
141 °C. 'H NMR (300 MHz, CDCl;): 6 =3.43 (dd, J = 16.4, 7.0 Hz,
1H, H-1'[AB]), 3.69 (dd, J = 16.4, 6.2 Hz, 1 H, H-1'[AB]), 3.70 (s, 2
H, 2""-NH,), 5.73 (dd, J = 7.0, 6.2 Hz, 1 H, H-2[X]), 6.76-6.91 (m,
4 H, H-5", H-3"", H-4"", H-6"""), 6.93-7.12 (m, 4 H, H-8, H-6, H-
3" H-5""),7.38-7.54 (m, 4 H, H-7, H-4"", H-1", H-6""), 7.97 (dd,
J=7.7,13Hz, 1 H,H-5),11.80 (d, ] = 12.0 Hz, 1 H, 1"-NH), 12.18
(s, 1 H, 2""-0OH). 3C NMR (75 MHz, CDCl;): 6 =44.3 (C-1"), 75.3
(C-2), 103.8 (C-3), 117.4 (C-3""), 117.9 (C-6""), 118.1 (C-4""),
118.6 (C-8), 119.1 (C-5""), 119.5 (C-1""), 120.1 (C-3""), 121.9 (C-
6), 122.8 (C-10), 125.6 (C-5""), 126.5 (C-5), 128.2 (C-1""), 130.1
(C-6""), 134.6 (C-7), 136.9 (C-4""), 137.2 (C-2""), 144.5 (C-1"),
157.3 (C-9), 162.6 (C-2""), 181.6 (C-4), 203.3 (C-2"). HRMS (ESI):
mjz [M + Na]" caled for C,,H,oN,04Na: 423.1321; found:
423.1318.

(22) (Z)-2-[2-(2-Hydroxyphenyl)-2-oxoethyl]-3-{[(2-hydroxyphe-

nyl)amino]methylene}chroman-4-one (3ab)

Yield: 0.27 g (76%); M, = 401.41 g/mol; yellow solid; mp 140-
141 °C. 'H NMR (300 MHz, CDCl;): 6 = 3.38 (dd, J = 16.2, 6.6 Hz,
1 H, H-1"[AB]), 3.71 (dd, J = 16.2, 6.6 Hz, 1 H, H-1'[AB]), 5.74 (t,
J=6.6 Hz, 1 H, H-2[X]), 6.75-6.99 (m, 6 H, H-4"", H-6"", H-5"",
H-3"", H-5"", H-8), 7.03-7.17 (m, 2 H, H-6, H-3"""), 7.35-7.57 (m,
4 H, H-7, H-4", H-6"", H-1"), 8.01 (dd, J = 7.8, 1.7 Hz, 1 H, H-5),
11.99(d, ] = 12.0 Hz, 1 H, 1"-NH), 12.11 (s, 1 H, 2""-OH). 13C NMR
(75 MHz, CDCl;): 6 =44.4 (C-1"), 75.6 (C-2), 103.9 (C-3), 114.6
(C-3"), 116.2 (C-6""), 118.1 (C-4""), 118.6 (C-8), 119.0 (C-5""),
119.6 (C-1""), 121.3 (C-3"), 121.8 (C-6), 122.9 (C-10), 124.3 (C-
5""), 126.6 (C-5), 128.5 (C-1"""), 130.1 (C-6""), 134.5 (C-7), 136.7
(C-4"), 141.8 (C-1"), 145.5 (C-2""), 157.5 (C-9), 162.7 (C-2"),
181.4 (C-4), 203.2 (C-2"). HRMS (ESI): m/z [M + Na]* calcd for
C,4H gNOsNa: 424.1161; found: 424.1131.

(23) 3-(4-Oxochroman-2-yl)-4H-chromen-4-one (4a)

Yield: 0.18 g (61%); M, = 292.29 g/mol; colorless crystals; mp
195-196 °C. 'H NMR (300 MHz, CDCl;): 6 =2.89 (dd, J=16.9,
13.0 Hz, 1 H, H-3'[AB]), 3.25 (dd, J = 16.9, 3.0 Hz, 1 H, H-3'[AB]),
5.72 (ddd, J = 13.0, 3.0, 1.0 Hz, 1 H, H-2'[X]), 7.02-7.13 (m, 2 H,
H-8’, H-6"), 7.40-7.57 (m, 3 H, H-6, H-8, H-7'), 7.72 (ddd, J = 8.7,
7.1,1.7 Hz, 1 H, H-7), 7.95 (ddd, J = 8.6, 4.9, 3.6 Hz, 1 H, H-5'),
8.20-8.28 (m, 1 H, H-5), 8.24 (d, J= 1.0 Hz, 1 H, H-2). 13C NMR
(75 MHz, CDCl5): 6 =42.8 (C-3"), 73.0 (C-2'), 117.9 (C-8'), 118.2
(C-8), 121.1 (C-107), 122.0 (C-6), 122.9 (C-3), 123.8 (C-10),
125.5 (C-6), 125.9 (C-5), 127.3 (C-5'), 134.1 (C-7), 136.1 (C-7"),
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153.3 (C-2), 156.3 (C-9), 161.2 (C-9'), 175.7 (C-4), 191.3 (C-4").
HRMS (ESI): m/z [M + Na]* caled for C;gH;,0,Na: 315.0633;
found: 315.0636.

(24) 3-(6-Methoxy-4-oxochroman-2-yl)-4H-chromen-4-one (4b)

Yield: 0.14 g (43%); M, = 322.31 g/mol; colorless crystals; mp
195-196 °C. '"H NMR (300 MHz, CDCl;): 6 =2.85 (dd, J=17.0,
13.1 Hz, 1 H, H-3'[AB]), 3.24 (dd, J = 17.0, 2.9 Hz, 1 H, H-3'[AB]),
3.83 (s, 3 H, 6'-0CH3), 5.67 (ddd, J=13.1, 2.9, 1.0 Hz, 1 H, H-
2'[X]), 7.00 (d, ] = 9.0 Hz, 1 H, H-8'), 7.13 (dd, J = 9.0, 3.2 Hz, 1 H,
H-7'),7.37(d,] = 3.1 Hz, 1 H, H-5), 7.40-7.52 (m, 2 H, H-6, H-8),
7.72 (ddd, = 8.6,7.2,1.7 Hz, 1 H, H-7), 8.21-8.28 (m, 1 H, H-5),
8.24 (d, J = 1.0 Hz, 1 H, H-2). 13C NMR (75 MHz, CDCl;): § = 42.7
(C-3"), 55.8 (6'-OCH;) 73.1 (C-2"), 107.6 (C-5), 118.2 (C-8), 119.2
(C-8'), 121.0 (C-10"), 123.0 (C-3), 123.8 (C-10), 125.2 (C-7"),
125.5 (C-6), 125.9 (C-5), 134.0 (C-7), 153.3 (C-2), 154.5 (C-6"),
155.8 (C-9'), 156.3 (C-9), 175.7 (C-4), 191.5 (C-4"). HRMS (ESI):
m/z [M + Na]* calcd for C;oH;,05Na: 345.0739; found: 345.0748.

(25) Crystal data for compound 2a (CCDC 1404991): C,oH,oN40,,

M =348.40, triclinic, space group Pi, Z=2, a=28.7610(13) A,
b=9.9194(16) A, c= 11.871(2) A, a = 66.580(7)°, B = 70.069(7)°,
y=74.993(7)°, V=880.8(3)A% u(Mo-Ka)= 0.088 mm,
D.=1314gcm>3, colorless  block, crystal size =

470

0.22 x 0.16 x 0.10 mm?3. Of a total of 19322 reflections collected,
4753 were independent (R, =0.0413). Final R1=0.0467
[I>20(I)] and wR2 =0.1267 (all data). Data completeness to
0 =25.24°,99.9%.

(26) Crystal data for compound 3aa (CCDC 1404990): C,4H»oN,0,,

M=400.42, monoclinic, space group P2,/n, Z=4,
a=14.9755(11) A, b=4.7510(3) A, c=26.6395(16) A,
B=93.664(5)°, V=18915(2)A3, u(Mo-Ka)= 0.097 mm,
D, =1.406 g cm, orange plate, crystal size of 0.22 x 0.12 x 0.03
mm?3. Of a total of 15482 reflections collected, 4999 were inde-
pendent (R, =0.0475). Final R1=0.0505 [I>20(I)] and
WR2 = 0.1233 (all data). Data completeness to 6 = 25.24°, 99.6%.

(27) Crystal data for compound 4b (CCDC 1404989): C;gH;40s,

M =322.30, triclinic, space group Pi, Z=2, a=28.4108(9) A,
b =8.5434(9) A, c=10.6878(11) A, a=83.293(3)°,
B=72.084(3)°, y=82.141(3)°, V=721.61(13)A3, p(Mo-Ka)=
0.108 mm', D.=1.483 g cm=, colorless plate, crystal size of
0.16 x 0.12 x 0.07 mm3. Of a total of 13854 reflections collected,
2640 were independent (R;,=0.0256). Final R1=0.0553
[I>20(I)] and wR2 =0.1356 (all data). Data completeness to
0 =25.24°,99.6%.

© Georg Thieme Verlag Stuttgart New York — Synlett 2016, 27, 465-470

Downloaded by: University of Cambridge. Copyrighted material.



